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Abstract

Appropriate statistical analysis of the validation data for diagnostic tests 

facilitates the evaluation of the performance criteria and increases the confidence 

in the conclusions drawn from these data. A comprehensive approach to analysing 

and reporting data from validation studies and inter-laboratory comparisons 

such as test performance studies is described. The proposed methods, including 

statistical analyses, presentation and interpretation of the data, are illustrated 

using a real dataset generated during a test performance study conducted in the 

framework of the European project, VALITEST. This analytical approach uses, 

wherever possible and whenever applicable, statistical analyses recommended by 

international standards illustrating their application to plant health diagnostic 

tests. The present work is addressed to plant health diagnosticians and researchers 

interested and/or involved in the validation of plant diagnostic tests, and also aims 

to convey the necessary information to those without a statistical background. 

Detailed statistical explanations are provided in the Appendices.

Directives pour améliorer les analyses statistiques de jeux de données de validation 

pour les tests de diagnostic phytosanitaire

Une analyse statistique appropriée des données de validation des tests de diagnostic 

facilite l'évaluation des critères de performance et augmente la confiance dans les 

résultats tirés de ces données. Cet article décrit une approche globale qui consiste 

à analyser et rapporter les données issues d’études de validation et d’études 

comparatives inter-laboratoires telles que les études de performance de tests. 

Les méthodes proposées, notamment les analyses statistiques, la présentation 

et l'interprétation des données, sont illustrées dans cet article à partir d'un jeu 

de données réel généré lors d'une étude de performance de test menée dans le 
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1  |   INTRODUCTION

The validation of any diagnostic test, i.e. the determi-
nation of its performance characteristics, is essential 
before it can be implemented in plant pest diagnostics. 
Validation provides essential information on the per-
formance of a test, supports the reliability of the diag-
nostic activity and assists in the selection of a test that 
is appropriate for its intended use (Trontin et al., 2021). 
Test validation can be carried out within a labora-
tory (intra-laboratory) or in the framework of inter-
laboratory comparison studies by several laboratories 
(such as proficiency testing or test performance study, 
TPS). The evaluation, carried out on a panel of samples, 
can include a single test or a comparison of several tests. 
A scientifically sound evaluation relies on results from 
a properly designed sample panel and, for a TPS, from 
enough participating laboratories, allowing the calcu-
lation of performance characteristics of the test(s) and 
their comparison. Several guidelines for the validation 

of a test and the calculation of its performance charac-
teristics are available for plant health (EPPO,  2019) or 
specifically for seed testing (ISF, 2020; ISTA, 2019).

Statistical analyses of validation data facilitate the 
interpretation and comparison of tests and increase the 
confidence in the conclusions drawn from the validation 
data. For example, the use of confidence intervals associ-
ated with each estimate allows a better interpretation of 
the value calculated for a performance criterion taking 
into account the intended use of the test, as shown for the 
performance evaluation of three RT-PCR protocols for 
fruit tree virus detection (Massart et al., 2009a, 2009b) 
or in the frame of an in-depth statistical analysis of TPS 
results for the molecular detection of phytoplasmas on 
grapevine (Chabirand et al., 2017). The identification of 
outliers is also an important objective and usually relies 
on the expertise of the organizer of the study while it can 
be supported by proper statistical analysis.

The selection of statistical methods for the evalua-
tion of performance criteria presented in the present 
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cadre du projet européen VALITEST. Cette approche analytique utilise, lorsque 

cela est possible et applicable, les analyses statistiques recommandées par les 

normes internationales illustrant ainsi leur application aux tests de diagnostic 

phytosanitaire. Le présent article s'adresse aux professionnels du diagnostic 

phytosanitaire et aux chercheurs intéressés et/ou impliqués dans la validation de 

tests de diagnostic phytosanitaire. Il vise également à transmettre les informations 

nécessaires à ceux qui n'ont pas de formation statistique. Des explications 

statistiques détaillées sont fournies en annexes.

Руководство по улучшению статистического анализа валидационных 
наборов данных для диагностических тестов на наличие вредных 
организмов по отношению к растениям
Должный статистический анализ валидационных данных для диагностических 
тестов облегчает оценку критериев эффективности и повышает доверие к выводам, 
сделанным на основе этих данных. Описан комплексный подход к анализу и 
представлению данных валидационных исследований и межлабораторных 
сравнений, таких как исследования эффективности тестов. Предлагаемые 
методы, включая статистический анализ, представление и интерпретацию 
данных, проиллюстрированы реальным набором данных, полученных в ходе 
исследования эффективности испытаний, проведенного в рамках европейского 
проекта VALITEST. Этот аналитический подход использует, где это возможно и 
когда применимо, статистические анализы, рекомендованные международными 
стандартами, иллюстрируюя их применимость в диагностических тестах 
для защиты здоровья растений. Данная работа адресована специалистам по 
диагностике защиты растений и исследователям, заинтересованным и/или 
участвующим в валидации тестов для диагностики в защите растений, а также 
призвана донести необходимую информацию до тех, кто не имеет статистического 
образования. Подробные статистические пояснения приведены в приложениях.
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publication was based on (i) the applicability of the sta-
tistical method in the context of plant health diagnostic 
laboratories, (ii) the minimal number of samples and 
replicates required to correctly perform the statistical 
method and (iii) the ease of application and interpre-
tation of the results. This work was carried out in the 
framework of the Europe-funded project VALITEST 
(https://www.valit​est.eu/index), which aimed at improv-
ing the validation approaches for diagnostic tests to 
maximize their usefulness for users (diagnosticians) and 
decision-makers (at national, European or regional lev-
els) and their use in routine diagnostics.

Statistical analyses can be perceived as complex and 
difficult to understand, mainly because of the lack of 
guidance on their use in the context of plant health diag-
nostics. In this publication, we propose guidelines for the 
evaluation of an extended range of performance criteria 
and the application of statistical analyses on validation 
datasets. These guidelines also provide information on 
the identification of outliers as well as on the manage-
ment of inconclusive or missing results. The results gen-
erated by these analyses applied to validation datasets 
allow tests to be selected in an evidence-based way con-
sidering their intended use and performance.

2  |   DEFIN ING A SA M PLE 
PA N EL A N D TH E N U M BER OF 
PARTICIPATING LA BORATORIES

The data generated during intra-laboratory validation 
studies and inter-laboratory comparison need to be of 
sufficient quantity to correctly perform the statistical 
analyses for a proper estimation of performance char-
acteristics of a test and their correct interpretation. 
Increasing the number of data points is often the best 
way to improve the confidence concerning the calcu-
lated performance characteristics. The magnitude of the 
uncertainty on a proportion (i.e. performance charac-
teristics such as accuracy) corresponds to 1∕

√

n, with n 
equal to the sample size (Newcombe, 1998). Although it 
is possible to estimate the false positive rate of two tests 
based on 10 test results, it will not be possible to con-
clude on the difference between these tests as there will 
be an uncertainty of 32% associated with each estimate 
(a confidence interval, CI, of 95%). Overall, the amount 
of available data depends on the number of samples in 
the panel, and for comparison studies involving multi-
ple laboratories, the number of participating labora-
tories. The information in this paper is complemented 
by a video tutorial: https://www.youtu​be.com/watch​
?v=AVxuE​DxerGM.

