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Abstract 

The way faces become familiar and what information is represented as familiarity develops 

has puzzled researchers in the field of human face recognition for decades. In this paper, we 

propose a cost-efficient mechanism of face learning to describe how facial representations 

form over time and that explains why recognition errors occur. Encoding of diagnostic facial 

information would follow a coarse-to-fine trajectory, modulated by the intrinsic stability in 

individual faces’ appearance. In four experiments, we draw on a robust and ecological 

method using a proxy of exposure to famous faces in the real world to test hypotheses 

generated by the model and we manipulate test images to probe the nature of facial 

representations. We consistently show that stable facial appearances help create more 

reliable representation in early stages of familiarisation but that their resolution remains 

relatively low and therefore less discriminative over time. In contrast, variations in 

appearance hinder recognition at first but encourage refinement of representations with 

further exposure. Consistent with the cost-efficient face learning mechanism we propose, 

facial representations built on a foundation of large-scale coarse information. When coarse 

information loses its diagnostic value through the experience of variations across 

encounters, facial details and their spatial relationships receive additional representational 

weights. 

 

Keywords: face recognition, familiarisation, representational weight, identification, face 

processing 
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A cost-efficient face learning mechanism: The impact of stability in appearance on the 

resolution of facial representations 

While most of us recognise a large number of familiar faces effortlessly and with great 

accuracy  (Brédart & Devue, 2006; Devue et al., 2007; Jenkins, Dowsett, & Burton, 2018; 

Tong & Nakayama, 1999), learning new faces is difficult and highly error-prone (Hancock et 

al., 2000; Young & Burton, 2018). Experts in the field of face recognition have pointed out 

that understanding this transition in performance between these extremes is the number 

one challenge to move research in the area forward (O’Toole et al., 2018; Young & Burton, 

2018).  

In fact, we know surprisingly little about which facial cues we memorise and draw on 

to recognise people, and whether and how what we memorise changes over time. Seminal 

research showed that upon viewing novel faces, we rely by default on external or peripheral 

features, like hairstyle, even if this strategy is suboptimal and leads to poor recognition 

performance (Ellis, Shepherd, & Davies, 1979; Young, Hay, McWeeny, Flude, & Ellis, 1985; 

see also Bruce et al., 2001; Hill et al., 1997; Longmore et al., 2017; White et al., 2014). By 

contrast, recognition of highly familiar faces would rely on both internal and external 

features or favour the former (Campbell et al., 1995; Ellis et al., 1979; Kramer, Manesi, et al., 

2018). The two categories of features would be part on the same holistic representation 

(see e.g., Andrews, Davies-Thompson, Kingstone, & Young, 2010), even though when 

presented by themselves, internal features are judged as more diagnostic of identity than 

external features alone (Kramer, Manesi, et al., 2018). The way representations transition 

from a suboptimal reliance on external features to a more optimal reliance on both internal 

and external features in familiar faces thus remains to be established. 
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One obstacle to understanding how familiarity with faces develops has been a 

tendency to study the processing of new faces and familiar faces separately (Burton, 2013). 

A possible reason for that tendency is an interpretation of observed differences in 

performance between unfamiliar and familiar faces as the manifestation of qualitatively 

different processes (for a review, see Johnston & Edmonds, 2009). Upon encounter with 

new faces, we would form simplistic pictorial representations that do not generalise well to 

new views and that fail to match new percepts of the same face resulting from changes in 

lighting or physical appearance (Burton, Bruce, & Hancock, 1999; Longmore et al., 2017). 

Once familiar, faces would benefit from “face-like” processing—i.e., view-invariant, holistic, 

or centred on inner-features and their configuration, depending on theories—allowing their 

recognition despite changes in viewing conditions. However, this dichotomy between 

unfamiliar and familiar faces may derive from unfair comparisons between them. Unlike 

familiar faces that have been learned in rich conditions in the real world (e.g., in motion, 

with changes in lighting and context), unfamiliar faces have traditionally been learned from 

one or a limited number of photographs in artificial laboratory conditions. We now know 

that such learning conditions are insufficient to form three-dimensional representations of 

complex objects like faces and that exposure to multiple viewpoints and/or movement 

improves learning (Etchells et al., 2017; A. Johnston et al., 2013; Lander & Bruce, 2003; Pilz 

et al., 2006). Therefore, it is plausible such dichotomy does not apply to real-world 

situations where we learn new faces in rich circumstances similar to those in which we also 

encountered faces that have become familiar. 

More recently, computational models have refined what plausible mechanisms of 

familiarisation might entail. They suggest that we come to remember familiar faces by 

focusing on stable inner features (e.g., eyes, nose, mouth) and ignoring changeable 
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peripheral ones (Burton, Jenkins, Hancock, & White, 2005; Burton, Bruce, & Hancock, 1999; 

Jenkins & Burton, 2011; Kramer, Young, & Burton, 2018; Robins, Susilo, Ritchie, & Devue, 

2018). Somehow, we would incorporate or average out variations in lighting, viewpoint, 

appearance, and expression to form robust memory representations that include stable 

inner aspects and unique ways in which a given face varies. Once formed, these abstract 

representations would enable recognition of novel instances of an individual (Burton, 

Kramer, Ritchie, & Jenkins, 2016; Kramer et al., 2018). Principal component analysis (PCA) 

models predict that the quantity and the quality of variations observers are exposed to 

should gradually improve recognition performance (Kramer, Young, et al., 2018). 

Human data partly support this rationale in recent research focused on the 

development of familiarity in more ecological conditions. For example, we showed that 

increased exposure times to faces of actors learned incidentally in a TV show led to linear 

increases in recognition (Devue et al., 2019). Moreover, familiarisation with new faces in 

laboratory conditions is facilitated by exposure to large ranges of variations in natural 

images, mixing environmental (e.g., lighting, background, camera lens, camera angle) and 

facial (e.g., expression, age, weight, look/appearance) factors, and more so than by mere 

increases in exposure time (Baker, Laurence, & Mondloch, 2017; Menon, Kemp, & White, 

2018; Menon, White, & Kemp, 2015; Murphy, Ipser, Gaigg, & Cook, 2015; Ritchie & Burton, 

2017; Robins, Susilo, Ritchie, & Devue, 2018). 

However, conclusions drawn from PCA models on the crucial role of inner features are 

sometimes in conflict with human data. Most strikingly, people occasionally fail to recognise 

highly familiar people, including themselves, when peripheral features deviate from their 

usual appearance, even if inner features are clearly visible (Brédart & Young, 2004; Carbon, 



6 
 

2008; Devue et al., 2019; Sinha & Poggio, 1996). Further, some famous individuals are better 

recognised from their peripheral features alone than from their inner features alone (see 

Table 1 in Ellis and Davies, 1979). These observations are incompatible with the notion that 

representations of familiar faces heavily rely on invariant internal features. This 

inconsistency between human and computer data could occur partly because most 

computational models ignore peripheral features by design, thereby discounting 

information that is valuable to humans. The examples above demonstrate that in humans, 

inner features are not always necessary nor sufficient to trigger recognition of familiar faces 

and that they do not always carry the most diagnostic information for a given face. 

To resolve these apparent contradictions and explain how facial representations 

evolve as faces become familiar, we propose a parsimonious mechanism of face learning 

based on cost-efficiency. First, we assume that any feature (e.g., hair colour, ear or nose 

shape) can be more or less diagnostic of individual facial identity, regardless of its location 

and of the face’s familiarity (see also Abudarham & Yovel, 2018). Rather than systematically 

relying on a costly encoding of all inner features and their details, representations are 

weighted based on the relative stability of different features over time, which make them 

more or less diagnostic (e.g., invariable nose vs. changing aspect of eyes due to variable 

makeup). Second, we take limitations in storage abilities inherent to humans into account 

and assume that coarser information (e.g., head silhouette, hairstyle and colour, light/dark 

pattern of inner features) is prioritised over finer details (e.g., details of the lips) because a 

coarse-to-fine prioritisation during encoding incurs fewer storage resources (Gao et al., 

2013). This flexible and dynamic encoding mechanism creates cost-effective memory 

representations that start off as coarse but refine over time, particularly if appearance 

changes and/or if demands for recognition out of context increase. 
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From these two basic assumptions, we hypothesise that the relative stability of 

changeable aspects (e.g. hairstyle, hair colour, facial hair) affects the resolution at which a 

face is encoded. When a face has a stable appearance, large-scale peripheral features and 

coarse information are diagnostic and receive substantial representational weight. 

Moreover, details of inner features need not be encoded in details, yielding low-resolution 

representations. By contrast, people who change their appearance frequently through 

variations in hairstyle, hair colour, makeup or facial hair have a more restricted set of large-

scale diagnostic features. Therefore, finer aspects that remain stable over time or that are 

less likely to be occluded by changes in hair, facial hair or make-up (e.g., nose or mouth 

shape, inner part of the eyes) must receive more representational weight, yielding higher 

resolution representations. In this framework, recognition errors like a failure of recognition 

following unexpected changes in appearance in a well-known person or false recognitions of 

strangers based on gross resemblance with familiar faces are thus viewed as the flipside of 

an otherwise efficient mechanism. 

