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Abstract1

A human’s ability to adapt and learn relies on reflecting on past performance. Such2

reflections form latent factors called internal states that induce variability of movement3

and behavior to improve performance. Internal states are critical for survival, yet their4

temporal dynamics and neural substrates are less understood. Here, we link internal5

states with motor performance and neural activity using state-space models and local field6

potentials captured from depth electrodes in over 100 brain regions. Ten human subjects7

performed a goal-directed center-out reaching task with perturbations applied to random8

trials, causing subjects to fail goals and reflect on their performance. Using computational9

methods, we identified two internal states, indicating that subjects kept track of past10

errors and perturbations, that predicted variability in reaction times and speed errors.11

These states granted access to latent information indicative of how subjects strategize12

learning from trial history, impacting their overall performance. We further found that13

large-scale brain networks differentially encoded these internal states. The dorsal attention14

network encoded past errors in frequencies above 100 Hz, suggesting a role in modulating15

attention based on tracking recent performance in working memory. The default network16

encoded past perturbations in frequencies below 15 Hz, suggesting a role in achieving17

robust performance in an uncertain environment. Moreover, these networks more strongly18

encoded internal states and were more functionally connected in higher performing19

subjects, whose learning strategy was to respond by countering with behavior that20
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opposed accumulating error. Taken together, our findings suggest large-scale brain1

networks as a neural basis of strategy. These networks regulate movement variability,2

through internal states, to improve motor performance.3

Key points4

• Movement variability is a purposeful process conjured up by the brain to enable5

adaptation and learning, both of which are necessary for survival.6

• The culmination of recent experiences—collectively referred to as internal7

states—have been implicated in variability during motor and behavioral tasks.8

• To investigate the utility and neural basis of internal states during motor control, we9

estimated two latent internal states using state-space representation that modeled10

motor behavior during a goal-directed center-out reaching task in humans with11

simultaneous whole-brain recordings from intracranial depth electrodes.12

• We show that including these states—based on error and environment13

uncertainty—improves the predictability of subject-specific variable motor behavior14

and reveals latent information related to task performance and learning strategies15

where top performers counter error scaled by trial history while bottom performers16

maintain error tendencies.17

• We further show that these states are encoded by the large-scale brain networks18

known as the dorsal attention network and default network in frequencies above19

2
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100 Hz and below 15 Hz but found neural differences between subjects where1

network activity closely modulates with states and exhibits stronger functional2

connectivity for top performers.3

• Our findings suggest the involvement in large-scale brain networks as a neural basis4

of motor strategy that orchestrates movement variability to improve motor5

performance.6

3
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Introduction1

Professional athletes represent the pinnacle of motor control and precision, but they too2

fall victim to slight variations in their movement. Movement variability is traditionally3

viewed as a byproduct of noise accumulated by the motor system[1]. However, there is4

emerging evidence that this variability is purposefully orchestrated by the brain to5

facilitate learning and adaptation[2,3]. For example, more movement variability through6

exploration leads to faster learning and better performance[4,5]. The decision to7

explore—as opposed to exploit—an environment to gather information to inform future8

behavior through learning lends itself naturally to movement variability. Not only does9

this information depend on the present, but also on internalized factors that account for10

the accumulation of past experience. These factors are called internal states. For example,11

movement variability is influenced by motivation[6–8], confidence[9,10], and emotion[11–13].12

Future behavior is the culmination of current information and internal states.13

With their impact on behavior so apparent, it is surprising how ambiguous internal states14

are in motor control compared to other fields such as decision-making. To date, research15

into decision-making has used statistical models to explore relationships between16

behavioral variability and internal states[14–17] with the aim of finding evidence of the17

brain encoding states related to uncertainty[18], bias[19], trial history[20,21], and18

impulsiveness[22]. Like decision-making, the goal of motor control is to produce actions19

that optimize outcomes in the presence of uncertainty[23]. Whether those actions be20

3
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decisions or movements, variability and internal states are inherent to both. Therefore, we1

speculated that internal states are encoded in regions that are not specific to motor control2

(i.e., nonmotor regions). Indeed, decision-making tasks that require movements find that3

regions involved with sensorimotor integration encode their internal states as opposed to4

motor regions[19,20]. In this context, an emerging consensus is that movement variability5

originates from both the planning[24] and execution phases[25] of movement. However, the6

gap in our understanding of motor control becomes apparent when one asks how internal7

states evolve, where they are encoded in the brain, and how they affect performance.8

Two challenges need to be overcome to address these questions. The first challenge is9

determining the internal states based on behavior. To date, direct measures of the brain’s10

internal states have remained elusive[26]. Researchers have tried to capture measures of11

such states using methods including self-reporting[27], galvanic skin conductance[28], heart12

rate variability[29,30], and pupil size[31]. However, these measures are context-dependent[32],13

vary between individuals[30], and can function with timescales on the order of minutes to14

compute[28,30], whereas internal states can change within seconds[33]. By comparison,15

decision-making studies rely on observable behavior such as reaction times, decisions,16

and outcomes to derive their internal states. Therefore, motor control studies would also17

be ideal for deriving internal states due to their abundant movement-related data. Even so,18

since these methods are all byproducts of the brain, the question arises why not measure19

internal states directly from the brain?20

4
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This leads to our second challenge, which is identifying where internal states are encoded1

in the brain. As previously mentioned, research on decision-making supports the view2

that internal states are encoded by diverse brain regions involving multiple systems3

(e.g., sensory and memory)[18–22]. Whole-brain imaging with high temporal resolution4

would be ideal to capture diverse brain structures and rapidly evolving internal states.5

Most work in humans has used non-invasive neural imaging, such as functional Magnetic6

Resonance Imaging (fMRI) studies. However, the limitations of the temporal resolution of7

fMRI[34], compounded by the limited space that subjects must perform a natural8

movement, make it difficult to link neural correlates of internal states to behavior. What is9

needed is millisecond resolution with whole-brain coverage.10

To address these challenges, we combined high-quality measurements of natural reaching11

movements with high-spatial and temporal resolution neural12

StereoElectroEncephaloGraphy (SEEG) recordings. Specifically, ten human subjects13

implanted with intracranial depth electrodes performed a simple motor task that elicited14

movement variability during planning and execution. We estimated two internal states15

using state-space models using measurable behavioral data: the “error state” accumulates16

based on past errors to convey overall performance and the “perturbed state” accumulates17

based on past perturbations to convey environmental uncertainty. Adding these states18

improved our ability to estimate trial-by-trial reaction times and speed errors over using19

stimuli alone. Our approach also granted us access to latent terms that predicted subject20

performance and provided insight into subject strategy. Remarkably, we found neural21

5
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evidence of the brain encoding each of the internal states in relatively distinct large-scale1

brain networks. Specifically, the Dorsal Attention Network (DAN) and Default Network2

(DN) were linked to the error and perturbed state, respectively. We also linked the3

encoding strength and functional connectivity of these networks back to subject4

performance and strategy.5

6
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Results1

To investigate the coupling between motor variability and internal states, we devised a2

goal-directed reaching task that elicited movement variability both within and between3

human subjects. We first characterized this variability for our population of subjects4

during both planning and execution based on trial conditions. Then, to account for this5

variability, we built a simple behavioral model that incorporated dynamic internal states6

as accumulating trial history that evolve over time. Using computational methods, we7

used this model to predict differences in strategy across subjects by splitting subjects into8

top and bottom performers and compared how these groups use internal states to inform9

future behavior. Finally, using recordings from intracranial depth electrodes implanted in10

the same subjects, we investigated the relationship between neural activity in large-scale11

brain networks and the encoding of these internal states.12

Motor task produced movement variability within and between subjects13

Subjects were instructed to perform a motor task in which they made reaching movements14

toward a target at an instructed speed with the possibility of physical perturbations for a15

virtual monetary reward using a robotic manipulandum. As visually shown in Figure 1a,16

this task elicited movement variability. We quantified this variability by calculating the17

Reaction Times (RT) and Speed Errors (SE) for planning and execution phases,18

respectively. Figure 1b shows the RT (top) and SE (bottom) results for each subject19

7
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overlaid across trials, with an example subject (subject 6) traced in black. Both1

measurements were inconstant across trials for subject 6, confirming the presence of2

within subject variability. Also, no two subjects had identical behavior, confirming the3

presence of between subject variability (Fig. 1b). Therefore, our motor task successfully4

produced behavior that varied from trial-to-trial both within and between subjects.5

We then investigated whether differences in trial conditions could explain the variability6

observed within subjects. Figure 1c shows the distributions of the RT (top) and SE7

(bottom) for the population separated based on the trial condition. Starting with the8

planning phase, the trial conditions that influenced RT were speed and direction. We9

expected subjects to change their RT based on these conditions speed. Indeed, subjects10

reacted more quickly for fast trials than slow trials (p = 0.014, ANOVA). They also reacted11

more slowly for trials with an upward motion to the target (p = 0.013, ANOVA). For the12

execution phase, the trial conditions that influenced SE were speed and perturbation. Both13

conditions significantly influenced the SE; subjects would move too slow for fast trials14

(0.00017, ANOVA) or when perturbed away (0.014, ANOVA). We also found significant15

differences between subject’s RT (p = 0.0054, ANOVA) and SE (p = 0.022, ANOVA). Taken16

together, these results support a model of planning and execution using RT and SE that is17

both subject-specific and based on trial conditions. Supplementary Table 4 contains the18

complete break down of the trial conditions each subject experienced.19

8
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We also found that performance differentiates variability between subjects. Variability was1

quantified using the Standard Deviation (STD) of each behavior, where a higher STD2

corresponds to higher variable behavior. Subjects were divided into groups based on their3

session performance. Subjects whose session performance was above average (51 %) as4

“top performers” and those below as “bottom performers”. Figure 1d shows how subject’s5

variability of RT (top) and SE (bottom) depends on their performance. Specifically, we6

found that top performers have less variable behavior.7

In summary, even though all the subjects encountered the same trial conditions, their8

behavior varied which, in turn, affected their performance. Therefore, factors other than9

trial conditions must be influencing their performance.10

Internal states capture movement variability that trial conditions cannot11

Using computational methods, we next developed a model to account for the variability12

that we observed between subjects (see Methods). Specifically, to account for variability13

not captured by trial conditions, we added two internal states. The first internal state was14

the “error state,” which accumulates the speed errors during past trials to keep track of15

how well a subject was accomplishing the instructed speed. The second internal state was16

the “perturbed state,” which accumulates the presence of perturbations during past trials17

to convey environmental uncertainty.18

To combine trial conditions and internal states, we used the state-space model illustrated19

in Figure 2a. Each behavior (equations (1) and (2)) was calculated as a linear combination20

