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Equilibrium distances for the capillary interaction
between floating objects

Martin Poty and Nicolas Vandewalle *

When small objects are placed at a water–air interface, attractive and repulsive interactions appear due

to liquid deformations. Although it is commonly admitted that two floating objects deforming the liquid

interface in the same way are only attracting, we show that in the case of objects whose height does

not vary during the interaction, the situation is much more complex than expected. In fact, attraction

and repulsion can coexist at different ranges, so that equilibrium distances are observed. A 1D model

based on the capillary interaction between vertical plates immersed in water is used to illustrate and

calculate these situations, giving a picture of capillary interactions. We show that the wetting condition

plays a determinant role in the behaviour of the interaction between floating objects. We also demon-

strate that the equilibrium distance is given by the logarithm of the capillary charge ratio, using the right

capillary charge definition. We also discuss the particular case of the existence of an interaction with a

zero-capillary charge. A general equation of the equilibrium distance is proposed. An experimental

confirmation of this relation is also given.

1 Introduction

When small objects or particles are placed along liquid–air
interfaces (or more generally fluid–fluid interfaces), they inter-
act due to capillary forces, originating from the interface
deformations around each floating body. This effect has been
studied since the article of Nicolson about the attraction
between bubbles due to the buoyancy.1 Then, this effect has
been studied in various domains, including the self-assembly at
liquid interfaces,2–8 the building of micro swimmers on a free
surface9,10 or various biological phenomena.11,12

A few models have been proposed to describe the capillary
attraction of identical particles.13–18 Gifford and Scriven
described the interaction between horizontal cylinders.13 More
recently, Vella and Mahadevan rationalized this interaction for
spherical objects14 and vertical cylinders.15 Kralchevsky et al.
considered another approach,16–18 using the capillary charge as
the characteristic depth of the liquid deformation close to each
object. As opposed to what happens with the interaction
between electric charges, the interaction strength between
capillary charges is given by their product. Thus, the capillary
force is attractive between objects of the same capillary charge
and repulsive between objects with opposite capillary charges.
Recently, Ho et al. measured this attractive force between
floating disks.19

While the attractive or repulsive behaviour seems valid for
small objects with respect to the capillary length, some simple
experiments involving larger objects can show more complex
behaviours. One of these experiments is shown in Fig. 1(a). The
picture is made using the technique described in ref. 20 to
show the deformation of the water. A light pattern is reflected
on the water surface, and the deformations of the surface are
translated into deformations of the pattern. The picture shows
two 3D printed squares floating on water. Their sides are 6 cm
and their thickness is 2 mm. The edges of the squares are
wedge-shaped to pin the contact line. The one on the left is
built with a bump to be heavier and therefore float at a greater
depth than the one on the right. We can observe that the
objects attract but without making contact. Since these objects
have a negative capillary charge, they should attract each other,
but a short-range repulsion provides a non-zero distance of
equilibrium.

Another case appears during the self-assembly of multipolar
objects. In a recent paper,21 we build rhombi with opposite
curvatures along their diagonals. In this way, once placed on
the surface of the water, they create capillary charges localized
at their tips, each rhombus having two positive charges and two
negative capillary charges. This allows them to interact with
each other to form ordered structures (see Fig. 1(b)).

According to the vast majority of previous studies,1,13–18 the
origin of the force between floating objects is a combination of
the effects of surface tension and gravity. The surface tension
causes a deformation of the liquid interface around the floating
objects. Then the objects move to reduce their gravitational
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potential energy in that modified energy landscape. For
example, the attraction appears because the liquid meniscus
deforms in such a way that the gravitational potential energy of
both particles decreases when they approach each other. One
could say that an object falls into the deformation created by
the other and vice versa causing their attraction. This explana-
tion implies that during the attraction, the height of the objects
must necessarily vary. However in the case of Fig. 1(b), this
explanation cannot be satisfactory. Indeed, each object has
both positive and negative capillary charges. Those floating
objects cannot realistically increase their vertical position dur-
ing the attraction between positive capillary charges while, at
the same time, decreasing it during the attraction between
negative charges. So the interaction must be caused by some
other effect. The common feature of the experiments shown in
Fig. 1 is the fact that the depth of the objects remains constant.
This can be explained by the large size of the objects in the first
experiment compared to the capillary length. Dixit and
Homsy22 showed that for small bond numbers, the interaction
is primarily driven by gravitational potential energy, while it is
not the case for large bond numbers. The objects are large
enough compared to the characteristic length of the

