Locally stable exchanges

Marie Baratto

Kidney exchange problem
Stable exchanges
Locally Stable Exchanges
Result
IP formulation
Local Kernels
Definitions
Blocking digraph

Numerical Tests
Comparison formulations
Comparison Stable - L-stable

Local Strong Stability

References
Kidney exchange problem

Patient 1

Donor 1
Kidney exchange problem

Patient 1

Donor 1
Kidney exchange problem

Locally stable exchanges
Marie Baratto

Kidney exchange problem
Stable exchanges
Locally Stable Exchanges
Result
IP formulation
Local Kernels
Definitions
Blocking digraph
Numerical Tests
Comparison formulations
Comparison Stable - L-stable
Local Strong Stability
References
Kidney exchange problem

Locally stable exchanges

Marie Baratto

Kidney exchange problem

Stable exchanges

Locally Stable Exchanges

Result

IP formulation

Local Kernels

Definitions

Blocking digraph

Numerical Tests

Comparison formulations

Comparison Stable - L-stable

Local Strong Stability

References
Pool of incompatible pairs
Compatibility graph

\(G = (V, A, w) \) where:

- \(V = \{1, \ldots, n\} \) set of vertices, consisting of all patient-donor pairs.
- \(A \), the set of arcs, designating compatibilities between the vertices. Two vertices \(i \) and \(j \) are connected by arc \((i, j) \) if the donor in pair \(i \) is compatible with the patient in pair \(j \).

We denote by \(C(G) \) be the set of feasible cycles of length at most \(K \) for \(G = (V, A) \).
Possible exchanges

Definition

An exchange is a set of disjoint cycles in the directed graph. It is feasible if every cycle length does not exceed a given limit K.
For each vertex \(i \in V \), a preference order is given on the set of incoming arcs \(\{(j, i) \in A\} \).
A preference \(p \) associated to arc \((j, i)\) means that the recipient of the pair \(i \) ranks the donor of pair \(j \) at position \(p \) in its preferences list of acceptable donors.
Stable exchange

Definition

A **blocking cycle** c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

We say that a vertex i prefers cycle c to c' if for $(k, i) \in A(c)$ and $(k', i) \in A(c')$, i strictly prefers k to k'.

![Diagram of blocking cycles](image-url)
A **blocking cycle** c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

We say that a vertex i prefers cycle c to c' if for $(k, i) \in A(c)$ and $(k', i) \in A(c')$, i strictly prefers k to k'.

```
1  2  4
\downarrow\quad\downarrow\quad\downarrow
3  2  5
\uparrow\quad\uparrow\quad\uparrow
7  6
```
A **blocking cycle** \(c \) for an exchange \(\mathcal{M} \) is a cycle that is not included in \(\mathcal{M} \) and such that, for every vertex \(i \in V(c) \),

- either \(i \) is unmatched in \(\mathcal{M} \),
- or \(i \) prefers \(c \) to \(c' \in \mathcal{M} \) where \(i \in V(c') \).

We say that a vertex \(i \) prefers cycle \(c \) to \(c' \) if for \((k, i) \in A(c)\) and \((k', i) \in A(c')\), \(i \) strictly prefers \(k \) to \(k' \).

→ Vertex 4 is unmatched in exchange \(\mathcal{M} \) in blue
A **blocking cycle** c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

We say that a vertex i prefers cycle c to c' if for $(k, i) \in A(c)$ and $(k', i) \in A(c')$, i strictly prefers k to k'.

→ Vertex 5 is unmatched in exchange \mathcal{M} in blue
A blocking cycle c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

We say that a vertex i prefers cycle c to c' if for $(k, i) \in A(c)$ and $(k', i) \in A(c')$, i strictly prefers k to k'.

\rightarrow Vertex 2 prefers cycle red because the donor of pair 4 is number one on its preference list and donor of pair 1 is at at the second position of its preference list.
Definition

A **blocking cycle** \(c \) for an exchange \(\mathcal{M} \) is a cycle that is not included in \(\mathcal{M} \) and such that, for every vertex \(i \in V(c) \),

- either \(i \) is unmatched in \(\mathcal{M} \),
- or \(i \) prefers \(c \) to \(c' \in \mathcal{M} \) where \(i \in V(c') \).

We say that a vertex \(i \) prefers cycle \(c \) to \(c' \) if for \((k, i) \in A(c) \) and \((k', i) \in A(c') \), \(i \) strictly prefers \(k \) to \(k' \).
Definitions - stability

Definition

A **blocking cycle** c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

Definition

Given a directed graph $G = (V, A)$, an exchange is called **stable** if no blocking cycle c exists for \mathcal{M}.

