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ABSTRACT

Instrumental aberrations strongly limit high-contrast imaging of exoplanets, especially when they produce quasi-
static speckles in the science images. With the help of recent advances in deep learning, we have developed in
previous works an approach that applies convolutional neural networks (CNN) to estimate pupil-plane phase
aberrations from point spread functions (PSF). In this work we take a step further by incorporating into the
deep learning architecture the physical simulation of the optical propagation occurring inside the instrument.
This is achieved with an autoencoder architecture, which uses a differentiable optical simulator as the decoder.
Because this unsupervised learning approach reconstructs the PSFs, knowing the true phase is not needed to
train the models, making it particularly promising for on-sky applications. We show that the performance of
our method is almost identical to a standard CNN approach, and that the models are sufficiently stable in terms
of training and robustness. We notably illustrate how we can benefit from the simulator-based autoencoder
architecture by quickly fine-tuning the models on a single test image, achieving much better performance when
the PSFs contain more noise and aberrations. These early results are very promising and future steps have been
identified to apply the method on real data.

Keywords: Deep learning, convolutional neural networks, autoencoders, focal plane wavefront sensing, phase
retrieval

1. INTRODUCTION

Imaging exoplanets requires instruments to have the capability of probing high contrasts between planets and
their host star. Telescopes incorporating a coronagraph and adaptive optics (AO) tremendously help in this
matter, but residual wavefront aberrations, in particular non-common path aberrations (NCPA) between the
scientific and wavefront sensing arms, still greatly limit the detection of exoplanets.1 Focal-plane wavefront
sensing (FPWFS) methods2 are particularly beneficial to measure NCPAs since the signature of these aberrations
can be found in the focal-plane images.

Deep learning with convolutional neural networks (CNN) has recently been implemented for focal-plane
wavefront sensing3–8 with good results. CNNs offer great performance and robustness as well as fast inference,
making them particularly adequate for NCPA correction during observing nights. One limitation of supervised
learning using CNNs however is that the models require a ground truth to be trained. As building models
with on-sky data is particularly challenging due to the lack of precise knowledge about the NCPAs themselves,
it may be difficult to build reliable labelled datasets. Unsupervised learning approaches are thus particularly
compelling, since they work without knowing the true phase aberrations. By reconstructing the input data, deep
learning autoencoders are a well proven unsupervised approach. For focal-plane wavefront sensing the targets
are the NCPAs instead of the point spread functions (PSF), and one way to extract this phase information with
an autoencoder is to add physical knowledge to the model.

Several works in the field of optics have incorporated a physical simulator into their deep learning architecture.
Bostan et al. 20209 and Wang et al. 202010 for instance proposed each an unsupervised approach with an
untrained neural network that reconstructs images on-the-fly based on an optical model. Peng et al. 202011 also
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incorporates an optical wave propagation model in the architecture to improve the quality of holographic images.
Automatic differentiation of optical models has also been performed in the context of wavefront aberrations,
notably for PSF reconstruction (Liaudat et al. 202212) as well as for phase retrieval and design (Wong et al.
202113).

Motivated by the benefits a differentiable simulator can offer for an unsupervised approach, we define an
autoencoder architecture that contains a CNN as the encoder and a optical simulator as the decoder. This
allows to constrain the encoder to predict Zernike coefficients corresponding to the probed NCPAs. The method
is described in Sec. 2. This unsupervised approach is tested on simulated data, and the results are presented
in Sec. 3. We notably evaluate how the method handles photon noise and atmospheric turbulence residuals
compared to using only a CNN. The possibility of fitting the models on an observed PSF that lies outside the
training data distribution is also investigated. Developments for the approach to work with real instruments are
finally discussed in Sec. 4.

2. SIMULATOR-BASED AUTOENCODER

2.1 Data generation

For the present study we consider a simple optical propagation between a pupil plane and a focal plane, so that
the PSF is expressed as:

PSF (x, y) = |F [A(x, y) e iΘ(x,y)]|2, (1)

where A(x, y) is the pupil function and Θ(x, y) the pupil-plane phase aberrations.

