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Abstract
By drawing a parallel between the controller parameters of a piezoelectric inductive-resistive (RL) shunt with
a negative capacitance (NC) and the active control method positive position feedback (PPF), we prove that
there exists an equivalence between the controller parameters and their receptance functions. Based on these
findings, exact H∞ tuning rules for RL shunts are extended to the use of a NC to eventually find optimal
values for the design of a PPF controller. In addition, a closed-form expression of the maximum amplitude
of the frequency responses is provided. Using these rules, a thorough comparison in terms of performance
and stability margins between the RL shunt with NC and the PPF is performed and discussed.

1 Introduction

Based on the piezoelectric effect, self-sensing piezoelectric transducers shunted with an electrical impedance
can be used to mitigate the vibrations of engineering structures. The design of this electrical impedance is
often realized according to resistive (R) or resistive-inductive (RL) shunt circuit designs [1]. There exist
several tuning rules to find optimal values for the resistance and the inductance. On the basis of closed-form
solutions for dynamic vibration absorbers introduced by Asami and Nishihara [2], Soltani et al. proposed
tuning rules for a RL shunt circuit that lead to minimized equal resonance peaks of the controlled structure
[3]. Working according to a passive control law, piezoelectric R or RL shunts are in theory purely passive
applications. Their performance depends on the electromechanical coupling between the structure and the
piezoelectric transducer. It can be assessed by means of the energy converted by the piezoelectric material,
expressed with the so-called effective electromechanical coupling factor (EMCF). For a better authority over
the structure, the coupling can be enhanced by using a negative capacitance (NC) in series or in parallel with
the shunt circuit. A piezoelectric shunt with a NC includes a NC circuit that needs to be powered while the
original shunt circuit works according to a passive control law [4]. However, in current applications, RL
shunts can be realized via a digital vibration absorber (DVA), emulating the passive electrical circuit with a
digital controller unit [5]. While the control law remains passive, this realization comes with the need for
elements of the DVA to be powered.

The idea of a NC has already been introduced in 1979 by Forward when he used a NC in parallel to a piezo-
electric transducer for compensation of the inherent capacitance of electromechanical transducers coupled
to vibrating mechanical structures [6]. Later, a NC was implemented to cancel the electrical reactance in R
shunt circuits, followed by a comparison to RL shunts [7]. A series connection of a NC with a piezoelectric



transducer was exploited Tang and Wang for a better control authority when using RL shunts [8]. Their
shunt tuning was based based on common intersection points (fixed points) of resulting frequency response
functions (FRFs), introduced by Hagood and von Flotow for passive RL shunts [1]. In 2003, an extensive
analytical analysis of piezoelectric R shunts using NCs as well as an experimental demonstration of their
findings was conducted by Behrens et al. [9]. Their structure of interest was a plate and the NC values were
chosen to be as close as possible to the stability limit [9]. A comparative study of different shunt circuit
compositions using R and L elements in series with a NC has been presented by Neubauer et al. to show sta-
bility limits and improvements in performance [4]. Their findings have been validated experimentally with
a vibrating mass mounted on a piezoelectric stack actuator. Once again, the shunt parameters were set using
the fixed-point tuning rules mentioned earlier. Two configurations of a NC, one in series and one in parallel,
have been compared by de Marneffe and Preumont with the conclusion that the series implementation was
more robust [10]. They validated their findings experimentally on a truss structure with a NC value that was
90% of the stability limit. Furthermore, they showed that an integral force feedback (IFF) controller lead to
better damping performances than a RL shunt with NC. To account for multiple modes and their influence
on the tuning procedure, Berardengo et al. derived more accurate formulations for the dynamic capacitance
of a piezoelectric transducer. By using a real circuit for the NC, they designed a robust electrical network
that was used in series, in parallel and in a series-parallel combination with RL shunts. Their findings were
demonstrated on a cantilever steel beam [11, 12]. Recently, a piezoelectric damping solution targeting mul-
tiple modes with R shunts connected to a NC (RNC shunts) was discussed by Berardengo et al.. These RNC
shunts were connected to an inductor that was used for enhancement of the broadband attenuation of the
RNC shunt to increase its robustness [13].

