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ABSTRACT
This study investigates the relationship of urban thermal environ-
ment (UTE) with various influential factors as well as ecological condi-
tions. The relation between LST and land use and land cover (LULC)
changes was explored in terms of remote-sensing (RS) based indices;
heat effect contribution index (HECI), Urban thermal field variance
index (UTFVI), Surface urban heat island intensity (SUHII), Normal
Difference Built-up Index (NDBI), and Normal Difference Vegetation
Index (NDVI). LULC maps were classified using the unsupervised clas-
sification technique and made error matrix to determine the accur-
acy. Results revealed that the vegetated area in Faisalabad decreased
by 230km2 due to an expansion in the urban area of 124-320km2

during the period 1992-2014. An average LST in the rural buffers is
increasing rapidly as compare to urban buffer and varied over the
eight years with a range of 0.68-2.57 (�C). After 2007, SUHII’s linear
trend was negative because rural temperatures were still rising.
Based on HECI, we found that urban expansion mainly led to
increase in LST. UTFVI has shown poor ecological conditions in all
urban buffers. In addition, there is a positive correlation between LST
and NDBI, while NDVI indicates a negative correlation with LST.
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1. Introduction

In 2018, about 55% of the world’s population resides in urban areas, and by 2050 it will
rise to 68% (Department of Economics and Social Affairs and U. N 2019). According to
the 2018 UN Report, the urban population will rise to 2.5 billion by 2050, with Africa and
Asia accounting for 90% of the population. The urbanization process has influenced the
natural environment of urban areas and their services. The most disturbing effects of
unplanned urbanization, combined with regional and global warming and climate change,
are faced by developing countries. The LULC change is altered regionally and locally by
anthropogenic activities led to change the balance of surface energy and LST (Jain et al.
2017). Changing the near-surface energy budget (inward and outward radiation) and
atmospheric structure (wind speed, pressure, etc.) is the main environmental issues due to
alarming increase in urbanization (Jones et al. 2008, Santamouris et al. 2018, Fan et al.
2019). Urbanization is the most visible anthropogenic force on Earth that causes phenom-
enon of urban heat island (UHI) and serves as the primary predictor of LULC change. The
urban extension replaces the natural vegetation with impermeable surfaces, causing major
changes in UTE (Wang et al. 2016, Dai et al. 2018). The related phenomenon of UHI
increases urban temperature relative to rural/suburban temperatures and it is serious
urban issue related to regional warming. That’s why the study of LULC change from vegeta-
tion to imperious surfaces (buildings, roads) is considered in numerous urban management
studies. The main focus of global studies is on these anthropogenic indicators, where they
are positively linked to changes in UTE (Liu et al. 2016). Urban growth eliminates greenery
and thus affects the local climate. These studies have concluded that urbanization is a poten-
tial cause for LST transition. (Li et al. 2012, Sahana et al. 2019, Ullah et al. 2019). Analysis of
the LST provides valuable urban climate information and is a strong predictor of climate
change. In addition to these, under these conditions, the UHI phenomenon may also have
other dangerous environmental impacts that threaten the sustainable use of natural resour-
ces (Li et al. 2012, Cai et al. 2017, Peng et al. 2018, Song et al. 2018, Yamamoto and Ishikawa
2020, Zhou et al. 2020). In urban areas, the higher LST magnitude is due to impermeable
surfaces that exacerbate the impact of UHI (Zhang et al. 2017). Increased LST regimes have
produced an UHI. Urban cover will occupy 66 percent of the land cover globally and it
boosts the LST and urban heat. (Yang et al. 2017, Cao et al. 2019). Urban LST is associated
with LULC changes in tropical and sub-tropical climate regions. Built-up areas in tropical
regions have a higher LST magnitude.(Li et al. 2012). Previous studies have shown that
changes to the LULC have had a significant environmental effects on the regional atmos-
phere. (Sahana et al. 2019). In the lower Himalaya region, Pakistan, Ullah et al. (2019) have
studied the relationship between LUULC changes and LST. It was concluded from this
research that built-up areas had the highest LST as contrasted to the other groups of LULC
(Ullah et al. 2019). Zhou et al. (2020) analyzed the composition of land cover impacts on the
LST in Washington DC, America (Zhou et al. 2020). In addition, Yamamoto and Ishikawa
(2020) investigated that in the high-density urban environment, LST was higher and showed
high urban density in Osaka at daytime pronounced to higher LST (Yamamoto and
Ishikawa 2020). NDVI and NDBI are important indicators of LULC changes (Raynolds
et al. 2008, Cai and Sharma 2010). Different thermal indices (HECI, UTFVI, and SUHII) are
helpful in identifying the influence of LULC changes on the increasing UTE and the
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environmental conditions of each city’s core region. (Liu and Zhang 2011, Zhou et al. 2014,
Huang, Huang et al. 2019, Renard et al. 2019).

However, due to the spatial scarcity and lack of consistent distribution of existing
on-site stations, especially in developing countries such as Pakistan, accurate estima-
tion of changes in SUHII is challenging. Under these conditions, RS datasets provide
a rare opportunity to test these phenomena arising from LULC changes. RS technol-
ogy has become a critical instrument for retrieving the LST with the steady produc-
tion of sensors (Cai et al. 2017, Peng et al. 2018, Song et al. 2018). As a result of
LULC changes, RS techniques were used to assess the spatiotemporal changes in
human-induced urban climate phenomena (SUHII) (Cai et al. 2017, Peng et al. 2018,
Song et al. 2018, He et al. 2019). Studies have stated that thermal infrared RS data
has been commonly used to investigate the SUHII effects by retrieving LST (Li et al.
2011). Satellite images were used to find UHI and thermal environment influencing
variables in urban areas to measure the effect of LULC shifts on the UTE (Guha
et al. 2018). RS powered LST, for example, ASTER and MODIS, have been used to
examine thermal changes in an urban area (Liu and Zhang 2011, Zhou et al. 2014).
The major limitations of ASTER and MODIS data in the current study are that their
resolutions for analyzing UTE on a city scale are comparatively coarse.

There are previous studies have been published on the thermal evaluation of the
Punjab Plain urban areas (land drained by the Indus River and its tributaries), focus-
ing on the city’s single-core urban agglomeration zone, and little attention has been
paid to identifying factors contributing to increase LST and SUHII phenomena.
Arshad et al. (2019) studied the impact of LULC changes on the regional climate of
Faisalabad and concluded that urban cover caused higher regional temperature
(Arshad et al. 2019). Sajid, Ahmad, and Javed (2020) have considered the NDVI as a
LULC change factor to know the urban contribution to LST of Lahore, Faisalabad,
and Multan cities in Pakistan (Sajid, Ahmad, Javed 2020). Sadiq Khan et al. (2020)
studied the anthropogenic influences on urban climate by considering urbanization
and concluded it has affected the LST pattern in capital city of Pakistan (Sadiq Khan
et al. 2020). Previous studies performed based on particular environmental factors for
a single city. For instance, RS data was used in Lahore city to study land use activities
and LULC changes that intensified the SUHII (Shah and Ghauri 2015). Still, few
studies have been reported in context to indentify driving factors of UTE. Current
study, quantifies the UTE driving mechanism by integrating the multi factors includ-
ing (HECI, UTFVI, SUHII, NDBI, and NDVI) to evaluate the impact of individual
LULC changes on UTE and ecological condition of major cities of Punjab. Pakistan is
highly exposed to climate change and faced major extreme events, in order to follow
the UN sustainable goals and there is significant need to make sustainable urban cit-
ies. In recent years, extensively LULC changed in the major cities of Punjab and
affected the regional/local urban climate that causes heatwaves, diseases, social life
disturbance (Sadiq Khan et al. 2020; Arshad et al. 2019).