We tested hypotheses generated by this framework in four recognition experiments 

using faces of actors. One advantage of using actors is that their faces were learned through 

a rich variety of viewing conditions, over extended time periods, and without explicit 

instructions to do so, giving very ecological encoding conditions. Simultaneously, we can 

operate a strict selection of individual actors based on their physical appearance. Half of the 

actors had a stable appearance (e.g., Harrison Ford) and half had a variable appearance 

(e.g., Brad Pitt). Further, to probe the nature of representations observers relied on during 

recognition, we manipulated the type of information available in test images, and measured 

how this affected recognition performance. Because peripheral information should have 

more weight in stable than in variable faces, we predicted that variable faces should be 
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better recognised than stable faces when peripheral features are occluded (Experiments 1 

and 2) or when changeable features, which can be internal or peripheral, deviate from their 

most common appearance (Experiment 3). We also predicted that stable faces would be 

better recognised than variable faces from coarse features in blurred images, and that the 

presence of fine-grained information would benefit more to variable faces than to stable 

faces (Experiment 4).  

Finally, to examine how stability in appearance modulates the evolution of 

representations over time, we drew on a method developed recently that uses a proxy of 

exposure to actors in the real world (see Devue et al., 2019). Specifically, we controlled that 

the amounts of exposure stable and variable actors had received were comparable, based 

on an objective measure of public visibility available on the Internet Movie Database 

(IMDb). We compared recognition performance for actors with two levels of popularity 

(popular and less popular). Based on previous research that suggests a shift of focus from 

external features for newly encountered faces, towards a conjoint use of internal and 

external features or favouring the former as a face becomes familiar (Ellis et al., 1979; Young 

et al., 1985), we hypothesised that representational weights initially set on external features 

would converge towards inner features over time to become more evenly distributed over 

the whole face. We thus expected that differences in performance linked to stability should 

be weaker for popular actors than for less popular ones and that stability would interact 

with popularity. 

General Methods 

Participants. Based on power analyses (see Supplementary Materials) and to 

minimise the impact of individual differences in face recognition skills or in exposure to 
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actors, we recruited a large sample of 100 first year psychology students in Experiment 1. 

Sample sizes were adapted in subsequent experiments. In all experiments, we excluded 

participants who did not comply with instructions (i.e., who failed more than 50% of 

attention checks; see procedure below), and/or who responded too fast (<600 ms or under -

2SD from the sample’s overall mean reaction time). The study was approved by the School 

of Psychology Ethics Committee at Victoria University of Wellington. 

Materials. Actor selection. Stability in appearance of prospective actors within given 

ranges of popularity based on StarMeter ranks (see below) was determined from a visual 

inspection by authors CD and SD of the pictures on the right-hand side thumbnails returned 

from a Google web search and in the first five to six rows of Google image searches. 

Prospective actors were first rated by the authors as displaying low, moderate or high levels 

of variations based on the appearance of changeable dimensions like hairstyle, hair colour, 

facial hair, makeup, and accessories (e.g., glasses, hats) across images in the two search 

results. CD and SD then agreed on a selection based on those ratings while ensuring 

equivalent sex and age distributions in four different conditions (2 stability x 2 popularity). 

For the stable condition, we selected 48 actors (24 women, 24 men; Mean age = 41.65 

years, SD = 13.04) whose pictures showed similar appearance on changeable dimensions. 

For the variable condition, we selected 48 actors (24 women, 24 men; Mean age = 40.77 

years, SD = 10.5) whose pictures markedly varied through various combinations of changes 

on the same dimensions. Actors’ popularity was determined via the StarMeter ranks on 

IMDb pro, which reflect current popular interest for an actor and their visibility—smaller 

ranks reflect higher popularity. These ranks were found to predict recognition performance 

in a recent study (Devue et al., 2019). We selected 48 actors (24 variable, 24 stable) with 

starMeter ranks between 1 and 500 for the “popular” condition. Importantly, startMeter 
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ranks of variable actors (Mean = 170.5 ± 104.5, range = 1 - 385) and of stable actors (Mean = 

168.5 ± 116, range = 5 - 407) were overall similar1. We selected 48 actors (24 variable, 24 

stable) with starMeter ranks between 1000 and 1500 for the “less popular” condition, so 

that the ranks of variable (Mean = 1208.2 ± 162, range = 1006 - 1480) and stable actors 

(Mean = 1199.6 ± 114, range = 1015 - 1470) were overall similar. Actors and their ranks are 

listed in Table S1. 

Unfamiliar faces (48 women and 48 men) were actors with very low popularity on 

IMDb (i.e., ranks >100,000; Mean = 246,309; SD = 354,212) from non-English speaking 

countries and/or who worked in theatre, so that they would not been known by our 

participants. Their average age (Mean age = 39.49 years, SD = 11.04) overall matched that of 

known actors (Mean age = 41.21 years, SD = 11.8). 

Image stimuli. For each of the 96 actors, we selected one image showing their most 

typical appearance—where the aspect of changeable features shows the most overlap 

across Google search images (e.g., no facial hair and short grey hair for Harrison Ford; blond 

short beard and semi long hair for Brad Pitt). For Experiment 3, we also selected 96 atypical 

pictures. We used the same approach as in Devue et al. (2019) and selected pictures with 

the most deviations possible from the usual appearance, including hair length, colour, 

and/or style, presence of facial hair, glasses, and differences in make-up that did not conceal 

internal features (e.g., goatee and earring for Harrison Ford; dark short hair and moustache 

for Brad Pitt). 

                                                           
1Note that since individual ranks are by definition unique, it is not feasible to pair stable and variable actors 
based on exact matched ranks. Moreover, actors that follow one another in the ranking do not necessarily 
display the desirable degree of stability/variability in appearance, gender, or age to achieve a perfect 
matching. 
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The set of 288 images (96 typical images of actors, 96 atypical images of actors, and 96 

images of strangers) showed faces in a frontal or slightly angled view and with a neutral or 

happy expression (all evenly distributed across conditions). Images were rotated to align the 

eyes on a horizontal axis. They were then cropped, so that the hairstyle was apparent while 

minimising the amount of visible clothing, and resized to 399 by 476 pixels. 

We created a “headshot” version of each image, in which the background was 

concealed with a grey field. For Experiment 1 and 2 we also created a “cropped inner 

features” version of typical images, where inner features appeared within a truncated 

ellipse (width = 264, height = 260 pixels), so that bangs and other external features were 

concealed by a grey field. For Experiment 4, we created a blurred version of typical 

headshots in which high spatial frequency details were removed by applying a Gaussian 

filter with a radius of 36 pixels—giving 11 cycles per face width (Goffaux & Rossion, 2006). 

Procedure. Participants performed a recognition test online via Testable.org. The 96 

pictures of actors and 96 pictures of strangers were presented in a random order at the 

centre of the screen—until a response was provided or for up to 3 seconds—and 

participants judged as accurately and fast as possible if they knew the face or not via two 

response keys (1 and 2). Instructions emphasised familiarity and that there was no need to 

remember the person’s name or identity to judge that a face was familiar. A 1500-ms 

central fixation cross separated individual trials. Four attention checks—image with 

instructions to press a specific key (i.e., 5, 6, 7, or 8) instead of the two response keys—and 

four breaks were dispersed randomly through the trials. Participants performed three 

practice trials before the test. 
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Design and measures. Popularity (popular, less popular) and appearance (variable, 

stable) were manipulated within-subject in all experiments. Image condition (inner 

features/headshot, typical/atypical, blurred/intact) was manipulated between-subject in 

experiments 2 and 3a, and within-subject in Experiment 3b and Experiment 4. We calculated 

d’ based on hit rate (i.e., correct recognition of actors) in each condition and on false alarm 

rate (i.e., incorrect recognition of unfamiliar actors) in the corresponding image condition. 

Descriptive statistics for familiarity judgments and reaction times (means and standard 

deviations) of all experiments, as well as reaction times analyses for Experiments 2 and 3 

appear in Supplementary materials. 

Transparency and openness. We preregistered the experimental design, analyses and 

hypotheses for the first series of three experiments with in-built replication on the Open 

Science Framework before data collection, the document is visible at 

[https://osf.io/qd5y3/register/564d31db8c5e4a7c9694b2be - 31 July 2018]. Following 

unexpected results in Experiment 1, analyses plans for Experiments 2 and 3 were amended 

and preregistered on 10 September 2018 

[https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0 ]. The use of a within-subject 

design for Experiment 3b was preregistered on 5 December 2018 [https://osf.io/afm4e]. 

Preregistration for Experiment 4 is available at [https://osf.io/ethbd/ - 6 May 2019]. Image 

stimuli and datasets for all experiments are available on [https://osf.io/8znw5/files/].  

Experiment 1 

Methods. Participants were all tested with cropped images of inner features and so 

familiarity judgments relied exclusively on those features. Of the 100 participants recruited, 

96, aged between 18 and 40 years (72 women, 22 men, 2 non-binary; Mean age = 19.81 

https://osf.io/qd5y3/register/564d31db8c5e4a7c9694b2be
https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0
https://osf.io/ethbd/?view_only=d19d864e504a4f1dbaab3621b22f6280
https://osf.io/8znw5/files/
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years, SD = 3.62), completed the experiment in exchange of course credits. None of them 

was excluded. 

