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Abstract: This study investigates the relative role of land surface schemes (LSS) in the Weather
Research and Forecasting (WRF) model, Version 4, to simulate the heat wave events in Karachi,
Pakistan during 16–23 May 2018. The efficiency of the WRF model was evaluated in forecasting heat
wave events over Karachi using the three different LSS, namely NOAH, NOAH-MP, and RUC. In
addition to this we have used the longwave (RRTM) and shortwave (Dudhia) in all schemes. Three
simulating setups were designed with a combination of shortwave, longwave, and LSS: E1 (Dudhia,
RRTM, and Noah), E2 (Dudhia, RRTM, and Noah-MP), and E3 (Dudhia, RRTM, and RUC). All setups
were carried out with a finer resolution of 1 km × 1 km. Findings of current study depicted that
E2 produces a more realistic simulation of daily maximum temperature T(max) at 2 m, sensible heat
(SH), and latent heat (LH) because it has higher R2 and lower errors (BIAS, RMSE, MAE) compared
to other schemes. Consequently, Noah-MP (LSS) accurately estimates T(max) and land surface heat
fluxes (SH&LH) because uses multiple physics options for land atmosphere interaction processes.
According to statistical analyses, E2 setup outperforms other setups in term of T(max) and (LH&SH)
forecasting with the higher Nash-Sutcliffe efficiency (NSE) agreement is 0.84 (0.89). This research
emphasizes that the selection of LSS is of vital importance in the best simulation of T(max) and SH
(LH) over Karachi. Further, it is resulted that the SH flux is taking a higher part to trigger the
heat wave event intensity during May 2018 due to dense urban canopy and less vegetated area. El
Niño-Southern Oscillation (ENSO) event played role to prolong and strengthen the heat wave period
by effecting the Indian Ocean Dipole (IOD) through walker circulation extension.
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1. Introduction

Extreme climate events have gained a lot of attention due to their significant envi-
ronmental and societal impacts [1]. Anthropogenic activities including deforestation and
high fossil fuel consumption, stimulate the emission of greenhouse gases which in turns
play an important roles in changes of climatology of Earth System. Heat waves are one of
the world’s most serious climate threats with their subtle environmental consequences [2].
Besides, the extreme temperature is significantly increasing evaporation rate, which eventu-
ally resulting in dry spells [3,4]. For example, an average temperature in the Loess Plateau,
China has been increased in recent decades, indicating that extreme weather patterns are
becoming more common as a result of global warming [5]. Karachi, Pakistan is particularly
vulnerable to the climate change scenarios like as extreme heat, drought, and sea level rise.

Heat waves are identified as an irregular period of hot or humid weather that is
persisting for three to five consecutive days during the summer. The World Meteorological
Organization’s (WMO) definition of a heat wave is as follows: “A heat wave occurs when
the daily maximum temperature T(max) for more than five consecutive days exceeds the
average maximum temperature by 5 ◦C” [6]. Some studies reported that the occurrence
and intensity of heat waves have increased globally in past few years [7]. The 18-year
variation of T(max) during the May is presented in Figure 1.

Figure 1. Temporal variation of T(max) during May (2000–2018). Data is collected from the climate station Karachi, Pakistan.
Color shows different days.

Pakistan is densely populated country with more than 200 million people and is
extremely vulnerable to climate change. In June 2015, Pakistan endured a deadliest heat
wave in Karachi, with over 1300 people dying. Heat waves have a significant impact
on Pakistan’s urban and rural areas, as well as economic indicators such as livestock,
agriculture, and people [8]. Zhaid and Rasul (2010) reported that climatology of summer
season has changed by an increase in 6.2% of humidity and 0.25 ◦C of T(max) from 1961–2017
over the Pakistan which in turn has increased the magnitude of heat waves in past several
years [9].

Regional climate models (RCMs) are used all around the world to extract fine-scale
climate data from the global climate models (GCM) [10]. RCMs can resolve better mesoscale
phenomena linked with a local climate such as temperature and precipitation systems due
to improved surface physics and high resolution [11,12]. Numerical weather prediction
models (NWP) models were used to study the mechanism for heat wave and investigate the
land-atmosphere interactions [13–15]. The current advancement to run the NWP models
with high computation power and frequency input data has enable it to forecast the heat
wave events with a fine resolution over a large scale. In recent years, the forecasting
capability of NWP models has improved that encouraging the researcher their use to
simulate weather parameters at a high spatial and temporal resolution for research and
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operational purposes. WRF model is a state-of-the-art RCM for dynamic downscaling [16].
However, accurate implementation of NWP models to predict the heat wave events and
other climatology required a careful selection of model parameterization schemes [17]. In
the NWP model, various physical parameterization schemes are used to predict weather
forecasts [18]. Therefore, selecting a proper combination of physical parameterization
schemes is very extremely important as it strongly affects simulation [15].

Land surface processes have a significant impact on high temperatures. Land surface
consists of complex and variant surfaces that are very vital part of the atmosphere boundary.
The exchange of energy, water vapor, momentum, and radiative transfer between the land
and atmosphere is controlled by land surface processes. Therefore, there is very close
relationship between the land surface and high temperature that affect local, regional, and
global atmospheric circulation as well as climate change [19]. Reviewing the previous
studies, the sensitivity of four LSS in the WRF, namely the simple soil thermal diffusion
(STD) scheme, Noah scheme, RUC scheme, and community land model was investigated
by Jin, Miller et al. (2010). Their finding reveal that land surface activities have a significant
impact on temperature simulations in western United States [20]. Lhotka, Kyselý et al.
(2018) studied the performance of model in simulating the land-atmosphere interactions
and large-scale circulation associated with heat waves using RCMs. It was concluded that
the RCMs overestimated and underestimated the events over the central Europe while the
ensemble mean of EURO-CORDEX captures the heat wave extremity index well [21].