In this study of land-use transition drivers (NDVI/NDBI) and their potential impacts
on the UTE, there is also a significant environmental issue involved. To facilitate the ana-
lysis, the RS based LST and various heat indices (SUHII, HECI, and UTFVI) were used .
In the current research, RS dataset (Landsat) has been used to study the UTE and to
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measure LULC shifts, particular attention has been paid to the buffer zones (rural and
urban areas). This research attempted to investigate and quantify the LULC changes and
particularly their contributions to the intensification of UTE. Additionally, in six major cit-
ies of Punjab, Pakistan, the driving factors of UTE were investigated in terms of SUHII,
HECI, UTFVI, and their effects on local ecological conditions.

This research therefore seeks to examine the changes in long-term land cover and
their impacts on the UTE. RS based estimation offers real-time spatiotemporal
changes in LST (Zhou et al. 2014, Zhou et al. 2018). Landsat products with a reso-
lution of 30m are currently suitable for study of spatial changes in LST and LULC in
the major cities. In major towns, RS retrieved LST is a convenient source to examine
the SUHII and its supporting factors. Landsat have different missions and their spa-
tiotemporal resolutions and bands information as shown in Tables 1 and 2.

The objective of this analysis is threefold: (i) to examine the changes in the long-
term perspective of LULC and its indicators (NDVI and NDBI); (ii) to compute the
different heat indices (SUHII, HECI and UTFVI) to describe the urban thermal phe-
nomenon in urban areas; (iii) to evaluate the possible impacts on LST of the various
LULC drivers. Landsat Products (Landsat 5 (TM); Landsat 7 (ETMþ) and Landsat 8
(OLI/TIR) were used for LULC changes, NDVI, NDBI and LST (e.g., SUHII, HECI
and UTFVI) modifications. This research provides a real understanding of UTE’s
relationship with various influential factors and SUHII’s long-term pattern, as well as
the environmental conditions in the major cities.

2. Materials and methods

2.1. Study area

Punjab is Pakistan’s second largest province, with a total surface area of about
205344 km2. The study area consists of major cities, which are Faisalabad, Lahore,

Table 1. Satellite bands details from 1992 to 2014.

No

Acquisition date

Path/rowLandsat5 Landsat5 Landsat7 Landsat8

1 1992-06-16 1999-06-20 2007-06-01 2014-06-29 150/38
2 1992-07-02 1999-07-06 2007-07-20 2014-07-15 150/38
3 1992-08-11 1999-08-23 2007-08-05 2014-08-16 150/38
4 1992-09-20 1999-09-08 2007-09-15 2014-09-17 150/38
5 1992-10-06 1999-10-26 2007-10-24 2014-10-03 150/38
6 1992-11-23 1999-11-11 2007-11-07 2014-11-20 150/38
7 1992-12-09 1999-12-13 2007-12-27 2014-12-06 150/38
8 1992-06-09 1999-06-13 2007-06-11 2014-06-22 149/38
9 1992-07-05 1999-07-09 2007-07-29 2014-07-08 149/38
10 1992-08-11 1999-08-16 2007-08-30 2014-08-25 149/38
11 1992-09-29 1999-09-21 2007-09-06 2014-09-26 149/38
12 1992-10-31 1999-10-03 2007-10-17 2014-10-12 149/38
13 1992-11-16 1999-11-20 2007-11-18 2014-11-13 149/38
14 1992-12-02 1999-12-22 2007-12-04 2014-12-15 149/38
15 1992-06-16 1999-06-20 2007-06-01 2014-06-29 150/39
16 1992-07-02 1999-07-06 2007-07-20 2014-07-15 150/39
17 1992-08-11 1999-08-23 2007-08-05 2014-08-16 150/39
18 1992-09-20 1999-09-08 2007-09-15 2014-09-17 150/39
19 1992-10-06 1999-10-26 2007-10-24 2014-10-03 150/39
20 1992-11-23 1999-11-11 2007-11-07 2014-11-20 150/39
21 1992-12-09 1999-12-13 2007-12-27 2014-12-06 150/39
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Gujranwala, Multan, Sargodha, and Sialkot, as shown in Figure 1 and Table 3. The
name Punjab comes from the presence of five rivers: Indus, Chenab, Ravi, Jhelum,
and Sutlej, which means that it is fertile for agriculture. There is a subtropical climate
in the Punjab that is characterized as mild, humid in summer and cold in winter.
The average annual rainfall is 600mm in the northwest, based on 22 years of historic
metrological measurements. From June to September, there is a rainy season called
the monsoon season. Temperature changes from �2 to 45 �C, on the other hand, but
maximum and minimum temperatures exceed 47 �C and �5 �C, respectively. The
Punjab province was facilitated by 300 irrigated channels. Punjab has played a leading
role in Pakistan economic and social development. In Pakistan’s economic and social
growth, Punjab has played a leading role. It is one of Pakistan’s fastest-growing prov-
inces, especially in terms of growth, urbanization, population, and agricultural devel-
opment. It is named the country’s lifeline and the topography of Punjab is plain. The
topographic elevation falls from 2271m in the north to 46m on the south side.
Meanwhile, due to rapid urbanization, many urban and regional thermal problems
have emerged in Punjab.

To accomplish urban planning goals, it is therefore important to understand
UTE’s spatiotemporal pattern. Two zones (urban and rural) were established in this
study to evaluate the impact of LULC changes on UTE. The drawing buffers around
the metropolitan cities (Faisalabad, Lahore, Gujranwala, Multan, Sargodha, and
Sialkot) provide a schematic distinction between rural and urban sites based on land
cover. For the creation of urban and rural scenarios, each city is marked with two
buffers at different radii, as well as their Koppen-Geiger zone designation, as shown
in Table 3. Two concentric buffers were selected in the way that the inner buffer
mainly having the urban cover and less vegetation load and it is called "urban buffer".
The center of buffers is same as center of city. The outer buffer is considered to be
’rural’ based on the vegetation cover and is marked with twice the radius of the inner
buffer to take into account the effects of the rural location, including trees, rural land
etc. Compared to the urban buffer, the rural buffer has less infrastructure and con-
sists of bulk vegetation load. Also, local characteristics, such as LST patterns, wind
speed shift, and urban growth rate, were taken into count to determine extent and
shape of buffers.

2.2. Data collection and preprocessing

Based on remotely sensed LST and various heat indices, this study examined the long-
term LULC changes and their influences on the thermal climate. Data derived from

Table 2. Accuracy evaluation of the LULC maps for 1992, 1999, 2007, and 2014.