Designing a validation relies on a balance between 
the available resources (limiting the amount of gener-
ated data) and the need for a reliable statistical analysis 
(requiring more data). The number of samples included 
in the panel is often limited by the resources of the 

laboratory to perform the validation study (e.g. cost, 
time or the availability of reference material, personnel 
or equipment). For intra-laboratory validation studies, 
the number of samples included in the panel can usually 
be larger than that for inter-laboratory comparison stud-
ies (e.g. more strains/isolates, more samples with closely 
related pests or organisms, more dilution levels). For 
inter-laboratory comparison studies, the number of sam-
ples is usually limited owing to the difficulty of prepar-
ing reference material in sufficient quantities for many 
laboratories and the financial resources required to test 
and prepare the samples for the panel (e.g. availability of 
personnel, time). Although increasing the number of lab-
oratories participating in an inter-laboratory compari-
son study will improve the reliability of the calculated 
performance characteristics, it usually requires more 
resources (https://www.youtu​be.com/watch​?v=AVxuE​
DxerGM).

2.1  |  Recommended number of participating 
laboratories

Increasing the number of laboratories participating in 
an inter-laboratory comparison study positively affects 
the estimation of the reproducibility as well as the ro-
bustness of the calculation of other performance charac-
teristics and of their confidence intervals. For example, 
the EPPO Standard PM 7/122 (EPPO, 2014) states that 
test performance studies require a minimum number 
of participating laboratories (ideally a minimum of 10 
valid laboratory datasets). If the statistical analyses are 
carried out on the results delivered by a small number 
of laboratories, this leads to an increased uncertainty 
and wider confidence intervals around estimates of test 
performance. In addition, the organizers of such a study 
should present the conclusions of their analyses with 
caution because the presence of outliers or other kinds 
of inconsistent results are less likely to be detected when 
the number of laboratories is small.

2.2  |  Recommendations for the sample panel

The composition of the sample panel, i.e. the type (in-
fested or not by the target pest – hereafter called the 
‘target’) and number of samples and the number of bio-
logical replicates (several samples prepared each from a 
biologically distinct example of the same type of biologi-
cal material, not to be confused with technical replicates, 
which correspond to the number of reactions prepared 
from one sample for a test, e.g. duplicate/triplicate re-
actions in ELISA/PCR tests), is critical. The sample 
panel depends on the intended use of the test (which de-
termines the performance criteria to be evaluated) and 
the availability of reference material. It usually includes 
samples infested with the target (including dilutions) and 

https://www.valitest.eu/index
https://www.youtube.com/watch?v=AVxuEDxerGM
https://www.youtube.com/watch?v=AVxuEDxerGM
https://www.youtube.com/watch?v=AVxuEDxerGM
https://www.youtube.com/watch?v=AVxuEDxerGM
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samples free from the target (but that may be infested by 
closely related species).

From a statistical point of view, a serial dilution is not 
the best way to prepare diluted samples because it in-
troduces a correlation between samples at different dilu-
tions. Theoretically, all of the diluted samples should be 
prepared independently from each other (but they can 
be prepared from the same initial sample). However, in 
practice, serial dilutions are generally carried out when 
preparing the sample panel to optimize time and limit 
the complexity of preparation as the bias owing to serial 
dilution is considered as low.

Figure 1 shows which samples are used to evaluate the 
different performance characteristics of a test. All of the 
samples can be used to estimate repeatability (if repli-
cates are included as recommended) and reproducibility. 
The results obtained from the diluted infested samples 
are used to estimate the analytical sensitivity. The results 
from the infested samples and samples free from the tar-
get pest (negative controls) are used to estimate the other 
performance criteria.

The organizers should be experts on the test(s) to be 
validated and on their intended use. Hence, they should 
be able to specify the most critical performance crite-
ria to evaluate and how to sufficiently challenge the test 
so that estimates of performance are robust in practice. 
This should be addressed by the sample panel composi-
tion. For example, if the analytical sensitivity is critical 
for the intended use of the test and is a potential weak-
ness, then its evaluation will be a priority (i.e. number 
of dilution points). However, when exclusivity is critical 
(ability to distinguish the target from another pest/or-
ganism), the panel should include samples free from the 
target pest and infested with closely related species that 
might be detected, causing a problem of exclusivity of 
the test.

The type and number of samples, and the number of 
dilution points and of biological replicates in a sample 
panel, can influence the determination of the perfor-
mance characteristics of a test. The sample panel should 
ideally include samples representing specific difficulties 
for the detection or identification of the target pest (e.g. 
low concentration or a range of the genetic variability). 
Indeed, a sample panel consisting only of infested sam-
ples at very high concentrations might result in 100% 
diagnostic sensitivity for all of the evaluated tests, lim-
iting the ability to discriminate between tests for this 
criterion.

In the framework of VALITEST, a sample panel was 
proposed (Supplementary Material  S1) after the evalu-
ation of the statistical analyses conducted on 10 data-
sets generated during test performance studies and with 
input from their organizers. The proposal is a balance 
between the statistical power of the analysis and ‘prac-
ticality’ for the study organizers. It should be noted that 
this proposed sample panel may not always be feasible 
(e.g. owing to the limited availability of reference ma-
terial) and should be adapted depending on the perfor-
mance criteria to evaluate.

An overview of the sample panels used in the test 
performance studies within the framework of the 
VALITEST project is provided in the Supplementary 
material  S1b. This overview shows the adaptations 
made by the organizers depending on the different 
constraints and the scope of their test performance 
studies.

Note that the use of reference material is critical for 
the preparation of the panel of samples. Guidelines have 
been developed as part of the VALITEST project from 
which the EPPO Standard PM 7/147 Guidelines for the 
production of biological reference material (2021) has been 
established.

F I G U R E  1   Schematic representation indicating the use of the results of each type of sample in the calculation of the performance 
characteristics of a test. Other performance criteria include accuracy, diagnostic odd ratio, false positive and false negative rates, positive 
predictive value and negative predictive value, positive and negative likelihood ratios. DSE, Diagnostic sensitivity; DSP, diagnostic specificity
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3  |   COM POSITION OF TH E 
SA M PLE PA N EL OF TH E 
EX A M PLE DATASET

The statistical analyses proposed in this paper are il-
lustrated using the results from one of the TPSs carried 
out within the framework of VALITEST. The study in-
volved 16 laboratories in which two tests were compared 
(here called Test A and Test B) for the detection of a 
plant virus. The sample panel consisted of 22 samples 
including samples infected with the target virus, samples 
free from the target virus (samples free from viruses and 
samples infected with closely related non-target viruses) 
and a series of dilutions prepared from a sample infected 
with the target virus (see Supplementary material  S2). 
All samples containing the target virus and samples free 
from viruses were tested in duplicate. The values of the 
performance criteria were calculated from the results 
obtained with this sample panel. The results are shown 
graphically and are discussed below in the relevant 
sections.

