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Abstract

Transcranial direct current stimulation (tDCS) has gained increased interest over the past decades
due to its affordability, ease of use and wide range of applications. However, its lack of consistency
and reproducibility of published results is rising concerns.

A potential solution to improve the method is to tailor the stimulation for each subject based on
individual measurements and models. Such model requires accurate information about the geometry of
the tissues composing the head of the subjects, about their electric properties and about the electrode
montage.

In the present simulation work, we evaluate the effect of an error on the placement of the anode
and of the unknown physical properties of the tissues on the induced electric field for 6 experiments
on 20 subjects.

In addition to confirming the concerning small tDCS effect size, we show that the uncertainty on
the conductivity parameters prevents any other conclusion to be drawn from such models.

1 Introduction

Transcranial direct current stimulation (tDCS) is a non-
invasive neuromodulation technique which consists in in-
jecting a small amount of electric current (i.e., usually 1
to 2 mA) through the head of a subject by the mean of two
large saline-soaked sponge electrodes (e.g., 5×5 cm2). The
stimulating electrode or anode is placed above the cortical
region of interest. The reference electrode, also referred
to as cathode, is either located on the same region of the
opposite hemisphere in a bipolar electrode montage or on
the contralateral orbit region in a unipolar montage. It
can also be applied on a silent zone such as the chin, the
neck or the deltoid muscle [28, 36].

Since the beginning of the century, this tool has received
increased interest due to its affordability, simplicity and
wide range of application. Indeed, it has been studied in
research and clinical applications to help patients recover-
ing from strokes [5], traumatic spinal cord injury [30] or
suffering from refractory epilepsy [62], fibromyalgia [31],
depression [45], anxiety disorders [53] just to name a few.
A lot of studies have also tried to use tDCS to improve
cognitive functions like working memory or inhibition in
normal subjects and patients [11, 50, 52].

Whilst more and more papers focusing on tDCS are
published every year (1, 088 papers listed on PubMed in
20211), two major issues rose up: the high inter-subject
variability in the response to the stimulation and the lack
of reproducibility of some published results in follow-up
studies [12, 24, 59].

With a percentage of expected response generally lower
than 50 % [23, 35], the reliability of tDCS is questionable.
Wiethoff et al. [60] concludes that the after-effect of tDCS
on corticospinal excitability is highly variable, and the sys-
tematic review of Horvath et al. [22] rose questions about
the efficacy of such device and the underlying mechanisms.

One of the proposed solutions to improve the technique
is to individualize the intensity of the injected current,
referred to as the dose, based on subject specific models
[1]. Unfortunately, the recent work by Sallard et al. [48]
indicates that this approach might not improve the efficacy
of tDCS over the primary motor cortex. Nevertheless,
current modelling is often performed in addition to tDCS
to evaluate the current density induced by the stimulation
in a given region of interest (ROI).

Such a model relies heavily on the geometry of the sub-
ject and on the electrode placement, but also on the elec-
tric properties of the tissues composing the head. Those
properties have been shown to vary widely between sub-
jects based on numerous factors (e.g., temperature, time
of day, health status...). The review from [33] provides
ranges of low frequency conductivity values for the main
biological tissue classes.

The head geometry is usually built based on subject-
specific structural images, but electrode positions are not
always recorded using virtualization techniques. In this
case, they are placed on the model without real world
information, inducing a potential error of placement.

On the other hand, the physical properties of the tissues
are hard to measure on a subject basis. Hence, constant
values across subjects are usually set according to the lit-
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erature.
In the present simulation work, we study the electric

field induced in four different ROIs of the left hemisphere
by the injection of 2 mA with six electrode montages (See
Table 1) and compute the induced transmembrane poten-
tial (ITP) on the 20 subjects from BrainWeb2. Previ-
ous studies reported ITP values between 0.2 and 0.5 mV
[37, 42].

Anode Cathode ROI Bipolar Unipolar

C3 C4
MC

C3 Fp2

F3 F4
dlPFC

F3 Fp2

F7 F8 vmPFC

P3 P4 IPS

Tab. 1 The electrode montages considered with the ROI they target.

In the process, we account for an error of 1 cm on the
anode placement in four directions relative to the reference
EEG 10-20 position and for the uncertainty on the electric
conductivity of the biological tissues.

2 Materials and methods

2.1 Dataset

We used the dataset of 20 simulated normal healthy
adults (10 females and 10 males) made available by Brain-
Web. For each subject, this dataset provides a struc-
tural T1-weighted generated based on a SFLASH se-
quence (TR=22 ms, TE=9.2 ms, flip angle=30° and 1 mm
isotropic voxel size), 12 fuzzy tissue probability maps and
a discrete segmented volume [2, 3].