Zeng, Wu et al. (2011) concluded that sensitivity of simulation of high temperature to
different LSS in East China is higher for the medium timescale forecast. Also, the change
in high temperature is consistent with change in SH [22]. Zittis and Hadjinicolaou (2017)
quantified the sensitivity of the WRF model to short and long wave radiation schemes by
choosing two scheme and concluded that performance of radiation scheme is depending
on the season, location, and land use type [23]. Zittis, Hadjinicolaou et al. (2014) analyzed
the performance of different physics schemes by testing combination with the cumulus,
planetary boundary layer, and micro physics schemes in the WRF and revealed that cloud
microphysics scheme has strong impact on temperature particularly in the tropics [24].

Bucchihnani, Cattaneo et al. (2016) investigated the performance of COSMO-CLM
related to convection, radiation, surface, and cloud parameterization schemes, showing that
incorporating new schemes of albedo and aerosols, the model showed mean absolute error
15 mm/month for rainfall and 1.2 ◦C for temperature [25]. Constantinidou, Hadjinicolaou
et al. (2020) simulated the climate over the Middle East North Africa (MENA) region
using WRF model and tested four different LSS in six numerical experiments [26]. Davin,
Maisonnave et al. (2016) revealed the effect of LSS on summer temperature modelled
over southern Europe [27]. Recently, different models explored the impact of LSS on
climate simulation over EURO-CORDEX, and CORDEX-Africa [28,29]. Sun, Hu et al.
(2018) studied the heat wave severity in China using Canadian Earth System Model
Version 2 (CanESM2) and found that the global warming associated with severe heat waves
including longer heat wave season, higher hottest day temperature, and more heat wave
days [30]. Mortezazadeh, Jandaghian al. (2021) applied the WRF model to investigate the
role of metrological processes on the temperature during the heat wave event in 2017 and
concluded that a difference of 4 ms−1 wind speed might result in temperature changes of 4
◦C [31]. The WRF is a globally used NWP model for analyzing atmospheric processes and
extreme weather conditions such as cold waves, heat waves, and precipitation [32]. Tian
and Miao (2019) simulated mountain plain breeze circulation using BouLac PBL (planetary
boundary layer), Noah + UCM land surface, and MM5 surface layer schemes in the WRF
model in eastern Chengdu, China [33]. Mohan and Gupta (2018); Gunwani and Mohan
(2017); Sathyanadh, Prabha et al. (2017) simulated the meteorological variables using the
number of physical WRF schemes in various parts of India to boost the WRF results [34–36].
In the Iran region, the effect of 26 various PBL, cumulus, and microphysical schemes on
summer rainfall was investigated [37]. The sensitivity schemes of the WRF model were
checked with a different combination of microphysics schemes across northwest India, and
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revealed that a combination of physical parameterization schemes such as Kain-Fritsch
cumulus, YSU PBL, Dudhia shortwave, RRTM longwave radiation, and one-moment
microphysics schemes reproduced better results from the WRF model [32]. Sahoo, Ajilesh
et al. (2020) used the WRF physics options WSM6 scheme, Dudhia shortwave, RRTM
longwave, cumulus New Kain-Fritsch scheme, YSU PBL scheme, and Noah surface model
to simulate extreme rainfall in various sensitivity experiments over Uttarakhand region
of India [38]. The physical parameterization schemes of the WRF model were evaluated
forsimulation of the rainfall event on Tamil Nadu, India’s northeast coast and resulted that
rainfall events in Tamil Nadu, India can be better simulated by combining YSU PBL, Noah
LSM, and Goddard microphysics schemes [39]. A study in the Bay of Bengal explored
the best scheme by simulating extreme cyclonic storm with WRF model and resulted that
the Ferrier scheme provided the best forecast of the cyclone [40]. Similarly, Choudhury,
and Das (2017) investigated the sensitivity of the WRF model to simulate the strength and
track of cyclones and concluded that Thompson and Goddard schemes better predicted the
cyclone strength [41]. The ability of the WRF model prediction with different microphysics
schemes was investigated to simulate the frequency of precipitation in western Nepal and
suggested that the Thompson microphysics scheme is better to simulate convective events
of rainfall [42]. The WRF model employs multiple parameterization schemes such as clouds,
turbulence, heat, surface, and cumulus convection are used to predict weather forecasts [18].
The WRF model simulations are quite sensitive to the selection of combination of physics
schemes, and it includes several options for parameterizing surface layer microphysics,
cumulus parameterization, PBL, ground surface, and clouds.

The inter-annual changes in summer heatwaves at a shorter period are significantly
linked with modes of climate variability. For example, heatwaves in eastern and south-
ern China is modulated by the westward extension of the western North Pacific (WNP)
subtropical [43,44]. The ENSO, an important scale phenomena with significant impacts on
the mean seasonal climate around the world [45,46]. Heatwaves are prominently affected
by the ENSO variability in many parts of the world such as East Asia, Southeast Asia,
Australia, Canada, and America [47–52]. Luo and Lau (2019) found that the heatwaves
in southern and eastern China experienced intensive heatwaves during summer due to
decaying El Nino [53].