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504130doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504130


of the trial conditions and internal states (equations (3) and (4)). These equations were1

then used to simultaneously estimate the behavior and internal states for all subjects. Here,2

we used subject 6 to demonstrate the intuition behind our model that can be applied to the3

population. Specifically, we examined (i) if our estimates follows the observed behavior,4

(ii) the characteristics that internal states and trial conditions independently capture, and5

(iii) how their internal states uniquely evolve. The model results for all subjects are in6

Supplementary Figure 1 through Supplementary Figure 5.7

Overall, we first found that the estimated behavior follows the observed behavior.8

Figure 2b shows the RT across all trials for subject 6, with the observed in gray and the9

estimated in black. Visually, the estimate follows key features, including sudden jumps10

between trials and gradual changes such as between trials 100 and 125. For example, the11

estimate on trial 109 (black triangle) matches what was observed, which was that subject 612

reacted faster than average.13

Next, we explored which parts of our model were responsible for capturing these features.14

Figure 2c shows the trial conditions (orange) and internal states (purple) used to estimate15

RT for subject 6. We observed that the conditions accounted for the sudden jumps between16

trials and states accounted for the gradual changes. For example, on trial 109 (black17

triangle), the conditions were slow and up, which typically caused them to react slower18

than average. However, the states outweighed the conditions, leading them to react faster19

than average. By incorporating both trial conditions and internal states, our model20

10
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captured features essential in realistic behavior that neither would be able to convey1

independently.2

To determine why subject 6 reacted faster than average despite trial conditions, we next3

examined the structure of the two internal states to understand their dynamics. Figure 2d4

shows the error state (blue) and perturbed state (red) across all trials for subject 6. The5

error and perturbed state on trial 109 (black triangle) are both positive, indicating that they6

recently moved slower than instructed and were perturbed. Hence, the internal states7

grant access to latent information about subjects. The perturbed state conveyed that recent8

successions of perturbations caused subject 6 to react and move faster in an attempt to9

counteract the uncertain environment.10

Finally, we looked at our population of subjects to test whether adding internal states11

improved our ability to explain movement variability over using trial conditions alone, by12

comparing the coefficient of determination—a goodness-of-fit metric that measures the13

proportion of the behavioral variability that can be explained by the model variables—of14

the model with states to one without states. Figure 2e shows that adding the internal states15

to the model significantly improved the estimation of both RT and SE across all subjects16

(RT: p = 0.0048, SE: p = 0.00032, paired t-test), where the higher percentage means more of17

the variability is accounted for by the model variables. Recall that subjects were classified18

as either bottom (dark green) or top (light green) performers based on their session19

performance. In this context, it was interesting that top performers benefited the most20

11
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from adding internal states to estimate RT. For example, the goodness-of-fit for subject 61

improved by 16 %. In summary, internal states are essential for completely capturing2

movement variability. They conveyed slow evolving characteristics in the behavior,3

caused by retained trial history, that were not accounted for by the trial conditions.4

Top performers learn from previous trials5

The amount a subject weighs model variables reveals what they prioritized when deciding6

how to vary their behavior. Thus, we wondered whether top and bottom performers7

might use different strategies that could be uncovered using our computational approach.8

Specifically, we hypothesized that top performers improved their performance by learning9

selective information from previous trials. Indeed, we found that they learned from the10

error state but not the perturbed state. We tested this by considering the relationship11

between subjects’ weights on the internal states and session performance. Comparisons12

across all model variables are in Supplementary Figure 6.13

Top performers reduced their RT (Fig. 3a) and SE (Fig. 3b) through the negative weights14

on the error state after accumulating positive errors by moving slower than instructed.15

Under the same circumstances, bottom performers continued to react and move more16

slowly than instructed due to the positive weights on the error state, accumulating more17

errors. These results indicate that top performers adjusted their behavior to improve while18

bottom performers maintained their error tendencies. This finding shows that top19

performers learn based on feedback.20

12
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Alternatively, we did not foresee top subjects learning from perturbed trials due to their1

unpredictability. Indeed, Figure 3c and Figure 3d show that there was no relationship2

between top and bottom performers with the weight of the perturbed state on RT and SE,3

respectively. Instead, we found that subjects responded by either hesitating (i.e., react4

slower or move too slow) or counteracting (i.e., react faster or move too fast) for5

subsequent trials when they perceived the environment to be uncertain. All bottom6

performers and half of the top performers positively weighted the perturbed state on RT,7

indicating hesitation to react. Conversely, half of the top performers hastened by reacting8

faster, heightening their senses in preparation for a possible perturbation. In terms of SE,9

we found an equal mixture of performers who moved slower (positive weight) and faster10

(negative weight) after perturbations. We suggest that those who moved faster did so11

because they were exerting more force in their movement in case they were perturbed.12

In summary, our model could account for differences in the strategies of top and bottom13

performers, where top performers learned to counteract errors directly based on previous14

feedback. Though we could not find a complementary strategy against perturbations, we15

did find that subjects either hesitated or hastened to react when they perceived the16

environment to be uncertain.17

13
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Internal states are encoded by large-scale brain networks which correlate1

with session performance2

Our combined experimental and modeling results provide support for the proposal that3

internal states can account for behavioral variability, within and across subjects. We next4

asked whether it was possible to gain insight into neural correlates of these internal states.5

More specifically, we asked whether such states are encoded by large-scale brain networks.6

To do this, we first assessed whether we could identify a set of brain regions linked to each7

internal state, and then determined which regions preferentially map to distinct8

large-scale brain networks related to session performance.9

As a result of our unique experimental procedure, we had access to neural recordings10

from intracranial depth electrodes from each human subject simultaneously as they11

performed the motor task used to derive their internal states. Subjects were implanted12

with electrodes by clinicians to localize the epileptogenic zone for treatment. Illustrated in13

Figure 4a, this granted us access to local field potential activity from a broad coverage of14

nonmotor regions, where we hypothesized the brain encoded internal states. To identify15

any such region with these neural correlates, we used a non-parametric cluster statistic[35]
16

between the spectral data of each region and each internal state across the population (see17

Methods). This unsupervised method provided windows of time (during a trial) and18

frequency (between 1 and 200 Hz) in which the power of each region correlated with the19

internal state across trials (Figure 4b). These regions were first labeled anatomically using20

14
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semi-automated electrode localization before being mapped to large-scale brain networks1

(see Methods).2

To determine which regions encode each internal state, we chose those whose power3

significantly correlated with the state from trial-to-trial in the population. Our modeling4

results showed that subjects weighed internal states differently, primarily based on their5

session performance. We suspected that this would be reflected in the brain by how well6

these regions encoded the states. The degree to which a subject encodes an internal state in7

a region, which we called the encoding strength, was quantified by correlating the average8

power within the time-frequency window (from the population statistic) to the state on a9

trial-by-trial basis (see Methods). We used this to isolate a set of regions whose activity10

modulated with the state and whose encoding strength correlated with session11

performance.12

Error state is encoded by the dorsal attention network13

First, we found that the error state was primarily encoded by regions in the DAN (see14

Table 2 for details and Fig. 5a for visualization). The regions in DAN (blue) included the15

intraparietal sulcus right (IPS R), middle temporal gyrus right (MTG R), superior frontal16

gyrus left (SFG L), superior parietal lobule left (SPL L), and superior temporal sulcus17

right (STS R). The second most prominent network was the visual network (yellow),18

which included the parieto-occipital sulcus right (POS R), anterior transverse collateral19

sulcus left (ATCS L), cuneus right (Cu R), and inferior temporal gyrus right (ITG R). A20

15
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couple of regions from other networks also appeared, including the supramarginal gyrus1

right (SMG R) from the Ventral Attention Network (VAN) as well as some from the DN.2

Two groups of regions emerged based on when during the trial did their activity correlate3

with the error state and in what frequency band, as defined in the Methods). Half of these4

regions encoded the error state throughout the session as persistent activity in the5

frequency band hyper gamma (100–200 Hz). This activity was negatively correlated with6

the error state, meaning the DAN exhibited higher deactivation when a subject moved7

slower than instructed. The other half encoded the error state as phasic activity during8

either planning, execution, or feedback in frequency bands lower than 15 Hz. This activity9

was positively correlated with the error state for most regions. Overall, the regions in10

DAN use both persistent and phasic activity to encode.11

Recall our result above showing that top and bottom performers used opposing strategies12

regarding how they used their error state to change how they reacted in future trials13

(Fig. 3a–b). We next investigated whether this distinction would be reflected by how14

strongly the DAN encodes the state. Since top performers learned from their errors, we15

expected a stronger correlation with neural activity as compared to the bottom performers.16

Indeed, consistent with our hypothesis, this trend is shown in Figure 5c, with DAN in17

blue. For example, the SPL L—a key hub of DAN—modulates its neural activity based on18

the error state for top performers (Fig. 5d(top)) but not bottom performers19

(Fig. 5d(bottom)). The other networks highlighted in Figure 5c show a similar trend.20

16
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Perturbed state is encoded by the default network1

Second, we further found that the perturbed state was primarily encoded by regions in the2

DN (see Table 3 for details and Fig. 5b for visualization). The regions in DN (red) included3

the angular gyrus right (AG R), anterior cingulate gyrus left (ACG L), middle temporal4

gyrus right (MTG R), posterior-dorsal cingulate gyrus right (dPCC R), and superior5

temporal sulcus right (STS R). As with the error state, regions in the visual network6

(yellow) also encoded the perturbed state. They consisted of the cuneus right (Cu R),7

inferior temporal gyrus right (ITG R), fusiform gyrus left (FuG L), and parieto-occipital8

sulcus right (POS R). Other networks that appeared included the DAN (IPS R and SPL L),9