LULC

Years

1992 1999 2007 2014

Water 0.80 0.83 0.87 0.82
Urban 0.81 0.83 0.88 0.89
Vegetation 0.87 0.80 0.82 0.85
Other 0.82 0.82 0.87 0.81
Overall accuracy 0.86 0.87 0.86 0.87
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various Landsat products (Landsat 5 Themetic Mapper (TM), Landsat 7 Enhanced
Themetic Mapper (ETMþ) and Landsat 8 Operational Land Imager (OLI / TIRS) were
acquired from the U.S. Geological Survey (USGS https:/earthexplorer.usgs.gov/) for the
period 1992 to 2014 at a time resolution of 16days and a spatial resolution of 30m
shown in Table 1. All spectral bands were acquired by < 10% clouds and atmospheric
corrections were performed in the ENVI programme using the radiometeric correction
toolbox. To correct atmospheric errors and eradicate atmospheric influences, the
FLAASH atmospheric correction model was used from the atomspheric correction mod-
ule to obtain accurate surface characteristics of bands including thermal, visible, near-
infrared, and shortwave infrared bands(Matthew et al. 2000). The spectral bands (ther-
mal, visible, near-infrared, and shortwave infrared) were used for the measurement of
the LULC changes and LST after all corrections. To derive NDVI, NDBI, and LST, the

Figure 1. Study Area and buffer’s information.

Table 3. Populations and Population density of the six major cities, of Punjab, Pakistan. (Source:
Statistics (2017).

No. Cities
Area
km2

Population
Thousand per person

Population Density
km-2

1981 1998 2017 1981 1998 2017

1 Lahore 1772 3545 6319 11126 2001 3566 6279
2 Faisalabad 5856 3562 5430 7874 608 927 1345
3 Gujranwala 3622 2108 3401 5014 582 939 1384
4 Multan 3700 1970 3117 4045 530 838 1276
5 Sialkot 3016 1803 2723 3894 598 903 1291
6 Sargodha 5854 1912 2666 3704 327 455 633
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digital number of the spectral bands was translated into radiance and finally into reflect-
ance value. (Chen et al. 2006, Pan 2016). In the following steps, the detailed procedure
of radiance derivation and then LST is defined and also shown in Figure 2. Based on
various heat indices, i.e., SUHII, UTFVI, and HECI, the retrieved LST was further used
to evaluate changes in the thermal environment.

1. Digital numbers of spectral bands were firstly converted into spectral (TOA) radi-
ance (L k) using the formula (Pan 2016).

Lk ¼ Lmaxk � Lmink

Qcalmax �Qcalminð Þ � Qcalmax �Qcalminð Þ þ Lmink (1)

Lk ¼ ML Qcal þ AL (2)

where Lk¼ Spectral radiance ðWatt m�2sr�1lm�1Þ, Qcal ¼Pixel values in DN,
Qmax ¼Maximum Quantized calibrated pixel value (Ullah, Tahir et al.), Qmin¼
Minimum Quantized calibrated pixel value (Ullah, Tahir et al.), Lmax ¼ Spectral
radiance scaled to Qmax, and Lmin ¼ Spectral radiance scaled to Qmin, and
ML¼Radiance multi band, AL¼Radiance add band.

2. Spectral bands after radiance converted into reflectance following relations:

r ¼ p� Lk � r2

Esun � Cos ø� dr
(3)

Figure 2. Flow diagram of data preprocessing and analysis scheme.
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where r ¼ Planetary reflectance (dimensionless), Lk ¼ Spectral radiance at the sensor
aperture (watt m�2 ster�1 lm�1), and dr ¼ Inverse square of earth-sun distance
(astronomical unit):

dr ¼ 1 þ 0:033Cos ðD � 2 � 3:14Þ=365Þ (4)

where D¼Day of the year, Esun ¼ Mean solar atmospheric irradiance
ðWatt m�2lm�1) h ¼solar zenith angle (degree), h ¼ (90 - B), and B¼ Sun elevation
angle. Information regarding all constant parameters took for NIR and RED bands
from the LANDSAT metadata header file.

2.3. LULC maps preparation

To make LULC maps for the years 1992, 1999, 2007, and, 2014 high-resolution
Landsat images from the U.S. Geological Survey (USGS) were used. Necessary area of
study extracted from Landsat (5, 7, and 8) images and false-colored images produced
by layer stacking of all Landsat visible, near-infrared and shortwave infrared bands in
ARDAS Imagine (Shalaby and Tateishi 2007, Karakus et al. 2014, Karakuş 2019).
After this, unsupervised classification technique, the ISODATA clustering algorithm
was used to classify the pixels into four different land-use classes (Asmala 2012). For
different LULC types, spectral signatures were defined on the basis of the spectral
characteristics of Landsat imagery. To reclassify the option to recode the land-use
classes, ArcGIS was used. The following four forms of land cover were categorized:
urban (buildings and roads); vegetation (farmland, rural land, woodland and grass-
land); other (rocky land, barren land) and water (canals, rivers and pools). Landsat
based NDVI and NDBI indices were used to recode LULC maps to optimize land
cover information to enhance the data of each land-use category in LULC maps. In
addition, the comprehensive protocol for accuracy evaluation was addressed in sec-
tions 2.3.1, 2.3.2, and 2.3.3.

2.3.1. Accuracy assessment
In ArcGIS 10.3, the accuracy assessment protocol for LULC maps was carried out.
For each class, we randomly collected 100 pixels from random locations on Google
Earth each year (Li et al. 2012, Zhang et al. 2013) and followed previously published
literature and expert knowledge (Yuan et al. 2005, Gorelick et al. 2017, Arshad et al.
2019). In order to test their accuracy using various tools in ArcGIS software, the pixel
values in the image were compared with the ground truth samples for each land-use
class. The frequency analysis and error matrix using ArcGIS 10.3 (Figure 2) calculated
the accuracy percentage. For the years 1992, 1999, 2007 and 2014, the average classifi-
cation accuracy was 0.8683, 0.8740, 0.8639 and 0.8719, respectively, as shown in
Table 2.

2.3.2. Retrieval of NDVI
NDVI can be defined as a relative greenness measurement (Raynolds et al. 2008), and
NDVI is commonly used to indicate the degree of vegetation cover to differentiate
between various types of vegetation and non-vegetated areas. Using the following
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expression, NDVI can be extracted from the reflectance value of RED and NIR bands
(computed in section 2.2). (Balaghi et al. 2008, Cai and Sharma 2010, Dempewolf
et al. 2014).

NDVI ¼ NIR � RED
NIRþ RED

(5)

NDVI value is in a range between �1 and þ1(Landsat 2016).

2.3.3. Retrieval of NDBI
NDBI is a built-up land spectral response. In the middle infrared band, built-up
phenology typically has a greater reflectance level than the near-infrared band. It can
be defined as the NDBI index; it is the fractional relation between the SWIR1 and
NIR band difference to the sum of these two bands. NDBI is a very useful index of
modernization to find out the changes in settlements/urban areas. Using the following
relationship, NDBI will recover.(Ahmed 2018).