Results and discussion. We conducted a two-way repeated measure Analysis of 

Variance (ANOVA) with appearance (stable, variable) and popularity (popular, less popular) 

as within-subject factors on d’. As expected, popular actors (Mean = 1.36, SD = 0.85) were 

better discriminated from strangers than less popular actors (Mean = 0.74, SD = 0.58), 

F(1,95) = 226.755, p < .001, ηp
2 = .705. The predicted main effect of appearance (i.e., 

variable > stable) was not significant, F(1,95) = .342, p = .56, ηp
2 = .004, because of a crossed 

interaction with popularity, F(1,95) = 132.184, p < .001, ηp
2 = .582, see Figure 1. 

 

Figure 1. Results of Experiment 1. Discrimination performance (d’) for images of 
cropped inner features as a function of popularity and appearance. Red circles 
show the mean, and boxplots show distribution in quartiles. Violin size is 
proportional to the distribution of performance in each condition. Values on the 
plot are effect sizes (Cohen’s d) for paired-comparisons. 

 

Benefit of exposure. We followed up the interaction with one-tailed paired sample 

Student t-tests. As expected, sensitivity improved with increased exposure in both variable, 
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t(95) = 16.825, pone-tailed < .001, d = 1.717 (95% C.I.two-tailed = 1.4 – 2.031), and stable actors, 

t(95) = 6.775, pone-tailed < .001, d = 0.691 (95% C.I.two-tailed = 0.467 – 0.913). Cohen’s d values 

and the lack of overlap between their respective confidence intervals2 suggest that benefits 

of increased exposure were significantly larger for variable than for stable faces. 

Impact of appearance. As predicted, for popular actors, inner features of variable 

faces were better recognised than those of stable faces, t(95) = 7.958, pone-tailed < .001, d = 

0.812 (95% C.I. = 0.58 – 1.041). Unexpectedly, for less popular actors, sensitivity to inner 

features was higher for stable faces than for variable faces, and so the one-tailed test based 

on our expectation of the opposite pattern was not significant, t(95) = -9.029, pone-tailed = 1, d 

= 0.921 (95% C.I. = 0.681| – |1.159). This advantage for stable faces contrasts with findings 

in face learning studies where exposure to increased levels of variability leads to immediate 

increases in recognition rates compared to less variable viewing conditions (Baker et al., 

2017; Ritchie & Burton, 2017). We assume that this difference is due to unsupervised 

learning conditions in which actors’ faces are often learned. Before actors get leading roles 

and become famous, we might see them in different support roles without the explicit 

knowledge that they are the same person. Our results suggest that stability helps “put faces 

together” during these early stages of familiarisation and that we are more likely to 

recognise someone who had similar appearances in different movies than someone who has 

changed. In turn, stability may allow us to consolidate the representation of newly learned 

faces and of their inner features. 

                                                           
2 We present two-tailed confidence intervals for comparison purposes as the one-tailed version’s upper limit is 
infinite. 



15 
 

Although the interaction between appearance and popularity did not take the 

anticipated shape—where a disadvantage of stable faces compared to variable faces would 

decrease over time if representations of all faces converged towards the same levels of 

refinements—the results of this experiment remain consistent with a cost-efficient face 

encoding mechanism. Faces that vary more are ultimately better recognised from inner 

features than faces that are more stable, suggesting that these features are represented in a 

more reliable manner—at a higher resolution. The larger improvement in recognition 

performance that variable faces display over time compared to stable faces suggests that 

representations of the former become more fine-tuned than representations of stable 

faces, which tend to remain coarser. 

Experiment 2 

This experiment replicates and expands on Experiment 1. We compared recognition 

from images of inner features and headshots where external features are visible. We 

expected that in popular actors, the presence of coarse external features would reduce the 

disadvantage of stable faces and compensate for lower resolution representations of inner 

details. 

Methods. Because of the unexpected pattern with less popular actors in Experiment 

1, we pre-registered an amended analysis plan before data collection 

[https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0 – 10 Sept 2018]. The design and 

variables remain identical to those described in the original pre-registration.  

We used sequential analyses (Lakens, 2014)—details are presented in Supplementary 

Materials—and recruited a total of 123 participants, 3 of whom replaced participants who 

did not follow instructions (N = 2) or responded too fast (N = 1). Participants completed an 

https://osf.io/h5f6s/register/564d31db8c5e4a7c9694b2c0
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online recognition task either in the “inner features” condition (39 women, 18 men, 3 non-

binary; Mean age = 18.9 years, SD = 1.32) or in the “headshot” condition (41 women, 19 

men; Mean age = 19.15 years, SD = 1.87). 

Results and discussion. The critical p value for our sequential analyses was set at 

.0182. We present uncorrected p values and so an effect must be interpreted as significant 

at p < .0182. We conducted a three-way mixed effect ANOVA with appearance (variable, 

stable) and popularity (popular, less popular) as within-subject factors, and image condition 

(inner features, headshot) as between-subject factor on d’. We found the expected main 

effect of image condition, F(1,118) = 73.97, p < .001, ηp
2 = .385, as sensitivity was higher 

with headshots (Mean = 2.023, SD = 0.59) than with images of inner features (Mean = 1.121, 

SD = 0.556). The three-way interaction between appearance, popularity, and image 

condition was significant3, F(1,118) = 9.875, p = .002, ηp
2 = .077, see Figure 2. We then 

examined performance separately in each image condition and tested whether we 

replicated findings of Experiment 1 in the inner features condition. 

Inner features. As in Experiment 1, a two-way repeated measure ANOVA showed a 

main effect of popularity, F(1,59) = 216.173, p < .001, ηp
2 = .786, qualified by an interaction 

with appearance, F(1,59) = 43.161, p < .001, ηp
2 = .422. The main effect of appearance was 

not significant, F(1,59) = 1.539, p = .22, ηp
2 = .025.  

Follow-up t-tests showed that sensitivity to inner features increased with popularity 

for both variable, t(59) = 12.31, p < .001, d = 1.589 (95% C.I. = 1.204 – 1.967), and stable 

actors, t(59) = 8.136, p < .001, d = 1.05 (95% C.I. = 0.732 – 1.363). Effects sizes suggest 

                                                           
3 Results of the same ANOVA conducted at step 1 and step 2 of sequential analyses followed a 
similar pattern and are visible in Supplementary Materials. 
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numerically larger improvements from increased exposure for variable than for stable actors 

but Cohen’s d confidence intervals overlap and so the size of the improvement is not 

significantly different. In popular actors, variable faces were better recognised than stable 

ones, t(59) = 4.125, p < .001, d = 0.533 (95% C.I. = 0.26 – 0.801), while in less popular actors, 

stability facilitated recognition compared to variability, t(59) = -5.967, p < .001, d = 0.77 (95% 

C.I. = 0.479 - 1.056). 

 

Figure 2. Results of Experiment 2. Discrimination performance (d’) as a function 
of popularity, appearance of actors and image type(inner features vs. headshot). 
Red circles show the mean, and boxplots show distribution in quartiles. Violin 
size is proportional to the distribution of performance in each condition. Values 
on the plot are Cohen’s d for paired-comparisons. 

 

Headshots. The same ANOVA in the headshot condition yielded a roughly similar 

pattern, except that the main effect of appearance was significant, F(1,59) = 21.59, p < .001, 

ηp
2 = .268. Overall, headshots of stable faces (Mean = 2.14, SD = 0.65) were better 

discriminated from strangers than headshots of variable faces (Mean = 2, SD = 0.615). Here 
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too a significant main effect of popularity, F(1,59) = 433.31, p < .001, ηp
2 = .88, was qualified 

by an interaction with appearance, F(1,59) = 269.56, p < .001, ηp
2 = .82. 

Follow-up analyses showed that sensitivity improved with popularity for both variable, 

t(59) = 25.066, p < .001, d = 3.236 (95% C.I. = 2.598 – 3.868), and stable faces, t(59) = 7.186, 

p < .001, d = 0.928 (95% C.I. = 0.622 – 1.228). Cohen’s d values and their respective 

confidence intervals indicate that benefits of increased exposure were much stronger for 

variable faces than for stable faces. Amongst popular actors, variable faces were better 

recognised than stable ones, t(59) = 8.05, p < .001, d = 1.039 (95% C.I. = 0.722 – 1.351), 

whereas in less popular actors, stability improved recognition compared to variability, t(59) 

= -14.665, p < .001, d = 1.893 (95% C.I. = 1.466 - 2.315). The significantly larger advantage of 

stable faces over variable faces in less popular actors relative to the advantage of variable 

faces over stable faces in popular actors must be driving the overall advantage of stable 

faces over variable faces shown in the main effect of appearance above. 