In the present work, only the T1-weighted images and
discrete models were first converted into NIfTI images us-
ing Nibabel [6] and sorted following BIDS specifications
[16] to be further processed.

2.2 Head geometry

To simulate the electric current in the head of the sub-
jects, we generated finite element models based on the
labelled images. These original segmented volumes with
0.5 × 0.5 × 0.5 mm3 voxels were first cleaned to remove
external objects and noise (See Figure 1a and Figures S1-
20a) in four consecutive steps.

First, we created manually binary masks using itk-
SNAP [63] to remove big objects adjacent to the scalp
from subjects 18 and 42. The other subjects did not re-
quire such manual processing. After this step, an iter-
ative binary opening was performed on the whole head
masks until no change between two iterations was mea-
sured. This removed the small external clusters. To erase
the remaining non-head bodies, we kept only the biggest
remaining cluster using Scipy [57]. Finally, we enforced
at least one layer of CSF around the gray matter and one
layer of soft tissues around the skull.

Next, we merged the original 11 tissues (referred to as
SEG-11) into 5 tissues (SEG-05). Indeed, the most com-
mon models used to simulate tDCS include only five main
tissues classes, namely: white matter (WM), gray matter

(GM), cerebrospinal fluid (CSF), skull (SKL) and soft tis-
sues (SFT). This can be attributed to the fact that most
of the available automated head segmentation pipelines
only output these tissues, even though a recent effort in
the community has led to the release of several tools that
can produce more accurate models [40, 54].

The merging rules are described in Table S1 from the
supplementary materials, and the resulting labels are pre-
sented in Figure 1b for subject 41 (See Figures S1-20b for
the other subjects).

These final labels were processed with Shamo [17] to
generate subject specific finite element models (FEM).
The obtained models contained more than 2 × 106 tetra-
hedra (See Figure 1c and Figures S1-20c).

(a) SEG-11 (b) SEG-05

(c) Finite element model

WM GM CSF SKL SFT

Fig. 1 (a) The original SEG-11 model, (b) the SEG-05 obtained by
first cleaning the labels and then merging tissues following the rules
defined in Table S1 and (c) a sagittal cut of the resulting FEM for
subject 41.

2.3 Electrode placement

Since one of the goals of this study is to evaluate the effect
of the error on the placement of the electrodes, we con-
sidered five different positions of the anode for each of the
experiments from Table 1 where the electrode was moved
by 1 cm relative to the reference EEG 10-20 international
system [25, 27] position.

2. https://brainweb.bic.mni.mcgill.ca/
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(a) EEG 10-20 (b) Montage

Fig. 2 (a) The automatically computed EEG 10-20 electrode posi-
tions and (b) the resulting model for the C3-Fp2 electrode montage
on subject 41.

We denote the four perturbation directions as central
(C)/lateral (L) if the electrode moves toward/away from
the symmetry axis of the head and anterior (A)/posterior
(P) if the electrode moves towards the front/back of the
head. The name of the displaced anode is the concatena-
tion of its base name and the direction (e.g., central P3 is
referred to as P3C).

The BrainWeb dataset does not include electrode po-
sitions. Consequently, we first located the nasion (NZ),
the inion (IZ) and the left and right helix-tragus junction
(LHJ and RHJ) in RAS coordinate system manually using
MRIcron [47]. Then, we generated a high density mesh of
the head surface using Shamo [17] and implemented the
procedure proposed by Jurcak et al. [26] to compute the
coordinates of both the reference electrodes and their dis-
placed counterparts (See Figure 2a and Figures S1-20d).

We then produced a finite element model for each elec-
trode montage with each position of the anode by adding
the sensors to the base mesh from Section 2.2. The elec-
trodes were modelled as 5×5 cm2 square patches, as shown
in Figure 2b for the C3-Fp2 electrode montage on subject
41 (See Figures S1-20e-j for the other montages and sub-
jects). This step resulted in the creation of 30 models per
subject (600 models in total).

2.4 Electrical conductivity

In our previous work [17], we showed that the electrical
conductivity of the tissues κ (S m−1) influences the re-
sults of the simulations by using the conductivity values
reported by McCann et al. [33] (See Table 2). The mean
values in the table are the reported weighted means com-
puted using a weighting method described in their paper.
We used the same values in the present study.

Tissue Electrical conductivity (S m−1)

Min. Max. Mean Std.

WM 0.0646 0.8100 0.2167 0.1703
GM 0.0600 2.4700 0.4660 0.2392
CSF 1.0000 2.5100 1.7100 0.2981
SKL 0.0182 1.7180 0.0160 0.0190
SFT 0.1370 2.1000 0.4137 0.1760

Tab. 2 The electrical conductivities of the tissues (S m−1) as re-
ported by McCann et al. [33].