NDBI ¼ SWIR1� NIR
SWIR1þ NIR

(6)

Some studies have concluded that the NDBI index showed dry vegetation has high
reflectance value in the SWIR1 wavelength range and NIR wavelength range.
Consequently, the calculated information about the built-up mixed up with vegetation
noise. It was removed using Equation 6 (He et al. 2010).

Vegetation Noise ¼ NDBI � NDVI (7)

2.4. Retrieval of LST

In this study, LST was derived from thermal bands of Landsat products using the
methodology recommended by (Sekertekin et al. 2016) and (Landsat, Landsat 2016).
The following steps were adapted to retrieve LST.

1. Conversion from DN to radiance
2. Calculation of brightness temperature
3. Retrieval of LST

The first digital number of the thermal spectral bands was converted into radiance
(LkÞ as already described in Section B. In the second step, the radiance of the thermal
spectral bands was converted into brightness temperature (TB) using the following
relation (Landsat 2016), (Kumar and Shekhar 2015).

TB ¼ K2

ln K1
Lk

� �
þ 1

h i (8)
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where, K1 and K2 are the conversion constants, Lk is a spectral radiance and T is bright-
ness temperature. For Landsat8 (TIRS), K1¼ 774.89 mW=cm2=sr=lm and
K2¼ 1321.08Kelvin, for Landsat7 (ETMþ), K1¼ 666.09 mW=cm2=sr=lm and
K2¼ 1282.71Kelvin; Landsat5, K1¼ 607.76 mW=cm2=sr=lm and K2¼ 1260.56Kelvin.

In the third step, the LST was derived using the following relation (Weng and Lu
2008).

LST ¼ TB

1 þ k TB
q

� �
ln�

(9)

where k � 11:5lm is the effective wavelength of the thermal band.
P ¼ hc

r ¼ 1:438� 102 mk, ‘r’ is the Boltzmann constant ð1:38� 10�23 JK�1Þ , ‘h’ is
Planck constant ð6:626� 10�34 JsÞ and c is the speed of light ð3:0� 108 ms�1Þ, � is
the land surface emissivity with 0.95, 0.92, and 0.9925 for vegetation, built-up, and
water surfaces, respectively (Nichol 1994).

Land surface emissivity (Ɛ) was estimated using the NDVI thresholds method as
proposed by (Sobrino et al. 2004) according to the equations.

d Ɛ ¼ 1�Ɛsð Þ � 1� pvð Þ þ F � ƐV (10)

where Ɛv ¼ vegetation emissivity, Ɛs ¼ the soil emissivity, F¼ shape factor and its
value if 0.55 (Lim et al. 2012), Pv ¼ vegetation proportion and it was obtained accord-
ing to equation (Quintano et al. 2015).

Pv ¼ NDVI � NDVImin

NDVImax � NDVImin

� �2

(11)

Land surface emissivity was retrieved using the following relation:

Ɛ ¼ Ɛs � Pvð Þ þ Ɛs 1� pvð Þ þ dƐ (12)

2.5. Analysis of changes in urban thermal environment (UTE) factors

Changes in the thermal environment of the six major cities were assessed in sections
using RS-based derived distinct heat indices (SUHII, UTFVI, and HECI). 2.5.1, 2.5.2,
and 2.5.3.

2.5.1. Surface urban heat island intensity (SUHII)
SUHII is known as the urban buffer and rural buffer temperature difference. In this
research, in the form of circles around the major cities, urban and rural buffers were
marked. With the aid of the following equation, SUHII was computed from average
LST using the method recommended (Zhang et al. 2010).
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SUHII ¼ Tu � Tr (13)

In the above equation, Tu is the temperature of an urban buffer (�C) and Tr is
the temperature of a rural buffer (�C). The average annual value of LST for the urban
and rural buffer calculated by extracting LST pixels values from 1992 to 2014.

2.5.2. Urban thermal field variance index (UTFVI)
The effect on urban heat intensity of changes in underlying surfaces as measured by
the UTFVI. UTFVI was used in this analysis to measure the UHI phenomenon by
using the equation below(Liu and Zhang 2011).

UTFVI ¼ Ts � Tmean

Ts
(14)

Where, UTFVI is the variance index of the urban thermal field; Ts is the tempera-
ture (LST) of the certain pixel and T mean is the mean temperature (LST) of the whole
region in (�C). UTFVI shows the spatial variation and ecological assessment of urban
heat over a certain region. According to the six basic ecological assessment indices
and heat island indices, UTFVI has been divided into different classes. The greater
urban heat intensity and the worse state of the ecological ecosystem are indicated by
a higher UTFVI value.

2.5.3. Heat effect contribution index (HECI)
Different LULCs contribute differently to the thermal environment. In this analysis,
four major land covers (water, urban, vegetation, and others) that have been signifi-
cantly linked to changes in LST and SUHII were taken into account. HECI was intro-
duced and used to measure the heat contribution of various types of LULCs in the
current research (Li et al. 2015). The HECI computed as,

HECIi ¼
PNi

j¼1
Tij

TN
� 100% (15)

Where, HECIi represents heat contribution by LULCi, its value will be from 0 to
100%. Ni Pixel number of the area that covered byLULCi: Tij is the LST of LULCi

in its jth pixel. T is the mean temperature of the whole area and N the total number
of pixels within the area. The sum of HECI all types of LULC should be 100%.

2.6. Statistical analysis

In statistical analysis, the association between LST and NDVI, NDBI, has been found
using the Piecewise Linear Regression (PWLR) model based on a piecewise linear
function. From 1992 to 2014, the correlation coefficient between NDVI-LST and
NDBI-LST for all major cities in Punjab, Pakistan was developed using the
PWLR model.
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Following relations used:

yi1 ¼ a1 þ k1 � xi1 (16)

yi2 ¼ yi1 þ k2 � xi2 � xi1ð Þ if x � xi1f g (17)

y ¼ a1 þ k1 � x else if x < xi2f g (18)

y ¼ yi1 þ k2 � x� xi1ð Þ (19)

In the above equations, a1 is the intercept of the line, k2 and k1 are the slope of
a line, and xi1 and xi2 are the intersectional points. ANOVA one-way statistical test
was used to calculate the different parameters including a significant level (95% C.I.)
between NDBI/NDVI and LST. In the spatial analysis, long term spatial variations in
LST and urban thermal field variance were measured using Kriging interpolation
technique in ArcGIS (Yang et al. 2004). Kriging technique usually measures the spa-
tial autocorrelation among the points and changes weight regarding the spatial alloca-
tion of sampled points (Goovaerts 1997).