Gain from peripheral information. Figure 5 (panel A) presented below illustrates gains 

in sensitivity from images of inner features to full headshots. We examined the gains 

provided by peripheral features in each actor category with four independent sample t-

tests. We hypothesised that external information is more diagnostic in stable faces than in 

variable faces and so we expected larger gains—reflected by larger Cohen’s d—for stable 

faces than for variable faces. Peripheral features helped recognition in all the conditions and 

Cohen’s d values were numerically larger for less popular stable faces, t(118) = 8.853, p < 

.001, d = 1.616 (95% C.I. = 1.201 – 2.027), than in the three other categories, in which gains 

were all in the same ballpark: popular variable, t(118) = 7.735, p < .001, d = 1.412 (95% C.I. = 

1.009 – 1.81); popular stable, t(118) = 7.477, p < .001, d = 1.365 (95% C.I. = 0.965 – 1.761); 
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less popular variable, t(118) = 7.772, p < .001, d = 1.419 (95% C.I. = 1.016 – 1.817). However, 

the overlap of the four Cohen’s d confidence intervals suggest that the numerical difference 

was not significant. 

Consistent gains from inner features to headshots suggests that the presence of 

peripheral information supports recognition of both variable and stable faces, probably 

because it is part of a holistic representation (Andrews et al., 2010; Tanaka & Simonyi, 

2016). Nevertheless, Figure 5 (panel A) suggests that proportionally, peripheral information 

seems particularly useful  to both variable and stable faces in earlier stages of 

familiarisation. During that same stage, stability in appearance improves recognition and 

facilitates familiarisation compared to variability in appearance. Over time however, further 

exposure to a stable appearance seems less effective in increasing the reliability of 

representations than when appearance has varied more. In other words, although increased 

variations in appearance initially slow down familiarisation, they eventually lead to more 

robust representations. 

Experiment 3 

Here we compared recognition of typical and atypical headshots, following the same 

design as Experiment 2, except that atypical headshots replaced images of inner features. 

We expected that once an actor is popular, atypical changes in appearance should be less 

disruptive for variable than for stable faces because recognition could be based on fine-

tuned representation of invariable features. 

Methods. Experiment 3a. We tested 59 first year psychology students and 67 

additional New Zealanders recruited via social media or amongst colleagues. We aimed to 

have at least 60 participants per group like in Experiment 2. We excluded two participants 
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who failed more than two attention checks and one participant whose accuracy was below 

50%. The final combined sample consisted of 123 participants (78 women, 45 men) aged 

between 18 and 55 (Mean = 22.93 years, SD = 6.8). There were 62 participants in the typical 

condition (35 women; Mean = 22.34 years, SD = 6.4) and 61 in the atypical condition (43 

women; Mean = 23.52 years, SD = 7.2). We did not find the expected advantage of 

typicality, which could have been due to individual differences in exposure to actors or in 

face recognition skills between groups. To address this possibility, we ran an additional 

experiment where image condition was manipulated within-subject. 

Experiment 3b. Here we aimed to collect data from 80 participants and tested 89 

Mechanical Turk workers located in the US. We excluded 8 participants who failed attention 

checks, responded too fast, and/or whose accuracy was below 50%. The final sample 

consisted of 81 participants (35 women, 45 men, 1 non-binary) aged between 18 and 67 

(Mean = 37.19 years, SD = 10.62). As this sample had different demographics than those in 

the other experiments, it also provided an opportunity to test the generalisability of our 

findings. 

We presented typical and atypical headshots of the 96 actors to the same participants 

in a random order. Images of the 96 strangers were presented twice to maintain the ratio of 

trials with actors and strangers, giving a total of 348 trials. Eight breaks and four attention 

checks were dispersed throughout. The instructions specified that familiarity judgments 

concerned pre-experimental familiarity, and that any person that appeared multiple times 

but was unknown prior the experiment should still be judged unfamiliar. 

Results. Experiment 3a. We conducted a three-way mixed effect ANOVA with 

appearance (variable, stable) and popularity (popular, less popular) as within-subject 
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factors, and image condition (typical, atypical headshot) as between-subject factor on d’. 

Although performance was numerically lower with atypical headshots (Mean = 1.74, SD = 

0.7) than with typical ones (Mean = 1.91, SD = 0.09), we did not find the expected typicality 

effect, F(1,121) = 1.595, p = .21, ηp
2 = .013. There was a main effect of popularity, F(1,121) = 

813.399, p < .001, ηp
2 = .871, and of appearance, F(1,121) = 22.705, p < .001, ηp

2 = .158, with 

stable faces (Mean = 1.92, SD = 0.83) overall being better recognised than variable ones 

(Mean = 1.82, SD = 0.95). The three-way interaction between appearance, popularity, and 

image condition was not significant, F(1,121) = 1.491, p = .224, ηp
2 = .012. Nevertheless, 

Figure 3 (top panel) shows a similar pattern in each image type as in Experiment 2. For the 

sake of space, we do not report follow-up analyses and move on to Experiment 3b. 

Experiment 3b. Using a fully within-subject design, we found the expected main effect 

of image type, F(1,80) = 210.898, p < .001, ηp
2 = .725. Typical images (Mean = 1.62, SD = 

0.86) were now significantly better discriminated from strangers than atypical images (Mean 

= 1.37, SD = 0.86). There was a main effect of popularity, F(1,80) = 203.147, p < .001, ηp
2 = 

.717, and of appearance, F(1,80) = 8.673, p = .004, ηp
2 = .098, with an overall advantage for 

stable faces (Mean = 1.52, SD = 0.81) compared to variable ones (Mean = 1.47, SD = 0.92). 

The three-way interaction between image type, popularity and appearance was significant, 

F(1,80) = 7.652, p = .007, ηp
2 = .087, see Figure 3 (bottom panel). 

Atypical headshots. A follow-up 2-way ANOVA on atypical headshots showed a main 

effect of popularity, F(1,80) = 115.579, p < .001, ηp
2 = .591, and of appearance, F(1,80) = 

5.092, p = .027, ηp
2 = .06, and an interaction between the two, F(1,80) = 88.601, p < .001, ηp

2 

= .526. Paired comparisons showed that sensitivity improved with increased popularity for 

all actors, with a significantly larger improvement for variable faces, t(80) = 14.563, p < .001, 
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d = 1.618 (95% C.I. = 1.284 – 1.948), than for stable ones, t(80) = 2.244, p = .028, d = 0.249 

(95% C.I. = 0.027 – 0.47). In popular actors, variable faces were recognised better than 

stable ones, t(80) = 6.181, p < .001, d = 0.687 (95% C.I. = 0.443 – 0.927). In less popular 

actors, stable faces were better recognised than variable ones, t(80) = -8.342, p < .001, d = 

0.927 (95% C.I. = 0.664| –|1.186).  

 

 

Figure 3. Results of Experiment 3a (top) and 3b (bottom). Discrimination 
performance (d’) as a function of popularity and appearance, for typical and 
atypical images of actors. Red circles show the mean, and boxplots show 
distribution in quartiles. Violin size is proportional to the distribution of 
performance in each condition. Values on the plot are Cohen’s d from paired-
comparisons. 
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Typical headshots. The same 2-way ANOVA on typical headshots also showed a main 

effect of popularity, F(1,80) = 188.779, p < .001, ηp
2 = .702, and of appearance, F(1,80) = 

4.284, p = .042, ηp
2 = .051, and an interaction between the two, F(1,80) = 144.981, p < .001, 

ηp
2 = .644, replicating results with headshots in Experiment 2. Like in Experiment 2, 

performance improved with popularity for stable faces, t(80) = 2.95, p = .004, d = 0.328 (95% 

C.I. =0.103 – 0.55), and improved significantly more for variable faces, t(80) = 14.8513, p < 

.001, d = 1.65 (95% C.I. = 1.312 – 1.983). In popular actors, variable faces were better 

recognised than stable ones, t(80) = 7.26, p < .001, d = 0.807 (95% C.I. = 0.554 – 1.056). In 

less popular actors, stable faces were better recognised than variable ones, t(80) = -10.773, 

p < .001, d = 1.197 (95% C.I. = 0.909| - |1.481). 

Gain from typicality. We examined the gain in performance from typicality (i.e., typical 

vs. atypical) in each actor category with paired sample t-tests, see Figure 5 (panel B). Typical 

facial information improved performance in all actor categories: Popular variable, t(80) = 

8.552, p < .001, d = 0.95 (95% C.I. = 0.685 - 1.211); popular stable, t(80) = 7.955, p < .001, d = 

0.884 (95% C.I. = 0.625 - 1.139); less popular variable, t(80) = 5.398, p < .001, d = 0.6 (95% 

C.I. = 0.362 - 0.835); and less popular stable, t(80) = 7.705, p < .001, d = 0.856 (95% C.I. = 

0.599 - 1.109). Effects sizes and the fact that they overlap indicate that gains from typicality 

were comparable in all actor categories. This may suggest that although representations of 

variable actors refine over time and more so than those of stable actors, they also tend to 

incorporate more typical aspects of elements that vary (e.g., most frequent hairstyle or 

makeup) into a holistic representation. Indeed, if recognition of variable faces only relied on 

invariable elements, recognition would have been equally good from typical and atypical 

images. 
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Experiment 4 

Finally, in this experiment, we more directly tested the hypothesis that 

representations of variable faces incorporate finer grain information than representations of 

stable faces. We compared recognition performance from intact images (typical headshots) 

and from blurred images which only contain coarse information and where facial details are 

removed. Because it was unclear whether running this experiment online would allow 

sufficient control over image presentation and viewing conditions, we first ran it in a 

controlled laboratory environment (Experiment 4a) and then ran an online version 

(Experiment 4b). 