4  |   INCONCLUSIVE A N D 
M ISSING RESU LTS

Sometimes results can be missing or inconclusive. A 
missing result is when the laboratory has not reported 
it. This may happen when a test could not be performed 
because of, for example, sample degradation, failure of 
nucleic acid extraction, failure of controls, or a shortage 
of samples/specific reagents for a test. A result can be 
considered inconclusive when it was not possible for the 
laboratory to assign a positive or a negative result to a 
sample. This may happen when the amount of the target 
in the sample is close to the level of detection of the test.

Given their origin, missing results are not representa-
tive of the performance of a test and should be excluded 
from any further analysis. The inclusion in the analysis 
of inconclusive results can vary between performance 
criteria, based on their suspected origin and the exper-
tise of the study organizer.

In the case of a missing or inconclusive result, it is 
recommended that, whenever possible, the participating 
laboratory should repeat the test to deliver a dataset that 
is as complete as possible. Repetition of the experiment 
should be clearly stated in the report.

However, where this is not possible or if missing or 
inconclusive results occur again, then the missing results 
are discarded, and decisions must be taken on how to 
consider inconclusive results. These decisions depend on 
how the study organizer considers these results based 
on his/her expertise and knowledge of the pests and the 
tests. In any case, inconclusive results should be treated 
with caution to minimize biases to the analyses. The way 
inconclusive results were addressed in this publication is 
presented below:

-	 For the calculation of analytical sensitivity, incon-
clusive results were considered as negative results, 
i.e. pest not detected in the diluted sample(s). This 
is because inconclusive results might occur owing 
to the very small amount of target in such samples 
and should therefore be taken into account.

-	 For the calculation of repeatability and reproduc-
ibility, inconclusive results were excluded from the 
analysis. Inconclusive answers were excluded from 
the analysis to avoid two inconclusive results given on 
the same sample contributing positively to the perfor-
mance criteria (repeatability or reproducibility).

-	 For the calculation of the other performance criteria 
described in this publication with their corresponding 
confidence intervals, inconclusive results were treated 
as erroneous results (results not showing the real status 
of the sample, corresponding to false positive result for 
a healthy sample and false negative result for an in-
fested sample).

Missing and inconclusive results must undergo fur-
ther examination on a case-by-case basis to better un-
derstand the origin of their occurrence.

5  |   OUTLIER RESU LTS

Outliers may be detected before or during the statistical 
analysis and interpretation of the results. For example, 
outliers can be detected by looking at strong deviations 
among laboratories or samples. Among the analyses 
proposed in this paper, the following ones can be use-
ful to identify outliers (see Supplementary Material S3 
for examples of tables and figures): accordance and 
concordance per sample (Figure  S3.1A); accordance 
per laboratory (Figure S3.1B); analytical sensitivity per 
laboratory (Figure  S3.4); diagnostic sensitivity; and 
diagnostic specificity per laboratory (Table  S3.3 and 
Figure S3.5). Note that, even in the case of very high di-
agnostic sensitivity or diagnostic specificity (as shown in 
our example for diagnostic sensitivity, those parameters 
can still be useful to detect outliers).

Different types of outliers can be detected:

1.	 the results obtained in one laboratory are very 
different from those from the other participating 
laboratories;

2.	 the results obtained by most participating laboratories 
for a sample are different from the expected results.

The cause of the outliers should be evaluated by a di-
agnostician who has experience in statistics or working 
in collaboration with statisticians and a decision made 
on the exclusion (or not) of those results from the statis-
tical analysis. For example, data may be excluded from 
the analysis when it can be established that they are the 
result of contamination, or from a specific deviation 
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such as the failure of a machine. Communication with 
the laboratory that has generated potential outliers can 
help in identifying the cause of these results.

6  |   CON FIDENCE INTERVA LS

Diagnostic test results can be influenced by numer-
ous random variation sources (e.g. variation between 
samples, preparation of the samples, execution of the 
measurement process). Therefore, the performance char-
acteristics calculated on the sample panels are estimates 
of the true values which remain unknown. The quality of 
those estimates is important for end-users, as it will affect 
the confidence in the test results. Confidence intervals 
provide an estimate of the uncertainty that is associated 
with the estimate of the value of each performance cri-
teria from a limited number of samples, as compared 
with an entire population (Hess et al., 2012). Confidence 
intervals give a range of values that contain the real 
value of the parameter with a fixed prior probability 
(usually 95%). For example, if 100 confidence intervals 
of a performance characteristic are estimated from 100 
independent samplings in the whole population, a 95% 
confidence level means that, on average, 95 confidence 
intervals contain the real value of the performance char-
acteristics. Thus, the confidence intervals give informa-
tion on the dispersion of the individual values around the 
average criteria. The narrower the confidence interval, 
the less dispersed the values are and the more confident 
the user is about the estimates. A two-sided confidence 
interval of 95% is commonly used as it provides an esti-
mate with a 5% risk that the real value of the criteria is 
outside this confidence interval.

Confidence intervals are useful in several situations: 
(i) when the numbers of datasets used to calculate and 
compare the performance characteristics of several tests 
are different; (ii) when the measurements (associated to 
the observed values of the compared performance crite-
ria) present a marked variability between tests or labo-
ratories; and (iii) as an indication of the uncertainty of 
the estimates of performance characteristics of the tests. 
However, since the comparison of confidence intervals is 
not equivalent to a statistical test, but only an approxi-
mation, an appropriate statistical test should be carried 
out to accurately evaluate the statistical difference and 
its associated probability if there was no variation.

The methods used to determine confidence intervals 
are linked to the statistical analyses used to estimate 
the performance criteria (see Appendix  1). Confidence 
intervals for analytical sensitivity, repeatability and re-
producibility were not determined because they require 
complex calculation whereas this study is intended to 
be accessible to people whatever their knowledge in 
statistics.

In the example in Supplementary Material  S3 
(Table  S3.3), confidence intervals were calculated to 

have a better estimation of the accuracy of two diagnos-
tic tests.