We construct the phase maps using Zernike polynomials following the Noll convention,14 starting from the
tip mode, and based on an annular aperture with a central obstruction of 30% of the total diameter. The sets of
Zernike coefficients are randomly generated to approximate a 1/f2 power spectral density profile, and scaled to
a given median root-mean-square (rms) wavefront error (WFE). In our simulations we consider two aberration
regimes: NCPAs around 70 nm rms covering 20 Zernike modes, and 350 nm rms over 100 modes. The PSFs are
computed using the PROPER15 optical propagation package. Our data is generated in the K band at λ = 2200
nm, while we consider an aperture diameter of 10 m, a pixel scale of ≃ 11.43 mas/pix, and a field-of-view of
≃ 1.47”. The phase maps as well as the PSFs contain 64 × 64 pixels. In addition to the in-focus PSFs, we
also generate out-of-focus PSFs with a defocus of λ/4 = 550 nm rms, which are used to lift the sign ambiguity
that exists for the modes of even radial order, as typically done for focal-plane wavefront sensing.16,17 We add
photon noise to the PSFs so that SNR =

√
Nph, with Nph the number of photons. We also apply a square-root

stretching operation to the PSFs, before normalizing the flux in the range [0,1]. This operation is done inside
the encoder for the autoencoder architecture.

For the experiments done in Sec. 3.2.4, we also generate data containing atmospheric turbulence residuals.
This is achieved by simulating an extreme AO system using the COMPASS library,18 giving a wavefront error of
about 50 nm rms. To simulate a 1-s exposure in presence of a given amount of static NCPA, we use a sequence of
10 consecutive AO phase screens, and we sum up the corresponding PSFs. These AO simulations are described
in more details in Quesnel et al. 20228 (submitted).

2.2 Autoencoder architecture

In this work we propose an autoencoder architecture, which is composed of an encoder and a decoder. The
encoder is a CNN that maps Zernike coefficients from PSFs x, i.e., it approximates a non-linear function f such
that z ≈ f(x). We choose to use a state-of-the-art deep CNN called EfficientNet.19 This type of architecture
stands out from other ones by using a new scaling technique, with all dimensions of the CNN (depth, width, and
resolution) being scaled similarly. We choose to use the EfficientNet-B4 flavour, which offers the best trade-off
between performance and runtime.

For our unsupervised approach, we also add a decoder which corresponds to a differential optical simulator,
i.e. the decoder reconstructs the input PSFs based on the predicted Zernike coefficients, allowing to work without
labels. This decoder is the same as the data generator defined in Eq. 1, with the exception that it produces
noiseless PSFs. All the simulator’s parameters are here fixed, while it may be beneficial in the future to consider
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Figure 1: The proposed simulator-based autoencoder architecture (SimAE), using a CNN as the encoder and a
differentiable optical simulator as the decoder. The latent space contains the Zernike coefficients which are used
during training to reconstruct noiseless PSFs, while during inference these coefficients can be applied for NCPA
correction.

learning parameters of the simulator for in-lab and on-sky applications. Regarding the latent space that exists
between the encoder and the decoder, the number of Zernike modes has to be predefined. During inference on a
trained model, the encoder containing the CNN allows to obtain the Zernike coefficients that correspond to the
NCPAs of interest. Fig. 1 summarizes our simulator-based autoencoder architecture, which we call “SimAE” in
the following sections.

The loss function, which is used to optimize the neural network’s weights in order to fit the model to the
data, needs to be adapted to our SimAE architecture. Since the decoder reconstructs noiseless PSFs, the typical
mean-square-error loss that makes the assumption of Gaussian noise is not appropriate on the PSF residuals.
Since we are working on a simplified case where only photon noise is present in the images, i.e. each pixel follows
a Poisson distribution, we can define our loss so that the log-likelihood of the Poisson probability distributions
is maximized, giving the expression:

LSimAE(x;ϕ) = −Ex∼p(x)

[
log

(
λ(x;ϕ)x

x!
exp(−λ(x;ϕ))

)]
, (2)

where λ(x;ϕ) are the rates of the Poisson distributions, which depend on both the input PSFs x sampled from the
dataset distribution p(x), and the parameters ϕ of the encoder (CNN). These rates correspond to the noiseless
PSFs that are constructed by the decoder.