The region of Karachi, Pakistan is historically exposed to increasing heatwave and
extreme precipitation that have been increasing in the past and more enhancing in the
21 century. Research on how the model physics influences the simulated climate in the
Pakistan region has been still unknown. It is important to investigate extreme events
occurrences using numerical weather forecasting skills through the WRF model. There
are no such studies before on the assessment of WRF model sensitivity to LSS over the
Karachi node, Pakistan. Therefore, the impact of different WRF LSS on heat wave event
is study of importance. It can be beneficial to be responsive and adaptable to hazards
in the future. The Noah and RUC schemes are at average level of complexity, but RUC
scheme has relativity more complex snow scheme. Noah-MP includes the snow depth,
surface radiation balance, heat fluxes, vegetation, and canopy temperature difference and
runoff etc. The principal objective of present study is evaluating the role of LSS in the
simulation of heat wave by choosing different LSS including Noah, Noah-MP, and RUC in
WRF model over Karachi, Pakistan. Evaluate the role of LSS coupled with WRF model can
lead to a better understanding of heatwave events and how land surface processes affect
the regional climate. In particular, we investigate how ocean-land circulations prolong and
strengthen the heat wave and tried explaining some reasons. Current study area is very
attractive for its worth as major node area in the Belt and Road Initiative (BRI) Project with
sharp climatic gradients.
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2. Materials and Methods
2.1. Study Area

The study focuses on the Karachi city in Pakistan, located between 24.8607◦ N, 67.0011◦

E shown in Figure 2. The study area covers 3780 km2, with an altitude of 10 m above sea
level. It has scattered rocky outcrops, coastal marshlands, and mountains. Karachi’s hills
form a major part of the Kirthar range with a maximum elevation of 528 m. Karachi has
been, after Shanghai, the world’s second-most populous city. Karachi is rated as BWh
(Tropical and subtropical desert climate) according to the climate Koppen Geiger zone
rating. The average temperature is 25.9 ◦C per annum. It has a wet, arid climate in winter
and hot in summers.

Figure 2. Study area and WRF model domain location. (D03 is covering study area).

2.2. Model Configuration and Data

In present study, the WRF model version 4.0 was used which is a mesoscale model [17]
and widely applied in the teaching community as well as science. The WRF model is ideal
for spatial scales ranging from meters to hundreds of kilometers [54]. The model was run
to simulate heat waves in Karachi, from 16–23 May 2018. During the WRF run a spin-up
phase of model was considered on 16 May 0000 UTC and withdrawn from the study 24 h
later.

The initial boundary conditions were derived from the NCEP FNL global operational
analysis and forecasted every six hours on a 0.25◦ × 0.25◦ grids https://rda.ucar.edu
(accessed on 9 September 2019). The WRF model configuration involves a two-way nesting
and a 1:3 nesting grid ratio, with a horizontal scale ranging from 9 km× 9 km for the coarse
domain (d01, 200× 184 grid cells; Figure 1) to 3 km× 3 km for the middle domain (d02, 129
× 129 grid cells) to 1 km × 1 km for the innermost domain containing the study area (d03,
120 × 114 grid cells). The model outputs were obtained in an hourly interval. T(max-WRF)
was validated with ground station data from the Pakistan meteorological department
and simulated heat fluxes (LH&SH) were evaluated against the Climate Forecast system
reanalysis data (CFSR) https://app.climateengine.org/climateEngine (accessed on 28

https://rda.ucar.edu
https://app.climateengine.org/climateEngine
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August 2021) using the error finding models as explained in Section 3.3. ENSO is the
most crucial atmosphere driver of climate system, we extended this analysis, to study
the relationship between ENSO and heat wave event in Karachi node, Pakistan https:
//sealevel.jpl.nasa.gov/ (accessed on 28 August 2021).

2.3. Experimental Design

WRF version 4.0 has different land surface physics options. The WRF land surface
models are driven by water and energy fluxes and moisture in soil layers and predicted
soil temperature depending on the LSS option in which RUC has 9 layers, and NOAH and
NOAH_MP has four layers. All the WRF LSS utilize the information from the atmospheric
surface layer scheme such as wind. In WRF, all the model atmospheric setting were
exactly the same except for the LSS. The Rapid Radiative Transfer Model (RRTM) is used
for describing long wave radiation transfer to surface and within the atmosphere, and
the shortwave scheme selected was developed by Dudhia [55,56]. The microphysics
scheme chosen is the WRF Single–Moment 3-class (WSM3) scheme [57]. The Kain-Fritch
convection scheme is selected to parameterize cumulus clouds [58]. The Yonsei University
(YSU) planetary boundary layer (PBL) scheme is applied to deal with boundary layer
processes [59]. It was designed with a different set of schemes to see how different physics
schemes affected the simulation of a heat wave in Karachi, Pakistan. Figure 3 and Table 1
have a description of the entire setups. The setups namely are E1, E2, and E3. The cumulus
parameterization scheme was not used in d03, because the simulation of the high resolution
(1 km × 1 km) was adopted here. This selection was made on the preliminary tests that
agreed with the findings of Gbode, I.E., et al. (2019) [60].

Table 1. Details of different setups under schemes used in the WRF model.