7  |   REPEATA BILITY A N D 
REPRODUCIBILITY

The EPPO Standard PM 7/98 Specific requirements for 
laboratories preparing accreditation for a plant pest diag-
nostic activity (2019) defines repeatability and reproduc-
ibility respectively as ‘the level of agreement between 
replicates of a sample tested under the same conditions’ 
and ‘the ability of a test to provide consistent results 
when applied to aliquots of the same sample tested under 
different conditions (e.g. time, person, equipment, loca-
tion)’. We propose to estimate repeatability (within a lab-
oratory) and reproducibility (between laboratories) by 
calculating accordance and concordance, respectively. 
In the plant sector, accordance and concordance are 
used by the International Seed Federation (ISF-ISHI-
Veg,  2020), the International Seed Testing Association 
(ISTA, 2019) and ANSES based on the recommendation 
of the standard ISO 16140 in the 2003 version (Chabirand 
et al., 2017).

The calculation is based on simple counts of con-
cordant and non-concordant results between replicates 
(whatever the status of the samples). These measures eval-
uate the probability of achieving the same test results for 
identical samples within (accordance) and between (con-
cordance) laboratories (Langton et al., 2002). For the re-
peatability assessment, each biological replicate must be 
obtained through an identical but independent process 
and should not be a repeated measure of the same ali-
quot. For reproducibility assessment, concordance can 
be calculated for any reproducibility conditions, for ex-
ample, the day, the equipment or the operator within a 
laboratory. For this calculation, inconclusive results are 
excluded from the analyses.

Accordance can be calculated per test and per sample. 
At the level of the test, accordance shows the expected 
agreement between the results from replicates of all sam-
ples in each laboratory taken individually. Calculating 
accordance values for each sample is possible when bio-
logical replicates are included in the sample panel. At the 
level of the sample, accordance is used to identify sam-
ples that give discordant results for replicates analysed at 
the same time under the same conditions in each partic-
ipating laboratory independently. The replicates should 
be biological replicates obtained from the same sample 
through an identical but independent process. Technical 
replicates corresponding to repeated measures on the 
same aliquot are not recommended but can be used in 
the absence of biological replicates. Accordance is cal-
culated per laboratory (for all the replicates received) to 
identify laboratories with poor repeatability.

Concordance of a test as a performance characteristic 
will provide information about the test's capacity to give 
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consistent results across the random between-laboratory 
variation, as observed between the different laboratories 
in a TPS. If concordance is smaller than accordance, it 
indicates that two replicates are more likely to give the 
same result if they are analysed by the same laboratory 
than if they are analysed by different laboratories. A test 
with higher concordance will give more consistent results 
across the different levels of factors that may vary across 
laboratories: environment, operator, machine, etc. At 
the sample level, concordance will help identify samples 
that give inconsistent results between laboratories.

As accordance and concordance are not totally inde-
pendent, an additional tool is needed to identify if there 
is extra variability between laboratories that is not only 
the result of within-laboratory variation. Accordance 
and concordance estimates can be used to calculate the 
concordance odds ratio (COR, by samples and by tests). 
The magnitude of this ratio provides the relative chance 
(‘odds’ in other terms) of getting the same result when 
two samples are analysed in the same laboratory com-
pared with if they are analysed by different laboratories 
(Langton et al., 2002). For example, an odds ratio of 2.5 
indicates that the samples are 2.5 times more likely to 
produce the same result (i.e. both positive or both neg-
ative) when analysed in the same laboratory than when 
analysed in different laboratories.

7.1  |  Illustration of the accordance, 
concordance and concordance odds ratio

Accordance, concordance and concordance odds ratio 
principles (Langton et al.,  2002), are illustrated in 
Supplementary Material  S3 using the example dataset. 
Detailed information on their calculations is described 
in Appendix 2.

8  |   A NA LYTICA L SENSITIVITY

The EPPO standard PM 7/98 (EPPO, 2019) defines ana-
lytical sensitivity as ‘the smallest amount of target that 
can be detected reliably (also referred to as the limit of 
detection)’ and provides recommendations on how to as-
sess it for different methods and discipline. For example, 
for the validation of serological and molecular tests, the 
same standard recommends conducting at least three 
experiments with a series of dilutions for the estimation 
of the analytical sensitivity. The definition refers not 
only to the capacity to detect a small amount of target, 
but also to the capacity detect it with high certainty. In 
this context, the use of a probability of detection model 
based on a binomial generalized linear model as recom-
mended in ISO 16140-2  (2016) is recommended for the 
determination of the analytical sensitivity. Generalized 
linear models (McCullagh & Nelder, 1989) are an exten-
sion of the classical linear model (analysis of variance, 

linear regression), adapted for non-normal responses 
(here, the probability of detection). As the probability of 
detection ranges from 0 to 1 (pest not present/present), a 
binomial family response was chosen, which describes a 
number of successful events (here, detection) on a fixed 
number of trials (the diagnostic tests). The generalized 
model provides an estimate of the probability of detec-
tion for any value in the range of dilutions of the sample 
panel, not only for the observed ones (Supplementary 
Material S3, Figure S3.3).

Unlike ISO 16140-2 (2016) a logit link function (log[p/
(1−p)] where p is the probability of detection) was chosen 
for the adjustment of the parameters of the model, be-
cause the tools to apply the model with this link function 
are widely available and easy to handle. In addition, the 
resulting estimates are very close to the complementary 
log–log link model (log[−log(1−p)], where p is the proba-
bility of detection) recommended by ISO 16140-2 (2016). 
In the binomial generalized linear model, the probability 
(expressed as a percentage) of detecting a target is a func-
tion of its concentration as a continuous variable which 
is presented in a graph, helping the interpretation of the 
data. The model can be applied on all qualitative meth-
ods with binary outputs (i.e. positive/negative answers; 
Wehling et al., 2011).

The generalized linear model does not require any 
assumption on the number of technical and/or prefera-
bly biological replicates and it can be used when those 
numbers vary between samples and/or laboratories. 
However, the model requires a minimum of five dilution 
points to perform correctly. Each diluted sample should 
be analysed at least three times from the same positive 
sample. The model can be used for one or several diag-
nostic tests (Appendix 3).

The analytical sensitivity calculated using the proba-
bility of detection model can be absolute or relative. For 
some pests, such as bacteria, fungi or nematodes, an ab-
solute level of the analytical sensitivity can be determined 
where the probability of detection model is expressed, 
for example, in the number of cells, spores or cysts. In 
the case of pests for which the concentration cannot be 
quantified, such as viruses, viroids or phytoplasmas, a 
relative analytical sensitivity can be determined, where 
the probability of detection model is expressed as a di-
lution level. Note that the relative analytical sensitivity 
may also be used in the case of quantifiable pests.

The probability of detection model (whether abso-
lute or relative) can be used to compare the analytical 
sensitivity of different tests using fixed levels of detec-
tion probability. Two levels that are often referred to in 
scientific publications are 50% and 95%. A level of 95% 
probability of detection means that, at the correspond-
ing dilution level, the pest can be detected on average in 
95% of the tests carried out (Supplementary Material S3, 
Figure S3.3 and Table S3.2).