deformation they cause that they cannot actually fall in the
deformation caused by each other. Thus, we consider that
the floating depth of a large floating object is always equal to
the depth at which this object would float without being
perturbed by another one. Small multipolar objects can also
show situations where they cannot change their vertical posi-
tion because of other multipolar surrounding objects as shown
in the second example ref. 21 or in ref. 3,4,5,23. More examples
can be found as in the situation studied by Kralchevsky et al.16

where objects are placed on a substrate underwater.
While earlier works studied the apparition of an equilibrium

distance between floating objects,24,25 the aim of the present
study is to introduce a new explanation for the capillary
interactions between floating objects whose vertical position
cannot vary during the interaction and characterize these
interactions. We will show how objects of this kind can still
interact without changing their vertical position and exhibit a
more complex behaviour than simple attraction or repulsion.
We will identify the conditions under which the non-zero
equilibrium distances takes place. A complete picture will be
given for idealized structures depending on boundary condi-
tions, i.e. wetting properties of these objects. An experimental
confirmation of the result will also be given.

2 Single object

To model floating objects whose vertical position cannot vary,
we use a similar approach to Vella et al. considering vertical
infinite plates immersed in a liquid.14 We consider the one
dimensional problem of the horizontal force between the plates
by unit length. We also consider two different wetting situa-
tions for each plate (see Fig. 2). First, the liquid can be pinned
at a fixed height h relative to the undisturbed surface. In this
paper, we will refer to this as the ‘‘height’’ case. The second
case is when the liquid naturally climbs along the plate with a
fixed contact angle y. We will refer to this as the ‘‘angle’’ case.
We will show that the difference between these two wetting
conditions leads to quite different interactions between large
floating objects.

As we consider the interaction between two plates, each
being characterized by a specific wetting condition, we will
discuss about the three different cases that this situation may
generate.

Fig. 1 (a) Picture of two squares floating on water and pinning the contact
line at different depths. An equilibrium distance, highlighted as Leq, is
visible. The scale is given by the side of the square measuring 6 cm.
(b) Picture of a self-assembly of floating rhombus-shaped components
having positive and negative capillary charges located on the tips. They
were extensively studied.21 The scale is given by the sides of the rhombi
measuring 1 cm. These pictures were taken using the method described in
ref. 20.

Fig. 2 Sketch of the meniscus around a vertical plate. The dashed
horizontal line is the elevation of the water far away from the plates.
Two different plates are considered. (a) The contact line is pinned at a
defined height h0. (b) The contact angle y is fixed along the plate.
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First, we will focus on a single plate, computing the shape
of the meniscus along the plate and showing that any
horizontal capillary force cannot appear on a single object.
Secondly, we will consider the interaction between two
plates, computing the shape of the meniscus and the force
between two plates and discussing the appearance of an
equilibrium distance between them supported by experi-
mental observations.

2.1 Pressure balance

We first compute the shape of the meniscus h(x) around a
single plate. The result will be exploited in the following
section. This shape is given by the balance between the hydro-
static pressure and the Laplace pressure along the liquid–air
interface

rghðxÞ ¼ g
1

R1
þ 1

R2

� �
; (1)

where r is the density of the liquid, g is the gravity, g is the
surface tension, and R1 and R2 are the two principal radii of
curvature. As the meniscus climbs along an infinite plate, one
of these radii diverges and the other one is given by

RðxÞ ¼
1þ dh

dx

� �2
 !3

2

d2h

dx2

������������

������������
: (2)

By considering low deformation we can consider that
dh

dx
� 1. Thus, the radius of curvature reduces to

1

RðxÞ ¼
d2h

dx2
: (3)

With the introduction of the capillary length: lc ¼
ffiffiffiffiffiffi
g
rg

r
,

eqn (1) reduces to

d2hðxÞ
dx2

� 1

lc2
hðxÞ ¼ 0; (4)

which is a second order, linear, homogeneous differential
equation. The latter admits the following general solution

hðxÞ ¼ C1e
�x
lc þ C2e

x
lc ; (5)

where C1 and C2 are constant lengths that can be determined by
using the right boundary conditions.

2.2 Boundary conditions

We can assume that far away from the plate, the height of the
liquid h is not influenced by the presence of the plate. Thus, we
can assume the following condition h(N) = 0 leading to a fixed
value of the constant C2 = 0.

To find the value of C1 we need to consider the wetting
conditions on the plate. For the case of a pinned meniscus at a
determined height h0, shown in Fig. 2(a), the boundary condi-
tion along the plate must be h(0) = h0. This condition sets the

value of the constant C1 = h0. This gives the equation for the
meniscus pinned along the plate at a fixed height h0. One has

hðxÞ ¼ h0e
�x
lc : (6)

For the case of a meniscus contacting the plate with a
determined contact angle y, shown in Fig. 2(b), the boundary
condition along the plate must be

dh

dx

����
x¼0
¼ � cot y: (7)

This condition set the value of the constant at C1 = lc cot y.
This gives

hðxÞ ¼ lc cot ye
�x
lc ; (8)

as the meniscus equation along the plate for a determined
contact angle.