3. Results

3.1. Spatial-temporal changes in LULC (1992–2014)

Four groups of LULC maps were classified: vegetation, urban, water, and others. The
ground truth data obtained from Google Earth and available literature were also cor-
related with these LULC categories. According to Table 2, it displayed the average
value of the percentage accuracy of all land use groups. LULC varies dramatically
inside the marked buffers with different radii. According to Tables 3 and 4, based on
their level of growth and gross domestic product (GDP), buffers/circles across all six
cities were labelled with different radii. In all cities, a vegetated area is the prevailing
land use cover for the current study area. The extensive modifications, primarily
vegetation to transitional urban land resulting from the formation of infrastructure
and roads, include vegetated cover (Figure 3). The extension of continuous urban ter-
ritory, examining the land changes in detail the territory km2 variations within vege-
tated land. The most important growth in all Punjab cities (marked buffers) was
found in the artificial surface expansion from 1992 to 2014. During 1992-2014, vege-
tated areas were reduced to 230 km2, 91 km2, 553 km2, 89 km2, 35 km2, and 64 km2 in
total. Besides, urban areas increased to 195 km2, 67 km2, 602 km2, 102 km2, 37 km2,
and 58 km2 in the all cities: Faisalabad, Gujranwala, Lahore, Multan, Sargodha, and
Sialkot are shown respectively in the Table 5. Vegetated areas have typically led to
urban areas and other land areas in order to satisfy the demand for development and
population growth, etc. Consequently, the urban area expends with the reduction of
vegetated cover. The reduction of vegetated land, due to the shift to artificial areas,
townships, factories, and highways, also stands out in this type of land use sector.
The metropolitan area is rising dramatically in all the buffers. In addition, during the
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study period, other areas were also expanded. It is indicated that the vegetated land
has been lost and all cities have acquired urban areas. In addition, during the study
period, other areas were also expanded.

For example, the Faisalabad buffer LULC changes showed that the urban area was
124 km2 in 1992, increased to approximately 197 km2 in 1999, then expanded to
236 km2 in 2007, and to 320 km2 in 2014. Figure 4 ensured that urban extension was
established in all cities, particularly in both buffers (urban and rural) after 1999. The
urbanization factor continued to increase and the internal buffer named urban buffer
building areas continued to expand. Owing to the growing population and migration
of people to towns, even the vegetated areas and water areas of the rural buffer
around the urban buffer in all towns are accompanying them. In both buffers (urban
and rural), with the exception of Multan and Gujranwala in 2014, Faisalabad, Lahore,
Sialkot, and Sargodha have almost full urbanization capacity. It is clearly evident that
LULC changes were very noticeable in the study sites inside the buffers and how
urbanization increased spatially with the period depicted in Figure 4. It is strongly
evident that in the study sites within the buffers, LULC changes were very visible and
how the urbanization was increasing spatially with time.

3.2. Spatial-temporal changes in LST (1992–2014)

From 1992 to 2014, the mean annual LST spatial variation in six major cities was
extracted. Figure 5 shows the changes in annual average LST in selected cities for
1992, 1999, 2007, and 2014, showing that SUHII is heading towards the rural buffer
due to the rapid expansion of urbanisation out of the urban buffer. From LST’s spa-
tial pattern, it can be inferred that the urban buffer for the UHI effect was a highly

Figure 3. Land cover changes (km2) within marked buffers in selected cities from 1992 to 2014.
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pronounced area. Results also showed that during the 1992-2014 study period, the
average annual LST in rural buffers increased faster than the urban average annual
LST in Faisalabad, Lahore, Multan, and Sargodha over eight years, with a difference
of 0.1 �C, 0.53 �C, 0.11 �C, and 0.31 �C. The shift in the gradient of mean LST from
1992 to 2014 is seen in Figure 6 and LST was observed to increase the urban buffer’s
inward direction in all cities. It takes the same direction as spending in the
urban region.

In a rural buffer, the gradient of mean LST became higher due to urban sprawl
towards rural buffer. In contrast to rural areas, urban areas recorded higher tempera-
tures. Average changes in LST over eight years in rural and urban buffers showed
that mean LST increased at a rate of 1.79 �C, 0.84 �C, 0.56 �C, 2.39 �C, 2.46 �C, and
0.81 �C, in Faisalabad, Gujranwala, Lahore, Multan, Sargodha, and Sialkot, respect-
ively. Results have suggested separately that an average LST shift every eight years
has risen by 1.75 �C, 1.11 �C, 0.30 �C, 2.46 �C, 2.30 �C, and 0.94 �C, in urban buffers.
Mean LST in rural buffers increased over eight years in Faisalabad, Gujranwala,
Lahore, Multan, Sargodha and Sialkot, respectively, by 1.85 �C, 0.57 �C, 0.83 �C,
2.57 �C, 2.61 �C, and 0.68 �C over eight years (Figure 7).

Table 5. LULC change matrix 1992–2014 in km2.
City LULC Type 1992 1999 2007 2014 Transferred Area (km2)

FSD Water 0.052 3.654 0.574 1.881 1.828
Urban 124.76 197.81 236.62 320.04 195.28
Other 67.421 107.78 104.91 101.12 33.72

Vegetation 609.14 492.22 459.34 378.34 �230.79
GRW Water 0.898 1.179 0.937 1.173 0.274

Urban 57.36 70.65 94.27 124.89 67.535
Other 20.85 55.56 24.67 44.92 24.074

Vegetation 233.22 184.94 192.45 141.34 �91.884
LHR Water 14.250 10.890 7.458 11.80 �2.446

Urban 264.92 582.56 783.78 867.78 602.86
Other 158.92 174.53 139.42 112.49 �46.425

Vegetation 810.92 481.02 318.35 256.93 �553.99
MUL Water 9.498 3.8222 5.989 5.041 �4.456

Urban 116.15 156.95 173.63 218.75 102.6
Other 57.829 52.30 48.20 49.44 �8.423

Vegetation 289.63 260.02 245.28 199.9 �89.72
SGD Water 0.093 0.025 0.058 0.325 0.232

Urban 24.06 46.94 57.35 61.24 37.17
Other 16.90 18.90 13.18 15.25 �1.653

Vegetation 71.71 46.94 42.18 35.95 �35.75
SKT Water 0.068 0.006 0.050 0.190 0.122

Urban 10.44 17.54 47.78 68.75 58.30
Other 9.745 6.735 10.96 16.05 6.311

Vegetation 92.08 88.05 53.54 27.34 �64.73

Table 4. Buffer zones marked around the Cities at different radii.

Cities
Radius of urban
buffer (km)

Radius of rural
buffer (km)

Koppen-Geiger
Zone Classification

Faisalabad 8 16 Bwh (semi-arid climate)
Lahore 10 20 Bsh (Mid-Latitude Steppe and Desert Climate)
Gujranwala 5 10 Bsh (hot semi-arid climate)
Multan 6 12 Bwh (Tropical and Subtropical Desert Climate
Sargodha 3 6 Bwh (semi-arid climate)
Sialkot 3 6 Cwa (humid subtropical hot summer)
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Urban expansion, particularly in these cities occurred by transforming vegetation
into urban areas that changed physical surface processes and led to an increase in
LST shown in Figure 8.

3.3. Spatial-temporal changes in LST (1992–2014)

Using different heat indices, remotely sensed LST was further used to examine deep
thermal environmental changes, a thorough description is given in Sections 3.3.1,
3.3.2 and 3.3.3.