Caution is required when using specific statistical 
models (such as a binomial generalized linear model) 
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with data that have been transformed (such as a logit 
link between the target concentration expressed in log 
scale and the detection status) to calculate the analyti-
cal sensitivity from data of the diluted samples for each 
test and each laboratory (see the section on ‘Analytical 
sensitivity’). Those models are based on the assumption 
that the probability of detection is decreasing as the di-
lution level increases. This hypothesis can be shown to 
be incorrect in different cases: for example, when all the 
samples gave the same result whatever the dilution level 
or when the observed detection rate shows contradictory 
behaviour (e.g. a significant decrease then significant 
increase again or the Hook effect for immunological 
detection in the presence of an excess amount of target; 
Schiettecatte et al., 2012).

When this happens, the model cannot be trusted. 
Hence, the diagnostician should check that the model is 
fit for purpose before interpreting the calculated analyt-
ical sensitivity value. To evaluate the adequacy of those 
assumptions, the analysis can also be carried out for 
each laboratory independently, as shown in Figure  S4 
(Supplementary Material S3).

The probability of detection can be determined for a 
test across laboratories or within each laboratory, and 
the detailed results obtained from our dataset are pre-
sented in Supplementary Material S3.

The performance criteria gathered in this section 
have been used in the framework of the VALITEST test 
performance studies for plant pests (https://www.valit​
est.eu/work_packa​ges/index​#wp1) and correspond to 
internationally used recommendations (EPPO stan-
dard PM 7/122,  2014; EPPO Standard PM 7/98,  2019; 
ISF,  2020; ISTA,  2019). Some of these performance 
criteria have also been referred into scientific publi-
cations in intra-laboratory validation studies and test 
performance studies (Chabirand et al.,  2017; Franco 
Ortega et al., 2020, 2021; Massart et al., 2009a, 2009b; 
Renvoisé et al., 2019).

This section provides a description of each perfor-
mance criteria so that diagnosticians can decide which 
ones are more appropriate for their analysis. In addi-
tion, the calculation of confidence intervals is proposed 
for those performance criteria. Further explanations 
are available in the following video tutorial: https://
www.youtu​be.com/watch​?v=otDdi​5sY_uU. In addition, 
details on the calculation of these criteria are given in 
Table 2.

In our example dataset, the infection status (i.e. pres-
ence or absence of the target) of each sample of the panel 
was used to classify test results into true positive/true 
negative or false positive/false negative. This terminol-
ogy is commonly used in validation studies (ISF, 2020; 
ISTA, 2019; NATA, 2018).

A true positive or a true negative outcome is reported 
when the result of the test is in agreement with the as-
signed value of each reference sample. A false positive 
or a false negative outcome is reported when the result 
of the test is not in agreement with the assigned value of 
reference samples (Table 1).

8.1  |  Diagnostic sensitivity and diagnostic 
specificity

Diagnostic sensitivity (DSE) and diagnostic specific-
ity (DSP) are widely used criteria to evaluate the per-
formance of plant pest detection tests (Franco Ortega 
et al.,  2020, 2021; Renvoisé et al.,  2019). Diagnostic 
sensitivity represents the proportion of infested sam-
ples that correctly tested positive using a specific test, 
while diagnostic specificity corresponds to the propor-
tion of samples free from the target pest that correctly 
tested negative. Diagnostic sensitivity and diagnostic 
specificity range between 0 and 1 and can be expressed 
in percentages. The higher the diagnostic sensitivity 
or diagnostic specificity, the better the performance 
of the test. A test with a high diagnostic sensitivity in-
dicates a high probability of detecting the target pest 
when it is present in a sample while a test with a high 
diagnostic specificity has a high probability of cor-
rectly diagnosing the absence of the target pest when 
it is truly absent. The use of confidence intervals is 
recommended for diagnostic sensitivity and diagnostic 
specificity.

It should be noted that the diagnostic sensitivity and 
the diagnostic specificity are heavily dependent on the 
choice of samples of the panel (infested samples and 
samples free from the target pest). In particular, when 
the numbers of these samples vary between laboratories 
and tests, it is important to include confidence intervals 
in the analysis to better compare the estimations made 
from heterogeneous datasets. In any case, the compar-
ison between tests should always be interpreted with 
caution.

In diagnostics, two tests are usually performed along 
with the performance characteristics that allow an in-
formed decision to be made about which tests should be 
used first and which second, depending on the intended 
use. For example, the test presenting the highest diagnos-
tic sensitivity may be different from the test presenting the 
highest diagnostic specificity. By combining tests, the first 
test could maximize the diagnostic sensitivity (a screening 
test with a low false negative rate), while the second test 
could maximize the diagnostic specificity (a confirmatory 

TA B L E  1   Terminology used for the classification of test results 
when compared with the status of reference samples

Status of reference sample

Target present Target absent

Positive test 
result

True Positive (TP) False Positive (FP)

Negative test 
result

False negative (FN) True Negative (TN)

https://www.valitest.eu/work_packages/index#wp1
https://www.valitest.eu/work_packages/index#wp1
https://www.youtube.com/watch?v=otDdi5sY_uU
https://www.youtube.com/watch?v=otDdi5sY_uU
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test with a low false positive rate) Finally, if diagnostic sen-
sitivity and diagnostic specificity are useful parameters 
to compare the performance of tests, they cannot be used 
directly to estimate the probability that a target pest is 
present or not in a matrix. To estimate the discriminating 
performance of the test when samples are infected or not, 
both parameters should be combined into one measure 
called the likelihood ratios (see below).

8.2  |  Accuracy

Accuracy is the proportion of true (positive and nega-
tive) test results of the tested samples (EPPO Standard 

PM 7/122, 2014; EPPO, 2014). Trueness is a synonym of 
accuracy (NATA,  2018). The value ranges between 0 
and 1 or can be expressed as percentage. The higher the 
value, the better the performance of the test.

Accuracy is usually determined for each test when 
analysing the performance of tests but can also be es-
timated for each participating laboratory (in particular 
when the objective is to evaluate the performance of lab-
oratories in proficiency tests).