2.3 Force on a single plate

The horizontal capillary force on a single vertical plate could be
caused by two different effects. First, when the meniscus on
each side reaches the plate at different heights, a pressure
difference appears between the sides of the plate. This effect
causes a net force on the plate. As explained in ref. 14, the
horizontal component by unit length of this force can be

written as FP ¼
1

2
rg hl

2 � hr
2

� �
, where hl end hr are the heights

of the meniscus for respectively the left and the right sides of
the plate.

Secondly, if the contact angle of the meniscus is different on
each side of the plate, an asymmetry can appear between the
surface tension forces acting on each side. This effect also
causes a force on the plate. The horizontal component of this
force can be written as the difference between the horizontal
projection of the surface tension force on each side: Fg = g(cosfl

� cosfr) where fl and fr are the angles between the horizontal
and respectively the left and right menisci on each side of the

plate. Considering only vertical plates, f ¼ p
2
� y.

The total horizontal force by unit length FP + Fg on the plate
is therefore

Fh ¼
1

2
rg hl

2 � hr
2

� �
þ g cosfl � cosfrð Þ: (9)

If we consider small liquid deformations caused by the
plate, we can use the small-angle approximation. This allows

us to consider that cosf ’ �1
2
tan2 fþ 1. Thus, the horizontal

force can be approximated as

Fh ¼
g
2lc2

hl
2 � hr

2 þ lc
2 tan2 fr � lc

2 tan2 fl

� �
: (10)

In the case of a pinned meniscus, using eqn (6), we see that

tanfi ¼
dh

dx

����
x¼0
¼ �hi

lc
; (11)
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with i = {l, r} denoting the considered side of the plate and x = 0
corresponding to the horizontal position of the plate.

In the case of the contact angle, using eqn (8), we see that

hi = lc cot yi = lc tanfi, (12)

with i = {l, r}.
These results show that the contact height hi and the contact

angle yi of a meniscus along a vertical plate are always linked
together and thus, giving eqn (10), a horizontal capillary force
on a single vertical plate cannot appear.

3 Two objects
3.1 Meniscus between two plates

To compute the shape of a meniscus hanging between two
plates separated by a distance L, we use eqn (5) again, intro-
ducing boundary conditions.

We consider the first case where a meniscus is pinned on
each plate at a determined height h1 for the left plate and h2 for
the right plate (see Fig. 3(a and b)). Thus, the boundary
condition is h(0) = h1 for the left plate and h(L) = h2 for the
right plate.

These boundary conditions give the following equation for
the shape of the meniscus in between the plates

hðxÞ ¼
h1 sinh

L� x

lc

� �
þ h2 sinh

x

lc

� �

sinh
L

lc

� � : (13)

We now consider the second case where a meniscus is in
contact with each plate with a determined contact angle y1 for
the left plate and y2 for the right plate (see Fig. 3(c and d)).

Thus, the boundary condition is
dh

dx

����
x¼0
¼ � cot y1 for the left

plate and
dh

dx

����
x¼L
¼ cot y2 for the right plate.

These boundary conditions give the following equation for
the shape of the meniscus between the plates

hðxÞ ¼
lc cot y1 cosh

L� x

lc

� �
þ lc cot y2 cosh

x

lc

� �

sinh
L

lc

� � : (14)

We consider a third case where a meniscus is in contact with
the left plate with a contact angle y1 while the other one is pinned
on the right plate at a determined height h2 (see Fig. 3(e and f)).

Thus, the boundary condition is
dh

dx

����
x¼0
¼ � cot y1 for the left plate

and h(L) = h2 for the right plate. These boundary conditions give
the following equation for the shape of the meniscus between
the plates

hðxÞ ¼
lc cot y1 sinh

L� x

lc

� �
þ h2 cosh

x

lc

� �

cosh
L

lc

� � : (15)

3.2 Force between two plates

3.2.1 Relevance of the meniscus outside the plates. To
simplify subsequent calculations, we will first show that the
horizontal force between two plates does not depend on the
shape of the menisci outside the plates and therefore depends
only on the shape of the meniscus between the plates.

According to the Newton’s law of action–reaction, the
horizontal force on each plate must be of the same magnitude
but in opposite directions. Thus, we only need to compute the
force on one of the two plates. Using eqn (10), the horizontal
force by unit length on the left plate can be written as

Fh ¼
g
2lc2

hout
2 � hin

2 þ lc
2 tan2 fin � lc

2 tan2 fout

� �
; (16)

where hout and hin are respectively the contact heights of the
meniscus outside of the plates and inside of the plates. Angles
fout and fin denote respectively the angles of the meniscus for
both situations. This equation is tuned so that the force is
negative when attractive and positive when repulsive.