The baseline on which we compare our SimAE models is a standard CNN architecture. The loss function is
in this case defined as the root-mean-square error of the phase residuals. It can be expressed using the Zernike
coefficients as:

LCNN (z, ẑ(x;ϕ)) =

√√√√ 1

N

N∑

i

(zi − ẑi(x;ϕ))2, (3)

where z and ẑ correspond to the true and predicted Zernike coefficients respectively, while N is the number of
Zernike modes (20 or 100).

3. EXPERIMENTS

3.1 Protocol

For a given training, a dataset composed of 105 PSF pairs is randomly split into training (90%) and validation
(10%) sets, with a batch size of 64. For the supervised learning approach with a CNN, each sample also contains
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Figure 2: Examples of training and validation losses over the epochs for each approach: CNN (left) and SimAE
(right). In these examples the models are trained on datasets containing 350 nm rms of aberrations distributed
over 100 modes, and a SNR equal to 300.

the true NCPA phase maps as labels. The Adam optimizer20 with a starting learning rate of 10−3 is used to
update the weights of the CNN. The learning rate is decreased by a factor two as soon as the validation loss
reaches a plateau over 15 epochs to improve the performance. Efficientnet-b4 weights are initialized with models
pretrained on ImageNet. An example of the resulting training and validation losses for each method can be
found in Fig. 2. The models are then systematically evaluated on 1000 new samples.

3.2 Results

3.2.1 Performance compared to a standard deep CNN

We first compare the performance regarding each Zernike mode. The metric used is the root-mean-square error
(RMSE) per mode, computed over the entire test set:

σz =

√√√√ 1

Ntest

Ntest∑

i

(ĉi − ci)2 , (4)

where Ntest is the number of test samples, while ĉ and c are the estimated and true Zernike coefficients, respec-
tively.

As shown in Fig. 3, the Zernike coefficients are very well reconstructed, even at high aberrations contents
(350 nm rms over 100 modes). There is no particular distinction between even and odd modes, and the SimAE
and CNN manifest very similar performance.

Since the SimAE is defined to take into account photon noise through its loss function, it is worth assessing
the performance for different SNR levels. We thus compare the residual errors in terms of rms WFE on the total
phase residuals. The metric is therefore defined for each test sample as:

σϕ =

√√√√ 1

Npix

Npix∑

i

(ϕ̂i − ϕi)2, (5)

where Npix is the number of pixels within the pupil area, while ϕ̂ and ϕ are the estimated and true pupil phases,
respectively.

The errors on the phase retrieval for a range of SNR levels are shown in Fig. 4, where each point corresponds to
a model trained and evaluated at the same given SNR. The two approaches show almost identical performance,
and a plateau is reached around a SNR of 3000 in the high aberration regime. This has been observed and
discussed in previous works7,8 as well. Only at very low SNRs the SimAE appear to differ from the CNN
approach. This difference could be due to the loss function of the SimAE that is defined on the PSFs and not
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Figure 3: Performance per Zernike mode, for a low aberration regime (70 nm over 20 modes, light shades) and
a high aberration regime (350 nm over 100 modes, darker shades), at a SNR of 1000. The CNN and SimAE
architectures are compared (blue and red, respectively).
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Figure 4: Performance at different SNR levels for the SimAE (blue) and the standard CNN (red) models, at low
and high aberration regimes (darker and brighter shades respectively). The points correspond to the median
value and the error bars to the 2-98th percentiles.

on the NCPAs, so that there is not the implicit regularization occurring with supersized CNNs, which has been
described by Orban de Xivry et al. 2021.7 The residual errors thus tend to follow the theoretical limit for lower
SNRs with the SimAE.

3.2.2 Robustness of the trained models

Deep learning models may show limitations when evaluated on data lying outside the training data distribution.
It is therefore important to assess the stability of the models in such conditions, which would probably occur
when applying the algorithm on sky.