It is important to stress that accuracy estimation can be 
misleading if the dataset is unbalanced between infested 
samples and samples free of the target pest. For example, 
if the sample panel contains only a small proportion of 
samples free from the target pest, a very high accuracy 

TA B L E  2   Performance criteria used for measuring the effectiveness of a test in plant health diagnostic laboratories, with their formulae 
and meaning (source: https://en.wikip​edia.org/wiki/Confu​sion_matrix, accessed 1 February 2021)

Performance criteria Formula Note

Accuracy TP+TN

TP+TN+FP+FN

Accuracy (syn. trueness) is the proportion of true test results (positive and negative) 
in the tested samples. The value can range between 0 and 1 and can be expressed 
as a percentage. The higher the value is, the better the performance of the test

Warning: Accuracy estimation can yield misleading results if the dataset is 
unbalanced between infested and non-infested samples. For example, if the 
sample panel contains only a small proportion of non-infested samples, a very 
high accuracy can be obtained despite a very low diagnostic specificity (high 
frequency of FP among the few non-infested samples)

Note: The Accuracy formula is presented in EPPO Standards PM 7/98 (2019) and 
PM 7/122 (2014) with the terms positive/negative agreement/disagreement

Diagnostic sensitivity TP

TP+FN

Diagnostic sensitivity (DSE) is the proportion of infested samples that correctly 
tested positive for a test. Diagnostic sensitivity is complementary to the false 
negative rate (see below). The value can range between 0 and 1 and can be 
expressed as a percentage. The higher the value is, the better the performance of 
the test

Diagnostic specificity TN

TN+FP

Diagnostic specificity (DSP) is the proportion of healthy samples correctly tested 
negative for a test. Diagnostic specificity is complementary to the false positive 
rate (see below). The value can range between 0 and 1 and can be expressed as a 
percentage. The higher the value, the better the performance of the test

Diagnostic odd ratio TP ∕FN

FP ∕TN
Diagnostic odd ratio (DOR) of a test is the ratio of the odds of positivity in subjects 

with disease relative to the odds in subjects without disease. The DOR values 
have no limit but, if they are infinite, they cannot be interpreted properly. The 
higher the value is, the better the performance of the test

False positive rate FP

FP+TN
= 1 −DSP False positive rate (FPR) is a ratio expressing the probability of false positive 

detection among healthy samples. In other words, the proportion of healthy 
samples tested positive. It is linked to the diagnostic specificity (1 − DSP)

The value can range between 0 and 1 and can be expressed as percentage. The lower 
the value is, the lower the number of false positive results

False negative rate FN

FN+TP
= 1 −DSE False negative rate (FNR) is a ratio expressing the probability of false negative 

detection among infected samples. In other words, the proportion of infected 
samples tested negative. It is linked to the diagnostic sensitivity (1 − DSE)

The value can range between 0 and 1 and can be expressed as percentage. The lower 
the value is, the lower the number of false negative results

Positive predictive value TP

TP+FP

Positive predictive value (PPV) is the ratio of infected samples among the positive 
results, e.g. what proportion of the positive results come from an infected sample. 
The value can range between 0 and 1 or be expressed as percentage. The higher 
the value is, the better the performance

Negative predictive value TN

TN+FN

Negative predictive value (NPV) is the ratio of healthy samples among the negative 
results, e.g. what proportion of the negative results come from a healthy sample. 
The value can range between 0 and 1 or be expressed as percentage. The higher 
the value is, the better the performance

Abbreviations: DSE, diagnostic sensitivity; DSP, diagnostic specificity; FN, false negative; FP, false positive; TN, true negative; TP, true positive.

https://en.wikipedia.org/wiki/Confusion_matrix
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can be obtained despite a very low diagnostic specificity 
(high frequency of false positives among the few samples 
free from the target pest). This underlines the importance 
of appropriate sample panel design as discussed above.

8.3  |  Diagnostics odds ratio

The diagnostics odds ratio (DOR) of a test is the ratio of 
the odds (in another term, the probability) of positivity in 
infested samples (i.e. true positive and false negative) rela-
tive to the odds in samples free from the target (i.e. false 
positive and true negative; Glas et al., 2003). The higher 
the value, the better the performance of a test. Diagnostic 
odd ratios are useful to compare the performance of tests, 
but it is impossible to give a cut-off value to consider if the 
DOR is appropriate or not. An infinite diagnostics odds 
ratio (e.g. when the value of false negative, false positive or 
true negative is zero) cannot be interpreted properly. The 
diagnostic odds ratio is positively correlated to accuracy 
as both values increase when the number of true positives 
or true negatives rises. However, poor results (for example 
low diagnostic specificity) obtained with an unbalanced 
sample panel (a low proportion of samples free from the 
target pest) will have a greater impact on the diagnostic 
odds ratio than on accuracy.

8.4  |  False positive rate and false negative rate

The false positive (or negative) rate is the proportion of 
target-free (or infested) samples tested positive (or nega-
tive). The false positive rate is linked to the DSP as its 
formula is 1 − DSP. On the contrary, the false negative 
rate is linked to the DSE as its formula is 1 − DSE. The 
values range between 0 and 1 and can be expressed as 
percentages. The lower the value, the lower the number 
of false positive (or negative) results.

8.5  |  Positive predictive value and negative 
predictive value

The positive (or negative) predictive value (PPV – 
NPV) is the ratio of infested (or target-free) samples 
among the positive (or negative) results, e.g. what pro-
portion of the positive (or negative) results comes from 
an infested (or target-free) sample (Šimundić,  2009). 
The value ranges between 0 and 1 and can be expressed 
as a percentage. The higher the value is, the better the 
performance.

8.6  |  Positive and negative likelihood ratios

The likelihood ratio for positive test results tells us how 
much more likely the positive test result is to occur in 

samples with the target compared with those without 
the target. The positive likelihood ratio is usually higher 
than 1 because it is more likely that the positive test re-
sult will occur in infested plants than in healthy plants 
(Šimundić,  2009) with higher values corresponding to 
better tests, but there is no absolute threshold. An infi-
nite value is obtained if the DSP is 100%.

The likelihood ratio for a negative test result represents 
how much less likely the negative test result is to occur in 
a plant with the target than in a plant without the target. 
The negative likelihood ratio usually ranges between 0 
and 1 because it is less likely that a negative test result 
will occur in plants with disease than in plants without 
disease (Šimundić, 2009). The lower values correspond to 
better tests but there is no absolute threshold. For ease 
of interpretation and to be symmetrical with the positive 
likelihood ratio, the negative likelihood ratio formula can 
be inverted (Parikh et al., 2009; see Table 2). In this case, 
the higher the values of the negative likelihood ratios are, 
the better the tests are and an infinite value is obtained if 
the DSE is 100%. As such, they directly link the pre-test 
and post-test probability of a disease in a specific sample 
and depend on the values of diagnostic sensitivity and 
diagnostic specificity (see Table 2).

The likelihood ratios are well suited to assist in the 
selection of tests when several tests are evaluated for a 
target pest. Plotting in a graphical form the inverted neg-
ative likelihood ratio and the positive likelihood ratio of 
each test provide a visual representation of how the tests 
compare with each other in relation to the diagnostic 
sensitivity and diagnostic specificity.