VAN (SMG R), and even the somatomotor network through subcentral gyrus left (SubCG10

L). The subcortical region hippocampus right (Hippo R) briefly encoded the perturbed11

state after execution. However, since we were only interested in large-scale brain networks12

of the neocortex, Hippo R was not classified in this study.13

The regions in DN that encoded the perturbed state did so with phasic activity—activity14

during planning, execution, or feedback—in frequency bands under 15 Hz (i.e., delta,15

theta, alpha). Most regions had activity that was positively correlated with the perturbed16

state; trials with a high perturbed state (associated with recent perturbations) coincided17

with higher activation of DN.18

Recall our earlier result in which subjects alter their behavior (i.e., hesitate or hasten) with19

regards to the perturbed state. Although there was no consistent strategy between20
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performers, we still speculated whether there would be a neurological difference between1

performers in how the perturbed state was encoded. As with the error state, we expected2

top performers to encode the perturbed state more because they generally weighted the3

perturbed state with a higher magnitude than bottom performers (Fig. 3c–d). Indeed,4

Figure 5e shows that all networks, namely the DN (red), modulate their neural activity5

based on the perturbed state for top performers but not for bottom performers. For6

example, as a hub for the DN, the AG R would increase activity when the perturbed state7

was high (i.e., after perturbation trials) for top performers (Fig. 5f)(top)) but not for bottom8

performers (Fig. 5f)(bottom)). Even though our models could not find a consistent strategy9

between performers, top performers still modulated their activity to match the perturbed10

state.11

Connectivity strength within networks correlates to motor performance12

and strategy13

Recall that we showed above that a subject’s weight on their internal states provides14

insight into their learning strategies. Since subjects encode the internal states in distinct15

networks, we hypothesized that these strategies would further be reflected by the16

functional connectivity of the networks that we identified as encoding both the internal17

state and performance. Simply put, pairs of regions that are spatially separate yet whose18

neural activity is correlated are functionally connected[36]. Like encoding strength, we19

quantified this relationship between pairs, which we called the connectivity strength, by20
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correlating their average power within the time-frequency window (from the population1

statistic) to each other on a trial-by-trial basis (see Methods). Unfortunately, we were not2

able to observe all possible pairs of regions because either the pair was not represented in3

the data set, or we did not have enough subjects with the pair (n ≥ 3) to make any4

remarks. Since connectivity strength is also subject-specific, we expected top and bottom5

performers to use different connections to implement different strategies. Since we found6

that they encoded the internal states stronger than bottom performers, we focused on7

connectivity favored by top performers.8

Our results above demonstrated that top performers improved their performance by9

compensating their behavior in response to the error state. Using the set of regions that10

encode the error state, Figure 6a further shows that top performers favored connectivity11

between regions in the DAN (blue), VAN (light blue), and visual network (yellow). We12

found that regions that encoded with persistent activity connected to regions that encoded13

with phasic activity. Specifically, the persistent activity from DAN (IPS R and SPL L) and14

VAN (SMG R) projected namely to regions in the visual network during key phases15

during the trial (i.e., planning, execution, feedback). This result suggests that the error16

state is held and distributed by the attention networks to modulate visual attention. An17

increase in such attention could account for the counteracting behavior observed by top18

performers, such as reacting faster after moving slower than instructed (Fig. 3a). We also19

observed a significant correlation between the persistent activity and phasic activity20

during feedback for the SPL L, which is a key hub of DAN. This relationship implicates21
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persistent and phasic activity having different roles when encoding the error state.1

Perhaps the phasic activity represents the various sensory processes (depending on the2

phase) used to extrapolate information about the error state and the persistent activity3

holds this information in memory for accessibility by other regions. Then, the connection4

between SPL L could be an example of updating between integration and memory.5

Overall, top performers favored connections between DAN and visual networks to encode6

the error state. These connections could account for how top performers learned from7

their errors, specifically by updating their memory based on visual feedback to modulate8

attention in future trials.9

Our results above also demonstrated that top performers altered how they react10

(i.e., hesitate or hasten) in response to the perturbed state. Figure 6b further shows the11

connectivity between the perturbed state encoding regions favored by top performers.12

Notable, we found more connections for the perturbed state than compared to the error13

state. This makes sense because the perturbed state was more disruptive to their behavior14

and required the integration of sensorimotor pathways for interpretation during planning15

and feedback. In general, most of the connections we found were between DN (red) and16

visual network (yellow). This relationship could allow for the communication of visual17

information from feedback to be available for the DN during planning, such as to update18

their expectation about the environment of the motor task. This information could then be19

projected to regions in the visual network and VAN to plan their future behavior. For20

example, dPCC R (hub of DN) during early planning projects to SMG R (hub of VAN)21

20
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during late planning and early execution. Taken together, these results suggest that the1

DN could be modulating bottom-up visual attention based on the perturbed state. Overall,2

top performers favored connectivity between DN to other relevant networks whose3

activity modulates based on the perturbed state during planning and feedback, which4

they could have used to adapt their responsiveness based on perturbations we observed5

from their behavior.6
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Discussion1

In the present study, we first identified two internal states—based on error and2

environmental history—that induce movement variability in humans. The degree to3

which states contribute to an individual’s variability reveals opposing strategies between4

the top and bottom performers regarding how they used their states to inform future5

behavior. Remarkably, we then found that these internal states were linked to encoding in6

large-scale brain networks, DAN and DN, respectively. Taken together our findings reveal7

that differences in large-scale brain networks that can distinguish top from bottom8

performers: (i) top performers modulate network activity on a trial-by-trial basis with9

respect to their internal states and (ii) their learning strategy is supported by explicit10

connections within and between networks during phases of movement.11

Internal states and variability in motor control12

The general effect of error and the environment on movement variability are well13

documented in motor control. Traditionally, the goal of optimal feedback control is to14

minimize error during movement, where larger errors require more variability to correct15

the movement[37,38]. By accounting for the accumulation of errors from trial-to-trial, we16

also found that variability in top performers scaled based on error history. In everyday life,17

we adapt our behavior to fit the environment based on prior experience. But it is difficult18

to adapt when disturbances are rare and unpredictable. Fine and Thoroughman found19
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that it is difficult for subjects to learn how to respond to these disturbances that occur for1

less than 20% of trials[39]. They proposed an adaptive switch strategy that depends on the2

environmental dynamics: ignore performance from trials with rare disturbances and learn3

when they are common[40]. Complimentary, we found that subjects responded in trials4

after perturbations by either reacting hesitantly or vigorously. Nevertheless, their strategy5

was not a predictor of how well they performed our reaching task, which can be further6

explored in future studies.7

Modulation of dorsal attention network with error history and links to8

performance9

To learn our speed-instructed motor task, subjects were required to keep track of past10

errors using working memory. We found that our subjects learned the task by monitoring11

their history of errors across trials to decide where to allocate attention through the DAN.12

Specifically, we found DAN activated in frequencies below 15 Hz and deactivated in13

frequencies above 100 Hz when subjects recently moved faster than instructed to14

accumulate positive error, to which they would then slow down. These findings are in line15

with the speed-accuracy trade-off phenomenon which is observed during motor learning16

in the form of behavioral variability where performance is optimized by balancing17

moving faster at the cost of making more errors[41] which innately requires tracking18

history[42]. For the first time, our results implicate DAN as a network as encoding tracking19

history. Increases in Blood-Oxygen-Level-Dependent (BOLD) signal relative to baseline in20
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DAN have been reported when subjects were instructed to prioritize speed (instructed as1

fast or slow) over accuracy during a response interference speed-accuracy trade-off task[43].2

Another study using an anti-saccade task found DAN activation through BOLD signal3

positively correlated with RT (i.e., more activation when slowing down) and being the4

least activated on trials with large errors (which compares to our task when the error state5

would be close to zero)[44]. In a visually guided motor sequence learning task, DAN6

activated—through BOLD signal—to large errors during early learning, which they7

related to active visuospatial attention when first learning the sequence[45].8

We also found that the DAN encoded error history throughout the trial using persistent9

activity in frequencies above 100 Hz. Such activity is characteristic of working10

memory[46–48]. During motor planning in tasks with working memory, DAN has been11

shown to maintain task-relevant information, such as target location, during delay periods12

using persistent activity in both whole-brain and single unit recordings[49–51]. DAN has13

also been linked to working memory closely tied to visual attenuation related to memory14

load and top-down memory attention control during visual working memory tasks[52].15

Though our task does not explicitly study working memory, given the evidence, our16

results suggest that DAN is tracking the accumulation of past errors in working memory.17

This would also support our connectivity results as information held in working memory18

can be easily accessed by multiple systems, such as for sensorimotor integration or visual19

processing, for recalling and updating[53–55].20
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Finally, we found that the encoding strength of regions in the DAN and functional1

connectivity between these regions scaled based on the subject’s overall performance. We2

observed that top and bottom performers have different strategies. Top performers more3

strongly encoded error history in and between the regions in the DAN. Hence, they were4

more engaged in the task and modulated their attention based on the error state. This led5

to them slowing down after they moved too quickly and vice versa as predicted by their6

model weights. Meanwhile, bottom performers have poor attentional control and memory7

capacity and thus did not learn from their mistakes. Studies have shown that poor overall8

behavioral performance is related to decreased activity in DAN[56–60] (called “out of the9

zone” [61]), fluctuations in attention and working memory known as “lapse in10

attention”[62–64], and poor connectivity in DAN[65,66]. Clinically, studies of Attention Deficit11

Hyperactivity Disorder (ADHD) found compromised performance during working12

memory tasks is related to poor attentional control in DAN-related regions[67,68], similar to13

what we observed in our poor performers.14

Modulation of default network with environmental uncertainty and15

links to performance16

The random perturbations made our task more difficult by creating uncertainty in the17

environment. Our models show that subjects also kept track of past perturbations18

suggesting possible attempts to learn the environment. We found that the regions whose19

activity correlated with the perturbed state were in the DN and did so primarily in the20
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frequency bands theta and alpha (below 15 Hz). That is, regions in the DN encoded the1

perturbed state by increasing activity when the environment was perceived to be more2

uncertain. This function of the DN is similar to a recent study by Brandman et al. in which3

they found that the DN activated immediately following unexpected stimuli in the form4

of surprising events during movie clips[69]. They suggested that the DN could be involved5

in prediction-error representation, which our results also support. Furthermore, these6

authors found that DN also coactivated with the hippocampus during unexpected stimuli.7