WRF Model
Physics Options

E1
Setup

E2
Setup

E3
Setup References

Short wave
(ra_sw_physics)

Dudhia
shortwave E1 E1 [55]

Longwave
(ra_lw_physics)

RRTM
Longwave E1 E1 [61]

Land surface scheme
(Sf_surface_physics)

Noah
Land Surface

Model

Noah-MP
Land

Surface Model

RUC
Land

Surface Model
[62–64]

https://sealevel.jpl.nasa.gov/
https://sealevel.jpl.nasa.gov/
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Figure 3. Brief methodology flow chart with WRF model preprocessing steps.
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The NOAH LSS was validated by many studies both in coupled [61,65] and uncoupled
mode [66,67]. National Center for Atmospheric Research (NCAR) and National Centers
for Environmental Prediction (NCEP) jointly developed NOAH model [68]. It works
well in operational weather and climate models because of its moderate complexity and
computational efficiency. It is compatible with NCEP’s global analysis datasets that include
soil fields. In Table 2 it can be seen that it includes a soil temperature and moisture model
with four layers (0.10, 0.30, 0.60, and 1 m deep), as well as canopy moisture and snow
cover prediction. A surface energy balance equation is used to compute the skin surface
temperature. Noah’s surface energy fluxes are estimated over a mixed vegetation and bare
soil layer. Since it cannot explicitly compute photosynthetically active radiation (PAR),
canopy temperature, and related energy, water, and carbon fluxes, such a model restricts
its further development as a process based dynamic leaf model [62].

NOAH-MP (multiphysics) LSS is a sequel to the Noah model. The most important
enhancement is the addition of (1) a vegetation canopy layer for computing individual
canopy and ground surface temperatures that is accomplished by using semitile subgrid
approach to reflect land surface heterogeneity [69], (2) a modified two stream scheme for
radiation transfer through vegetation canopy while accounting for canopy gaps, (3) a Ball
Berry scheme for canopy stomatal resistance that links stomatal resistance to photosynthesis
of sunlit and shaded leaves, and (4) a short term dynamic vegetation model with two
options (on/off) in which leaf area index (LAI) and vegetation greenness fraction (GVF) may
be predicted from the model as turned on. For major land-atmosphere interaction processes,
the NOAH-MP employs a variety of choices. It has a distinct plant canopy characterized by
a canopy top and bottom, as well as leaf physical and radiometric attributes which are used
in a two-stream canopy radiation transmission method with shading effects. NOAH-MP
includes multilayer snowpack with liquid water storage and refreeze/melt capacity, as
well as a snow-interaction model that describes canopy intercepted snow melt/refreeze,
loading/unloading, and simulation shown in Table 2. A variety of alternatives are available
for surface water penetration and runoff, as well as groundwater transfer and storage,
including water table depth.

Table 2. Main characteristics of LSS (NOAH, NOAH_MP, RUC).

Characteristics NOAH RUC NOAH-MP

Soil vertical levels
4 layers (10, 30, 60, and

100 cm) temperatures and
moistures and frozen soil

6 soil levels (0, 5, 20, 40, 160,
and 300 cm) and snow 2 levels

4 layers (10, 30, 60, and
100 cm) temperatures and
moistures and frozen soil

Land use USGS-modified categories USGS-modified categories USGS-modified categories

Vegetation fraction, LAI
Dominant vegetation type in
one grid cell with prescribed

LAI from USGS
Specified from USGS data

Dominant vegetation type in
one grid cell with dynamic

LAI from USGS

Snow 1 layer snow lumped with the
topsoil layer 2 layer snow Up to three layers

Vegetation process Yes Yes Yes
Soil variables Temperature, water, ice Temperature, water, ice Temperature, water, ice

RUC LSS is primarily concerned with accurate soil characterization up to 6–9 soil lev-
els, down to a depth of 300 cm [70] as presented in Table 2. RUC has a good understanding
of snow physics and soil phase shift. It solves the heat diffusion and Richard’s moisture
transfer equations at six or more levels [70,71]. Clapp and Hornberger (1978) show soil
moisture coefficients as functions of 11 textural classifications of soil plus peat. STATSGO,
a 16-category soil categorization system, is utilized in RUC [72]. With appropriate heat
capacities and densities, energy, and moisture budgets are solved in a thin layer spanning
the ground surface and encompassing half of the topsoil layer and half of the first atmo-
spheric layer, having heat capabilities and densities that match. The impact vegetation
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on evaporation is considered, with canopy moisture serving as a predictive variable and
evapotranspiration parameters varying by vegetation type [73,74].

2.4. Model Evaluation

A wide range of statistical methods are available to judge a model’s performance
and credibility [75]. The difference between simulated and observed values was calcu-
lated using the error statistics in this study, and the performance of the WRF model was
gauged. We used the average grid value simulated with WRF and the station data point
value. Statistical error indicators, such as BAISE, mean absolute error (MAE), root means
square error (RMSE), coefficient correlation (R), agreement index (IOA), and Nash-Sutcliffe
efficiency (NES), were used to evaluate model performance in simulation of maximum
temperatures during the heat wave event. The equations and formulas are following [34].

BIAS =
1
n ∑n

i=1(oi − fi) (1)

MAE =
1
n ∑n

i=1|oi − fi| (2)

RMSE =

√
∑n

i=1 (o i − fi)

n
(3)

R =
∑n

i=1(fi − f)(oi − o)√
∑n

i=1(fi − o)2
√

∑n
i=1(oi − o)2

(4)

IOA = 1.0− ∑n
i=1 (o i − fi)

∑n
i=1(|fi − o|+ |oi − o| ) (5)

NSE = 1−
1
n ∑n

i=1(fi − oi)
2

1
n ∑n

i=1(fi − f)2 (6)

where oi is the value of observed parameter and fi is the simulated values of parameter
obtained from the WRF model. Furthermore, the efficiency of the predictive power of WRF
model was assessed using the NSE coefficient in different physical schemes. The NSE coeffi-
cient indicates how best the simulation model is; ranges of 0–0.3, 0.3–0.6, 0.6–0.8, and above
0.8 imply poor, reasonable, good, and excellent, predictive capacity, respectively [76,77].