Definitions - stability

Locally stable exchanges

Marie Baratto

Kidney exchange problem

Stable exchanges

Locally Stable Exchanges

Result

IP formulation

Local Kernels

Definitions

Blocking digraph

Numerical Tests

Comparison formulations

Comparison Stable - L-stable

Local Strong Stability

References
Stable exchange - Drawback

Definition

A **blocking cycle** c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

![Diagram of blocking cycle](image)
Definition

A **locally blocking cycle** (L-blocking cycle) c for an exchange \mathcal{M} is a cycle that is not included in \mathcal{M} but **has a vertex in common with** \mathcal{M} and such that, for every vertex $i \in V(c)$,

- either i is unmatched in \mathcal{M},
- or i prefers c to $c' \in \mathcal{M}$ where $i \in V(c')$.

Definition

Given a directed graph $G = (V, A)$, an exchange is called **locally stable** (L-stable) if no L-blocking cycle c exists for \mathcal{M}.
Definitions

Given a cycle c we define two sets:

- $PBC(c)$

Definition

For a given cycle c, a potentially blocking cycle (PBC) is another cycle c' non vertex disjoint with c and such that each vertex of c' is either not in c or prefers c' to c.
Definitions

Given a cycle \(c \) we define two sets:

- \(PBC(c) \)

Definition

For a given cycle \(c \), a **potentially blocking cycle (PBC)** is another cycle \(c' \) non vertex disjoint with \(c \) and such that each vertex of \(c' \) is either not in \(c \) or prefers \(c' \) to \(c \).
Definitions

Given a cycle c we define two sets:

- $PBC(c)$

Definition

For a given cycle c, a potentially blocking cycle (PBC) is another cycle c' non vertex disjoint with c and such that each vertex of c' is either not in c or prefers c' to c.
Definitions

Given a cycle c, we define two sets:

- $\mathcal{A}(c)$

Definition

For a given cycle c, $\mathcal{A}(c)$ be the set of cycles that are not disjoint with c but they are not potentially blocking c and c does not potentially block them neither.
If two cycles c_u and c_v are not vertex disjoint then three situations can occur:

- $c_u \in PBC(c_v)$
- $c_v \in PBC(c_u)$
- $c_u \in A(c_v)$ and $c_v \in A(c_u)$
Result

For an exchange \mathcal{M}, the following conditions are equivalent:

(a) \mathcal{M} is L-stable;

(b) for each cycle $v \notin \mathcal{M}$, if v is not disjoint from \mathcal{M}, then there exists $w \in \mathcal{M}$ such that $w \in PBC(v) \cup A(v)$.

\[PBC(A) = \{D\} \]
\[PBC(D) = \{B\} \]
\[PBC(B) = \emptyset \]
\[PBC(C) = \emptyset \]
\[PBC(E) = \{C\} \]
\[A(c) = \emptyset \text{ for all cycles} \]
Result

For an exchange \(\mathcal{M} \), the following conditions are equivalent:

(a) \(\mathcal{M} \) is L-stable;

(b) for each cycle \(v \notin \mathcal{M} \), if \(v \) is not disjoint from \(\mathcal{M} \), then there exists \(w \in \mathcal{M} \) such that \(w \in PBC(v) \cup \mathcal{A}(v) \).

\[\text{• } PBC(A) = \{D\}\]
\[\text{• } PBC(D) = \{B\}\]
\[\text{• } PBC(B) = \emptyset\]
\[\text{• } PBC(C) = \{F\}\]
\[\text{• } PBC(E) = \{C\}\]
\[\text{• } PBC(F) = \emptyset\]
\[\text{• } \mathcal{A}(c) = \emptyset \text{ for all cycles}\]
we introduce the natural variables y_v for all $v \in C(G)$ and the following set of constraints:

$$y_u + y_v \leq 1 \quad \forall u \in C(G), \forall v \in PBC(u) \cup A(u) \quad (1)$$

$$y_u \leq \sum_{w \in PBC(v) \cup A(v)} y_w \quad \forall u \in C(G), \forall v \in PBC(u) \quad (2)$$

$$y_v \in \{0, 1\} \quad \forall v \in C(G) \quad (3)$$

1. Constraints (1) ensure the independence of the cycles selected
2. Constraints (2) ensure the stability of the exchange
(Local) Kernel - Definitions

Definition

Given a directed graph $G = (V, A)$, subset $S \subseteq V$ is a *kernel* of G if it is independent and absorbing. That is:

- for all $(u, v) \in A$ either $u \notin S$ or $v \notin S$
- for every $v \notin S$ there exists a vertex $u \in S$ such that $(v, u) \in A$

Definition

A *local kernel* of G is an independent subset S of vertices such that every neighbor (or out-neighbor) of S is absorbed by S. In other words:

- for all $(u, v) \in A$ either $u \notin S$ or $v \notin S$
- if there exist $u \in S$ and $v \notin S$ such that $(u, v) \in A$, then there must exist $w \in S$ such that $(v, w) \in A$.