3.3.1. Changes in surface urban heat island intensity (SUHII)
By measuring the difference between the urban and rural buffer LST, SUHII was
extracted. For the six major cities of Punjab from 1992 to 2014, Figure 9 shows the
annual variations in SUHII. SUHII increased from 0.72 �C to 1.70 �C in Gujranwala
city from 1992 to 1999, decreased to 0.51 �C in 2007 and then increased to 0.62 �C in
2014. All cities indicated a fluctuating pattern in SUHII from 1992-2014. The results
showed that there was a positive growth trend in SUHII cities from 1999 to 2007,
while the SUHII pattern shifted towards negative values after 2007.

The probable explanations are that urbanisation incraesed more rapidly during
2007-2014, and definitely transformed the vegetated region into an urban one, even-
tually causing the high temperature of the rural buffer. Due to an increase in LST in
rural buffers, the temperature differential between buffers decreased, leading to a
decrease in SUHII from 2007 to 2014. Urban development was fairly planned during
this period, or green areas improved within the urban buffers that reduced SUHII
development. We can conclude from Figure 9 that SUHII’s positive value shows
urban temperature is higher while a negative shows that temperature was becoming
higher in the rural buffer due to the expansion of urbanization. SUHII effect was
going to be shifted toward rural buffer because of LST.

3.3.2. Change in heat effect contribution index (HECI)
Different forms of LULC have different thermal environment contributions. In the
thermal climate, HECI tested the contribution of different land covers. The thermal
temperature changes caused by various LULCs in six major cities from 1992-2014 are
illustrated in Table 6. According to HECI, fluctuating trends in thermal contribution
were observed for different LULC. Construction areas in Faisalabad contributed 17.89
percent, 25.20 percent, 30.46 percent and 41.45 percent, while vegetated areas
decreased their heat contributions by 73.59 percent, 60.94 percent, 55.67 percent and
45.73 percent in 1992, 1999, 2007, and 2014, respectively. Similarly, vegetated areas
decreased and eventually increased their thermal contributions in the end.

3.3.3. Change in urban thermal field variance index (UTFVI)
To measure the surface urban heat phenomenon and show the ecological conditions,
UTFVI was calculated. For six major cities from 1992 to 2014, Figure 10 shows
the spatial variation of urban heat field variance. The central buffer reflected the
urban area with low vegetation cover while elevated built-up cover. Concentrated
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urban development has contributed to the destruction of the natural ecosystem in
urban areas. UTFVI was divided by six separate ecological indices into six levels. The
threshold values of the six levels are shown in Table 7. UTFVI data showed that due

Figure 4. Spatiotemporal patterns of land cover changes for 1992, 1999, 2007 and 2014 in six
major cities: (a) Faisalabad (FSD), (b) Lahore (LHR), (c) Gujranwala (GRW), (d) Multan, (e) Sargodha
(SGD) and (f) Sialkot (SKT).
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to the dispersion of urbanization flux out of it, the thermal field gradient was spread-
ing out from the urban buffer. As a result, the urban thermal field gradient was
drawn out of the urban buffer. The urban thermal field varied in the same direction

Figure 5. Spatial patterns of mean annual (LST) (24 �C–39 �C ) 1992, 1999, 2007, and 2014 in six
major cities: (a) Faisalabad (FSD), (b) Lahore (LHR), (c) Gujranwala (GRW), (d) Multan, (e) Sargodha
(SGD) and (f) Sialkot (SKT).
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of urban extent. The result showed that the highest UTFVI value (0.1608) was found
in the city of Gujranwala, while the lowest value (0.0995) was found in the city of
Faisalabad. The ecological situation of Gujranwala city was worse with the UTFVI max
value of 0.16080 and excellent with the UTFVI min value of �0.16476 in some parts of
rural areas. The UTFVI max value and spatial pattern showed that the strongest UHI
was the urban area. We found that a greater portion of Gujranwala city had a very poor
living condition and a similar spatial pattern to LST, based on UTFVI research. The
UTFVI value was higher in center of buffer due to built-up sector.

4. Statistical analysis

We examined the potential relationship between LST and LULC drivers (NDVI, and
NDBI) to explore influencing factors. Vegetation covered area (NDVI) has a negative
correlation with LST, while built-up areas (NDBI) displayed a strong positive correl-
ation with LST on the basis that built-up areas were taken as urbanized according to
the results of the classification. The relation between the indicators for land use
(NDVI, NDBI) and LST as defined in Sections 4.1 and 4.2.

4.1. Relationship between LST and NDVI

There was an important correlation between NDVI and LST, and a negative association
between NDVI (high vegetation) and LST was observed. The increase in the magnitude of
LST, as indicated, along with the decrease in NDVI values. NDVI and LST had a strong
relationship when the correlation was made between NDVI and LST (Bokaie et al. 2016).
In addition, a negative correlation was identified between LST and NDVI values on the

Figure 6. Change in mean annual LST from 1992 to 2014.
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basis of literature data during the study period (Kaplan et al. 2018). During 1992-2014, the
average LST values were strongly and negatively correlated in all cities with NDVI. The
decrease in NDVI values corresponded to an increase in buffer LST values. The determin-
ation coefficient (R2) values, as shown in Figure 11, were 0.60, 0.42, 0.80, 0.77, 0.55 and
0.70 in Faisalabad, Lahore, Gujranwala, Multan, Sargodha, and Sialkot, respectively.
ANOVA’s one-way statistical test concluded that there is a strong association between
NDVI and LST in six cities with a significant ¼ 0.01. With vegetation cover, NDVI values
increased and, subsequently, LST values declined accordingly. The average NDVI value
ranged between 0.1 (in the urban buffer) and 0.6 (in the rural buffer). Because of low vege-
tation, the urban buffer had the lowest NDVI concentration in all cities. With the growth
of vegetation cover, NDVI values increased as the LST value results decreased. It was
deduced in the rural buffer for 1992 and 1999 that the LST magnitude was reduced as a
result of the increased NDVI value. It is shown that LST began to increase from rural buf-
fer to urban buffer due to a decrease in NDVI and vegetated area values.

Figure 7. Mean LST (�C) changes over eight years in urban, rural, and whole buffer.

Figure 8. Mean annual temporal changes in LST (�C) changes over rural and urban buffer.
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4.2. Relationship between LST and NDBI

NDBI is also an important indicator of LULC changes and the results showed that in
response to LULC changes, NDBI reflected the changes in the thermal climate. Due

Figure 9. Long-term annual temporal changes in (SUHII) �C in six major cities from the period of
1992-2014.