Methods. The experiment and analyses plans were pre-registered before data 

collection [https://osf.io/ethbd/]4. 

In Experiment 4a, we recruited 81 psychology students (12 men, 69 women) aged 

between 18 and 21 (Mean = 18.39 years, SD = 0.72). None of them was excluded. In 

Experiment 4b, we recruited 102 psychology students (72 women, 29 men, 1 non-binary) 

aged between 18 and 34 years (Mean = 18.97 years, SD = 2.1) who completed the task 

online. We excluded one participant who responded too fast and two who responded 

“unfamiliar” to all the blurred images5, giving a final sample of 99 participants (71 women, 

27 men, 1 non-binary; Mean age = 18.94 years, SD = 2.11). 

                                                           
4This experiment was initially part of a separate project and pre-planned analyses were structured slightly 
differently—i.e., we were planning to follow up on a three-way interaction with two separate 2-way repeated 
measure ANOVA on each popularity level with image type and appearance as within-subject factors. We 
decided to incorporate this experiment to this project and adopted the same analysis plan as in the other 
three. The paired-comparisons presented here tackle the same questions as originally planned. 
5We did not anticipate that possibility in our pre-registration but decided that this responding strategy did not 
comply with our instructions. 

https://osf.io/ethbd/?view_only=d19d864e504a4f1dbaab3621b22f6280
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To accommodate for changes in popularity of actors over time (i.e, 9 months since 

Experiment 1 and 5 months since Experiment 3), we updated actors’ IMDb ranks and 

selected a subset of identities (i.e., 18 identities per actor category instead of 24, and 72 

strangers instead of 96) that could still fit within two distinct popularity categories (i.e., 

popular: range 26 to 475; less popular: range 594 to 3230) while keeping ranks and age 

similar between variable and stable actors. The updated list of actors is visible in 

Supplementary Materials (Table S2). 

The procedure was identical to that in Experiment 3b with the following exceptions. 

There were 144 trials. Each trial started with the blurred image of a person, followed by the 

intact image of the same person. Participants responded to both images and were told that 

they could give a different response to each6. Each image in the pair was presented until a 

response was provided or for maximum 3 seconds, and they were separated by a 1-second 

interval. An inter-trial interval of 2 seconds with a central fixation cross separated trials with 

different identities. Finally, in Experiment 4a, participants were run in groups of maximum 4 

in separate booths and viewing distance (57.3 cm) was controlled by means of a chin rest. 

Stimuli had a visual angle of 7.9 x 9.4 degrees. 

Results. Experiment 4a. We found the expected main effect of image type, F(1,80) = 

219.342, p < .001, ηp
2 = .733, as intact images (Mean = 2.07, SD = 0.85) were better 

discriminated than blurred images (Mean = 1.26, SD = 0.63). There was a main effect of 

                                                           
6Note that as in the other experiments, we are interested in the overall comparison between image conditions 
(blurred vs. intact) and so we do not analyse data contingent on changes in response from blurred to intact 
images. For familiar actors, changes from “familiar” responses to blurred images to “unfamiliar” responses to 
intact images represented only 4.4% of trials in Experiment 4a, and 4% of trials in Experiment 4b. Keep in mind 
that in any recognition task, there is always a possibility that a hit does not reflect a genuine familiarity with 
the face, whether participants judge two images and change their mind as in this experiment, whether they 
judge two different images of the same actor presented in a random order as in Experiment 3b, or whether 
they judge only one image as in a typical recognition experiment. This possibility is balanced out by similar 
response tendencies to strangers and accounted for in the measure of sensitivity. 
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popularity, F(1,80) = 464.912, p < .001, ηp
2 = .853, and of appearance, F(1,80) = 8.592, p < 

.001, ηp
2 = .097, with an overall advantage for stable faces (Mean = 1.7, SD = 0.77) compared 

to variable ones (Mean = 1.63, SD = 0.93). The three-way interaction between image type, 

popularity and appearance was significant, F(1,80) = 16.731, p < .001, ηp
2 = .173, see Figure 

4 (top panel). 

Blurred images. A follow-up 2-way ANOVA on blurred images showed a main effect of 

popularity, F(1,80) = 203.937, p < .001, ηp
2 = .718, qualified by an interaction with 

appearance, F(1,80) = 27.44, p < .001, ηp
2 = .255. Contrary to our expectation (i.e., blurred 

stable faces > blurred variable faces), there was no significant main effect of appearance, 

F(1,80) = 2.062, p = .155, ηp
2 = .025. Sensitivity improved with popularity for all faces, with 

comparable improvements for variable faces, t(80) = 12.6, p < .001, d = 1.4 (95% C.I. = 1.09 – 

1.705), and for stable ones, t(80) = 8.09, p < .001, d = 0.899 (95% C.I. = 0.639 – 1.155). 

Contrary to our expectation, in popular actors, variable faces were still better recognised 

than stable ones from blurred images, t(80) = 2.77, p = 0.007, d = 0.308 (95% C.I. = 0.084 – 

0.53), showing that representations of both types of faces somewhat rely on coarse 

information. However, this effect of appearance was the smallest across all experiments. In 

less popular actors, stable faces were better recognised than variable ones, t(80) = -5.77, p < 

.001, d = 0.641 (95% C.I. = 0.4 - 0.879). 

Intact images. We found a similar pattern with intact headshots as with headshots in 

Experiment 2 and 3. There was a main effect of popularity, F(1,80) = 497.97, p < .001, ηp
2 = 

.862, and of appearance, F(1,80) = 10.28, p < .001, ηp
2 = .114, as well as an interaction 

between the two, F(1,80) = 129.95, p < .001, ηp
2 = .619. Again, sensitivity improved with 

popularity, and significantly more so for variable faces, t(80) = 21.194, p < .001, d = 2.355 
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(95% C.I. =1.928 – 2.777), than for stable faces, t(80) = 12.342, p < .001, d = 1.371 (95% C.I. = 

1.065 – 1.673). In popular actors, variable faces were better recognised than stables faces, 

t(80) = 5.674, p < .001, d = 0.63 (95% C.I. = 0.39 – 0.867), while the opposite was true in less 

popular actors, t(80) = -12.862, p < .001, d = 1.429 (95% C.I. = 1.116 - 1.737). 

 

 

Figure 4. Results of Experiment 4a (lab-based, top) and 4b (online, bottom). 
Discrimination performance (d’) as a function of popularity and appearance, for 
blurred and intact images of actors. Red circles show the mean, and boxplots 
show distribution in quartiles. Violin size is proportional to the distribution of 
performance in each condition. Values on the plot are Cohen’s d from paired-
comparisons. 
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Gain from fine-grain information. We examined improvement in recognition from the 

inclusion of fine details in intact images compared to blurred images in each actor category, 

see Figure 5 (panel C). The addition of details consistently improved recognition 

performance compared to coarse information alone: Popular variable, t(80) = 13.669, p < 

.001, d = 1.519 (95% C.I. = 1.196 – 1.837); popular stable, t(80) = 12.568, p < .001, d = 1.396 

(95% C.I. = 1.087 – 1.701); less popular variable, t(80) = 9.46, p < .001, d = 1.051 (95% C.I. = 

0.777 – 1.321); and less popular stable, t(80) = 12.451, p < .001, d = 1.383 (95% C.I. = 1.076 – 

1.686). 

Experiment 4b. We found the expected main effect of image type, F(1,98) = 350.835, p 

< .001, ηp
2 = .782, as intact images (Mean = 2.02, SD = 0.92) were better recognised than 

blurred images (Mean = 1.09, SD = 0.65). There was a main effect of popularity, F(1,98) = 

389.54, p < .001, ηp
2 = .799, and of appearance, F(1,98) = 10.416, p = .002, ηp

2 = .096, with 

an overall advantage for stable faces (Mean = 1.59, SD = 0.9) compared to variable ones 

(Mean = 1.52, SD = 0.96). The three-way interaction between image type, popularity and 

appearance was significant, F(1,98) = 12.648, p < .001, ηp
2 = .114, see Figure 4 (bottom 

panel). 