From an active control perspective, a classic control technique for vibration mitigation is the positive position
feedback (PPF) approach where the structure’s dynamics are attenuated by a compensator that controls the
displacement with an actuation force. It has been inter alia established by Fanson and Caughey [14]. The
compensator is acting like a second order filter and the controller is tuned to resonate with the structure’s
natural frequency. Paknejad et al. proposed a tuning of the PPF controller parameters based on maximum
damping using the H2 norm [15]. They demonstrated their findings on a simple numerical example and
experimentally on a cantilever beam. In addition, the influence of the proposed tuning rules on the static
response of the controlled system was studied. Zhao et al. already discussed a PPF controller design based
on H∞ tuning using the fixed-point method [16]. As discussed above, this method does not yield exact
optimal solutions. Traditionally, when using a PPF controller, the position coordinate measured by a sensor
is positively fed to the compensator and positively fed back to the structure via an actuator [14, 17]. From
this point of view, this method can thus be seen in contrast to the self-sensing control approach of a shunt.
Agnes already pointed out similarities between a NC shunt and a PPF controller in [17]. However, to this
date, a complete equivalence between the PPF and a shunt with an NC has not been demonstrated.

In this work, we present a comparison of the two control techniques. First, similarities between classic RL
shunts with NC and a PPF controller are pointed out by looking at the dimensionless forms of their receptance
functions. Based on these similarities, common tuning rules for RL shunts using H∞ optimization and
aiming for an equal-peak design are extended to, in a first step, find theoretically optimal values for RL
shunts with NC. By using the derived parameter equivalence between the the former and the PPF controller,
we can then provide exact tuning rules for the PPF controller and a closed-form expression of the maximum
amplitude of the frequency responses for both approaches. In addition, a comparison between the RL shunt
with NC and the PPF is presented and discussed in terms of performance, open-loop transfer functions and
stability margins.
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Figure 1: SDOF system with a (a) series RL shunt in series with a NC and (b) PPF controller.

2 Equivalence between a RL shunt with NC and a collocated PPF

2.1 The host system

For a piezoelectric single-degree-of-freedom (SDOF) structure (cf. Figure 1(a)), the equations of motion
using the Laplace variable s are given by{

mxs2 + kocx− θq = f
θx− 1

Cε
p
q = V . (1)

x is the displacement, f an external disturbance force, q the electric charge of the electrodes of the piezo-
electric transducer and V the voltage across them. m is the mass of the mechanical system, koc its stiffness
when the transducer is in open-circuit and Cε

p the capacitance of the piezoelectric transducer under constant
strain. The equations are related to each other via the electromechanical coupling coefficient θ. This coeffi-
cient characterizes how much energy is transformed between the piezoelectric transducer and the mechanical
system [1] so that an interaction between the electrical and mechanical dynamics takes place. One can see
this when regarding the resonance frequencies of the SDOF oscillator in open-circuit (q = 0) and in short-
circuit (V = 0). In open-circuit, its resonance frequency is ωoc =

√
koc/m while, when in short-circuit, the

stiffness of the structure changes according to Equation (1) to

ksc = koc − θ2Cε
p . (2)

In this way, the resonance frequency becomes ωsc =
√
ksc/m.

2.2 The RL shunt with NC

When piezoelectric shunts are used for vibration mitigation, the authority over the system depends on the
electromechanical coupling. A way to assess this coupling is the dimensionless EMCF Kc that relates the
modal strain energy when the transducer is in short- and in open-circuit to each other [18]:

K2
c =

ω2
oc − ω2

sc

ω2
sc

. (3)

Thus, this coupling factor depends on the fixed properties of the host system represented by the parameters
θ and Cε

p in Equation (2). In Equation (3), the short-circuit resonance frequency is used for normalization.
One could likewise normalize with ωoc, defining the EMCF as

α2 =
ω2
oc − ω2

sc

ω2
oc

=
K2

c

1 +K2
c

. (4)



In piezoelectric shunt damping, a RL shunt connected to the electrodes of the transducer needs to be prop-
erly tuned to mitigate the resonance amplitude of the structural response. Here, the EMCF determines the
maximum amplitude of the forced response of the controlled system [3]. Adding a NC to the shunt circuit
can enhance the EMCF by increasing the coupling [10]. While a NC can be added to any passive shunt, it is
usually realized with an active component, such as an operational amplifier. Thus, instabilities can occur if
the NC is not properly selected.