Table 6. Thermal contribution by each land type in six buffers.
Thermal contribution % from each land cove (LC) type

Cities Year Water Area % Urban Area % Vegetated Area % Others Area %

Faisalabad 1992 0.005 17.89 73.59 8.60
1999 0.44 25.20 60.94 13.42
2007 0.59 30.46 55.67 13.28
2014 0.25 41.45 45.73 12.59

Lahore 1992 1.80 40.37 33.44 24.39
1999 0.78 48.53 36.72 13.97
2007 0.5 69.23 19.93 10.40
2014 0.90 77.02 14.08 8.00

Gujranwala 1992 0.30 10.43 82.20 7.07
1999 2.37 19.23 71.94 6.50
2007 0.20 32.51 60.10 7.29
2014 0.30 42.00 44.70 13.00

Multan 1992 1.00 26.26 61.79 10.95
1999 0.60 36.09 52.18 11.11
2007 0.50 41.02 48.48 10.00
2014 0.92 49.01 40.44 9.63

Sargodha 1992 0.08 22.04 62.64 15.28
1999 0.01 42.76 40.48 16.75
2007 0.04 52.41 36.00 11.55
2014 0.01 58.85 40.49 0.65

Sialkot 1992 0.06 9.70 81.84 8.40
1999 0.006 16.20 77.70 6.10
2007 0.03 43.46 46.62 9.80
2014 0.14 61.74 23.95 14.17
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to extreme heat emitted from the heavily populated areas, urbanization has made the
local climate warmer. (Houghton 2001). Higher NDBI values are interpreted by the
densely built-up regions and the maximum temperature in the urban buffer was
shown. A strong positive correlation was determined between the values of LST and
NDBI with withal (Jamei et al. 2019). Using the piecewise regression model, the
intensity of the relation between NDBI and LST in all the cities was calculated. In
Faisalabad, Lahore, Gujranwala, Multan, Sargodha, and Sialkot, the coefficient of
determination (R2) values were 0.77, 0.66, 0.70, 0.91, 0.71 and 0.72. The positive cor-
relation indicated that in the urban buffer, the built-up area increased LST and was
the main contributor to the impact of the an UHI. Figure 12 clearly shows that LST
was increasing with the NDBI values from rural towards urban regions. The rural
buffer had lower NDBI values (< 0), while the urban area had high NDBI values (>
0.01). The principal cause of higher temperatures was a higher NDBI value in the
urban buffer. Urban temperatures have been stimulated by other factors, such as
emissions, energy consumption, transport, and air conditioners. In six cities, the cor-
relation between NDBI and LST was important at < ¼ 0.01. Building materials had a
high specific heat capacity in urban areas to absorb thermal radiation produced by
the sun or by anthropogenic sources, and they absorbed radiation from the surround-
ing atmosphere during the night before it became thermal equilibrium. In keeping
the cities warmer, particularly building heights, street canyons, road width, and con-
struction material, the urban canopy also played a very vital role.

5. Discussion

In highlighting LST, the LULC changes review highlighted the strict relationship
between LST and the management of land use. In particular, the present study

Figure 10. Spatial visualization of UTFVI.
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highlighted the most notable LULC changes in terms of contribution to UTE. Urban
coverage increased primarily in all cities during the study period and, secondly, other
areas (barren land, rocky land, and sandy land) also increased. In contrast to the rural
buffer, the urban buffer had higher LST values. The built-up area was particularly
occupied by vegetated and water areas in the urban buffer. The geophysical processes
that produced higher LST in the urban buffer were altered. It was also identified that
higher LST trends were gradually heading to rural areas. Another main finding in the
current study was that in most towns, the rate of incremental increase in the mean
LST within the rural buffer was greater than urban. In the rural buffer, average
improvements in LST values over the eight years were increased by 1.85 �C, 0.57 �C,
0.83 �C, 2.57 �C, 2.61 �C, and 0.68 �C respectively in Faisalabad, Gujranwala, Lahore,
Multan, Sargodha and Sialkot. With the relationship between LULC and LST being
studied, it was noted that urban areas had the highest LST(Simwanda et al. 2019). In
addition, the LST average gradient decreased from the urban to the rural buffer, and
its distribution was closely similar to the urban expansion trend (Rizwan et al. 2008,
Li et al. 2018). The mean LST increased steadily from 1992-2014, beyond the spatial
scale of the urban buffer in each city. These findings may be due to populated and
impermeable surfaces being urban buffers. Similar results have been found that urban
areas have the highest LST relative to other regions, water areas, and areas of vegeta-
tion (Ibrahim and Rasul 2017, Tran et al. 2017).

For example, Arshad et al. (2019) emphasised that LULC changes particularly
urbanisation, have increased the mean temperature in Faisalabad in the past few
years. The present study results are consistent with previous studies (Arshad et al.
2019), and Sajjad et al. (2015) concluded that the temperature of Lahore was particu-
larly lower (Sajjad et al. 2015). Chung et al. (2004) clarified that urban expansion was
a key contributor to the temperature rise in South Korean urban areas(Chung et al.
2004). In 2007, in Beijing, China, Liu et al. concluded that urban growth was increas-
ing the mean temperature. The mean LST of built-up was greater than the vegetated
cover and also the land cover function that contributed most to the LST is built-up
(Liu et al. 2007). Lu et al. (2015) used Landsat images to assess the urban expansion
of Shenyang city and its effect on the UTE (Lu et al. 2015).

The variance in temperature in urban and rural buffers help to understand the
impact of SUHII on the study sites. Within the urban buffer, the SUHII phenomenon
is very intense (Simwanda et al. 2019). Because of growing LST in the rural buffer
and SUHII effect moved towards rural buffering. Our main results are consistent
with previous research work peng et al. (2017) resulted in growing UHI effects out-
side the urban core, continuing urban growth and spending away from the urban
centre (Fu and Weng 2018). In a very dense area, urbanisation and densification have

Table 7. Threshold values UTFVI (Liu and Zhang 2011).
Urban heat island phenomenon Urban thermal field variance index

None <0
Weak 0.000–0.005
Middle 0.005–0.010
Strong 0.015–0.015
Stronger 0.015–0.020
Strongest >0.020
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caused heat to trap and increased SUHII. Vegetated areas have the ability to reduce
and maintain the thermal intensity of densified urban areas, which is critical for sus-
tainable urban planning (Pramanik and Punia 2020). The thermal physics of the
built-up cover was also explained to SUHII by keeping in mind the thermal conduct-
ivity of the material, the basic heat power of the material, and thermal conduction,
etc. (Chapin et al. 2005). The LULC modifications in the rural buffer could clarify
this. The SUHII pattern was positive initially and negative after 2007, as rural LST
continues to increase continuously (Figure 9). Based on the HECI study, built-up
land positively contributed to a rise in LST in all cities during 1992-2014, while water
bodies negatively contributed. In other cities, these findings are consistent with the
previous report (Shi et al. 2015, Huang, Huang et al. 2019). The UTFVI value is
greater in the urban than rural buffer. The thermal field intensity gradient was also
moving toward rural buffers. The SUHII phenomenon faced all urban buffers and
had the worst ecological conditions. Previous studies have shown similar UTFVI find-
ings in different areas of the study (Liu and Zhang 2011, Renard et al. 2019).