This finding parallels a previous report from our dataset which demonstrated activation of8

the hippocampus activated in response to motor uncertainty[70]. A proposed process9

model of reinforcement learning incorporates regions in the DN and hippocampus that10

predict and evaluate the semantic knowledge about the environment to inform future11

behavior[71]. Taken together, our findings suggest that we captured the DN responding to12

the unexpected stimuli by updating semantic knowledge about the environment which13

informs future behavior based on the perturbed state.14

Behaviorally, our model did not establish a link between subjects’ performance and how15

they handled past perturbations but our analysis of neural activity revealed that top16

performers demonstrated increased activation of regions in DN in response to the history17

of perturbations as well as correlated activity across regions between trials. Since subjects18

have no control over the perturbations, we speculate that the only thing they can do is to19

learn how to react in a way that optimizes their performance. Although they are applied20

to random trials and in random directions, perturbations are always applied during the21
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beginning of the movement. Therefore, subjects can learn to prepare themselves in a way1

they see fit. Our findings suggest that top performers effectively implement their new2

semantic knowledge about the environment to explore different approaches to prepare for3

the possibility of future perturbations. DN becomes more activated during early4

learning[45], particularly when motor imaginary is used[72]. In fact, athletes (i.e., experts or5

top performers) have been shown to activate the DN when employing strategies that6

decrease variability, resulting in stable performance during movement[66]. The7

phenomenon, known as “in the zone”[61], has been linked to the DN activation with8

consistent performance associated with preparedness[66,73,74] and vigilance[75]. Hence,9

activation of DN indicates those subjects are prepared for the chance of a perturbation.10

Taken together, these findings suggest that top performers react to uncertainty by11

heightening vigilance through activation and connectivity in DN.12

General implications for understanding motor control13

Observing movement variability in the form of motor error is common in motor control,14

with paradigms typically focused on aspects of motor learning. Numerous motor control15

studies have found—directly or indirectly—the involvement of regions in DAN and16

working memory[50,54,76]. In fact, our results align with classic motor control reports when17

considering their results in terms of networks. For example, Diedrichsen et al. identified18

neural correlates of error in DAN and visual networks, represented by SPL and POS19

respectively[77], identical to ours. Gnadt & Anderson observed persistent activity in IPS20
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(hub for DAN) in relation to target location during the delay in motor planning,1

connecting their results to memory[49]. In a study directed towards large-scale brain2

networks, DAN activation during early learning was correlated with decreased error rate,3

which they related to active visuospatial attention when first learning the sequence[45].4

Study limitations5

This study highlights the complexity of behavioral and neural data have as well as how6

challenging it is to disentangle internal states from other processes, nevertheless, we7

acknowledge several limitations inherent to our approach. First, it is possible that some of8

our neural data that includes results from epileptic brain regions in which activity could9

differ from comparable regions in healthy humans, despite precautions we took to10

minimize this possibility as discussed in Methods. The effects of anti-epileptic medications11

is another confounder that can influence the magnitude of the results, though subjects12

ceased their medications during clinical investigation. At this time, the only ethical13

method to record from the brain necessary for our study using SEEG depth electrodes in14

humans is while they are implanted for clinical purposes. Second, our behavioral data was15

limited by the design of the motor task and trial conditions, including two speeds and16

four directions. Future experiments could explore other trial conditions, like introducing17

obstacles into the task space or other stimuli such as audio. One could also imagine18

designing a study that picks trial conditions to produce desired variability from a subject19

based on model inferences about their internal states. Third, we focused on using a simple20
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modeling approach, which raises the possibility that a key factor in a subject’s behavioral1

variability may be absent from our model. Contrarily, this simplicity allows for other2

variables, such as other trial conditions or internal states, to be easily designed and3

integrated to create a model for a variety of behavioral tasks.4

Conclusion5

In conclusion, our findings provide a new viewpoint for motor control research. Our6

results raise the possibility that measured behavior from devices such as smartphones7

could be used to make inferences about a person’s brain state without needing to collect8

electrophysiological data, saving time and money in the health field for personalized9

medicine[78] or business ventures such as sports[79]. Future studies in motor control should10

consider the effect of these networks on motor control and should account for the effects11

of internal states as we found that they play a significant role in governing behavior and12

its variability.13
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Online Methods1

Recording neural data from humans. Ten human subjects (seven females and three2

males; mean age of 34 years) were implanted with intracranial SEEG depth electrodes and3

performed our motor task at the Cleveland Clinic. These subjects elected to undergo a4

surgical procedure for clinical treatment of their epilepsy to identify Epileptogenic Zone5

(EZ) for possible resection. Details of the demographic and clinical information of each6

subject are listed in Table 1. All experimental protocols were approved by the Cleveland7

Clinic Institutional Review Board. Subject criteria required volunteering individuals to be8

over the age of 18 with the ability to provide informed consent and able to perform the9

motor task. Other than the experiment, no alterations were made to their clinical care. We10

excluded two additional subjects who attempted to perform the task but failed to11

complete it.12

Each subject was implanted with 8–14 stereotactically-placed depth electrodes (PMT®
13

Corporation, USA). Each electrode had between 8–16 electrode channels (henceforth14

referred to as channels) spaced 1.5 mm apart. Each channel was 2 mm long with a diameter15

of 0.8 mm. Depth electrodes were inserted using a robotic surgical implantation platform,16

(ROSA®, Medtech®, France) in either an oblique or orthogonal orientation. This procedure17

granted access to broad intracranial recordings in a three-dimensional arrangement, which18

included lateral, intermediate, and/or deep cortical as well as subcortical structures[80].19

The day prior to surgery, volumetric preoperative Magnetic Resonance Imaging (MRI)20
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scans (T1-weighted, contrasted with Multihance®, 0.1 mmol kg−1 of body weight) were1

obtained to plan safe electrodes trajectories that avoided vascular structures2

preoperatively. Postoperative Computed Tomography (CT) scans were obtained and3

coregistered with preoperative MRI scans to verify electrode placement postoperatively4

following implantation[80]. Electrophysiological data in the form of Local Field Potential5

(LFP) activity (Fig. 4b) were collected onsite in the Epilepsy Monitoring Unit (EMU) at the6

Cleveland Clinic using the clinical electrophysiology acquiring system (Neurofax7

EEG-1200, Nihon Kohden, USA) with a sampling rate of 2 kHz referencing an exterior8

channel affixed to the skull. Each recording session was also determined to be free of any9

ictal activity.10

Inducing movement variability using our motor task. Our motor task was a11

center-out delay arm reach where subjects won virtual money by controlling a cursor on a12

screen to reach a target with an instructed speed despite a chance of encountering a13

random physical perturbation[70,81–83]. Subjects performed this task in the EMU using a14

behavioral control system, which consisted of three elements: a computer screen, an15

InMotion2 robotic manipulandum (Interactive Motion Technologies, USA), and a16

Windows-based laptop computer[81]. The computer screen (640×480 px) was used to17

display the visual stimuli to the subject. Subjects were seated approximately 60 cm in front18

of the screen. The robotic manipulandum allowed for precise tracking of the arm position19

in a horizontal two-dimension plane relative to the subject. The subject used the robotic20
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manipulandum to control the position of a cursor on the computer screen during the1

motor task restricted to a horizontal two-dimension plane relative to themselves. The2

laptop computer ran the motor task using a MATLAB-based software tool called3

MonkeyLogic[84,85].4

During the session, subjects would complete as many trials as they could in 30 min. A5

complete trial consisted of eight epochs, each distinguishable with unique visual stimuli6

shown in Figure 1a. Subjects began each trial with an instructed speed, indicating whether7

they were supposed to move fast or slow (Speed Instruction). Next, subjects moved their8

cursor to a target in the center of the screen (Fixation). Once centered, subjects were9

presented with a target in one of the four possible directions (Show Target). A random10

delay was applied here in which subjects could not move their cursor out of the center11

until cued to do so. This cue was signaled as the target changing color from grey to green12

(Go Cue). After their cursor left the center (Movement Onset), there was a chance that a13

constant perturbation would interrupt their movement. Subjects were still expected to14

reach the target with the correct speed despite the perturbation. Once they reached (Hit15

Target) and held their cursor in the target, subjects were immediately presented with16

feedback of their trial speed compared to the instructed speed (Speed Feedback). The17

reward they were shown depended on if they matched the instructed speed or not (Show18

Outcome). An image of an American $5 bill was presented for correct trials while the same19

image overlaid by a red “X” was presented for incorrect trials. It should be noted that20

subject did not receive any monetary reward for participating in this task. Epochs are21
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structured into traditional phases of motor control based on the design of the experiment.1

Planning includes Speed Instruction, Fixation, Show Target and Go Cue, Execution includes2

Movement Onset and Hit Target, and Feedback includes Speed Feedback and Show3

Outcome.4

Subjects could fail a trial for any of the following reasons: not acquiring the center during5

Fixation, leaving the center before Go Cue, failing to leave the center after Go Cue, or6

inability to reach the target during Movement Onset. Regardless of the reason, the rest of7

the trial was aborted and subjects were presented with a red “X” before moving to the8

next trial.9

We only used completed trials (i.e., trials in which the Speed Feedback was reached) for10

our study. Subjects were aware that perturbations would be applied. Additionally, subjects11

were allowed as much time as they wanted to practice the motor task before the session12

began, which included the speeds, directions, and perturbations.13

At the end of each session, the session performance of each subject was calculated as14

100 ∗ (Number of completed trials with correct speed)/(Number of completed trials).15

Session performance of 0 % means the subject achieved the correct speed on none of their16

trials and session performance of 100 % means the subject achieved the correct speed on17

all of their trials. To differentiate the performance of a trial (i.e., correct or incorrect) from18

the session (i.e., percent of correct trials), we refer to the former as trial performance. Finally,19

we grouped subjects by comparing their session performance to the average session20
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performance of the population (51 %). Those who performed higher than average are1

called ”top performers” and those who performed lower than average are called ”bottom2

performers”.3

There are three trial conditions that varied from trial-to-trial: the instructed speed, the4

instructed target direction, and the type of perturbation. Speed refers to the binary5

condition categorizing the instructed speed (fast, slow). Either speed was equally likely6

for each trial. In actuality, the categorical representation of speed translates to a range of7

values based on the percent of a subject-specific maximum speed measured during8

calibration; when they were told to move the cursor “as quickly as possible” from the9

center to a right target over five trials just before starting the experiment. Fast trials10

accepted 66.67±13.33 % and slow trials accepted 33.33±13.33 % of their calibration speed.11