3. Results

In this section, the simulated WRF results of daily maximum temperature at 2 m
T(max_WRF), latent heat LH(WRF), and sensible heat SH(WRF) from 16–23 May 2018 were
evaluated by comparing with ground observations to investigate the performances of
different WRF schemes.

3.1. Daily Temperature Maximum Analysis

T(max_WRF) was plotted against the in-situ measurements T(max_OBS) in Figure 4, and it
was discovered that all setups have a different correlation with the T(max_OBS).

E2 simulated T(max) very similar to T(max_OBS) while E1 and E3 underestimated and
overestimated T(max) shown in Figure 5a, respectively. Figure 5b shows the difference of
T(max) and T(mean) during the heatwave period. All setups showed the positive difference
that means extreme temperature condition (heatwave). The E2 is an ideal setup, it showed
low difference (8.2 ◦C) on 20 May 2018 and high difference (9.2 ◦C) on 21 May 2015. Overall,
the E2 and E3 setups overestimated the T(max) as compared to T(max_OBS), but the E1 scheme
showed underestimating the T(max) during the whole period of heat wave. Figure 6 on 18
May, the temperature became lower as compared to other days with the heat-wave event.
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Figure 4. Scatter plot between T(max_OBS) and WRF simulated T(max_WRF) with different setups.

Figure 5. (a) Daily temporal variation of T(max_WRF) and T(max_OBS), (b) difference between T(max) and T(mean) during the
heat-wave period.
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Figure 6. Hourly variation of T(max_WRF) using three different setups for the period of 7 days. Orange = high T(max_WRF)

and Blue = low T(max_WRF).

The spatial distribution of T(max) was exhibited during the daytime (11:00) and night-
time (21:00) UTC is represented in Figure 7 and showed the high temperature during day
and low temperature at night in Karachi. The east-south region is warmer and experienced
high temperatures magnitude during day. During the nighttime, E1 and E2 showed tem-
perature of urban area is higher while E3 simulated the lower temperature of urban region.
In comparison to the urban and east-south parts of Karachi, the west-south area of the city
has a lower temperature. Table 3 mainly describes the comparisons between T(max_WRF)
and T(max_OBS) based on different WRF setups for the heat-wave duration. Statistical error
identifying parameters: BIAS, MAE, R, RMSE, NSE, and IOA were computed to determine
the efficiency of temperature simulation (E1, E2, and E3) are listed in Table 3. It is noted
that the R2 of T(max_WRF) in E2 (0.93) based on model simulation is higher than the E1 (0.85),
and E3 (0.72) based on the model simulation during the heat wave event.

Figure 7. Spatial distribution of hourly T(max_WRF) (◦C) at UTC 11:00 (Daily) and 21:00 (Night) on 20 May 2018. (E1 = first
setup; E2 = second setup; and E3 = third setup).
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The E2 shows higher R2 and lower RMSE, BIASE, MAE compared to E1 and E3. The
RMSEs for E1, E2, and E3 against observation are 3.38 ◦C, 1.13 ◦C, and higher 2.65 ◦C
respectively. At the same time, the MAEs of T(max_WRF) for E1 (2.27 ◦C), and E3 (1.25 ◦C) is
higher than that of E2 (0.69 ◦C). The BIAS value for the E2 is 0.69 ◦C and the higher value is
2.27 ◦C for the E1 as displayed in Figure 8. Overall, it is noted that the IOA of temperature
simulation in E2 (0.94) is higher than the E2 (0.72), and E3 (0.84) based on model simulation.
Besides, the reliability of WRFV4.0′s predictive capacity using various setups was measured
using the NSE coefficient. In the present analysis, the NSE coefficient values are 0.73, 0.84,
and 0.77 for E1, E2, and E3, respectively. Throughout the entire heat wave period, E2 has
the lowest RMSE, BIAS, and MAE. On the other hand, E3 well-simulated T(max_WRF) on
May 18 and 20, 2018 with the lowest BIAS and MAE errors relative to other days and E1
simulated T(max_WRF) with a higher BIAS and MAE errors. Overall results depicted that
T(max_WRF) from E2 setup is quite better in Karachi, Pakistan as compared to E1 and E3 as
shown in Table 3.

Figure 8. Daily T(max_WRF) mean BIAS and MAE during the heat wave period by using three different setups.

During the May 2018 heat wave, E3 overestimated the T(max_WRF) while E1 underes-
timated. The overall BIAS, MAE, RMSE, and IOA values for E3 were found as −0.32 ◦C,
1.2 ◦C, 2.65 ◦C, and 0.84 ◦C, respectively. E1 underestimated the T(max_WRF) and it has
significant BIAS and MAE values suggested that the T(max) during the entire heat wave
period was not simulated well. E3 was known as the second best WRF setup to measure
T(max) according to the error matrix since it has the lowest errors (BIAS, MAE, RMSE)
compared to E1.