When the piezoelectric transducer is connected to a classic RL shunt circuit in series with a negative capaci-
tance Cn, we obtain the following relation between the voltage and the charge(

Ls2 +Rs− 1

Cn

)
q = V. (5)

Thus, the electrical part of Equation (1) reads

Ls2q +Rsq +
1

Ceff
q − θx = 0. (6)

We introduce the effective capacitance [11]

1

Ceff
=

1

Cε
p

− 1

Cn
. (7)

To achieve an optimal damping performance, the shunt parameters R and L need to be tuned in dependence
of the chosen Cn. In a first step, the transfer function from the disturbance force to the displacement is
regarded. From Equations (1) and (6), we obtain

x

f
=

[
ms2 + koc −

θ2

Ls2 +Rs+ 1
Ceff

]−1

. (8)

Equation (8) can be written in dimensionless form using the electrical frequency and the damping ratio of
the shunt

ω2
e :=

1

CeffL
, 2ωeζe :=

R

L
(9)

and [19]

xst :=
f

koc
, α̃2 :=

θ2Ceff

koc
, νe :=

ωe

ωoc
, ŝ :=

s

ωoc
. (10)

Using Equations (9) and (10), the transfer function of the SDOF system with the piezoelectric shunt in
dimensionless form is

h(ŝ) =
x

xst
=

[
ŝ2 + 1− α̃2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1

]−1

, (11)

with tilde referring to the case when negative capacitance is used. With Equations (4), (7) and (10), the
enhanced EMCF is now

α̃2 =
θ2Cε

p

koc

Ceff

Cε
p

= α2

[
1−

Cε
p

Cn

]−1

. (12)

It is is greater than the base EMCF when Cε
p < Cn < ∞. Given that

K̃2
c =

α̃2

1− α̃2
, (13)

the short-circuit normalized EMCF is also increased.



Table 1: Equivalence between the dimensionless parameters of a NC shunt and a PPF controller.

Shunt α̃2 νe ζe
PPF g νc ζc

2.3 The PPF controller

The active control approach using a PPF controller (cf. Figure 1(b)) is now taken into account, considering
a collocated sensor and actuator. The equations of motion read{

mxs2 + kx = f + ω2
cgcuc

(s2 + 2ωcζcs+ ω2
c )uc = x

. (14)

The variables uc, ζc, ωc and gc refer to the control signal, damping ratio, frequency and gain of the controller,
respectively. Inserting the second line of Equation (14) in the first yields

(ms2 + k)x = f +
ω2
cgcx

s2 + 2ωcζc + ω2
c

. (15)

Dividing Equation (15) by x and forming its reciprocal results in the receptance function

x

f
=

[
ms2 + k − ω2

cgc
s2 + 2ωcζcs+ ω2

c

]−1

. (16)

Using [19]

xst :=
f

k
, ω0 :=

√
k

m
, ŝ :=

s

ω0
, νc :=

ωc

ω0
, g :=

gc
k
, (17)

we can now write Equation (16) in dimensionless form:

x

xst
=

[
ŝ2 + 1− g

ŝ2

ν2c
+ 2ζc

ŝ
νc

+ 1

]−1

. (18)

2.4 Equivalence between the RL shunt with NC and a self-sensing PPF

From Equations Equations (11) and (18), we note a parameter equivalence reported in Table 1. Agnes already
noted a dynamical similarity between the RL shunt and PPF in [17]. In this study, we further highlight a full
equivalence between the two approaches in terms of tuning parameters (cf. Table 1) and their receptance
functions.