Figure 2 shows a comparison of 18 tests for the de-
tection of a pest. These 18 tests have been plotted ac-
cording to their positive likelihood ratio (x-axis) and 
inverted negative likelihood ratio (y-axis). Test no. 11 
has an infinite inverted negative likelihood ratio (e.g. 
a negative likelihood ratio of zero) while test no. 4 has 
an infinite positive likelihood ratio (100% of diagnostic 
specificity). According to the y-axis, e.g. the inverted 
negative likelihood ratio representing the trust that 
the diagnostician can have in the obtained negative 
results, three tests (4, 11 and 15) have higher values 
than all of the other tests. Tests 4, 11 and 15 show the 
highest inverted negative likelihood ratio values and 
could be used for applications requiring high confi-
dence in negative results, e.g. as a first screening test 
in quarantine for certification diagnostics. Tests 4, 7 
and 9 show the highest positive likelihood ratio values 
and could be used for applications requiring high con-
fidence in positive results, like for a confirmatory test 
upon a first detection. In both cases, the calculation of 
confidence intervals (like in Figure S5, Supplementary 
Material S3) could help identify differences among the 
best tests. Finally, the tests located in the orange circle 
correspond to tests that have a relatively low positive 
likelihood ratio and inverted negative likelihood ratio 
compared with the above-mentioned tests.
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In this case, confidence intervals may give additional 
information by providing upper or lower levels of confi-
dence for this ratio.

8.7  |  Determination of performance criteria 
per participating laboratory

All of the performance criteria analysed in the above sec-
tion can also be determined per participating laboratory. 
Their calculation per laboratory can be useful to identify 
laboratories having divergent results compared with the 
other participating laboratories, i.e. to identify outliers. 
The results of the calculation of DSE and DSP per labo-
ratory for tests A and B are detailed in Supplementary 
Material S3.

9  |   PRACTICA L APPLICATION OF 
TH ESE GU IDELIN ES

9.1  |  Layout of results

All of the results should preferably be compiled in a sin-
gle document so as to facilitate the statistical analyses. To 
facilitate data entry, the following recommendations are 
made:

•	 Enter each test result, including technical replicate 
results, in a single line in a table (e.g. MS Excel ou 
Calc spreadsheet), with all the relevant information 
reported in different columns.

•	 Clearly identify each individual biological sample with 
its target (and non-target) organisms and, when possi-
ble, their estimated concentration in appropriate units 
(e.g. cfu for bacteria, dilution scale for viruses).

•	 Use simple codes for reporting test results or 
sample true status, e.g. 0 for absence/negative, 1 
for presence/positive, 2 for inconclusive results. 
Missing results should also be shown in the raw data 
file by leaving the relevant cell empty in the Results 
column.

The layout of the dataset used for the case study ex-
ample is shown in Supplementary Material S4.

9.2  |  R script publicly available

R scripts can be used to automate the calculation of the 
performance criteria and the production of the graphi-
cal representations shown in the article, provided that 
the original data follow the data entry layout described 
above. Further information on R scripts can be found in 
Supplementary Material S5.

9.3  |  Accessibility of validation reports

Validation reports from several diagnostic tests, in 
particular for regulated pests, are freely available to 
save time, costs and resources by avoiding duplica-
tive validation efforts and allowing simpler and faster 
verification studies for laboratories. Existing resources 
where validation reports are freely available include: 
(i) EPPO validation reports, https://dc.eppo.int/valid​
ation_data/valid​ation​list; (ii) ISF validation reports, 
https://www.world​seed.org/our-work/phyto​sanit​ary-
matte​rs/seed-healt​h/ishi-veg-valid​ation​-repor​ts/; and 
(iii) STA validation reports, https://www.seedt​est.org/
en/metho​d-valid​ation​-repor​ts-_conte​nt---1--3459--467.
html.

F I G U R E  2   Positive likelihood ratio (LR+, x-axis) and inverted negative likelihood ratio (LR−, y-axis) calculated from the validation data 
for 18 tests. Each dot represents one test

https://dc.eppo.int/validation_data/validationlist
https://dc.eppo.int/validation_data/validationlist
https://www.worldseed.org/our-work/phytosanitary-matters/seed-health/ishi-veg-validation-reports/
https://www.worldseed.org/our-work/phytosanitary-matters/seed-health/ishi-veg-validation-reports/
https://www.seedtest.org/en/method-validation-reports-_content---1--3459--467.html
https://www.seedtest.org/en/method-validation-reports-_content---1--3459--467.html
https://www.seedtest.org/en/method-validation-reports-_content---1--3459--467.html
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10  |   CONCLUSION

The statistical approaches described in this paper can 
be used to analyse the results of test validation studies 
(intra-laboratory validation studies or inter-laboratory 
comparison studies). The recommendations given in this 
paper aim to help harmonize the analyses of validation 
studies and whenever possible to foster their compari-
sons, despite differences in sample panels. The statistical 
methods proposed in this publication have been used to 
analyse 10 datasets generated in test performance stud-
ies conducted in the framework of the European project, 
VALITEST (https://www.valit​est.eu/).

The calculation and statistical analysis of the perfor-
mance criteria is needed to assist the reliable selection 
of tests for specific intended uses (e.g. screening test or 
confirmatory test) as shown for the likelihood ratio of 
tests A and B in the case study. Validation data are es-
sential to support discussions between risk assessors and 
managers and laboratory experts regarding the selection 
of tests to be used in routine diagnostics.

The statistical analysis of test performance character-
istics also provides some indication on how test results 
should be interpreted because positive and negative re-
sults may not be equally informative in all contexts. This 
is highlighted with the use of, for example, likelihood ra-
tios and positive and negative predictive values.

The quality of the statistical analysis of data gener-
ated during validation studies depends on several factors 
such as the composition of the sample panel, the number 
of participating laboratories (for inter-laboratory com-
parison studies), the identification of outliers and the 
inclusion or not of missing and outliers results in the 
analysis.

Statistical analysis of validation studies can be chal-
lenging. However it is important to undertake such anal-
yses as they facilitate the evaluation of the performance 
criteria and increase the confidence in the conclusions 
drawn from these data. Improving statistical analysis 
is an ongoing process and further statistical tests could 
be envisioned in the future. For example, a statistical 
inference test, such as Fisher's exact test (Fisher, 1922), 
can be performed on some performance criteria to un-
derline if there is a significant difference between the 
performance characteristics of the tests or the different 
laboratories.
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A PPEN DI X 1 -  CON F I DENCE I N T ERVA LS – 
A DDI T IONA L I N FOR M AT ION

The calculation of the confidence intervals can be deter-
mined using statistical software such as R software.

Agresti–Coull confidence intervals

Confidence intervals of 95% using the Agresti–Coull 
method (Agresti & Coull, 1998) were applied for the fol-
lowing performance criteria: accuracy, diagnostic sensi-
tivity, diagnostic specificity, false positive rate and false 
negative rate, and the rate of true positive and rate of true 
negative.

It is a general formula for calculating binomial confi-
dence intervals.

Given X successes in n trials, define ñ = n + z2 and

where

is the quantile of a standard normal distribution (for exam-
ple, a 95% confidence interval requires � = 0.05, thereby 
producing z = 1.96).