Table 3. Statistics of T(max-WRF), LHWRF, and SHWRF during the heat wave (16–23 May 2018) with different LSS in the
WRF4.0 model. BIAS, daily mean difference; MAE, the daily mean of absolute error; RMSE, the daily mean of root means
squared error; R, mean of spatial correlation coefficient and IOA, mean of the index of agreement.

Parameters Setup Name BAIS MAE RMSE R IOA Rank

Temperature
T(max)

◦C

E1 2.27 2.27 3.28 0.85 0.72 3
E2 0.69 0.69 1.13 0.93 0.94 1
E3 −0.32 1.25 2.65 0.72 0.84 2

Latent heat
LH(WRF)
Wm−2

E1 61.08 61.08 62.30 0.80 0.98 3
E2 42.27 42.27 44.60 0.81 0.99 1
E3 65.34 65.34 61.50 0.53 0.96 2

Sensible heat
SH(WRF)
Wm−2

E1 −50.26 51.11 51.71 0.79 0.98 3
E2 −24.87 50.26 26.24 0.73 0.99 1
E3 −50.11 24.87 50.94 0.60 0.99 2
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3.2. Surface Energy Fluxes Analysis

Surface heat energy fluxes (LH and SH) are very important for understanding the
meteorology that is simulated near-surface. The description of three setups E1, E2, and E3
are showed in Table 1. Simulated LH&SH were evaluated against the Climate Forecast
System Reanalysis (CFSR) data and freely accessible at https://app.climateengine.org/
climateEngine (accessed on 12 June 2020). The LHWRF and SHWRF were modeled using
three different setups (E1, E2, and E3) during the heat wave event. To determine the
discrepancies between the WRF simulated and satellite-based fluxes different statistical
error measuring parameters were used namely BIAS, MAE, RMSE, R, and IOA. Statistical
error matrix: BIAS, MAE, R, RMSE, NSE, and IOA were determined to study the efficiency
of simulation of model for LH based on E1, E2, and E3 as showed in Table 3. The E2
shows higher R2 and lower RMSE, BIASE, MAE compared to E1 and E3. It can be seen
from Figure 9 that R2 of LHWRF (SHWRF) in E2 0.99(0.99) based on model simulation is
higher than the E1 0.98(0.98), and E3 0.96(0.99) based on the model simulation during
the heat wave event. The RMSEs for E1, E2, and E3 against observation are 62.30 wm−2

(21.71 wm−2), 44.60 wm−2 (26.24 wm−2) and higher 61.50 wm−2 (50.94 wm−2), respectively.
At the same time, the MAEs of LHWRF (SHWRF) for E1 61.08 wm−2 (51.11 wm−2), and E3
65.34 wm−2 (24.87 wm−2) is higher than that of E2 42.27 wm−2 (50.26 wm−2). Besides, IOA
was computed to know the exact accuracy of simulated results that were 0.99 and 0.99 for
LH and SH simulation using the E2 setup. It can be concluded that E2 is best to reproduce
LH and SH fluxes because it has low errors (RMSE, MAE, and BAIS) and the highest IOA
while the other two setups E1 and E3 are showing high errors and lowest IOA. The NSE
coefficient depicts that E2 performed better to simulate the energy fluxes including LH and
SH with value 0.89.

During the daytime, the modeled profile of surface energy fluxes for all setups is
shown a positive trend while a negative trend at nighttime. The patterned profiles based
on three setups gave different results. E2 has been declared the most appropriate setup
in Section 3.1. SH is a means of moving energy from one system to another without
altering the physical state of the system; SH value is positive during the day, indicating that
energy is released from the surface to the atmosphere and reaches its peak value during the
daytime as shown in Figure 10. The SH profile at night is negative which means energy is
transferred from the ambient surrounding to the ground surface. During day and night, E1,
E2, and E3 simulated similar SH patterns. It can be observed that on 18 May 2018 nighttime
(17:00–22:00) all setups were measuring maximum negative flux value. The maximum peak
value calculated by the E1 is 412 wm−2 at 8:00 and the minimum peak value is −37 wm−2

on 18 May 2018. E2 assessed SH with a maximum peak value of 486 wm−2 at 07:00 and a
minimum peak value of −48 wm−2 at 18:00 on 18 May 2018.

E3 calculated SH flux value and simulated a maximum peak value of 646 wm−2 on
18 May 2018 during the day at 07:00 and a minimum peak value of −50 wm−2 at 24:00
on 18 May 2018. SH profile showed that on 21 May 2018 there is a sharp decrease from
353 wm−2 to 331 wm−2 in SH signature based on E2 while also the same sharp decrease
was observed on 23 May 2018 for E3 at 06:00 with a change from 400 wm−2 to 276 wm−2.
No sharp change has been observed for E1 during the heat-wave period. LH was lower
than SH during the entire heat wave event. E2 simulated that LH reached a maximum
value of 59 wm−2 at 04:00 and on 2018 May 18 unexpectedly dropped to 49 wm2 at 05:00.
LH contributed maximum during the 02:00–12:00 as shown in Figure 10.

Figures 10 and 11 showed that the spatial pattern of LH and SH is lower at night and
higher during the day. Figure 11 shows a lower value in the urban area during the day and
the same value at night. The WRFLH is showing a higher magnitude throughout the day
and night along the coastal line. SHWRF shows the opposite pattern to LHWRF. Conversely,
SHWRF is higher in the urban area, especially during the day, and lower at night, as seen in
Figure 12. SHWRF is showing a low magnitude in day and night along the coastal line.

https://app.climateengine.org/climateEngine
https://app.climateengine.org/climateEngine
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Figure 9. Scatter plot between mean daily satellite measured latent heat, sensible heat and WRF simulated latent heat,
sensible heat during the heat wave period.