From the previous developments, it can be stated that in this context the NC shunt corresponds to a self-
sensing PPF controller: The piezoelectric transducer is actuated by its charge and the position is estimated
by its voltage. In fact, the electrical part of Equation (1) reads

x =
1

θ

(
V +

1

Cε
p

q

)
, (19)

and, considering the mechanical part of Equation 1, the force defined by the PPF controller acts on the
structure if the following relation holds true:

ω2
cgcuc = θq. (20)

A combination of the transfer function of the PPF given in the second line of Equation (14) with Equations



(14) and (20) yields the relation between the charge and voltage applied by the self-sensing PPF[
θ2

ω2
cgc

(
s2 + 2ζcωcs+ ω2

c

)
− 1

Cε
p

]
q = V. (21)

With the parameters given in Equations (10) and (17) (with k = koc),

θ2

gc
=

θ2

kα2
=

1

Ceff
. (22)

Using the definition of the effective capacitance (Equation (7)) and the parameter equivalence in Table 1,
Equation (21) is indeed identical to Equation (5). Thus, an equality between a self-sensing PPF and a RL
shunt with series NC is proven.

3 H∞ tuning rules

Exact tuning rules for passive RL shunts have already been introduced by Soltani et al. in [3]. They mini-
mized the H∞ norm of the receptance function to obtain two resonance peaks of equal amplitude. Thanks to
the incorporation of a NC, a free parameter α̃ is now added in the shunt approach. First, we fix the parameter
α̃ to find optimal values for νe and ζe by minimizing the H∞ norm of the transfer function h(iω̂). Here, i is
the unit imaginary number and ω̂ a circular frequency normalized by ωoc given in Equation (11):

minνe,ζe∥h(iω̂e)∥∞ → find νe, ζe such that |h(iω̂e,A)| = |h(iω̂e,B)| ≡ h0.

h0 is the maximum amplification of two equal resonance peaks that are located at dimensionless frequencies
ω̂e,A and ω̂e,B . We can express h0 as a function of α̃ [3]:

h0 =
8

α̃
√

2
√
54α̃4 − 144α̃2 + 64 + 9α̃2 + 16

(23)

and solve the equation to α̃. Equation (23) can be shown to be equivalent to

135h40α̃
8 − 864h40α̃

6 + 1152h20α̃
4 + 2048h20α̃

2 − 4096 = 0. (24)

This quartic equation in α̃2 is theoretically solvable in closed-form so that, from a desired amplification h0,
we can find a respective coupling coefficient α̃2 by solving Equation (24).

The peak amplitude h0 is now to be minimized and a value for α̃ shall be found where

∂h0
∂α̃

= 0 . (25)

The following expression is found [20]:

∂h0
∂α̃ = −

4

(
216α̃3−288α̃√

54α̃4−144α̃2+64
+18α̃

)
α̃(9α̃2+2

√
54α̃4−144α̃2+64+16)

3/2 − 8

α̃2
√

9α̃2+2
√
54α̃4−144α̃2+64+16

. (26)

Solving Equations (23) and (25) for α̃ yields

α̃opt = 2

√
2

15
. (27)

The minimum attainable H∞ norm can be found by inserting α̃opt in Equation (23):

h0,opt =
√
5. (28)



Using α̃opt, the tuning parameters νe and ζe shall now be found. They can be expressed as a function of K̃2
c

(cf. Equation (13)) using the tuning rules provided by Soltani et al. [3]. With the intermediate parameter

r =

√
64− 16K̃2

c − 26K̃4
c − K̃2

c

8
, (29)

the optimal frequency and damping ratios are

νe =

√
3K̃2

c − 4r + 8

4K̃2
c + 4

(30)

and

ζe =

√
27K̃4

c + 80K̃2
c + 64− 16r

(
4 + 3K̃2

c

)
√
2
(
5K̃2

c + 8
) , (31)

respectively.

For the RL shunt with NC, we can find a theoretical optimal value for Cn from Equations (12) and (27)

Cn,opt = Cε
p

[
1− α2

α̃2
opt

]−1

. (32)

With Equation (9), the shunt parameters R and L can be derived for a series shunt by expressing them in
terms of Ceff , ωoc, νe and ζe. Likewise, we can define optimal values for the PPF controller by using α̃2

opt

from Equation (27) together with Equations (30) and (31) in combination with the relations given in Table 1.