Fig. 3 Profiles, mathematically obtained, of the menisci between two
plates. The contact lines are pinned on the two black plates in (a) and
(b), with capillary charges of the same sign and opposite signs respectively.
The contact angle is fixed on the two red plates in (c) and (d), with capillary
charges of the same sign and opposite signs respectively. In (e) and (f), the
contact angle is fixed on the red plate while the contact line is pinned on
the black plate, and the capillary charges have the same sign and opposite
signs respectively.

Paper Soft Matter



6722 |  Soft Matter, 2021, 17, 6718–6727 This journal is © The Royal Society of Chemistry 2021

As we can consider that the meniscus outside the plates is
not modified by the second plate, the meniscus on the outside
of the plates is the same as the meniscus along a single plate. It
allows us to use the relation linking the contact height and the
contact angle along a single plate (eqn (12)), to write

hout = lc tanfout. (17)

This result leads to the following equation:

Fh ¼
g
2lc2

lc
2 tan2 fin � hin

2
� �

(18)

In this equation only terms relative to the meniscus inside
the plates remain, meaning that only the shape of the meniscus
between two plates is relevant in the computation of the
horizontal force. We can also see that two terms remain, one
containing the contact angle of the meniscus along the plate
and the other one the height of the meniscus along the plate,
one of the two being constant depending on the studied case.
For the case of a ‘‘height’’ plate, as the pinning height along the
plate is constant, this equation shows that the force is caused
by the variation of the contact angle along the plate when a
second plate approaches. For the case of an ‘‘angle’’ plate, as
the contact angle along the plate is constant, the force is caused
by the variation of the contact height of the meniscus when a
second plate approaches.

3.2.2 First case: ‘‘height–height’’. We first compute the
force between two plates with a pinning condition separated
by a distance L. The position of the left plate corresponds to the
origin of the x-axis. We use eqn (18) to compute the horizontal
force on the left plate. As we consider the case of a determined
pinning height along the plate, we can see on Fig. 3(a and b)
that the contact height is the same on each side of the plate
while the contact angle of the meniscus varies from one side to
the other. Therefore, the horizontal force originates from this
angle difference.

The angle f1 between the horizontal and the meniscus
along the left plate is determined by using the relationship

tanf1 ¼
dh

dx

����
x¼0

where h(x) is the meniscus profile given by

eqn (13). Thus, eqn (18) becomes

tanf1 ¼
dh

dx

����
x¼0
¼

h2 � h1 cosh
L

lc

� �

lc sinh
L

lc

� � ; (19)

where h1 and h2 are respectively the pinning height of the
meniscus on the left and right plates. Then, the force can be
written as

Fh ¼
g
2lc2

h2 � h1 cosh
L

lc

� �

sinh
L

lc

� �
0
BB@

1
CCA

2

�h12

2
6664

3
7775: (20)

To simplify the latter equation, we take inspiration from the
notion of capillary charge introduced by Kralchevsky.17 The

capillary charge of an object is related to the vertical deforma-
tion of the interface along the object. As these charges are
originally defined for circular objects, we have to use a 1D
analogy of this concept. In the case of an infinite plate, we
consider that the capillary charge corresponds directly to the
vertical deformation of the liquid along the object. We define
Q1 as the capillary charge of the left plate and Q2 the capillary
charge of the right plate as

Q1 ¼ h1

Q2 ¼ h2:
(21)

We can then rewrite the equation of the horizontal force per
unit length Fh nondimensionalized by the surface tension g so
that Q1 and Q2 have similar roles

Fh

g
¼ 1

lc2 sinh 2
L

lc

� � Q1
2 þQ2

2
� �

2
�Q1Q2 cosh

L

lc

� �� 	
: (22)

Using a similar method to compute the horizontal force on the
right plate gives the same result, as expected from the Newton’s
law of action–reaction.

Note that the force is not given by a simple product of
capillary charges. As a result, the behaviour is more complex
than the usual attraction between charges of the same sign and
repulsion between opposite signs. As the force is attractive
when negative and repulsive when positive, we can see on
Fig. 4(a) that when the capillary charges of two plates are of
the same sign, meaning the liquid deformation is on the same
direction, the force is attractive at long range and repulsive at
short range, which brings up a stable equilibrium distance.
When two plates have capillary charges of opposite signs, we
can see from Fig. 4(b) that the force is always repulsive. Also,
when both capillary charges are the same in absolute value, we
find the classical case of an attraction between the same sign
and repulsion between opposite signs.