Definition

A **local kernel** of G is an independent subset S of vertices such that every neighbor (or out-neighbor) of S is absorbed by S. In other words:

- for all $(u, v) \in A$ either $u \notin S$ or $v \notin S$
- if there exist $u \in S$ and $v \notin S$ such that $(u, v) \in A$, then there must exist $w \in S$ such that $(v, w) \in A$.

Result

The empty set $S = \emptyset$ is an L-kernel. So, every directed graph has an L-kernel (but not necessarily a not empty one).

Result

Given a directed graph $G = (V, A)$, deciding whether G has a nonempty local kernel is NP-complete.

Reduction from SAT
Starting from the initial directed graph \(G = (V, A) \), lets construct a directed graph \(G' = (V', A') \) such that:

- For each \(c_v \in C(G) \) there is a vertex \(c_v \) in \(V' \) representing that cycle.
- An arc \((c_u, c_v) \in A' \) if \(c_v \in PBC(c_u) \) or if \(c_v \in A(c_u) \).

\(G' \) is the **blocking directed graph** associated to \(G \).

Result

A L-kernel in \(G' \) defines a L-stable exchange in \(G \).

and a kernel in \(G' \) defines a stable exchange in \(G \)
Formulation 2:

\[y_u + y_v \leq 1 \quad \forall (u, v) \in A' \]
\[y_u \leq \sum_{w \in N^+(v)} y_w \quad \forall (u, v) \in A' \]
\[y_v \in \{0, 1\} \quad \forall v \in V' \]

- **Independence** constraint (4) can be replaced by
 \[\sum_{c \in C : i \in V(c)} x_c \leq 1 \quad \forall i \in V \] (7)

- **Stability/Absorbing** constraint (5) can be replaced by fixing \(v \) and adding each constraint above for all \((u, v) \in A'\):
 \[\sum_{w \in N^-(v)} y_w \leq |N^-(v)| \sum_{w \in N^+(v)} y_w \quad \forall v \in V' \] (8)

where \(N^-(v) = |\{w : (w, v) \in A'\}|. \)
Comparison IP formulations

Comparison between 3 formulations:
1. Initial formulation for L-stable exchange (Form-LS)
2. Form-LS with independence constraints modified
3. Form-LS with independence constraints and stability constraints modified

Best IP formulation for L-stable exchanges in terms of computation time:

$$
\sum_{v \in C(G): i \in V(c)} y_v \leq 1 \quad \forall i \in V
$$

$$
\sum_{w \in N^-(v)} y_w \leq |N^-(v)| \sum_{w \in N^+(v)} y_w \quad \forall v \in V'
$$

$$
y_v \in \{0, 1\} \quad \forall v \in V'
$$
Stability vs Local stability
Stability vs *Local* stability

- Problem of maximum stable exchange (SE) and problem of maximum L-stable exchange (LSE) are not the same problems (not the same set of feasible solutions) **BUT** when the objective function of both problems is to maximize the total length of the cycles selected, the two formulations have the same objective.

- **SE** problem: Some instances do not have a solution
- **LSE** problem: All instances tested have a solution of cardinality greater than zero
 - for N=300,
 1. 5 out of 50 instances do not have a stable exchange
 2. 5: average optimal value is 74
 3. 45: average optimal value is 150, 08
 - for N=400,
 1. 11 out of 50 instances do not have a stable exchange
 2. 11: average optimal value is 141, 45
 3. 39: average optimal value is 205, 94
Local Strong Stability
Locally stable exchanges

Marie Baratto

Kidney exchange problem
Stable exchanges
Locally Stable Exchanges
Result
IP formulation
Local Kernels
Definitions
Blocking digraph
Numerical Tests
Comparison formulations
Comparison Stable - L-stable

Local Strong Stability

References

Locally stable exchanges
Marie Baratto, Yves Crama, Joao Pedro Pedroso, Ana Viana

September 13th 2022