3.1 Discussion of the derived tuning rules

The parameter equivalence that was shown in the current section enabled the use of common tuning rules for
the shunt and the PPF controller. These two control approaches can theoretically attain the same performance
when α̃2 and g are equal, and Equation (28) features a lower bound for the H∞ norm attainable by both
approaches. This bound is reached when α̃ assumes its optimal value given by Equation (27). Hence,
this may lead us to conclude that both approaches are fully equivalent. However, practical considerations
discussed in the next section will show that the PPF is the only viable alternative when one desires to attain
this optimal performance. These optimal tuning rules are thus particularly useful for the PPF controller. In
contrast, the NC should rather be considered as a parameter that improves the authority over the structure and
that does not need to be explicitly optimized. With the practical consideration of ensuring sufficient stability
margins, one should therefore pick a value of Cn resulting from a trade-off between robustness margins
and performance, rather than computing it from Equation (32). The corresponding value of α̃ can then be
deduced from Equation (12).

4 Performance and comparison

In the following, the derived tuning rules are used for the NC shunt and the PPF controller to adopt the same
controller parameters for both approaches. They are compared in terms of performance, open-loop transfer
functions and stability.



4.1 Performance

The performance of the NC shunt and the PPF controller shall now be compared to each other by means
of a numerical example. To this end, a dimensionless SDOF system is exploited and the transfer functions
between the structural response and the external disturbance force (Equations (11) and (18)) are compared
in Figure 2. Both approaches, properly tuned, lead to a successful attenuation of the resonance amplitude.
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Figure 2: FRFs between structural response and external disturbance force of a SDOF system controlled by
a piezoelectric series RL shunt circuit with a NC ( ) and a PPF controller ( ) in contrast to a fully

passive RL shunt (α = 0.1) ( ).

In addition, it can be seen that their damping performance is indeed identical. The frequency response
function (FRF) of the receptance with a passive RL shunt is plotted for comparison. Here, α was chosen
to 0.1. Figure 2 highlights that the NC shunt and the PPF approach lead to a clearly better reduction of the
resonance amplitude. However, there is a trade-off between this amplitude reduction and the static response.
We observe that, in the case of the NC shunt or the PPF controller, the static response grows and that the
system is softening. Interestingly, Paknedjad et al. made the same observations in their work. They designed
a PPF controller based on maximum damping using a H2 optimization of the receptance [15]. Considering
the here proposed H∞ tuning rules, there is a relation between the parameter α̃ and the system’s stiffness.
Indeed, the evaluation of Equation (11) at ŝ = 0 gives the static response

h(0) =
1

1− α̃2
, (33)

which grows with α̃. Different FRFs for variations of this parameter based on its optimal value in the H∞
sense are displayed in Figure 3, using the example of a NC shunt. If α̃ < α̃opt, the static response is smaller
than in the optimal case but the magnitude of the resonance amplitude is greater so that h0 > h0,opt (cf.
Figure 3). Soltani et al. stated that α should not be chosen higher than α̃max = 0.74815 [3]. Figure 4
shows the maximum amplitude of the receptance function h0 as well as the amplitude of the static response
in dependence of the value α̃. Indeed, for values of α̃ chosen to be greater than this α̃max, the equal-peak
design of the receptance function becomes ineffectual and the maximum of the receptance function is shifted
to ŝ = 0 . It can thus be stated that the minimum amplitude given in Equation (28) is the only minimum
and that the value found for α̃opt is indeed an unique optimum. In contrast to the fixed-point method, the
here proposed closed-form solution of the resonance amplitude and its H∞ optimization allows to take the
system’s stiffness into account and to limit the static softening.
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Figure 3: FRFs between structural response and external disturbance force of a SDOF system controlled by
a piezoelectric series RL shunt circuit with a NC in contrast to a fully passive RL shunt ( ). The parameter

for the NC has been chosen according to α̃ = 0.85α̃opt ( ), α̃ = α̃opt ( ) and α̃ = 1.025α̃opt ( ).
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Figure 4: Maximum amplitude h0 ( ) and static response ( ) of the SDOF system with a NC shunt in
dependence of α̃.