Blurred images. We replicated the findings of Experiment 4a and found a main effect 

of popularity, F(1,98) = 149.069, p < .001, ηp
2 = .603, qualified by an interaction with 

appearance, F(1,98) = 34.671, p < .001, ηp
2 = .261. There was no significant main effect of 

appearance, F(1,98) = 0.797, p = .374, ηp
2 = .008. Sensitivity improved with popularity for all 

faces but with a significantly larger improvement for variable faces, t(98) = 12.858, p < .001, 

d = 1.292 (95% C.I. = 1.023 – 1.558), than for stable ones, t(98) = 6.736, p < .001, d = 0.677 

(95% C.I. = 0.457 – 0.894). Again, in popular actors, variable faces were still better 
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recognised than stable ones, t(98) = 3.248, p = 0.002, d = 0.326 (95% C.I. = 0.123 – 0.528), 

but the simple effect of appearance was also relatively small compared to that obtained 

with different types of images across experiments. In less popular actors, stable faces were 

better recognised than variable ones, t(98) = -5.652, p < .001, d = 0.568 (95% C.I. = 0.354 - 

0.779). 

Intact images. We again replicated the pattern found with intact headshots in all the 

other experiments. There was a main effect of popularity, F(1,98) = 506.77, p < .001, ηp
2 = 

.838, and of appearance, F(1,98) = 18.23, p < .001, ηp
2 = .157, and an interaction between 

the two, F(1,98) = 104.15, p < .001, ηp
2 = .515. As per usual now, recognition performance 

increased with popularity, and significantly more so for variable faces, t(98) = 21.644, p < 

.001, d = 2.175 (95% C.I. =1.811 – 2.536), than for stable faces, t(98) = 12.534, p < .001, d = 

1.26 (95% C.I. = 0.994 – 1.522). In popular actors, variable faces were better recognised than 

stables faces, t(98) = 4.456, p < .001, d = 0.448 (95% C.I. =0.24 – 0.653), while the opposite 

was true in less popular actors, t(98) = -10.82, p < .001, d = 1.087 (95% C.I. = 0.837 - 1.335). 

Gain from fine-grain information. Increases in sensitivity due to the addition of details 

compared to coarse information alone are illustrated on Figure 5 (panel D). Details 

consistently improved recognition performance and in comparable ways in all actor 

categories: Popular variable, t(98) = 17.233, p < .001, d = 1.732 (95% C.I. = 1.418 – 2.042); 

popular stable, t(98) = 15.993, p < .001, d = 1.607 (95% C.I. = 1.307 – 1.904); less popular 

variable, t(98) = 12.276, p < .001, d = 1.234 (95% C.I. = 0.97 – 1.494); and less popular stable, 

t(98) = 15.746, p < .001, d = 1.583 (95% C.I. = 1.284 – 1.877). 
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Figure 5. Comparisons of sensitivity to actors’ faces in different image conditions, 
as a function of popularity and appearance. The top of the grey bar represents 
sensitivity to typical headshots, which was compared to recognition from inner 
features in Experiment 2 (N = 123 New Zealanders), from atypical headshots in 
Experiment 3b (N = 81 US Mechanical Turk workers), and from blurred headshots 
in Experiment 4. Experiment 4 was administered in a controlled laboratory 
environment (4a, N = 81 NZ students) and online (4b, N = 99 NZ students). Values 
in the plot area represent Cohen’s d for paired-comparisons of performance in 
different image conditions. 

 

Lab-based vs. online administration. It is worth noting that the patterns of results are 

remarkably similar in the lab-based and in the online versions of the experiment. An 

exploratory four-way mixed effect ANOVA conducted on the combined samples with 
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administration (lab-based, online) as a between-subject factor showed no significant main 

effect of administration, F(1,178) = 1.903, p = .170, ηp
2 = .011, and no significant interaction 

between administration and any of the other factors (image type, popularity, appearance). 

Past research had shown that low-pass filtering is not affected by viewing distance (Hayes et 

al., 1986) and our findings thus confirm that uncontrolled viewing distances during online 

testing with blurred images poses no notable issue. More generally, the fact that the lab-

based experiment yields similar patterns of results as the other three experiments, despite 

substantial changes in the procedure and image set, also speaks to the validity of all the 

data collected online. 

Exploration of the impact of actors’ sex 

In addition to initial pre-planned analyses, we explored whether the sex of the actors 

had an impact on discrimination performance (d’) by means of 3-ways repeated measures 

ANOVA with popularity, appearance and sex as within-subject factors for each type of image 

in each experiment. For the sake of space, we report descriptive statistics and results of the 

three-way interactions in Table 1. Additional figures showing performance in each image 

condition are presented in Supplementary materials (Figures S1 to S11). In all experiments 

using intact images but one (i.e. Experiment 4b), we found a similar pattern of performance. 

In less popular actors, stable faces were better recognised than variable faces for both 

female and male actors. However, differences were observed between female and male 

faces for popular actors with a stable appearance. Whereas discrimination performance for 

stable women increased with exposure, discrimination of stable male faces did not improve 

with exposure or when it did, it did not as much as women’s. 
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 Similar patterns of interaction were also observed with cropped images of inner 

features and with blurred images, but not with atypical images. 

 

Table 1. Mean discrimination performance (d’) and standard deviations (in 
italics) as a function of sex, popularity and appearance in different image 
conditions of all experiments. Results of the associated three-way interactions 
appear in the three rightmost columns. 

      Female             Male             Popularity ✻ 

Appearance ✻ Sexe       Popular Less popular Popular Less popular 

Test 
image Exp. N Variable Stable Variable Stable Variable Stable Variable Stable F(1,N-1) p η²p  

Headshot 2 60 2.5 0.9 2.5 1.0 1.1 0.7 1.7 0.7 2.9 0.7 2.3 0.6 1.5 0.7 2.3 0.6 33.418 < .001 0.362 

 3a 62 2.2 0.9 2.2 1.0 1.1 0.8 1.5 0.9 2.9 1.0 2.2 0.9 1.6 0.8 2.2 
0.80 

  0.8   48.900 < .001 0.445 

 3b 81† 1.7 0.9 1.6 0.9 0.9 0.7 1.4 0.7 2.5 1.3 1.8 0.8 1.4 0.8 1.9 1.0 14.810 < .001 0.156 

 4a 81† 2.7 1.0 2.5 0.8 1.2 0.5 1.5 0.8 2.8 0.9 2.3 0.8 1.4 0.7 2.1 0.6 13.143 < .001 0.141 

 4b  99† 2.6 1.1 2.4 1.0 1.1 0.7 1.5 0.8 2.6 0.9 2.4 0.9 1.4 0.8 2 0.9 1.487 0.226 0.015 

Inner 
features 1 96 1.5 1.0 1.5 1.0 0.5 0.7 0.9 0.7 1.7 1.0 1 0.9 0.6 0.6 1 0.8 28.866 < .001 0.233 

 2 60 1.5 0.8 1.5 0.8 0.6 0.7 0.9 0.7 1.8 0.9 1.3 0.8 0.6 0.6 1.1 0.8 14.300 < .001 0.195 

Atypical 3a 61 2.2 1.0 2 1.0 1 0.7 1.5 0.8 2.5 1.0 2.1 0.8 1.4 0.8 1.8 0.9 0.069 0.793 0.001 

 3b 81† 1.4 0.9 1.2 0.9 0.8 0.6 1.2 0.8 2 1.3 1.6 0.9 1.2 0.9 1.4 0.9 1.599 0.210 0.020 

Blurred 4a 81† 1.2 0.8 1.3 0.7 0.5 0.5 0.7 0.6 1.9 1.0 1.4 0.8 0.7 0.8 1.1 0.7 19.568 < .001 0.197 

  4b  99† 1.2 0.9 1.1 0.8 0.5 0.6 0.6 0.7 1.6 0.9 1.3 0.9 0.7 0.9 1 0.8 8.643 0.004 0.081 

† Indicates participants in a given image condition of a within-subject experiment.  

 

A likely explanation for that pattern is that the appearance of stable men is even more 

stable than that of stable women. Women with long hair can present small variations in 

hairstyle, even if the colour and length are constant, for example by tying their hair up or by 

straightening/waving it. By contrast, men with shorter hair cannot present this type of small 

variations. Consequently, on average, extra-facial features and coarse information could 

carry more weight in men than in women, and small variations in the appearance of women 

could help refine the representations of their face despite a relatively stable appearance. 
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Validation of IMDb StarMeter ranks as a proxy of exposure 

We demonstrated in Devue and colleagues (2019) that StarMeter ranks available on 

the IMDb website were a good proxy of exposure to a set of actors from a specific TV show, 

as they correlated with screen times (r = -0.441, p = 0.001). Unlike here, we had used a 

selected sample of 32 participants who had watched the entirety of the TV show, providing 

an excellent control of exposure to individual actor faces. In the current situation, we were 

unable to calculate screen times of individual actors or to control individual exposure of 

participants to actors. We thus calculated Pearson’s correlations between average hit rates 

per actor in each image condition of each experiment and their StarMeter rank (as used in 

Experiments 1 to 3, and Experiment 4, respectively) to explore how valid a measure of 

exposure StarMeter ranks are in uncontrolled learning conditions. The correlations ranged 

from -.604 to -.788 and were all significant, see Table 2.  

Table 2. Associations between StarMeter ranks and mean hit rates per actor in 
different image condition and experiments. 