Figure 10. Time series of LHWRF (Wm−2) and SHWRF (Wm−2) using three setups during the heat wave period Karachi.
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Figure 11. Spatial distributions of hourly LHWRF (Wm−2) using different setups (E1, E2, and E3) at 10:00 (day) and 21:00
(Night) UTC on 2018 May 20 during heat wave period Karachi (E1 = first setup; E2 = setup; and E3 = third setup).

Figure 12. Spatial distributions of hourly SHWRF (Wm−2) using different setups (E1, E2, and E3) at 10:00 (day) and 21:00
(Night) UTC on 20 May 2018 during heat wave period Karachi. (E1 = first setup; E2 = second setup; and E3 = third setup).
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3.3. The Role of Ocean-Atmospheric Coupling

The super EL Nino of 2015–16 was the most powerful in the 21st century thus far.
There are similarities between El Nino events, each one has a particular timing and different
in impacts. The El Nino event of 2015–16 lasted longer and covered a larger area than the
one of 1997–98. Figure 13 shows the anomalies in Pacific Ocean sea surface height (SSH)
anomalies during May 2015–16 event. De-trended Temperature anomaly based on monthly
means of 2015 was regressed onto the standardized Nino-3.4 index. The correlation was
calculated between Nino-3.4 and the temperature anomalies. It shows that the climate
variability is linked to ENSO. Figure 14 shows the effects of ENSO over the globe, as well
as the association between warm states El Nino with temperature anomalies.

Figure 13. Central Pacific El Niño event information May 2015.

Figure 14. Correlation between DE trended temperature and standardized Niño-3.4 index during MJJ 2015.

The difference in sea surface temperature between the Arabian Sea and eastern Indian
Ocean forms the IOD. The During the study period May 2015, El Nino events were occurred
causing positive IOD events [78].

The atmospheric circulation pattern over Arabian Sea was investigated and analyzed
to better understand the causes of heat wave occurrence in Karachi node, as illustrated
in Figure 15. El Nino 3.4 events resulted in a positive IOD in the western Indian Ocean,
reducing cloudiness and moisture levels over adjoining areas of Indian Ocean basin [79–81].
The persistence and strengthening of heat wave over Karachi node were largely due to
atmospheric circulation patterns. Normal moisture was transported from the Arabian Sea
during the month of May (15–16), shown in Figure 15. A ridge was formed over the coastal
areas, including Karachi, on 17 May 2015, and atmospheric circulation went anomalous.
The sea winds were blocked due to high pressure over the Karachi and low pressure
over Arabian Sea. Consequently, it reduced the humidity level and stopped the moisture
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transportation. The ridge was maintained till 23 May 2015, prolonging the heat wave in
the area. Meanwhile, during the heat wave period wind patterns over Karachi remained
easterly due to low pressure zones in the northeast Arabian Sea and Bay of Bengal as in
Figure 16.

Figure 15. Mean daily wind speed variation during the heat wave event at Karachi.

Figure 16. Mean daily surface pressure variation during the heat wave event at Karachi.

4. Discussion

Rapidly changing weather patterns, including mean warming, rising mean minimum
temperature, and rainfall patterns, are causing an increase in the frequency and intensity of
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heat waves. A best combination of LSS in WRF model in a certain study area may increase
the heat wave response and preparedness ability. Pakistan is going through a period of
intensive dynamic climate change that may bring unwanted variations in temperature,
rainfall, and wind patterns. The heat wave is a climatic hazard, leading to severe damage to
life, particularly in vulnerable communities. It is critical to employ NWP skills and RCMs
like as WRF to study extreme events in the present and future. Different parameterizations
are added into RCMs to simulate extreme weather events that have typical systematic
biases yet even after a long history of major development in terms of spatial resolution
as well as introducing various physical processes. Later, the RCM was combined with
urban canopy models as well as LSMs to apprehend different urban structure to simulate
accurately heat wave-related mechanisms.

It can be helpful to be responsive and adaptive to hazards in the future. In the
present research, we used WRF model to evaluate the sensitivity of combination of physics
schemes and it integrates several choices for parameterizing microphysics of the surface
layer, cumulus parameterization, PBL, ground surface, and clouds. Researchers previously
used the WRF model to simulate meteorology, but due to change in simulation time, study
region, weather conditions, and important goals, their WRF setting combination is not
generally applicable. The key goal of the current research is to find the best surface scheme
in the WRF model (4.0) to simulate the heat wave event over Karachi, Pakistan. We used
three LSS (Noah, Noah-MP, and RUC) in the mesoscale model WRF, Version4.0, to study
the sensitivities of T(max) and energy fluxes to different LSS. We designed three setups
(E1, E2, and E3) to simulate heat wave event on 16–23 May 2018 in Karachi, node. The
present study resulted that Noah-MP produced better daily mean T(max) as compared to
Noah and RUC LSS. Overall, Noah underestimated, and RUC LSS overestimated daily
mean T(max) during the heat wave event. In the case of energy fluxes (LH&SH), it was
determined that Noah-MP is best LSMs for simulating LH and SH fluxes since it has the
low errors and highest IOA whereas the other LSS (Noah, and RUC) are showing high
errors and lowest IOA. Similarly, Reddy, Srinivas et al. (2020) investigated the impact of
land surface physics in WRF on the simulation of sea breeze circulation over the southeast
coast of India and resulted that the Noah-MP (LSS) produced a more realistic simulation of
air temperature and heat fluxes [82]. Constantinidou, Hadjinicolaou et al. (2020) concluded
during the study the performance of LSMs in the WRF model for climate simulation over
the MENA-CORDEX domain that Noah-MP simulations are closest to observations [83].
Noah-MP performed well because it incorporates 1-layer canopy, 3-layer snow, and 4-layer
soil as well as an interactive energy balance to simulate surface temperature, and a modified
two-stream radiation transfer scheme to consider the 3D-canopy.