The electrical conductivity considered for the soft tis-
sues class (SFT) was set as the one measured for the scalp

since its range encompasses those of fat, muscle, and blood
which are the three main classes that were merged into it.

We defined 20 different conductivity profiles κ =
[κWM, κGM, κCSF, κSKL, κSFT] by sampling the 5D uni-
form conductivity space with a quasi-random Halton se-
quence [19] (See Table S2a in supplementary material).
This space, Ωuniform, was defined by five uniform distri-
butions ranging from the minimum to the maximum con-
ductivity value for each tissue.

In addition to these profiles, we also determined the ref-
erence conductivity profile, as recommended by McCann
et al. [33] (i.e. κ = [κ̄WM, κ̄GM, κ̄CSF, κ̄SKL, κ̄SFT]).

The uniform distributions used to define Ωuniform are
considered as the worst case scenario, since some ranges
reported by McCann et al. span multiple orders of mag-
nitude (e.g., the conductivity of GM). In order to evalu-
ate the effect of more educated priors on the computed
metrics, we also defined a second input parameter space,
Ωnorm, where we used the truncated normal distributions
for each tissue. We drew 20 new conductivity profiles from
this new space using the same technique (See Table S2b
in supplementary material).

2.5 Regions of interest

As explained in Table 1, each electrode montage targets a
specific ROI in the left hemisphere. To extract individual
binary masks of these brain areas for each subject, we
relied on three different cortical atlases: Brodmann [13],
CP-MMP 1.0 [15] and MarsAtlas [4].

Unfortunately, the latter is not available in fsaverage
space (i.e., the standard space for FreeSurfer defined as a
reference cortical surface) [34]. However, it has been pub-
lished in Colin27 space [21]. To produce the proper labels
in fsaverage space from MarsAtlas, we first converted the
segmented volume into labels in the native space of the
subject. Next, we registered these labels onto fsaverage
cortical surface with the surface registration tools from
FreeSurfer [9]. The resulting labels for the four ROIs are
displayed on fsaverage in Figure 3.

Once all the labels were extracted and projected on fsav-
erage, we registered them on the cortical surfaces of each
subject and converted them into binary masks coregistered
on the SEG-05 images.

We also extracted the surface area (mm2), the volume
(mm3) and the depth (mm) of these regions for all the
subjects (See Table S3).

2.6 Simulations

We simulated tDCS with Shamo [17] which interfaces with
GetDP [14] to solve the finite element problems. Each
simulation solves the Poisson equation [10, 18]

∇ · (κ∇(v)) = −ρs, (1)

where v (V) is the electric potential and ρs (A m−3) is the
source volume current density. The boundary conditions
were set so that the anode injected 2 mA and the cathode
acted as a reference (i.e. 0 V).

Considering the 20 subjects, their respective 30 finite el-
ement models described in Section 2.2 with the electrode
montages from Section 2.3 and the 21 different conduc-
tivity profiles drawn from Ωuniform defined in Section 2.4,
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(a) Anterior (b) Lateral (c) Medial (d) Posterior

MC dlPFC vmPFC IPS

Fig. 3 The left hemisphere ROIs considered in this study and extracted from Brodmann [13], HCP-MMP 1.0 [15] and MarsAtlas [4] atlases
displayed on the inflated surface of fsaverage.

Fig. 4 A cut of the magnitude of the magnitude of the current
density computed in the head of subject 4 resulting from the injection
of 2 mA with the C3-C4 electrode montage.

we ran a total of 12600 simulations (2100 for each experi-
ment).

The simulations calculated the electric potential v (V),
the electric field e (V m−1) and the current density j
(A m−2) on the unstructured meshes (See Figure 4). To
make any further processing easier, we converted these
fields into NIfTI files by sampling them on a regular
1×1×1 mm3 grid with the same orientation as the SEG-05
image.

Then, by applying the binary masks built in Section 2.5,
we extracted the values of these fields for all the voxels of
the ROIs in each simulation and stored it in a DuckDB
database [41]. In addition, we computed both the com-
ponents normal and tangential to the cortical surface of e
and j.

Finally, we computed the average absolute values for all
the previously described metrics for each simulation.

2.7 Gaussian process regressors

As described above, we only performed simulations for the
conductivity profiles drawn from Ωuniform, while in Sec-
tion 2.4 we stated that we also defined 20 conductivity
profiles from Ωnorm.

Indeed, running the simulations is computationally ex-
pensive. In order to reduce the computation time required,
and considering that the points drawn from Ωnorm are also
included in Ωuniform, we decided to fit multi-output Gaus-
sian process regressors (GPR) [44] on the results of the
simulations described in Section 2.6 using scikit-learn [38].
Following the recommendations from Chen et al. [8], the
regression part of the GPR was set to the mean of the
output variable and the kernel was defined as the product
of a constant kernel and a stationary Matérn kernel with
a smoothness parameter ν = 2.5.