Test image 
 

Experiment 
 

Sample 
origin 

N Number 
of actors 

Pearson's 
r 

p 
 

Lower 
95% CI 

Upper 
95% CI 

Headshot 2 NZ 60 96 -0.773 < .001 -0.843 -0.678 

 3a NZ 62 96 -0.788 < .001 -0.853 -0.697 

 3b US 81† 96 -0.725 < .001 -0.808 -0.614 

 4a NZ 81† 72 -0.728 < .001 -0.821 -0.597 

 4b NZ 99† 72 -0.681 < .001 -0.788 -0.533 

Inner features 1 NZ 100 96 -0.634 < .001 -0.740 -0.496 

 2 NZ 60 96 -0.666 < .001 -0.764 -0.537 

Atypical 3a NZ 61 96 -0.680 < .001 -0.775 -0.556 

 3b US 81† 96 -0.627 < .001 -0.735 -0.488 

Blurred 4a NZ 81† 72 -0.629 < .001 -0.751 -0.465 

  4b NZ 99† 72 -0.604 < .001 -0.733 -0.433 

Note. Sample origin and N refers to participants tested in our recognition tests. 
Number of actors refers to the number of individual actors used in a given test. † indicates 
participants in a given condition of an experiment with a within-subject design. 
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These results thus validate our use of StarMeter ranks as a proxy of exposure since 

smaller StarMeter ranks, which indicate a higher media visibility, are associated with higher 

recognition rates. Results of the same correlations calculated between mean hit rates on 90 

actors and their StarMeter ranks from Devue et al. (2019)’s data were comparable, r = -

0.628, p < 0.001, 95% C.I. = -0.739 – -0.484 with typical images (N = 16), and r = -0.448, p < 

0.001, 95% C.I. = -0.600 – -0.266 with atypical images (N=16). We note that associations 

between mean hit rates and StarMeter ranks are numerically larger in the current series of 

experiments than in our previous work, but this is likely due to the larger samples we used 

to compensate for the aforementioned lack of control on individual exposure and on 

individual face recognition abilities. 

Finally, to check the validity of StarMeter ranks in different English speaking 

geographical areas, we calculated Pearson’s correlations between hit rates per individual 

actor headshots in a sample from the US and in the different NZ samples used in different 

experiments. Results indicate large positive associations between hit rates in the two 

populations, with correlation coefficients ranging from 0.685 to .874, see Table 3. This 

confirms that actors we selected based on the US-based IMDb website have comparable 

visibility in both populations. 

Table 3. Associations between hit rates for individual actor headshots in one US 
sample and in multiple NZ samples used in different experiments. 

Experiment 
(US sample) 

Experiment 
(NZ samples) 

Number 
of actors 

Pearson's 
r 

p 
 

Lower 
95% CI 

Upper 
95% CI 

3b 2 96 0.830 < .001 0.756 0.884 

 3a 96 0.874 < .001 0.817 0.915 

 4a 72 0.685 < .001 0.539 0.791 

  4b 72 0.755 < .001 0.635 0.840 
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General discussion 

We conducted four famous face recognition experiments on a total of 604 participants 

to test the two main assumptions of a cost-efficient mechanism of face learning, namely 

that representational weights are distributed contingent of the relative stability of individual 

faces, and following a dynamic coarse-to-fine encoding over the course of familiarisation. 

Impact of stability and exposure on facial representations. We have considered the 

impact of intrinsic characteristics of famous faces on recognition performance and we show 

for the first time to our knowledge that the relative stability in appearance of individual 

faces affects recognition performance. Unexpectedly, in all experiments using intact 

headshots, we found that overall, famous faces with a stable appearance were better 

discriminated from strangers than faces that display looks that are more variable. In line 

with computer simulations (Burton et al., 2016) and recent studies on humans (Devue et al., 

2019), we also found that recognition performance improves with increased exposure, 

confirming that humans build facial representations that evolve to become more reliable. 

Our manipulation of popularity levels by means of an objective index of exposure (i.e. 

the StarMeter ranks on IMDb) allows nuancing these results and shows that, all else being 

equal, stability affects recognition performance in different ways along the course of 

familiarisation with faces. Specifically, in earlier stages of learning, stability in appearance 

supports recognition compared to variability, suggesting that stable faces benefit from 

representations that are more reliable at first. Over time, a shift in performance occurs and 

recognition of variable faces is better than that of stable faces, consistent with the idea that 

variations in appearance yields more reliable representations by encouraging more 
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refinement7. Further, while sensitivity to both variable and stable faces increase with 

exposure, the improvement is significantly larger with variable faces than with stable faces, 

suggesting that once a representation of a stable face is formed, it does not evolve as much 

and remains coarser compared to variable faces. The relative benefits of stability in earlier 

stages of familiarisation are also larger than the benefits of variability in later stages of 

familiarisation, a pattern that replicated across all experiments using intact images and that 

explains the overall advantage of stable faces over variable faces. In sum, our results 

consistently show that the quality of facial representations is the product of a given face’s 

stability in appearance and its interplay with exposure, in line with hypotheses drawn from a 

cost-efficient mechanism of face learning. 

Contrary to what we found here, recent lab-based face learning studies have shown 

that exposure to high degrees of variability in images of faces—both in viewing conditions 

and in appearance—improves recognition of newly learned faces relative to stable viewing 

conditions, even after a single brief learning session ( Burton et al., 2016; Kramer, Manesi, et 

al., 2018, Robins et al., 2019). This seems inconsistent with the advantage for stable faces 

compared to variable faces we found in less popular actors and with the overall benefit of 

stability we observe. This apparent discrepancy is likely due to differences in learning 

supervision when learning new faces in the lab and when learning faces in the real world. In 

the lab, faces are often learned under supervised conditions, and so observers can take 

advantage of natural variations in images to refine their representations with the explicit 

knowledge that a set of images shows the same person. In contrast, when we encounter 

                                                           
7 Note that during the original selection of actors, we purposefully left a gap in StarMeter ranks between 
popular and less popular ones. We can thus assume that recognition rates of variable and stable actors would 
be equivalent at some intermediate levels of popularity. 
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emerging actors in the real world, we often learn their faces incidentally and with low levels 

of supervision—for example, those can be in the form of credits or feedback from peers. If 

we are correct in assuming that face encoding operates parsimoniously, then a default 

assumption must be that the appearance of a newly encountered face is stable and will not 

change in the future, leading to the creation of a coarse representation. One can only revisit 

this assumption with repeated exposure to a person and the realisation that their 

appearance vary. This revision is most likely more challenging when an observer is not 

aware that they are viewing a person they have seen before than when they are explicitly 

told so. Therefore, if an emerging actor acts in several movies with the same appearance, 

we have more opportunity to recognise them based on the same coarse representation 

from one movie to another. By contrast, if an emerging actor appears with a different 

appearance in different movies, we may build multiple coarse representations that include 

different large-scale peripheral elements on each occasion and fail to recognise them as the 

same person across encounters. The benefit of associating various depictions of a face with 

a single identity occurs even when simultaneously viewing multiple images of a person in 

the lab. Indeed, when viewing a mix of different images of multiple people, participants are 

better at sorting images per identity when told how many different identities there are than 

when they are not informed or misinformed about it, in which case they tend to interpret 

singles identities as multiple identities (Andrews et al., 2015; Menon et al., 2018). Therefore, 

our data suggest that with low levels of learning supervision, variability in appearance has a 

negative impact on learning compared to stability, because differences in appearance are 

interpreted as differences in identity. 

At the neural level, the benefits of learning stable faces with low levels of supervision 

across episodic encounters could translate in larger overlaps in activity patterns in the 
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anterior hippocampus from one encounter to another relative to variable faces, leading to a 

faster consolidation of that pattern (see e.g. Sekeres et al., 2018). In supervised conditions, 

influences from anterior cortical areas linked to the explicit knowledge that one is viewing 

multiple photos of the same person may help consolidate overlapping patterns of activity 

from one encounter to another. In faces with a variable appearance, the consolidation of 

more restricted overlapping patterns of activations compared to stable faces might 

correspond to the greater refinement of features that are common between images or 

encounters. Recent research has shown that refinement of representations with increased 

familiarity is indexed by the N250 component, and in similar ways for famous and personally 

familiar faces (Wiese et al., 2021). Future developments of that research could incorporate 

stability in appearance to examine how it modulates ERP responses. 

More generally, the reasoning derived from our framework also explains the poor 

performance classically observed with new faces learned in non-ecological laboratory 

conditions. When an observer is learning a limited set of faces from single pictures, a cost-

efficient encoding mechanism would lead to assume that the stimulus is stable, will not 

change in the future, and so to favour coarse elements of the person’s appearance (e.g. the 

shape of the hairline in the given view, hair colour) or even diagnostic pictorial elements 

(e.g. a difference in background colour or a photographic artefact). This would then yield 

low cost representations with low generalisability and to poor performance in a subsequent 

memory test that uses images where the appearance, the view or pictorial artefacts have 

changed and/or where distractors display gross resemblances with learned faces (for a 

recent example with viewpoint, see Flack et al., 2019). The same reasoning can also help 

explain poor performance with new faces briefly encountered in the real world, for 

example, when one is witnessing a crime. 
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Content of facial representations. The comparison of recognition performance with 

typical headshots of actors and with images containing partial or atypical information gives 

us some clues on the content of facial representations and on the contribution of different 

types of information.  