4.2 Open-loop transfer functions

In the following, the open-loop transfer functions of the SDOF system with a NC shunt and a PPF controller
are derived from the schematics displayed in Figure 5. For the piezoelectric shunt, the open-loop transfer
functions are built by means of the voltage measured by the piezoelectric transducer and the current defined
by the controller function. Thus, the plant transfer function GShunt(s) is defined as the transfer function
between sq and V when the external forcing f is set to zero. This function is also known as the dynamic
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Figure 5: Feedback control with a piezoelectric RL shunt with NC (a) and with PPF (b).

impedance of the piezoelectric transducer. In practice, this relation is usually measured and used for the
shunt tuning. From Equations (1) and (2),

GShunt(s) =
V

sq

∣∣∣∣
f=0

= − 1

sCε
p

s2 + ω2
sc

s2 + ω2
oc

. (34)

Here, the shunt admittance

YShunt =
1

Ls+R− 1
sCn

(35)

is seen as the feedback controller, having V as its input and sq as the output. We now combine Equations
(34) and (35) to obtain the open-loop transfer function in dimensionless form (with Equations (9) and (10)):

Hol,Shunt(ŝ) = −GShunt(ŝ)YShunt(ŝ) =
ŝ2 + 1− α2

ŝ2 + 1

α̃2

α2

ŝ2

ν2e
+ 2ζe

ŝ
νe

+ 1− α̃2

α2

. (36)

The open-loop transfer function of the system with the PPF controller includes the plant transfer function
GPPF (s) that can be derived from Equation (14). It is the transfer function between the controller force
fPPF = ω2

cgcuc and the displacement x when f = 0:

GPPF (s) =
1

ms2 + k
. (37)

The PPF controller function is the second-order filter

PPF (s) =
gcω

2
c

s2 + 2ωcζcs+ ω2
c

. (38)

Using Equations (37) and (38), and the parameters in Equation (17), the open-loop transfer function in
dimensionless form is

Hol,PPF (ŝ) = −GPPF (ŝ)PPF (ŝ) = − 1

ŝ2 + 1

g
ŝ2

ν2c
+ 2ζc

ŝ
νc

+ 1
. (39)

4.3 Stability

In order to explain the stability of the controlled systems, we consider the expressions of the open-loop
transfer functions given in Equations (36) and (39). Previous works have shown that as long as the damping
ratio and optimal frequency are greater than zero, the only parameter that could de-stabilize the controller
could be α̃, or g respectively [10, 21]. It can thus be seen as the decisive parameter for stability. For the
system with a RL shunt with NC, we also have to consider the initial electromechanical coupling, given
by α. With strong initial coupling, we have better authority of the passive system and the system is more
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Figure 6: Bode plots of the open-loop transfer functions of a dimensionless SDOF system with a RL shunt
with NC ( ) and a PPF controller ( ) tuned according to H∞ tuning rules.

robust. Taking into account that a RL shunt with a NC already has small stability margins, we further note
that the here proposed Cn,opt (cf. Equation (32)) is already close to a theoretical stability limit defined by de
Marneffe and Preumont [10]. They state that the controlled system with a piezoelectric series shunt circuit
in series with a NC is stable if

Cn >
ω2
oc

ω2
sc

Cε
p . (40)

A stability limit is reached when the structure’s stiffness (as it is seen from the transducer) is cancelled out
by the negative stiffness of the transducer, represented by the capacitance (ω2

ocC
ε
p/ω

2
sc = Cn) [10]. A look

at Equation (12) reveals that, in this case, α̃2 = 1, thus stability is ensured if α̃2 < 1. This is in line with the
stability limit for the gain of a PPF controller g < 1, given by Zhao et al. [21].

4.4 Stability margins

Closed-loop stability is a necessary requirement to guarantee the performance a control system but it is not
a sufficient one. In practice, one has to ensure sufficient stability margins to account for uncertainties and
unmodeled dynamics in the system. These margins can be deduced from the open-loop transfer functions
[22]. When comparing the open-loop transfer functions given in Equations (36) and (39), one can see that
they are not identical. This can be explained by the different implementations of the controllers. In the shunt
approach, only the function YShunt(s) is regarded as the feedback, acting on a plant that includes the piezo-
electric coupling - a point of view that is motivated by the actual practical implementation of piezoelectric
shunts. Considering the PPF, the plant consist only of the mechanical system.