Direction refers to the four possible locations of the target relative to the center of the12

computer screen (down, right, up, left). The probability of each location was equally like13

for each trial. Perturbation refers to the type of perturbation, if any, that was experienced14

during the trial (unperturbed, towards, away). Each trial had a 20 % probability of a15

perturbation being applied with a random force between 2.5 to 15 N at a random angle,16

both selected from a uniform distribution. The perturbation was physically applied to the17

subject using the robotic manipulandum and would persist until the subject was shown18

their feedback. Perturbations can be categorized based on the angle it was applied relative19

to the target direction: towards or away. All other trials are unperturbed. The summary of20

the trial conditions experienced by each subject are listed in Supplementary Table 4.21
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In addition to trial conditions, we also tracked two continuous values that incurred1

movement variability from trial-to-trial: Reaction Time (RT) and Speed Error (SE). The RT (in2

seconds) was quantified as the time it took for a subject to move their cursor out of the3

center after Go Cue. The SE was quantified as the difference between the middle of the4

range of the instructed speed (0.33 or 0.67) and their trial speed. The trial speed was found5

by dividing the constant distance between the center and the target (in pixels) with the6

total time between Go Cue and Hold Target (in seconds), then scaling it by their7

calibration speed. The SE can take on a value between −0.67 to 0.67, where a positive SE8

means the subject moved slower than instructed (i.e., too slow), a negative SE means the9

subject moved faster than instructed (i.e., too fast), and a SE between −0.13 and 0.1310

means the subject was within the acceptable range for the trial to be correct. The statistics11

of the RT and SE for each subject are listed in Supplementary Table 5.12

Estimating internal states to capture movement variability. We sought to construct13

a behavioral model to capture movement variability based on data collected during our14

goal-directed center-out delay arm reach motor task . The behavioral data consisted of any15

quantifiable measurements from the motor task, namely the trial conditions, RTs, and, SEs.16

Our system follows the framework outlined in Figure 2a. It takes on the structure of a17

state-space representation and consists of three basic elements for each trial t: outputs,18

inputs, and internal states. Based on the design of our motor task, we assume that a19

movement on every trial goes through two phases: planning and execution. This is20
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represented by two boxes seen in Figure 2a. The inputs of planning are speed and1

direction while the output is RT. The input of execution is perturbation as well as the RT2

from planning while the output is SE. Internal states are drawn as a black dashed line for3

illustrative purposes. They provide feedback for both planning and execution. This is4

because the internal states update is based on trial history (such as past performance or5

trial conditions). This information then flows through our system to affect the outputs.6

Though it is not labeled, the dotted line from planning to execution also carries the inputs7

from the planning system (speed and direction) to be available for the downstream system.8

Therefore speed and direction are also available for modeling SE. However, perturbation9

is not available for RT because perturbations happen after RT. However, the history of the10

trial conditions from previous trials is available through the internal states.11

The outputs, RT and SE, are denoted yRT
t ∈ R and ySE

t ∈ R respectively. They are directly12

measured from the behavioral data during the motor task. The RT was normalized using13

the z-score before any modeling was performed so each subject followed a standard14

normal distribution (i.e., N (0, 1)). The SE innately followed a continuous uniform15

distribution (i.e., U[−0.67,0.67]) and was not normalized. Refer to Supplementary Table 5 for16

the statistics of outputs.17

The inputs are the trial conditions of the motor task: speed, direction, and perturbation.18

They are also directly measured. They are described as categorical variables, denoting19
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speed as uS
t ∈ {fast, slow}, direction as uD

t ∈ {down, right, up, left}, and perturbation as1

uP
t ∈ {unperturbed, towards, away}.2

The internal states we defined are the error state and perturbed state, denoted xSE
t ∈ R and3

xP
t ∈ R respectively.4

Our system is broken down into the phases of planning and execution (Fig. 2a). The5

behavioral outputs of planning and execution are RT[86] and SE[25], respectively. They are6

separated by a delay for maximal separation[87]. It is important to note that the states7

remain constant between planning to execution since neither state has information to8

update until after a movement is complete. Each phase is associated with its own9

mathematical function relating the outputs as a linear combination of states and inputs10

available on trial t. The task begins with the planning phase, written as:11

yRT
t = βRT

0︸︷︷︸
Constant

+ βSE
RTx

SE
t︸ ︷︷ ︸

Error state

+ βP
RTx

P
t︸ ︷︷ ︸

Perturbed state

+
∑

s∈{fast, slow}

βs1(uS
t = s)

︸ ︷︷ ︸
Speed

+
∑

d∈{down, right,
up, left}

βd1(uD
t = d)

︸ ︷︷ ︸
Direction

+ ϵRT
t︸︷︷︸

Noise

, (1)

where ϵRT
t is an independent normal random variable with zero mean and variance12

σ2
RT ∈ R ≥ 0. In other words, it defines the output of planning on trial t as RT and is the13

linear combination of a constant, error state, perturbed state, speed, and direction on trial14

t, scaled by their respective weights (β’s). This is followed by the execution phase written15
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as:1

ySE
t = βSE

0︸︷︷︸
Constant

+ βSE
SEx

SE
t︸ ︷︷ ︸

Error state

+ βP
SEx

P
t︸ ︷︷ ︸

Perturbed state

+ βRT
SE y

RT
t︸ ︷︷ ︸

RT

+
∑

s∈{fast, slow}

∑
p∈{unpert.,

towards, away}

βs,p1(uP
t = p)1(uS

t = s)

︸ ︷︷ ︸
Type of perturbation

+ ϵSE
t︸︷︷︸

Noise

, (2)

where ϵSE
t is an independent normal random variable with zero mean and variance2

σ2
SE ∈ R ≥ 0. It defines the output of execution on trial t as SE and is the linear3

combination of a constant, error state, perturbed state, RT, and the combination of speed4

and perturbation on trial t, scaled by their respective weights (β’s). By our definition, RT5

will always be available as an input for SE. Though speed is not a direct input to execution6

(Fig. 2a), it also carries over from planning. We found the combination of speed and7

perturbation captured SE well as compared to any other linear combination of trial8

conditions. This combination is supported by intuition as well as in literature[88]. On one9

hand, a slow trial with an away perturbation could help subjects reduce the magnitude of10

their SE by forcing them to move slower. On the other hand, a fast trial with an away11

perturbation could make it harder to match the speed, making a negative SE (too slow)12

more believable.13

To capture the history of their performance of speed error during the task, we used SE to14

update the error state:15

xSE
t = αSE xSE

t−1︸︷︷︸
Error memory

+ ySE
t−1︸︷︷︸

Speed error

. (3)

The degree to which the previous state weighs into the current state is scaled by αSE,16

which ranges between 0 and 1. An αSE closer to 0 means the error state will quickly decay17
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to 0 on subsequent trials while a αSE closer to 1 means the error state will retain its value,1

such as the case for subjects who carry information over from trial-to-trial. The input is the2

SE from the previous trial. It ranges in value between −0.67 and 0.67, where a positive SE3

(ySE > 0) means they moved slower than instructed and a negative SE (ySE < 0) means4

they moved faster than instructed. Therefore, a positive error state indicates the5

accumulation of trials that were slower than instructed whereas a negative error state6

indicates the accumulation of trials that were faster than instructed. The sign of the7

weights βSE in equations (1) and (2) depicts how the behavior of a subject would respond8

to the error state. Take the case when the error state is positive (i.e., moving slower than9

instructed). A positive βSE
RT would increase the RT, thus subjects would react slower after10

trials in which they moved slower than instructed. Conversely, a negative βSE
RT would11

decrease their RT and subjects would react faster after trials in which they moved slower12

than instructed. For SE, a positive βSE
SE would increase the SE, meaning subjects would13

continue to move slower than instructed on subsequent trials. A negative βSE
SE would14

decrease the SE, meaning subjects would move faster than instructed on subsequent trials.15

To capture the effect of perturbations on their behavior, we used an indicator on whether16

the perturbation input detected a perturbation either towards or away to update the17

perturbed state:18

xP
t = αP xP

t−1︸︷︷︸
Perturb memory

+
∑

p∈{towards,away}

1(uP
t−1 = p)

︸ ︷︷ ︸
Perturbation

. (4)
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The perturbed state receives a positive pulse when perturbation was applied, regardless of1

the type of perturbation that was applied. Therefore, state only deviated from 0 when a2

perturbation was introduced. In the absence of a perturbation, the system would decay3

with a rate constant of αP, which ranges between 0 and 1 whereas a αP closer to 04

indicates that the state will decay back to 0 by the next trial. A αP closer to 1 means that5

subjects would carry over perturbations into subsequent trials through the perturbed state6

if it has not fully decayed to 0. Because of its structure, the perturbed state can only be7

positive or 0, where 0 means that perturbations do not effect behavior. The perturbed state8

effects behavior based on the sign of βP in equations (1) and (2), so long as the perturbed9

state is not 0. In terms of RT, a positive βP
RT will increase the RT after a perturbation.10

Therefore, subjects with a positive weight will react slower than average after perturbation11

trials. A perturbation will also effect the SE based on the sign of βP
SE. A positive βP

SE will12

increase SE after perturbation trials, i.e., subjects will move slower than instructed after13

perturbations. Subjects where both weights are positive suggests that they hesitant in14

response to recent perturbations captured by their perturbed state.15

Unlike the other elements in our system, the internal states cannot be directly measured16

because they are subjective. They are an internal representation of the environment that an17

individual defines which evolves given new information. Instead, internal states are18

dynamically updated on a trial-by-trial basis by weighing their past states. Both must be19

estimated using a first-order state evolution equation, whose function is controlled by20
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what is added to it in addition to their past states. The general solution is:1

x̂t = α(t−1)x̂1︸ ︷︷ ︸
Initial state

+
t−1∑
i=1

α(t−i−1)ui︸ ︷︷ ︸
Cumulative state

. (5)