A more surprising result appears when we consider one of
the capillary charges equal to zero. This can happen for
example when the meniscus is pinned at the height of the free
surface. In this particular case, the second term of eqn (22)
becomes zero but the first term remains. As a result, an
interaction can occur with a zero charge. Note that as the
meniscus is pinned, a zero charge is different than the absence
of charge. This interaction between a charge Q and a neutral
charge is given by

Fh

g
¼ Q

2
csch2

L

lc

� �
; (23)

note that this equation is always positive, meaning that the
interaction is always repulsive in that case.

3.2.3 Second case: ‘‘angle–angle’’. We use eqn (18) to
compute the horizontal force on the left plate. As we consider
the case of a fixed contact angle along the plate, the angular
term lc

2 tan2 f stays constant while the height of the meniscus
varies (see Fig. 3(c and d)). In this case, the horizontal force
originates from the pressure difference on the plates.
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The height of the meniscus along the plate h(0) is deter-
mined by using the meniscus profile eqn (14). One has

hð0Þ ¼
lc cot y1 cosh

L

lc

� �
þ lc cot y2

sinh
L

lc

� � ; (24)

where y1 and y2 are respectively the contact angles of the
meniscus on the left and right plates. Then, the force can be
written as

Fh ¼
g
2lc2

lc
2 tan2 f1 �

lc cot y1 cosh
L

lc

� �
þ lc cot y2

sinh
L

lc

� �
0
BB@

1
CCA

2
2
6664

3
7775
(25)

which has been previously obtained by Vella et al.14 In this case,
we define Q1 as the capillary charge of the left plate and Q2 as
the capillary charge of the right plate. One has

Q1 ¼ lc cot y1;

Q2 ¼ lc cot y2:
(26)

The relation between the contact angle and the contact
height of the meniscus along a plate (eqn (12)) shows that
whatever the wetting condition, the capillary charge is related
to the vertical deformation of the meniscus.

We can then rewrite the equation of the horizontal force per
unit length Fh nondimensionalized by the surface tension g

Fh

g
¼ 1

lc2 sinh 2
L

lc

� � � Q1
2 þQ2

2
� �

2
�Q1Q2 cosh

L

lc

� �� 	
; (27)

where Q1 and Q2 play a similar role. As with the previous case
and in agreement with the law of action–reaction, using a
similar method to compute the horizontal force on the right
plate gives the same result. This force is always attractive when
the capillary charges have the same sign. When the charges
have opposite signs, the situation is more complex and we see a
long range repulsion and a short range attraction with an
unstable equilibrium distance between them (see Fig. 4(c and
d)). This behaviour is the exact opposite of the previous case,
which shows the importance of taking into account the condi-
tion of contact of the liquid on the object.

Also, similarly to the previous case, when both capillary
charges are the same in absolute value, we find the classical
case of an attraction between same sign and repulsion between
opposite signs.

When we consider a neutral capillary charge, occurring
when the contact angle of one plate is equal to 901, the second
term of eqn (27) becomes zero but the first term remains. As a
result, an interaction can occur with a neutral charge. Note that
as the contact angle of the meniscus is fixed, a zero charge is
different to the absence of charge. This interaction is given by

Fh

g
¼ �Q

2
csch2

L

lc

� �
; (28)

where Q is the value of the non-zero charge. Note that as
opposed to the previous case, this interaction is always
attractive.

3.2.4 Third case: ‘‘angle–height’’. We compute the
horizontal force between two vertical plates for the third case
where a meniscus is in contact with the left plate with a contact
angle y1 and pinned on the right plate at a determined height
h2. We use eqn (18) to compute the horizontal force on the left
plate. In this case, the left plate is the one with an angle
condition so when we consider a fixed contact angle along
the plate, the angular term lc

2 tan2 f1 stays constant while the
height of the meniscus varies. So for this plate the force is
caused by a pressure difference.

The height of the meniscus along the left plate h(0) is
determined by using the meniscus profile equation (eqn (15)).
One has

hð0Þ ¼
lc cot y1 sinh

L

lc

� �
þ h2

cosh
L

lc

� � ; (29)

where y1 is the contact angle of the liquid on the left plate and
h2 is the pinning height of the meniscus along the right plate.