Then, a confidence interval for p is given by

Confidence interval for the diagnostic odds ratio

The 95% confidence intervals for diagnostic odds ratio 
can be calculated using Simple OR CI (Fleiss et al., 2003).

The formula is

The DOR calculation is impossible if the false positive 
(FP) or false negative (FN) is equal to zero. Confidence 
interval calculation is impossible if one of the false posi-
tive (FP), true positive (TP), false negative (FN) or true 
negative (TN) is equal to zero.

Confidence intervals for the generalized linear model

Confidence intervals for the analytical sensitivity can be 
extracted from the parameters of the generalized linear 
model used to adjust the probability of detection on the di-
luted series data, but it needs some advanced computation.
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The (log)dilution factor associated with a probability 
of detection of p (x̂p) can be extracted by the following 
formula, where g(.) is the link function of the generalized 
linear model, and �̂0 and �̂1 its parameters.

The confidence interval associated with this value can 
be calculated by different computational methods, exact 
or approximate, that are beyond the scope of this report.

More information can be found in McCullagh and 
Nelder (1989) or Collet (2003) among others.

Confidence intervals for positive and negative likelihood 
ratios
The 95% confidence intervals for positive and negative 
likelihood ratio can be calculated using Simel's method 
(Simel et al., 1991), using the results of Table A1.

95% confidence interval of positive likelihood ratio:

95% confidence interval of negative likelihood ratio:

A PPEN DI X 2 -  ACCOR DA NCE 
A N D CONCOR DA NCE FOR T H E 
DET ER M I NAT ION OF T H E 
R EPEATA BI LI T Y A N D R EPRODUCI BI LI T Y 
A N D CONCOR DA NCE ODDS R AT IO – 
A DDI T IONA L I N FOR M AT ION

The calculation of the accordance, concordance and 
concordance odds ratio can be done using a spreadsheet 
or a programming software such as R software.

Determination of the accordance for the estimation of the 
repeatability

The accordance is the percentage chance of finding 
the same result from two replicates of the same sample 

analysed in the same laboratory (Langton et al.,  2002) 
under repeatability conditions. The accordance is cal-
culated by dividing the number of pairs of equal results 
between replicates of the samples by the total number of 
pairs of results between replicates. The true status of the 
sample (i.e. target absent or target present) is not used in 
this calculation.

The accordance is bound between 0 and 1, 0 meaning 
that not a single pair of replicates shows the same result, 
and 1 that all the replicates have the same result.

For a given sample, if a laboratory performed n rep-
licates and k of these gave identical positive results 
(note, the number of identical negative results can also 
be used), then the accordance for that sample is esti-
mated as

The accordance of a test obtained using the results of 
a test performance study as a whole is the average (mean) 
of the accordance values calculated for each laboratory.

Determination of the concordance for the estimation of 
the reproducibility

The concordance is calculated in the same way, using the 
results of the same sample measured by different laborato-
ries (in the context of test performance studies) instead of 
replicates in the same laboratory. One way of calculating 
this is using the same formulas as accordance but consid-
ering all results disregarding laboratory information, then 
subtracting the number of matching and total pairs within 
each laboratory (which are linked to the accordance, not 
concordance). For a given sample, N results were obtained 
from the different laboratories (including replicates) and 
K of these gave identical positive results (note, the num-
ber of identical negative results can also be used), then the 
concordance for that sample is estimated by

If the accordance is higher than the concordance, it 
indicates that two identical samples are more likely to 
give the same result if they are analysed by the same 
laboratory than if they are analysed by different ones, 
suggesting that there can be variability in performance 
between laboratories. A concordance value much lower 
than the accordance value can suggest that the method 
is not robust enough to reproduce the same results 
under different laboratory conditions. The comparison 
between accordance and concordance can be achieved 
through the concordance odds ratio evaluation.
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TA B L E  A 1   Terminology used for the classification of test 
results when compared with the status of reference samples

Status of reference sample

Target present Target absent

Positive test 
result

True positive (TP) False positive (FP)

Negative test 
result

False negative (FN) True negative (TN)
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Determination of the concordance odds ratio for the 
estimation of inter-laboratory variation

The concordance odds ratio (COR) is a ratio of the ac-
cordance and concordance for the estimation of the de-
gree of inter-laboratory variation. The ratio removes the 
bias related to the accuracy of the results (i.e. numbers of 
true positive/negative and of false positive/negative) which 
are used to calculate the two parameters (i.e. concordance 
and accordance) taken separately.

The formula of COR is defined as follows:

acc(1− conc)

conc(1−acc)

with acc for accordance and conc for concordance.
As the accordance of a test should normally be supe-

rior to its concordance (this is because the repeatability is 
expected to be higher than the reproducibility of a test), 
this ratio should show values between 1 and the positive 
infinite. The higher the COR value is, the greater the 
variability between laboratories.

However, when there are many accordance values of 
1 (meaning that the tests are highly stable with a repro-
ducibility identical to the repeatability), concordance 
odds ratios are of little help to discriminate the tests, as 
most of the estimates are either 1 or infinite values. To 
get meaningful results, the COR estimation can be com-
pleted using Fisher's test, which tests the hypothesis that 
there is a significant variation of the results between lab-
oratories for a particular sample based on the fact that 
COR values significantly greater than 1 indicate a sig-
nificant variability of the results between laboratories.

A PPEN DI X 3 -  PROBA BI LI T Y OF 
DET ECT ION FOR T H E DET ER M I NAT ION 
OF T H E A NA LY T ICA L SENSI T I V I T Y – 
A DDI T IONA L I N FOR M AT ION

The calculation of the probability of detection can be 
done using any statistical software capable of adjusting 
a binomial generalized model (also called logistic regres-
sion) such as R software.

For each test, data for the diluted samples were used to 
adjust binomial generalized linear models (bGLM) with 
a logit link between the dilution (expressed by the base 
10 negative exponent of the corresponding dilution) and 
the detection status. The number of dilution levels being 
very limited, the adjustment of bGLM is not always pos-
sible as this method requires at least five levels, and the 
laboratory effect has been neglected. This type of model 
is easily adjusted in R with the glm() function, using ar-
gument family = binomial to account for the binary na-
ture of the result.

An example of an Excel spreadsheet developed by the 
ISO for the determination of the limit of detection (terms 
relative level of detection in that spreadsheet) between 
laboratories during an inter-laboratory comparison can 
be found at the following link: https://stand​ards.iso.org/
iso/16140/​-2/ed-1/en. One spreadsheet (RLOD_MCS_
clause_5-1-4-2_V3_2015-08-15) is the template used to 
enter analytical data; the second spreadsheet (RLOD_
inter-lab-study_16140-2_AnnexF_ver1_28-06-2017) pro-
vides information on the program and the equations 
through examples.

https://standards.iso.org/iso/16140/-2/ed-1/en
https://standards.iso.org/iso/16140/-2/ed-1/en
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