Here we compare again the SimAE method with the CNN, this time varying the testing SNR (Fig. 5, left),
on a model trained at a median WFE of 70 nm rms distributed over 20 modes. Giving data containing less
noise to the models always provides stable predictions, and we even obtain a marginal improvement with the
SimAE when trained at a SNR of 30. If we introduce more noise to the test data, the error quickly increases, at
about the same rate with both approaches. We also experiment by changing the testing input WFE in the data
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Figure 6: Performance of models fine-tuned on each test sample individually, for varying SNR (left) and input
WFE levels (right). The model used for both plots was initially trained on data with 70 nm rms, 20 modes,
and a SNR of 100, as indicated by the vertical dotted lines.

(Fig. 5, right). Here the CNN and SimAE showcase identical behaviour, with constant performance for lower
testing WFE than the training one, and strong degradation for higher testing WFE, although with the SimAE
the performance does not degrade as quickly as with the CNN. Similar trends regarding the CNN has been
found in previous works.7,8 Overall the SimAE method offers only slight improvement in terms of robustness
compared to the CNN. To benefit the most from such a physics-based approach, it would be useful to include
more knowledge about the data in the models, which could be provided by a variational autoencoder21 approach
for instance.

3.2.3 Transfer learning

Instead of directly applying a trained model on observed data, we propose to fine-tune the model using a single
“on-sky” image, initializing with the trained weights of the original model. This is done to illustrate how we
could quickly adapt the model from simulated to on-sky data, which may slightly differ from the training data.
To test this on our SimAE method, we use a model trained on data containing 70 nm rms and a SNR of 100.
The levels of NCPA and SNR are changed on the test data, and the results are shown in Fig. 6. The models
perform much better when transfer learning is done on each test sample, in particular when their SNR and WFE
are higher than for the original training data. This second training on a single test sample is performed over
200 epochs, which takes about 20 seconds to complete on one GPU (Nvidia GeForce RTX 2080 Ti). For data
relatively close to the ones used for pre-training, convergence is naturally achieved after much less epochs and
the final prediction can be made in only a few seconds.
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Figure 7: Residual errors as a function of the input WFE, for a model trained on a dataset with WFEs distributed
around 70 nm (20 modes). A SimAE model with data containing only photon noise (cyan), is compared to CNN
and SimAE models (purple and blue, respectively) trained on data containing also AO residuals, which are not
provided to the decoder during training and evaluation.

3.2.4 Atmospheric turbulence residuals

In the previous experiments, the decoder, i.e the differentiable optical simulator, was able to exactly reconstruct
what our data generator produced to build our training and test sets, except for photon noise, but for which
the loss function was adapted. In order to test the method on data the decoder cannot totally reconstruct, we
introduce atmospheric turbulence residuals to the input data, without giving this information to the decoder.
The way these AO residuals are added is described in Sec. 2.1. Even with the presence of this additional source
of noise, the training is very stable, and the evaluation results shown in Fig. 7 indicate that the SimAE suffers
a reasonable degradation in performance compared to a case without turbulence. Using a CNN with labels that
does not account for these AO residuals gives the same results.

4. CONCLUSIONS AND FUTURE WORK

We have developed an unsupervised deep learning method for focal-plane wavefront sensing by incorporating
an optical simulator into a CNN-based autoencoder architecture (SimAE). We observe very similar performance
compared to using a simple CNN, both approaches reaching the expected theoretical limit over a large range
of conditions. The SimAE however has the major advantage of not requiring labels during the training of the
models. One promising opportunity with an approach like this SimAE is that we can quickly fit the model to
the currently observed PSF using a pre-trained model. We have shown in this paper that such fine-tuning of
the models can greatly improve the results for data showing different noise or NCPA levels. Dealing with data
the decoder cannot reproduce is naturally a potential limiting factor for the method. We have trained models
with atmospheric turbulence residuals present on top of NCPAs, and the loss of performance that we obtain
stays well constrained. In practice these turbulence residuals may even be given to the decoder, by using the
wavefront sensor telemetry to learn what the AO residuals effectively are, with the help of a small neural network
for example.

Several components of our architecture can be improved in the future. We may first benefit from variational
inference, i.e. predicting posterior distribution for Zernike coefficients as well as to incorporate prior knowledge
about them. This could yield better robustness for the models thanks to the additional information given during
training and inference. Regarding the decoder, a more complete simulator, e.g. including a coronagraph for
high-contrast imaging and other relevant instrumental components, will be essential to envision applying the
technique on-sky with a real instrument.
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