In our study, temperature is higher in daytime while lower in night. Urbanization
caused changes of aerodynamics resistance, ground heat fluxes, and long wave emissivity.
It decreases wind speed that would increase the aerodynamics resistance, which is in favor
of a weak SH and low temperature in night. The SH flux played a larger role in stimulating
the heat wave event in May 2018 due to dense urban canopy, and less vegetated region.
It contributes higher than LH to intensify heat waves. The absorbed energy was used to
create water vapors from soil moisture, vegetation, and evaporation. This accumulated
energy is released into the atmosphere during cloud formation and becomes heated. In
the presence of electromagnetic radiations, the Planet is constantly receiving energy from
the sun and getting colder. Even at night, the Earth stores energy and transmits the
transmission phenomenon: LH, SH is continued until it becomes normal. This energy
transfer contributes to the rise in ambient temperature. The difference in temperature
between surface and atmosphere makes it possible to induce more processes that may be a
cause for temperature rises. Energy is transmitted to the atmosphere during the positive SH
cycle, resulting in a decrease in surface pressure as air molecules are transported upward.

El Nino reduces cloudiness, resulting in drier conditions in the affected regions. Day
time temperatures are warmer than normal during the El Nino events, and increased evap-
oration is worsening the effect of lower-than-normal rainfall. The difference in sea surface
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temperature between the Arabian Sea and eastern Indian Ocean forms the IOD. The IOD
phenomena effects the climate of countries along the Indian Ocean Basin including Aus-
tralia and is a major contributor to temperature and rainfall variability in the region [84–87].
Through an expansion of Walker Circulation to west and linked Indonesian through flow,
IOD has been associated with ENSO episodes. El Nino 3.4 events resulted in a positive
IOD in the western Indian Ocean, reducing cloudiness and moisture levels over adjoining
areas of Indian Ocean basin. The sea winds were blocked due to high pressure over the
Karachi and low pressure over Arabian Sea. The ridge was maintained till 23 May 2015,
prolonging the heat wave in the area.

It is very important to know the uncertainties occur in the current study. First, the
findings of the present study were derived through numerical simulations, therefore the
parametric and structural uncertainties of the WRF model need to be further constrained.
Second, to count the problem of systematic errors and to minimize the model drift from
the initial boundary conditions, the WRF simulation in this study should have reinitialized
every day. This technique would improve the performance of the WRF model prediction at
fine scale. The intensity of heat wave changes with local climate. It would be recommended
to study the feature of heat waves in different climate zones. In context to climate change
mitigation and strategy point of view, the results of this study have significant implications
regarding the simulation and projection of regional climate. To combat the harmful effects
of heat waves and their synergistic interactions in the climate change condition, particularly
urban adaptation strategies are required.

5. Conclusions

This study used the WRF model coupled with three different LSS (NOAH, NOAH_MP,
and RUC) and quantitatively evaluated the role of land surface processes in the regional
climate (heat wave). The coupling of different LSS represent our most recent effort to
improve the land surface simulation in the regional climate. Results show that the selection
strongly of LSS affect the temperature simulations. The performance of the WRF model in
simulating the temperature and energy fluxes (LH&SH) and their relation with the pacific
variability were first evaluated and then concluded flowing points:

1. Overall based on statistical analysis, E2 performs best to simulate T(max), LH, and
SH during the heat wave events. It is concluded that E2 works best for the present
study area and may be used to simulate the other meteorological variables for further
implementation of the WRF model. Noah_MP (LSS) performs better than the Noah
and RUC.

2. Results concluded that surface physics schemes like the Noah MP function well with
the higher NSE, agreement, and low errors compared to the RUC, and Noah (LSS)
to predict the T(max) and LH&SH. The combination of Dudhia short wave, RRTM
long wave, and Noah_MP parameterization schemes best to simulate the heat wave
events.

3. The combination of Dudhia short wave, RRTM long wave, and RUC LSS overes-
timated T(max), LH, and SH fluxes with larger BIAS, MAE, RMSE, and low IOA
respectively when compared with ground observations.

4. Noah-MP model gives better results because it considers the multi-surface tempera-
tures and distinct canopy to forecast while the other model does not account for such
multi-surface temperatures. Noah-MP forecasts the temperature same to reality based
on considering the multi factors: temperature leaf, temperature canopy, temperature
snow, and temperature ground.

5. ENSO event 2015–16 and atmospheric circulation played vital role to prolong and
strengthen the heat wave in Karachi, Pakistan. EL Nino event modifies the IOD that
stopped the moisture transportation along the coastal regions.

More through modelling experiments are necessary to better estimate the temperature
in WRF, more extensive modelling experiments are required. These setups comprise tests
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with several combinations of different cumulus schemes, micro physics schemes, radiation
schemes, and PBL schemes that have been coupled in the state-of-the-art WRF model.
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