Fig. 4 Plots of the horizontal force by unit of length between two vertical
plates divided by the surface tension as a function of the ratio between the
spacing L of those plates and the capillary length lc, with |Q1| a |Q2|.
(a) and (b) Show this force between two ‘‘height’’ plates and two ‘‘angle’’
plates respectively. (c) and (d) Show this force between a ‘‘height’’ plate and
an ‘‘angle’’ plate when the capillary charge caused by the ‘‘height’’ plate is
larger than the one caused by the ‘‘angle plate’’ and the opposite case,
respectively. The orange and the blue curves show this force when the
capillary charges have the same signs and opposite signs respectively.
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Then, the force can be written as

Fh ¼
g
2lc2

lc
2 tan2 f1 �

lc cot y1 sinh
L

lc

� �
þ h2

cosh
L

lc

� �
0
BB@

1
CCA

2
2
6664

3
7775: (30)

Similarly to a previous case, we introduce the capillary
charges as

Q1 ¼ lc cot y1;

Q2 ¼ h2:
(31)

Then we rewrite the equation of the horizontal
force per unit length Fh nondimensionalized by the
surface tension g where Q1 and Q2 play a similar role.
One has

Fh

g
¼ 1

lc2 cosh 2
L

lc

� � Q1
2 �Q2

2
� �

2
�Q1Q2 sinh

L

lc

� �� 	
: (32)

In this case we computed the force on the left plate. This
force is caused by a pressure difference. The origin of the
force on the right plate is different as it is caused by the
contact angle difference on the plate. However, as with
the previous cases, using a similar method to compute the
horizontal force on the right plate gives the same result
thanks to the action–reaction principle.

We observe on Fig. 4(c and d) that the behaviour of the
force is more complicated than in the two previous cases. The
behaviour not only changes completely when the capillary
charges have the same signs or different signs but also
depends on which plate has the larger capillary charge in
absolute value. We can see from Fig. 4(c) that when the
charge of the ‘‘angle’’ plate Q1 is larger than the charge of
the ‘‘height’’ plate Q2 (in absolute value), and the charges
have the same signs, we have a long range attraction with a
short range repulsion separated by a stable equilibrium
distance. On the other hand, when the charges have opposite
signs the force is always repulsive. When the charge of the
‘‘height’’ plate Q2 is bigger than the charge of the ‘‘angle’’
plate Q1, we see on Fig. 4(d) that when the charges have the
same signs the force is always attractive. However, when the
charges have opposite signs the force is repulsive at long
range and attractive at short range leading to an unstable
equilibrium distance.

Also, similar to previous cases, when both capillary charges
are the same in absolute value, we find the classical case of an
attraction between the same sign and repulsion between
opposite signs.

Considering a zero charge forces us to differentiate between
two cases. When the ‘‘height’’ charge is zero, i.e. when the
meniscus is pinned at the height of the undisturbed surface,
the interaction is given by

Fh

g
¼ Q

2
sech2

L

lc

� �
; (33)

leading to a repulsion. When the ‘‘angle’’ charge is zero, i.e.
when the contact angle of the ‘‘angle’’ plate is equal to 901, the
interaction is given by

Fh

g
¼ �Q

2
sech2

L

lc

� �
; (34)

leading to an attraction.
We see that without consideration for the second plate, a

zero ‘‘height’’ capillary charge is always repulsive while a zero
‘‘angle’’ charge is always attractive. This result is of the utmost
importance in areas such as the capillary self-assembly of
floating objects where a new type of interaction could allow
us to achieve new complex structures.

3.3 Equilibrium distance

3.3.1 First case: ‘‘height–height’’. We can see that for each
of the different cases, specific conditions on the capillary
charges allow the existence of an equilibrium distance
between the plates. The equilibrium distance is stable in
some cases and unstable in others. We can compute the
equilibrium distance for each case using the respective force
equation, but we can also find the expression of these
equilibrium distances using a more intuitive method that
gives a better insight into what causes this equilibrium to
appear.

For the first case, the equilibrium distance between two
‘‘height’’ plates is always stable and appears only when two
plates possess capillary charges of the same signs. We can
inverse analytically eqn (22) to find the distance that gives a
force equal to zero. This gives the following equilibrium
distance

Leq ¼ lc ln
Q1

Q2

� �����
����: (35)

The equilibrium distance increases with the ratio between
the capillary charges and tends toward zero when the charges
become similar, which is compatible with the behaviour
observed in previous studies.2–8,13–18 Looking at the meniscus
in this situation helps to better understand the cause of the
appearance of an equilibrium and gives the same calculation
result. In Fig. 5(a), we see that when the plates are separated by
some equilibrium distance, the meniscus of the left plate with
the larger capillary charge is not perturbed by the right one.
Therefore, the right plate does not modify the contact angle on
the left plate so no force is exerted on the plate. Looking at the
right plate, we can see that even if the contact angle of
the meniscus along the plate is perturbed by the left plate,
the angle between the meniscus and the horizontal stays the
same in absolute value cancelling the horizontal force on this
plate too.