Peripheral and inner features. In initial stages of familiarisation, recognition of both 

stable and variable faces is greatly improved by the presence of peripheral information 

compared to internal features alone (Experiment 2). Contrary to the view drawn from PCA 

models that recognition of familiar faces relies on an average representation of inner 

features, the presence of peripheral features also improved recognition of more familiar 

faces. This suggests that all faces in our set were processed holistically, in line with studies 

showing that the holistic processing of unfamiliar faces is disrupted by the removal of 

external features (García-Zurdo et al., 2018; Toseeb et al., 2012) or that recognition of 

familiar faces is impaired when extra-facial features are altered (Carbon, 2008; Devue et al., 

2019; Sinha & Poggio, 1996). Consistent with seminal studies showing a stronger reliance on 

peripheral features for less familiar faces than for more familiar ones (Campbell et al., 1995; 

Ellis et al., 1979), we observe that peripheral features facilitate the correct discrimination of 

familiar faces from strangers proportionally more for less popular faces than for more 

popular ones (see Figure 5A). The cost-efficient theory we have proposed provides a 

plausible encoding mechanism for present and past data: representational weights are 

broadly distributed over large-scale information at first, forming low-cost coarse 

representations, to converge towards internal information over time, giving more costly but 

more reliable refined representations. 
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Typical information. We show that headshots with the most typical individual 

appearance were better recognised than headshots deviating from that appearance, 

regardless of their popularity or relative stability (Experiment 3). This suggests that 

representations give more weight to facial information encountered more frequently, even 

for variable aspects in the case of faces that change appearance from one encounter to 

another. We can speculate that at the neural level, activations associated with these 

variable aspects are more likely to consolidate for those patterns of activations that reoccur 

more over time. 

We note that discrimination performance was overall lower on the Mechanical Turk 

sample from the US in Experiment 3b than in other experiments, but that the pattern of 

performance with headshots seen in other experiments nonetheless replicated. 

Coarse information. Like with other types of test images, stable faces were better 

recognised from blurred images than variable faces in earlier stages of familiarisation. 

Contrary to our expectations, we observed the same shift as in other image conditions 

whereby variable faces were better recognised from blurred images than stable ones in 

later stages of familiarisation. However, the size of that effect what the smallest across all 

the comparisons done between the two types of faces in different image conditions. We 

had hypothesised that if representations of stable faces are coarser than representations of 

variable faces, then those latter should be less well recognised from blurred images. This 

reasoning emerged from the assumption that representational weights might converge 

towards more detailed internal information, to the detriment of other areas at the 

periphery, as if the pool of representational weights available per individual face was finite. 

Instead, in line with research on face perception (Goffaux et al., 2005; Peters et al., 2018; 



41 
 

Weibert et al., 2018), current data suggest that representations of all faces have a 

foundation of coarse information, onto which finer information may be added. 

Further, the fact that exposure increased sensitivity even from blurred images 

suggests that more discriminative information is extracted within coarse information over 

time. A likely candidate behind that improvement is the refined coding of configural 

information (i.e. spatial relationships between features) contained in blurred images 

(Goffaux et al., 2005), beyond larger scale and/or peripheral information (i.e. head shape, 

hair colour) encoded at first. The advantage of variables faces in later stages of 

familiarisation seems to rest both on that more refined coding of coarse information and 

the incorporation of facial details into representations. Future research where a more 

systematic manipulation of spatial frequencies available in test images is conducted should 

help confirm these hypotheses. 

Integration of current findings. Altogether, our series of experiments suggest that 

faces are represented via holistic representations based on coarse information and that 

representational weights are added as needed to encode facial details and their 

relationships with higher resolution. When changeable features remain stable over time, 

representational weights remain broadly distributed over large-scale extra-facial 

information and internal features are encoded at lower resolution. Coarse representations 

are cheap but carry the risk of poor discrimination between similar individuals. For 

efficiency purposes, they must thus be favoured when we encounter new people and have 

no reason to assume that they will change or that we will see them again in the future. They 

could also be favoured when episodic encounters with an individual are consistently linked 

to a specific context and that gross information is discriminative enough in that context, 



42 
 

perhaps contributing to well-known difficulties when a person appears in a different context 

(Mandler, 1980). The more we experience variations in a person’s appearance over 

encounters, the highest the resolution of invariant information needs to be to guarantee 

recognition. Finer representations are more costly but more discriminative, and the face 

recognition system must turn to them as we get to know people and demands for 

recognition out of context increase. 

Holistic representations based on coarse information are adaptive not only because 

they are cheap but also because they give us a chance to recognise people from a distance 

when facial details are not available. Although recognition is not always accurate at large 

distances (Loftus & Harley, 2005; McKone, 2009), coarse information at least allows us to 

form an hypothesis on someone’s identity, that finer information can confirm or infirm as it 

becomes available. Such coarse-to-fine verification process is also at play during scene 

identification (Schyns & Oliva, 1994). 

Implications and future directions. Our series of experiments confirm that the large 

amount of data on celebrities available on the internet can be exploited to advance 

psychology research. The StarMeter ranks we have used to create sets of images of famous 

faces that are comparable in exposure have generated highly replicable results despite 

differences in populations used, variations in experimental paradigms (between vs. within-

subject, lab-based vs. online, image types blocked or presented sequentially) and different 

items included in image sets across experiments. Importantly, as the StarMeter ranks are a 

dynamic measure, stimuli sets must evolve over time as well. 

While recent research has emphasised the use of uncontrolled natural stimuli to study 

face recognition in a more ecological manner, we show that an approach maximising 
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internal and external validities may be more productive. Importantly, the results presented 

here show that studying face recognition based on averaged performance on indiscriminate 

heterogeneous sets of face images may muddy waters. This is striking through the 

interaction we consistently found between popularity and stability in appearance.  

The current series of experiments is not without its own shortcomings in that regard. 

For example, we referred to and studied the role of inner features as a group, although we 

explicitly assumed that single or multiple features within that group could carry more or less 

representational weight. For example, past ERP research showed that the eyes are strong 

identity cues, more reliable than other features like the mouth (Mohr et al., 2018; 

Nemrodov et al., 2014). Therefore, the eyes may carry more representational weight than 

other inner features, which could result from their central position in the head, allowing to 

take in surrounding coarse information. However, regular changes (e.g. make-up and/or 

swapping between glasses and contacts) or occlusions (e.g. with hair of sunglasses) of the 

eyes area in a given individual face could lead to refine representations of other aspects less 

affected by changes and occlusions (e.g. the nose). The role of individual facial features as a 

function of their intrinsic characteristics in terms of stability or of other aspects like their 

distinctiveness will thus be the object of future research. Moreover, exploratory analyses 

including the sex of the actors have suggested differences in discrimination patterns of 

popular male and female actors, whereby discrimination sensitivity to stable women 

increased with exposure more than discrimination sensitivity to stable men. In other words, 

women faces may have been driving the small improvement seen over time for stable faces. 

This might be due to stable women displaying more variations than stable men (e.g. larger 

differences in hair styling despite consistent length and colour in women than in men) and 

will warrant further investigations too. 



44 
 

Conclusions 

We present a new account of face learning and familiarisation that takes stability in 

appearance into account. We posit that representations are cost-efficient and laid out 

differently depending on intrinsic characteristics of individual faces. We show that despite 

comparable levels of popularity of actors like Brad Pitt and Harrison Ford, the 

representation of people like the former, who have a variable look, are more refined than 

that of people like the latter, who have a more consistent appearance. Although it leads to 

maintain coarser representations, stability facilitates recognition in earlier stages of 

familiarisation. Harrison Ford’s signature look helped us remember him from encounter to 

encounter, and his face must have become familiar faster than the face of Brad Pitt. This 

account is integrative in nature and resolves conflicting theoretical conceptions as to what 

type of facial information is encoded and whether qualitatively different processes are used 

for unfamiliar and familiar faces. Indeed, seemingly conflicting empirical data in past 

research may be the result of the same cost-efficient face learning mechanism and its 

consequences over time. This account also generates numerous hypotheses for future 

research, which will hopefully further our understanding of how most of us are able to 

recognise large amounts of faces despite large memory constraints. 

Context of research 

The reasoning behind the cost-efficient mechanism of face learning has emerged from 

unexpected findings reported in Christel Devue’s 2019 paper [Devue, C., Wride, A., & 

Grimshaw, G. M. (2019). New insights on real-world human face recognition. Journal of 

Experimental Psychology: General, 148(6), 994–1007]. We had found that recognition of 

familiar faces learned in the rich conditions of a TV show was impaired by superficial 
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changes in appearance regardless of the degrees of exposure they had received, including 

for very prominent actors. Results also showed that recognition errors (false recognition of 

strangers or confusion between people) were often due to gross resemblances in extra-

facial features. The will to understand the root of those results, to close the gap between 

what is known of unfamiliar and familiar face processing and to take real-world conditions 

and memory constraints of humans into account led to the current theoretical 

developments and empirical work.  
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