Therefore, the states are not simply a weight of the previous trial but capture the2

accumulation of history from previous trials.3

Thus, Equations (3) to (2) make up our system. But the system is not complete until fitting4

the models. Model fitting consisted of finding the combination of weights (α’s and β’s)5

that minimized the root-mean-squared error between the observed and estimated outputs6

for each subject using all complete trials. First, the α’s were found using a grid search7

between 0.01 and 0.99 at an interval of 0.01 with the initial conditions xSE
1 = xP

1 = 0 to8

estimate the internal states. Additionally, the internal states were normalized using the9

z-score so their weights could be compared across subjects. Then, the weights were found10

using methods about generalized linear model, which solves for the maximum likelihood11

estimation. The resulting states and weights were applied to estimate the outputs. The12

combination of weights with the largest Pearson correlation value between observed and13

estimated outputs was selected as the final model. This process was repeated for each14

subject to create their custom model fitting, complete with their own individual evolution15

of internal states.16

To show the adequacy of our model, we also built a subject-specific linear model that17

relied only on trial conditions. The linear model was a simple linear regression between18

the outputs (i.e., RT and SE) and inputs (i.e., speed, direction and RT, speed, perturbation).19
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All models were evaluated using the coefficient of determination and deviance for1

comparison. The coefficient of determination was used to quantify how much the2

variability of the outputs can be explained by the inputs. It ranges in value between3

0 and 1, where 1 means that the estimated outputs completely accounts for all the4

variability of the observed outputs. The deviance was used to compare the error of each5

model. This can be helpful as an absolute measurement of goodness-of-fit to compare6

models by measuring the trade-off between model complexity and goodness-of-fit.7

Deviance can be any positive value, where a deviance of 0 means that the model describes8

the observed outputs perfectly.9

Neural data preprocessing. We used spectral analysis to preprocess the LFP activity10

from each channel. First, a Notch filter was applied using notches located at the11

fundamental frequency of 60 Hz with bandwidth at the −1 dB point set to 3 Hz. Next, the12

oscillatory power was calculated using a continuous wavelet transform with a logarithmic13

scale vector ranging 1–200 Hz and complex Morlet wavelet with a default radian14

frequency of ω0 = 6. The resulting instantaneous power spectral density was divided into15

overlapping time bins using a window of 100 ms every 50 ms. All overlapping time bins16

were averaged together and labeled with the last time index corresponding to that17

window. Finally, the averaged power spectral density was normalized to equally weigh all18

frequency bins by taking the z-score of the natural logarithm of the power in each19

frequency bin over the entire recording session time. All channel recordings were visually20
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inspected for artifacts before and after preprocessing. Examples of artifacts include1

broadband effects, abnormal bursts of power, and faulty recordings. Any channels with2

artifacts were disregarded for the entire session. Figure 4c shows the result of the spectral3

analysis for a channel as a spectrogram, where the color of each pixel represents the4

normalized power indexed by the color bar (between −3 and 3) at a specified frequency5

and time.6

The results of our analysis depend heavily on how channels are aggregated using their7

anatomical labels. Therefore, it was important to ensure that their labels were unbiased8

across subjects. We applied a semi-automated electrode localization protocol to determine9

the coordinates of each channels per subject by fusing their preoperative MRI with10

postoperative CT[89]. This protocol also labeled each channel using an anatomical atlas[90]
11

and a large-scale functional brain network atlas[91] based on their coordinates onto a12

subject-specific cortical parcellation[92]. The anatomical labels were validated by a clinician.13

To visualize the coverage of channels across the populations, their coordinates were14

warped from the subject’s native space to the standard Montreal Neurological Institute15

(MNI) atlas space[93]. All channels could then be visualized on a common template brain16

(cvs avg35 inMNI152) from FreeSurfer[92]. Figure 4a shows the electrode placement of17

all subjects projected onto this template brain.18

Identifying regions that encode internal states After neural data preprocessing, we19

used an unsupervised paradigm to identify where internal states are encoded in the brain20
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of the population. We accomplished this using a non-parametric cluster statistic[35]. Details1

on how this method was applied to similar data by our group[19]. Here, we used a2

two-tailed permutation test with N = 1, 000 and a significance threshold of α = 0.05. In3

short, the procedure works by finding windows of time and frequency where the LFP in a4

channel (measured as power in the spectrogram) that covary with an internal state across5

the population, which are formed by aggregating the anatomical labels of the channels6

from all subjects. The result are windows of time and frequency, known as clusters, across7

brain regions.8

Clusters that were too small (i.e., had windows less than 250 ms in time, one octave in9

frequency, or area smaller than the minimum time and frequency windows specified)10

were discarded. We also discarded regions that had less than two subjects contributing to11

the cluster. A false discovery rate of q = 0.015 was then applied to correct for multiple12

comparisons between regions and epochs. Clusters are confined to predefined windows of13

time set by the epoch it was recorded from for the analysis. However, since neural activity14

is continuous, information it may be encoding could carry over from one epoch to the next.15

Therefore, clusters in the same region with overlapping frequency bins across epochs were16

grouped for further analysis. This also meant that a region could come up multiple times,17

such as the case if separate clusters were found in different frequency bins in the same18

epoch.19
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Each group of clusters was assigned a frequency band. The frequency band was identified1

by matching the frequency bins to frequency bands commonly defined in literature: delta2

(1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), low gamma (30–60 Hz), high3

gamma (60–100 Hz), and hyper gamma (100–200 Hz). If the group of clusters spanned4

multiple frequency bands, then the band that made up the majority of the group of5

clusters was prioritized.6

Further, we observed two distinct temporal patterns of activity that described each group7

of clusters; persistent or phasic. Persistent activity refers to a group of clusters whose8

activity stretched across all epochs during a trial. Phasic activity refers to a group of9

clusters whose activity only appeared during specific epochs of a trial related the10

movement phase (i.e., planning, execution, feedback).11

Calculating encoding strength We hypothesized that neural activity in encoding12

networks of top performers will modulate with internal states more than bottom13

performers. To test this, we quantified how well a region covaries with the internal state14

using encoding strength and compared it to session performance across subjects. We15

calculated the encoding strength of group of clusters for each subject by replicating the16

procedure from the non-parametric cluster statistic. For each group of clusters, we first17

averaged the neural activity in its time-frequency window across the epochs it spans for18

each channel, trial, and subject. Next, we then found the magnitude of the Spearman19

correlation value between this averaged neural activity and the internal state across all20
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trials for each channel and subject. Finally, we averaged these correlation magnitudes1

across channels in a subject with the same group of clusters. This value is the encoding2

strength of the group of clusters for a subject of a region. Because it is derived from the3

magnitude of the correlation, it takes on a value between 0 and 1, where 1 means the4

neural activity exactly follows the internal state across trials.5

To identify regions that encode internal states and performance, we correlated the6

encoding strength of each group of clusters to the session performance across subjects.7

This allowed us to identify the regions that not only encoded the internal states, but also8

related to session performance (i.e., subject variability). These performance-related regions9

were those whose Pearson correlation value exceeded 0.75 or p-value was significant10

(p < 0.05). We did not rely solely on significant p-values because the largest possible11

sample size (i.e., n ≤ 10) was small. Further, we used the magnitude of correlation value12

because we were interested in the relationship between encoding strength and session13

performance, not the direction of encoding (i.e., positive or negative). Because we were14

focused on comparing top and bottom performers, we rejected regions that did not have15

both type of performers.16

A table of these regions can be found in Table 2 and Table 3 for error and perturbed state,17

respectively. They are also displayed on an inflated brain template in Figure 5a and18

Figure 5b, where gyri and sulci can be visualized together.19

47

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 17, 2022. ; https://doi.org/10.1101/2022.08.16.504130doi: bioRxiv preprint 

https://doi.org/10.1101/2022.08.16.504130


Calculating connectivity strength We hypothesized that differences in functional1

connectivity within and between networks that encode internal states account for learning2

strategies of top and bottom performers. To test this, we compared functional connectivity3

with session performance across subjects. Functional connectivity is defined as dynamic4

connections between neuronal populations through oscillatory activity[94]. There are many5

ways to calculate functional connectivity[94]. We chose to use cross-correlation using a lag6

of 0, which simply becomes the Pearson correlation value[36,95].7

To calculate connectivity, we began by averaged the neural activity of each group of8

clusters using its time-frequency window across the epochs it spans for each channel, trial,9

and subject. Then, we found the magnitude of the Pearson correlation value between each10

pair the averaged neural activity of group of clusters and channels for each subject across11

trials. Pairs of channels in the same group of clusters were then averaged within each12

subject. These values represent the connectivity strength of the pair of regions for each13

subject. Because it is derived from the magnitude of the correlation, it takes on a value14

between 0 and 1, where 1 means the activity of the pair is perfectly correlated across trials.15

To combine the correlation values across subjects for a population analysis, correlation16

value were first transformed using Fischer’s z transformation[96] before averaging between17

the same pair of region labels. After averaging, the values were transformed back into18

correlation values using Fischer’s z transformation[96] due to our small sample size[97].19

These values represent the connectivity strength of the population. Any pairs that had20
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fewer than two subjects were excluded. Likewise, connectivity strength on the diagonal1

(i.e., autocorrelations) were ignored for both subject and population connectivity strengths.2

To identify pairs of regions whose connectivity encodes the internal states and3

performance, we correlated the connectivity strength of each pair of regions to the session4

performance across subjects. Following the same criteria as encoding strength, only pairs5

whose Pearson correlation value exceeded 0.75 or p-value was significant (p < 0.05) were6

considered. Any pairs that did not include both a top and bottom performer were7

excluded.8
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Figure 1

Figure 1 | Movement variability across subjects and trial conditions for motor task.2

Summary of behavior during motor task shows variability within and between subjects3

that is independent of trial conditions yet correlates with their session performance. a, A4

detailed timeline of epochs during a single simulated trial shown using. The name of each5

epoch is above each visual stimuli. The interval of time in which the stimuli were6

presented is in the bottom right corner of each simulated screen. The trial conditions7