We can use these observations to compute the equilibrium
distance again. In this case, the shape of the undisturbed
meniscus is derived from eqn (6). At the equilibrium distance,
the height of the undisturbed meniscus along the left plate is
equal to the pinning height of the meniscus along the right
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plate. Introducing this in eqn (6) allows us to find the same
result for the equilibrium distance as from eqn (35).

3.3.2 Second case: ‘‘angle–angle’’. For the second case, the
equilibrium distance between two ‘‘angle’’ plates is always
unstable and appears only when the two plates have capillary
charges of opposite signs. We can inverse analytically eqn (27)
to find the distance that gives a force equal to zero. This gives
the following equilibrium distance

Leq ¼ lc ln �
Q1

Q2

� �����
����: (36)

We can see that, as in the first case, the equilibrium distance
increases with the ratio between the absolute value of the
capillary charges and tends toward zero when the charges are
the same.

In Fig. 5(b), we see that when the plates are separated by the
equilibrium distance, the meniscus of the left plate with the
larger capillary charge is not perturbed by the right plate.
Therefore, the right plate does not modify the contact height
on the left plate so no force is exerted on the plate. Looking at
the right plate, we can see that even if the meniscus along the
plate is perturbed by the left plate, the contact height of the
meniscus along the plate stays the same in absolute value
cancelling the horizontal force on this plate.

We can compute this considering that at the equilibrium
distance, the height of the meniscus of the left plate is the same
as the height of the meniscus for a single plate. Equating
eqn (8) and eqn (14) for x = 0 gives us an equation for the
equilibrium distance similar to eqn (36).

3.3.3 Third case: ‘‘angle-height’’. For the third case, an
equilibrium distance between a left ‘‘angle’’ plate and a right
‘‘height’’ plate can appear in two different situations. First, a
stable equilibrium distance appears when the two plates have
capillary charges of the same sign with the charge of the

‘‘angle’’ plate larger in absolute value than the charge of the
‘‘height’’ plate. Secondly, an unstable equilibrium distance
appears when the two plates have capillary charges of opposite
signs with the charge of the ‘‘height’’ plate larger in absolute
value then the charge of the ‘‘angle’’ plate. We can inverse
analytically eqn (32) to find the distance that gives a force equal
to zero. This gives the following equilibrium distance:

Leq ¼ lc ln
Q1

Q2

� �
if Q1j j4 Q2j j;

Leq ¼ lc ln �
Q2

Q1

� �
if Q2j j4 Q1j j:

(37)

We can see that the equilibrium distance still increases with
the ratio between the absolute value of the capillary charges
and tends toward zero when the charges become similar.

In Fig. 5(c), we see that when the plates are separated by the
equilibrium distance, the meniscus of the left plate with the
larger capillary charge is not perturbed by the right plate.
Therefore, the right plate does not modify the contact height
of the meniscus on the left plate so no force is exerted on the
plate. Looking at the right plate, we can see that even if the
contact angle of the meniscus along the plate is perturbed by
the left plate, the angle between the meniscus and the
horizontal stays the same in absolute value cancelling the
horizontal force on this plate.

In Fig. 5(d), we see that when the plates are separated by the
equilibrium distance, by looking at the left plate, we can see
that even if the meniscus along the plate is perturbed by the
right plate, the contact height of the meniscus along the plate
stays the same in absolute value cancelling the horizontal force
on the plate. We can also see that the meniscus created by the
right plate with the larger capillary charge is not perturbed by
the left plate. Therefore, the left plate does not modify the
contact angle on the right plate so no force is exerted on
the plate.

The equation for the equilibrium distance can be general-
ized using the following form

Leq ¼ lc ln
maxfjQ1j; jQ2jg
minfjQ1j; jQ2jg

� �
; (38)

which holds for all different cases. This last equation repre-
sents the major result of our work.

4 Experiments

Using eqn (38), we are able to predict the equilibrium distance
in configurations like the one shown in Fig. 1(a) where two
large floating objects are pinning the meniscus at different
heights. This corresponds to the ‘‘height–height’’ case we
studied before. This case gives a stable equilibrium distance
between two objects of different capillary charges but of the
same sign, which explains what can be seen in Fig. 1(a). There-
fore, we built an experimental setup to measure precisely the
equilibrium distance in this case. The setup, as sketched in
Fig. 6 is composed of a water tank, with a mobile floating object

Fig. 5 Profiles mathematically obtained of the menisci between two
plates at equilibrium. (a) and (b) Show the case of the stable equilibrium
between two ‘‘height’’ plates and the case of two ‘‘angle’’ plates respec-
tively. (c) and (d) Show the case of an ‘‘angle’’ and a ‘‘height’’ plate for
capillary charges of the same signs and opposites signs respectively.
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(shown on the left) and a fixed object (shown on the right). It
should be remembered that a large non-buoyant object could
sink depending on its shape and density. Anyway, this can
occur at sizes large enough in relation to the capillary length
that it is still possible to have a large size range of objects with
no variation of their vertical position.