Figure 6 displays the Bode plots of the derived open-loop transfer functions for the SDOF system (cf. Equa-
tions (36) and (39)) in the optimal tuned case (cf. Section 3). It can be seen that the transfer functions of
Hol,Shunt(ŝ) and Hol,PPF (ŝ) evolve in a different way and that the PPF controller provides considerably



greater stability margins in the region of the resonance. We can thus expect differences in the robustness
margins of the two approaches.

Figure 7 displays the phase margins for both approaches in dependence on the choice of the parameter α̃.
Considering the NC shunt, the phase margins decrease drastically for values of α̃ that are roughly larger than
0.1. For values close to α̃opt, there is nearly no phase margin left. These extremely small phase margins
featured by the NC shunt make its implementation difficult if not impossible. In particular, with a phase
margin of less than 1°, the optimal NC shunt is not implementable in practice. Indeed, this would make the
application extremely sensitive to delays induced by e.g. digital controllers [23]. To obtain a decent phase
margin, one has to choose a smaller coupling coefficient α̃ than the optimal one (cf. Figure 7). In contrast
to the NC shunt, the phase margins obtained with a PPF controller are considerably larger which makes this
approach robust and viable in practical applications.
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Figure 7: Phase margins for the open-loop transfer functions of the RL shunt with NC ( ) and the PPF
controller ( ) for variations of the parameter α̃.

4.5 Implementation

Finally, we regard the practical implementation of the here discussed control approaches. While a RL shunt
with a NC necessarily requires the usage of a piezoelectric transducer, a PPF controller can be realized with
any pair of sensor/actuator and can thus be seen as a more general approach. Another advantage of the PPF
controller is that less knowledge about the system plant is necessary to design the controller. Using the PPF,
only the parameters k and ω0 need to be known to define the controller function. In contrast, due to the
fact that the electromechanical system is regarded as the plant function in piezoelectric shunt damping, three
system parameters need to be known for the tuning of the NC shunt: ωsc, ωoc and Cε

p . Keeping in mind that
a correct identification of the system parameters can often be challenging, it can be advantageous that fewer
parameters are required for the design of the PPF controller. However, for the theoretical developments in
this work, a collocated control is assumed for the realization of the PPF controller. It needs to be taken
into account that the realization might not always be feasible and how a non-perfectly collocated setup will
impact the damping performance.



5 Conclusions and outlook

By proving that the receptance functions of a RL shunt with NC and a collocated PPF controller are equiv-
alent, we derived new optimal tuning rules in the H∞ sense for the PPF controller aiming for an equal-peak
design. In addition, we provided an expression of the resonance amplitude in closed-form. The here proposed
tuning rules prove to yield a strong reduction of the resonance amplitude demonstrated on a SDOF system.
It has to be mentioned that this amplitude reduction comes at the cost of a growing static response. Thanks
to the closed-form character of the tuning method, this problem can be tackled and minimized. However,
due to this static softening, the here proposed tuning rules might not be suitable for every application.

Furthermore, the two approaches have been compared more thoroughly in terms of their stability margins
and implementation by using the open-loop transfer functions of the controlled systems. While we can
draw an analogy between the two approaches for their tuning parameters and their receptance functions,
their stability margins differ. This can be attributed to the different implementation of what is considered a
plant and what is considered a feedback. The optimal NC shunt exhibits an extremely small phase margin,
disqualifying it for a practical implementation. The NC should therefore be chosen according to a trade-off
between performance improvement and robustness margins. By contrast, the optimal PPF controller exhibits
better stability margins, which makes it viable in a practical application.

This work builds the basis for a new PPF controller tuning to mitigate structural vibrations. Future works
will include a study about the positions of the sensor-actuator pair and a practical implementation of the
method for the demonstration of the here derived tuning rule.
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