(speed, direction, perturbation) for this example are fast, up, and unperturbed. This trial is8

also correct. b, Time-series of the observed RT (top) and SE (bottom) across all trials and9
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subjects. Subject 6 is traced in black. The remainder of the subjects are traced in gray. c,1

Observed RT (top) and SE (bottom) for all trials and subjects separated by the trial2

conditions. Each marker represents the behavior of a subject during a trial with the3

specified trial conditions. Subject 6 is colored as black. The remainder of the subjects are4

colored as gray. The dark gray dotted line on top plot indicates the average population RT5

(0.80 s). The dark gray dotted lines on bottom plot indicates the tolerance of SE between6

−0.13 and 0.13, where markers between these lines represents correct trials. The arrows7

indicate the interpretation of the behavior relative to average. d, Comparison of the8

Standard Deviation (STD) of the observed RT (top) and SE (bottom) and performance9

group of each subject. Each marker is labeled by the subject it represents and colored by10

the performance group they belong too. Subjects with session performance below average11

session performance of the population (51 %) are called “bottom performers” (dark green)12

and those below are called “top performers” (light green). Subject 6 is outlined in black.13

The group mean is represented by the black solid line and ±1 STD is represented by the14

grey box. There is a a relationship between behavior variability and session performance15

in which better performers are less variable.16
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Figure 2 | Influence of model variables for estimating behavioral model. a, Block1

diagram for our dynamical model, representing the brain, that models behavior to capture2

movement variability. Internal states are outlined by a dotted line to highlight its latent3

feedback structure in the model. Examination of the model variables for subject 6 reveals4

underlying latent dynamics from the internal states that leads to the improvement of5

estimated behavior across all subject. The triangle in panels b-d marks trial 109. b,6

Time-series of the observed (gray solid line) and estimated (black solid line) RT over all7
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trials for subject 6. The shaded area around the estimated line represents the 95 %1

confidence bounds. The dark gray dotted line markers their average RT. c, Time-series of2

the conditions (orange solid line) and states (purple solid line) over all trials for subject 6.3

The dark gray dotted line markers their average RT. Adding the conditions and states4

together yields the estimated RT. d, Time-series of the error state (blue solid line) and5

perturbed state (red solid line) over all trials for subject 6. For demonstrative purposes, the6

states are not weighted but are scaled by their standard deviation. The dark gray dotted7

line is marked at 0. e, Goodness-of-fit for the RT (left) and SE (right) models across all8

subjects. This was measured using the coefficient of determination between the observed9

and estimated behavior, which ranges between 0 % (worst) and 100 % (best). We compared10

the behavioral models with internal states (“With states”) to a models with the same trial11

conditions but without internal states (“Without states”). Each marker is labeled by the12

subject it represents and color-coded based on their performance group (dark green for13

bottom performers and light green for top performers). Subject 6 is outlined in black.14

Adding internal states significantly improved the goodness-of-fit of the model for all15

subjects (p-values inset, paired t-test), as larger values are better. Top performers benefited16

the most from adding internal states to RT.17
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Figure 3 | Weights on internal states show subjects use different motor strategy.1

Comparison between the internal states weights and performance group reveals that top2

performers learn from error and became more vigilant after perturbations. The larger the3

magnitude of the weight, the larger the impact the internal state has on behavior. The sign4

determines the impact the internal state has on behavior. Each marker is labeled by the5

subject it represents and color-coded based on their performance group (dark green for6

bottom performers and light green for top performers). Subject 6 is outlined in black. The7

group mean is represented by the black solid line and ±1 STD is represented by the grey8

box. The dark gray dotted lines marks where weights equal 0 (i.e., internal state does not9

impact behavior). a, Top performers countered their error by reacting faster than average10

(negative weight) and bottom performers maintained their error by reacting slower than11
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average (positive weight) after moving too slow (positive error state). b, Top performers1

tended to move too fast (negative weight) and bottom performers tend to move too slow2

(positive weight) after moving too slow (positive error state). c, Half of top performers and3

all bottom performers hesitated after perturbation trials (positive perturbed state) by4

reacting slower (positive weight). d, One half of subjects hesitated by moving too slow5

(positive weight) and the other half hastened by moving too fast (negative weight) after6

perturbations trials (positive perturbed state).7
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Figure 4 | Identifying correlates between neural data and internal states. a, Each subject1

was implanted with multiple intercranial depth electrodes (SEEG). This electrode2

coverage can be visualized by mapping subject-specific coordinates of each channel onto a3

template brain. Each marker represents the coordinates of a channel from the native space4

of the subject warped to a common atlas space and are color-coded for each subject. Left5

(L) and Right (R) hemisphere are labeled. b, We simultaneously recorded Local Field6

Potential (LFP) activity (in mV) at millisecond resolution from each of these channels7

along the electrode, which mainly covered temporal, parietal, and limbic brain regions.8

The LFP activity from subject 6 is shown, with the arrows indicating the location of the9

channel they are recorded from. c, Graphical representation of non-parametric cluster10

statistic between neural data and internal states. Following subject 6 as an example, we11
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found a relationship between the brain region intraparietal sulcus right (IPS R) and their1

error state. The spectral data (left) is represented by the time–frequency domain where the2

color of each pixel represents the normalized power at the specified time and frequency3

bin. The statistic finds time-frequency windows (left, outlined in black) in which the4

average power of each pixel within the window (top right) correlates with the internal5

states (bottom right) across trials. For example, the spectral data belongs to trial 1096

(marked by the vertical black line in b at 24.34 min) and the average normalized power in7

the outlined window is circled (top right).8
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Figure 5 | Neural activity in large-scale brain networks that encode internal states scales1

based on session performance. Summary of regions found by our analysis that encode2

the a, error state and b, perturbed state. They are highlighted on an inflated template brain3

based on the large-scale brain network they belong to: DAN in dark blue, DN in red,4

Somatomotor in green, VAN in light blue, and visual in yellow. The light gray areas5

represent the gyri and the dark gray areas represent the sulci. The white areas represent6

regions included in our analysis but did not encode the state. Top and bottom performers7

encoded the c, error state and e, perturbed state to different degrees. Each marker8

represents the average encoding strength in a region that encodes the state for each9

performance group and is color-coded by the network the region belongs to. An encoding10

strength of 1 means the state is strongly encoded by the activity of a region whereas 011
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means the state is not encoded. The average encoding strength of the performance group1

is represented by the black solid line and ±1 STD is represented by the grey box. We found2

that top performers had neural activity that modulated significantly more with either3

internal states than bottom performers (p-value in panel, two-sample t-test). Examples of4

data used to calculate the encoding strength of a top (top) and bottom (bottom) performer5

for the d, error state and f, perturbed state. The left superior parietal lobule (SPL L)6

between top subject 9 and bottom subject 4 in the DAN represents the error state and the7

right angular gyrus (AG R) between top subject 10 and bottom subject 1 in the DN8

represents the perturbed state. Each marker represents a trial, with the corresponding9

neural activity of the cluster for a channel in the specified region and normalized state10

value. The magnitude of this correlation was used to calculate the encoding strength. The11

light gray solid line represents the least-square line. The Spearman correlation (r) and12

p-value (p) are included in each panel.13
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Figure 6 | Network connectivity of top performers supports learning strategy. Directed1

graph depicting the strength of the relationship between connectivity strength and session2

performance for each pair of regions. The regions are color-coded by the large-scale brain3

network they belong to: DAN in dark blue, DN in red, VAN in light blue, and visual in4

yellow. Only the pairs of regions whose connectivity strength related to session5

performance are shown. The magnitude of the correlation between connectivity strength6

and session performance are depicted by the thickness of the edge; the higher the7

correlation, the thicker the edge with values truncated after 0.5. The regions are ordered by8

when they encode each state and its phase is labeled along the circumference,9

demonstrating synchrony across time. a, Functional connectivity for top performers10

between pairs of regions that encode the error state. b, Functional connectivity for top11

performers between pairs of regions that encode the perturbed state.12
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Tables1

Subject Sex Handedness Age of surgery Durations Epileptogenic zone
(years) (years)

1 female right 41 38 Right hippocampus, Right
entorhinal cortex, Right
temporal pole

2 female right 34 5 Right middle temporal
gyrus, Right temporal pole,
Right superior temporal
sulcus

3 female left 37 12 Left hippocampus
4 female right 36 36 Right intraparietal sulcus,

Right precuneus
5 female right 32 13 Left insula (inconclusive)
6 female left 29 23 Right hippocampus, Left

superior temporal gyrus,
Left orbitofrontal cortex

7 male left 23 17 Left intraparietal sulcus,
Left precuneus, Left supra-
marginal gyrus, Left angu-
lar gyrus, Left superior tem-
poral gyrus

8 male left 26 3 Left fusiform gyrus, Left
hippocampus

9 female right 60 8 Left temporal pole
10 male right 24 3 Right hippocampus, Right

fusiform gyrus

Table 1 | Subject demographic and clinically relevant information such as clinically identified
epileptogenic zone.
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Planning Execution Feedback

Brain region Acr. Hemi. Freq. Network Subj.
Onset
(%)

Speed
Instruction Fixation

Show
Target

Go
Cue

Movement
Onset

Hit
Target

Speed
Feedback

Show
Outcome

angular gyrus AG right hyper gamma Default 5 0 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4
−9.99×10−4

−9.99×10−4 −9.99×10−4

intraparietal sulcus IPS right hyper gamma Dorsal attention 4 0 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4
−9.99×10−4

−9.99×10−4 −9.99×10−4

superior parietal lobule SPL left hyper gamma Dorsal attention 3 8 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4

superior temporal sulcus STS right hyper gamma Dorsal attention 5 37 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4
−8.99×10−3