The mobile object is freely floating at its natural floating
depth h0. This object is a 3D-printed ABS rectangle: Thickness
0.2 cm, width 6 cm and length 20 cm. Its size which is large
compared to the capillary length, allows for neglecting any tilt
or height change of the object. We assume that the rectangle is
perfectly horizontal. We built two rectangles. Their weight is
adjusted by adding material at the center of their surface to
ensure that one is naturally floating at a depth h0 E lc/3 and the
second one at a depth h0 E lc/2. The fixed object is a 3D-printed
rectangle 6 cm wide and 3 cm long attached to a vertical
precision screw. This object pins the meniscus at a depth hL.
Both objects have a sharp edge to force the pinning of the
meniscus at a precise height. A camera is placed above the

water to measure precisely the distance Leq between objects.
The rectangle is gently placed on the surface of distilled water
close to the fixed object. The depth of the fixed object is
controlled manually with the precision screw so that it attracts
the moving object. The depth is increased until the maximum
depth is reached, before the water covers the object. Then the
depth of the fixed object is reduced in 50 mm steps until the
undisturbed surface is reached. At each step, we wait a few
seconds until the object stabilizes in its equilibrium position
before taking a picture. This method allowed us to measure the
equilibrium distance Leq as a function of the depth of the fixed
part hL for both rectangles. The experiment is repeated ten
times for each rectangle and the results are averaged to reduce
variance.

The results are shown in Fig. 7. We plotted the depth of the
fixed part hL divided by the depth of the mobile part h0 on the
x-axis, and the equilibrium distance Leq divided by the capillary
length lc on the y-axis in order to condense our data. The dots
are the experimental data with error bars, while the red curve
corresponds to the theoretical model. We can observe a good
agreement between data and model (eqn (38)). Moreover, the
model is able to predict that the objects come into contact
(Leq = 0) when depths become equivalent (hL E h0).

5 Conclusions

In this article we have shown that the interaction between
floating objects on a free surface is more complex than pre-
viously assumed. We focused on objects whose floating depth
does not vary, either because of their size or because of the
presence of other objects around them. The origin of the
interaction between such objects does not result from gravity
or buoyancy as would be expected for smaller objects. More-
over, we provided experimental observations that couldn’t be
explained using the usual arguments. For these reasons, we
proposed a different view based solely on the shape of the
meniscus caused by the floating objects. More precisely, the
meniscus between the objects as the outer meniscus has no
effect according to eqn (18). We computed the horizontal force
per unit length between vertical plates and showed that the
behaviour of this force is more complex than just an attraction
between capillary charges of the same sign or a repulsion
between capillary charges of opposite signs. We have shown
that, in most typical cases, attraction and repulsion can appear
depending on the distance between the objects leading to
stable or unstable equilibrium distances between them. We
show that the wetting condition of the meniscus along the
object is of utmost importance. We have defined two different
conditions; the meniscus can be pinned along the object at a
fixed height, we called this the ‘‘height’’ case. In a second case,
the meniscus can contact the object with a fixed contact angle,
we called this the ‘‘angle’’ case. We have shown that the
behaviour of the force and the apparition of the equilibrium
depends entirely on this wetting condition. Thus, we show that
the capillary charge introduced by Kralchevsky16–18 is not

Fig. 6 Sketch of the experiment. On the left is the floating object pinning
the meniscus at a depth h0, on the right is the fixed object pinning the
meniscus at a variable depth hL. We measure the equilibrium distance Leq

between both objects.

Fig. 7 Graph of the ratio between the equilibrium distance and the
capillary length as a function of the ratio between the depth of the fixed
object and the depth of the moving object. The red curve corresponds to
the theoretical model while the blue and orange dots correspond to the
experiment for a floating object hanging the meniscus at a depth of lc/3
and lc/2 respectively.
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sufficient to fully account for the behaviour of the interaction
between objects at the surface of a liquid. The capillary charge
of the object needs to be completed by the wetting condition,
‘‘height’’ or ‘‘angle’’. We also show that objects may interact
with other objects of zero capillary charge. This counter-
intuitive result means that a zero capillary charge and the
absence of capillary charge are two different situations. We
have provided an intuitive explanation for the apparition of the
equilibrium distance as well as a general equation to predict it
(eqn (38)). We also gave experimental confirmation of the
validity of this equation.

These are important results for the fundamental under-
standing of the phenomenon, which may allow for further
development in the field of capillary self-assembly of floating
objects.
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