The interactions and effects of NDBI and NDVI with LST have commonly been
assessed in complex and temporal ways (Tran et al. 2006, He et al. 2010, Zhang et al.
2013). Mean LST in Suzhou City, China, showed a negative association with green
space coverage.(Wu and Zhang 2018). These are also important LULC indicators and
changes in NDVI/NDBI in response to LULC changes can indicate changes in the
thermal climate. Thus, variability in thermal changes is observed by the study of

Figure 11. Piecewise regression between average NDVI and LST (1992-2014).(Extracted 3000 pix-
els’s value for each city to draw it).
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NDVI changes. By generating a cooling effect in dense urban areas, vegetation plays
a key role in sustaining eco-environmental sustainability (Weng et al. 2004, Amiri
et al. 2009, Gunawardena et al. 2017). We concluded in the present study that an
increase in LST was observed along with a decrease in NDVI values. There is a link
between NDVI and LST that is substantial and negative. Based on the previous his-
tory of literature, a negative association was investigated between both LST and
NDVI parameters (Zareie et al. 2016, Zareie et al. 2016, Kaplan et al. 2018, (Bokaie
et al. 2016)). LST showed a declining trend in vegetated cover and the negative rela-
tionship between LST and NDVI was shown by several previous studies (Liu and
Zhang 2011, Li et al. 2014, Shi et al. 2015). A study by (Saleem, Ahmad, and Javed
2020) studied the impact assessment of urban development on LST in major cities of
Pakistan and resulted certain findings 1) NDVI showed negative relationship with the
LST in Faisalabad city, 2) LST had showed the positive relationship with built-up in
Multan city, and 3) a negative correlation observed between vegetation and LST in
Lahore city, Pakistan. Land transformation associated impacts on LST and vegetated
area resulted into decrease in LST in the Lahore, Pakistan (Mumtaz et al. 2020)
Similarly, a strong negative association between LST and vegetation in Africa has
been identified, which may support current study findings (Simwanda et al. 2019). In
our findings the break points showed the detailed information of relation between
NDVI and LST due to heterogeneity in the pixel values. Through beak points con-
cluded that how changes in NDVI is relating with the LST. The piecewise linear
regression was applied to check the detailed behavior of NDVI and LST shown in

Figure 12. Piecewise regression between average NDBI and normalized LST (1992–2014).
(Extracted 3000 pixels’ value for each city to draw it).
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Figure 11. In addition, Jamei et al. (2019) also found a non-linear association in
Melbourne between NDVI and LST and showed that elevated LST was observed with
less vegetation in the region of the city (Jamei et al. 2019). In addition, Xie et al.
(2013) found that the LST had a negative correlation between vegetation fraction
coefficient (NDVI) and Liu and Zhang (2011) investigated the negative coefficient
correlation between NDVI and LST (Liu and Zhang 2011, Xie et al. 2013). However,
LST has a strongly positive correlation in the present study and a growing trend with
NDBI in all major cities and scatter plots were made by extracting the pixel’s value
across the urban and rural buffers. In Figure 12 piece wise linear regression showed
detailed information of relation between NDBI and LST pattern through break points.
The NDBI pixel values are varying and it showed its relation in detail with LST val-
ues. The results of the previous research are consistent with the findings of the cur-
rent study. A study conducted by (Sadiq Khan et al. 2020) resulted that impervious
surfaces positively contributed to increase the LST. The built-up area resulted into
increased LST in the Lahore, Pakistan (Mumtaz et al. 2020). A study by (Saleem,
Ahmad, and Javed 2020) resulted certain findings 1) positive correlation observed
between NDBI (built-up) and LST in Faisalabad city, 2) LST had showed the positive
relationship with built-up in Multan city, and 3) a positive correlation was found
between built-up and LST in Lahore city, Pakistan. Jamei et al. (2019) noted that rises
in the built-up region led to elevate LST and show a positive coefficient association
between NDBI and LST(Jamei et al. 2019). Both of these factors contributed to slow
wind velocity, resulting in no heat-wave exchange in urban areas. (Cui and Shi 2012).
The positive association between LST and NDBI was shown by Tan et al. (2020) and
Nimish et al. (2020), demonstrating the high impact of impermeable surfaces on
urban temperatures (Nimish et al. 2020, Tan et al. 2020). In relation to LULC, Liu
et al. (2020) evaluated the LST variation and concluded that the LST variation was
associated positively with impermeable surfaces and negatively with vegetation (Liu et al.
2020). Urbanization reduces the capacity to store carbon and results in additional stag-
nant carbon dioxide in the environment that plays a crucial role in warming the earth’s
planet (Baumert and Pershing 2004). The 90 percent of anthropogenic carbon produced
by burning fuels in major cities; sources of transport; and so on. Clearing land for cities,
pavement surfaces, and highways are the key drivers of land-use transition, such as
deforestation, which has limited carbon storage capacity (Svirejeva-Hopkins et al. 2004).
Our current findings have shown that all cities and related problems are presented to
UHI. New developmental schemes and housing societies have replaced the green patches
in all towns. According to current findings, in order to reduce the swelling effect of the
heat island, land planning studies carefully based on the natural capacity of the land to
abandon its misuse and green spaces in the city are significant. The government should
take urgent steps to push urban area tree plantations as it can reduce the amount of heat
and increase the cities’ groundwater table and air quality. It is helpful for administrators
to consider the effect of LULC improvements on the LST and to follow effective policies
to govern it. This study can be helpful for the policies making and sustainable urban
planning in Punjab, Pakistan.

The current study considered the LULC drivers (NDVI and NDBI) to simplify the
study because they directly involved to alter UTE. This study first comprehensive
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attempted to examine the long-term perspective changes in LULC and their impacts
on the thermal environment, and only primary results were obtained. There are cer-
tain factors including population, landscape, and socioeconomic resulted to exuberate
the UTE. In order to examine their quantitative relationship with UTE, there is a still
need to undertake future research by considering these parameters.

6. Conclusion

A comparative analysis of spatiotemporal changes in UTE for Pakistan’s six major cit-
ies (Faisalabad, Lahore, Gujranwala, Multan, Sargodha, and Sialkot) was conducted
using Landsat-5, 7, and 8 data to explore the relationships between the spatial pat-
terns, configuration, and composition of LULC maps with LST. Vegetation land was
enormously transformed into built-up land in all six cities, and it was constantly
extended from urban to rural buffer. In the rural buffer, the average LST value rose
at a higher rate compared to the urban buffer due to the steady expansion of urban-
ization towards the rural buffer. Due to a rise in rural temperature at a greater rate,
the disparity between urban and rural temperatures increased and the SUHII trend
turned negative. The HECI showed that the heat contribution of the various land
cover inputs was strongly pronounced for urban cover.

A significant finding in the current study is that all urban buffers have poor ecological
conditions altogether. Due to the high SUHII effect, bad ecological conditions can lead to
negative effects primarily on human health, including heatstroke, nervous system failure,
cardiac and gastrointestinal problems. Statistical analysis showed that with the built-up area,
LST was boosted. Areas with high NDVI (vegetation) had a negative correlation with LST,
while a high positive correlation with LST was seen in built-up areas (NDBI). Because of the
alteration of the bio-geophysical processes induced by LULC shifts, LST increased gradually.
Our findings showed that high-resolution Landsat product data provided a better under-
standing through remotely sensed LST of the study of LULC changes and their effects on
the thermal environment at landscape and regional scales (cities). The LULC (NDVI and
NDBI) indicators have an important relationship with LST and can be used to research the
SUHII effect. In addition, to eliminate the severity of the thermal environment, vegetated
regions may play a vital role. A clear understanding of the effects of land change on the spa-
tiotemporal changes of the LST and its contributing factors was established in the present
study results using LST data collected from Landsat products in Punjab, Pakistan.
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