−4.00×10−3

supramarginal gyrus SMG right hyper gamma Ventral attention 4 0 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4 −9.99×10−4

transverse temporal sulcus TTS left hyper gamma Default 3 0
−9.99×10−4

−3.00×10−3 −9.99×10−4 −9.99×10−4 −3.00×10−3
−2.00×10−3

−2.00×10−3 −9.99×10−4
−9.99×10−4

−5.00×10−3 −9.99×10−4

parieto-occipital sulcus POS right hyper gamma Visual 3 0 −9.99×10−4

cuneus Cu right delta Visual 3 0 9.99×10−4

posterior-dorsal cingulate gyrus dPCC right delta Default 3 0 5.00×10−3

middle temporal gyrus MTG right hyper gamma Dorsal attention 6 4 −3.00×10−3 −9.99×10−4 −3.00×10−3 −9.99×10−4

superior frontal gyrus SFG left theta Dorsal attention 3 0 9.99×10−4 2.00×10−3

cuneus Cu right delta Visual 3 0 9.99×10−4

middle temporal gyrus MTG right delta Dorsal attention 6 4 2.00×10−3

superior parietal lobule SPL left alpha Dorsal attention 3 8 9.99×10−4

inferior temporal gyrus ITG right theta Visual 4 0 3.00×10−3

Table 2 | List of significant clusters across brain regions and epochs encoding the error state. For each brain region and task epoch, the
table reports all clusters that pass a false discovery rate of level q = 0.015 and their level within the cell. For each brain region, the table
also provides the acronym (Acro.), hemisphere (Hemi.), dominant frequency band (Freq.), network, number of subjects with recordings
in this region (Subj.), and percentage of electrodes in this region that have been annotated as part of an onset zone (Onset).
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Planning Execution Feedback

Brain region Acr. Hemi. Freq. Network Subj.
Onset
(%)

Speed
Instruction Fixation

Show
Target

Go
Cue

Movement
Onset

Hit
Target

Speed
Feedback

Show
Outcome

inferior temporal gyrus ITG right delta Visual 4 0 1.10×10−2

intraparietal sulcus IPS right theta Dorsal attention 4 0
2.00×10−3

9.99×10−3

cuneus Cu right high gamma Visual 3 0 −9.99×10−4 −7.99×10−3

superior parietal lobule SPL left alpha Dorsal attention 3 8 9.99×10−4 6.99×10−3

superior temporal sulcus STS right theta Default 5 37 9.99×10−4 9.99×10−4

supramarginal gyrus SMG right theta Ventral attention 4 0 9.99×10−4 9.99×10−4

inferior temporal gyrus ITG right theta Visual 4 0 2.00×10−3 9.99×10−4 2.00×10−3

angular gyrus AG right theta Default 5 0 9.99×10−4 9.99×10−4
9.99×10−4

9.99×10−4 9.99×10−4

anterior cingulate gyrus ACG left high gamma Default 3 0 −5.00×10−3

middle temporal gyrus MTG right alpha Default 6 4 1.10×10−2

posterior-dorsal cingulate gyrus dPCC right theta Default 3 0 6.99×10−3

posterior-dorsal cingulate gyrus dPCC right hyper gamma Default 3 0 3.00×10−3 4.00×10−3

subcentral gyrus SubCG left hyper gamma Somatomotor 4 0 2.00×10−3 2.00×10−3 9.99×10−4 1.10×10−2 3.00×10−3 2.00×10−3

parieto-occipital sulcus POS right delta Visual 3 0 9.99×10−4

supramarginal gyrus SMG right theta Ventral attention 4 0 1.10×10−2 2.00×10−3 1.10×10−2

superior parietal lobule SPL left delta Dorsal attention 3 8 9.99×10−4

fusiform gyrus FuG left delta Visual 4 0 5.00×10−3 6.99×10−3

anterior cingulate gyrus ACG left high gamma Default 3 0 −5.99×10−3 −3.00×10−3

middle temporal gyrus MTG right alpha Default 6 4 9.99×10−4 1.10×10−2 6.99×10−3

hippocampus Hippo right theta None 5 60 7.99×10−3 1.10×10−2

inferior temporal gyrus ITG right alpha Visual 4 0 9.99×10−4

superior temporal sulcus STS right delta Default 5 37 6.99×10−3

superior temporal sulcus STS right theta Default 5 37 1.20×10−2

Table 3 | List of significant clusters across brain regions and epochs encoding the perturbed state. For each brain region and task epoch,
the table reports all clusters that pass a false discovery rate of level q = 0.015 and their level within the cell. For each brain region,
the table also provides the acronym (Acr.), hemisphere (Hemi.), dominant frequency band (Freq.), network, number of subjects with
recordings in this region (Subj.), and the percentage of electrodes in this region that have been annotated as part of an onset zone (Onset).
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Supplementary Information | Internal states as a source of1

subject-dependent movement variability and their2

representation by large-scale networks3

Macauley Smith Breault, Pierre Sacré, Zachary B. Fitzgerald, John T. Gale,4
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Supplementary Figure 1 | Estimation of RT. Overlay of observed RT (black solid line) and
estimated RT (solid color line) across all trials. The RT of each subject was normalized using the
z-score before fitting and plotting the models. Each subject is color-coded in their panel. The black
solid line represents the observed RT. The solid color line represents the estimated RT and the
shaded color represents the 95 % confidence bound.
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Supplementary Figure 2 | Estimation of SE. Overlay of observed SE (black solid line) and estimated
SE (solid color line) across all trials. Each subject is color-coded in their panel. The black solid line
represents the observed SE. The solid color line represents the estimated SE and the shaded color
represents the 95 % confidence bound.
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Supplementary Figure 3 | Contribution of model variables to RT. Contribution of the internal
states (purple solid line) and trial conditions (orange solid line) in the RT model across trials.
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Supplementary Figure 4 | Contribution of model variables to SE. Contribution of the internal
states (purple solid line) and trial conditions (orange solid line) in the SE model across trials.
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Supplementary Figure 5 | Estimation of internal states. Estimation of error state (blue solid line)
and perturbed state (red solid line) over trials for each subject. The states were used to estimate
both RT and SE by fitting each model with different weights. The y-axis here does not reflect the
actual values used in equations (1) and (2) because the internal states were normalized using the
z-score before fitting.
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Supplementary Figure 6 | Comparison between model weights and session performance. Mark-
ers are color-coded for each subject. Weight of a, error state, b, perturbed state, c, speed, d, and
direction on RT in equation (1). Weight of e, error state, f, perturbed state, g, RT, h, and perturbation
type on SE in equation (2).
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Supplementary Tables1

Number of trials Session Performer
Subject Completed Speed Direction Perturbation performance group

fast slow down right up left unpert. towards away (%)
1 96 45 51 27 20 26 23 76 8 12 24 Bottom

2 127 53 74 43 39 34 30 102 10 15 29
3 154 81 73 37 38 43 36 128 6 20 30
4 139 77 62 39 36 29 35 115 8 16 50
5 153 68 85 36 45 39 33 122 7 24 53

Top

6 132 64 68 37 30 33 32 105 13 14 56
7 124 56 68 38 30 34 22 94 8 22 59
8 94 53 41 16 29 20 29 76 6 12 63
9 143 65 78 46 29 36 32 113 3 27 66

10 148 74 74 31 43 39 35 117 7 24 81

Supplementary Table 1 | Number of completed trials for each trial conditions (e.g., speed, direction,
perturbation) and session performance (as a percent) for each subject divided into top and bottom
performers using the average population session performance (51 %) as a threshold.
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Subject Reaction time (s) Speed error
Mean STD Mean STD

1 0.98 0.26 -0.26 0.20
2 0.80 0.18 -0.26 0.24
3 0.91 0.19 0.03 0.22
4 0.93 0.22 0.03 0.20
5 0.66 0.20 0.12 0.17
6 1.07 0.27 0.0 0.18
7 0.73 0.12 -0.03 0.19
8 0.80 0.27 0.04 0.15
9 0.67 0.18 0.04 0.15

10 0.52 0.11 0.05 0.13

Supplementary Table 2 | Statistics for the reaction time and speed error for each subject using all
of their completed trials.
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Subject Internal states Reaction time Speed error

αSE αP β0
RT βSE

RT βP
RT βfast βslow βdown βright βup βleft β0

SE βSE
SE βP

SE βRT
SE β

fast,
unpert. β

fast,
towards β

fast,
away β

slow,
unpert. β

slow,
towards β

slow,
away

1 0.80 0.38 0.01 0 0.08 0.13 0 -0.22 -0.22 0.14 0 -0.01 0.03 0.02 -0.12 0.05 -0.28 0 -0.23 0.05 -0.30
2 0.99 0.98 -0.22 0.46 0.34 0.11 0 0.12 -0.03 0.53 0 -0.48 0.04 -0.01 0.13 0.28 -0.05 0.21 0 0.44 0.25
3 0.79 0.76 0.05 0.15 0.19 0.17 0 -0.33 -0.23 -0.01 0 -0.19 0.03 -0.01 0.17 0.20 -0.14 0.31 0 0.50 0.05
4 0.99 0.99 0.42 0.16 0.12 -0.19 0 -0.44 -0.33 0 -0.40 -0.63 -0.08 0.08 0.17 0.57 0.40 0.58 0 0.57 0.52
5 0.99 0.99 0.55 0.42 -0.34 -0.82 0 -0.42 -0.29 -0.02 0 0.45 -0.05 0.05 0.11 -0.31 -0.53 0 -0.39 -0.21 -0.47
6 0.99 0.94 -0.65 -0.27 -0.35 0 1.23 -0.13 0 0.02 0.19 0.18 -0.02 -0.03 0.13 -0.24 -0.38 -0.31 -0.66 0 -0.31
7 0.85 0.99 0.33 -0.14 0.50 -0.87 0 0.34 -0.30 0.10 0 -0.24 -0.03 0.01 0.20 0.03 0.03 0 -0.17 0.48 0.17
8 0.40 0.01 -0.67 -0.24 0.10 0 1.14 0 -0.12 0.47 0.33 -0.25 0.01 -0.01 0.27 0.12 -0.01 0 -0.02 0.22 0.02
9 0.99 0.78 -0.71 -0.40 -0.16 0 1.07 0.03 0.18 0.33 0 -0.40 -0.03 -0.01 0.22 0.39 0.21 0.63 0 0.51 0.26

10 0.98 0.99 0.89 -0.24 0.36 -1.48 0 -0.14 0.09 -0.56 0 0.02 -0.09 0.10 0.08 0.05 -0.06 0 -0.05 0 -0.03

Supplementary Table 3 | Weights of model for each subject used in equations (3) and (4) for α’s and equations (1) and (2) for β’s.
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