This way, we leveraged the 12600 simulations to interpo-
late the results corresponding to the conductivity profiles
from Ωnorm.

2.8 Models

We focused on the mean absolute magnitude of the electric
field ¯|e| and of its component normal to the cortical sur-
face ¯|er|. For each experiment, we built different Bayesian
models using Bambi [7] which is based on PyMC3 [49].
The basic expression of all these models is

Y ∼ N (µ, σ2), (2)

with Y the dependent variable, µ defined as

µ = α+ β ·X + ε, (3)

where α the intercept, β = [β1, . . . , βn] the slopes, X =
[X1, . . . , Xn]> the vector of independent variables and ε
the error term. We also consider the hierarchic counter-
part of these pooled models, in which we account for the
subject with a random effect. For these models, we have
different values of µ, α and β for each subject i,

µi = αi + βi ·X + ε,

αi = α(com) + α
(sub)
i ,

(βj)i = β
(com)
j + (β

(sub)
j )i,

(4)

where α(com) and β
(com)
j are respectively the common in-

tercept and slopes and α
(sub)
i and (β

(sub)
j )i are the subject

specific contributions to the intercept and slopes.

4



For all the models described in the next paragraphs,
weakly informative priors are set automatically using the
method explained in Westfall [58]. They are then all fitted
using the No-U-Turn sampler (NUTS) [20] with 4 chains
of 1000 tune and 1000 draw iterations.

To decide whether a parameter has a significant effect
on the dependent variable, we use the 95 % highest den-
sity interval (HDI) and the ”region of practical evidence”
(ROPE) around the null value [29]. This method states
that if the 95 % HDI lies inside the ROPE for more than
97.5 %, the corresponding parameter is null (the 95 % most
credible values of the parameter are all practically equiva-
lent to the null value). Conversely, if the 95 % HDI inter-
sects with the ROPE for less than 2.5 %, the parameter is
non-null. Finally, if the intersection between the two inter-
vals is between these two boundaries, we cannot conclude
whether the parameter is null or not. The boundaries of
the ROPE are set to ±0.1 · std(Y ).

2.8.1 Anode placement

To evaluate the effect of a displacement of 1 cm of the an-
ode with regard to the reference EEG 10-20 position, we
define a model to assess the difference between the mea-
surements computed for each of the 5 anode placements
from Section 2.3 as

µ = α+

4∑
p=1

βp ·Xp + ε,

µi = αi +

4∑
p=1

(βp)i ·Xp + ε,

(5)

where p corresponds to a specific displacement of the an-
ode (anterior, central, lateral or posterior) and Xp is either
0 or 1 based on the anode used to obtain the record.

2.8.2 Conductivity profile

Using the same method, we compare the values of both
|ē| and |ēr| calculated for the 20 conductivity profiles de-
scribed in Section 2.4 with the values obtained for the ref-
erence profile, where the conductivity of each tissue is set
to the value recommended by McCann et al. [33]. Thus,
we transform the base models from Equation 3 and 4 into

µ = α+

20∑
k=1

βk ·Xk + ε,

µi = αi +

20∑
k=1

(βk)i ·Xk + ε.

(6)

In these expressions, k refers to one of the 20 conduc-
tivity profiles established using the quasi-random Halton
sequence and Xk is 1 or 0.

2.8.3 Bipolar and unipolar electrode montages

As shown in Table 1, we simulate a bipolar and an unipo-
lar electrode montage to stimulate both the MC and the
dlPFC. In order to compare the values of |ē| and |ēr| com-
puted for each pairs, we fit the models with the following
expected values,

µ = α+ βuni ·Xuni + ε,

µi = αi + (βuni)i ·Xuni + ε,
(7)

with Xuni equal either to 1 if the montage is unipolar or
to 0 otherwise.

2.9 Induced trans-membrane potential

The steady-state induced trans-membrane potential
(ITP), denoted by ∆ui (mV), is the potential difference
measured between the inside uin and the outside uout of
the cell membrane added to the resting state potential ∆ur

and due to an external stimulation,

uin − uout = ∆ur + ∆ui. (8)

While tDCS is not able to trigger action potentials,
it is generally accepted that it generates an induced
trans-membrane potential which hyperpolarizes the neu-
ron membranes under the anode and depolarizes it under
the cathode [39, 55]. In the present work, we compute the
ITP resulting from the different stimulations using ana-
lytical expressions for both spherical and spheroidal cells.

2.9.1 Spherical cell

The theoretical steady-state ITP resulting from an exter-
nal electric field e (V m−1) in a spherical cell of radius r1

(m) with a non-conductive plasma membrane is described
by Schwan’s equation [51]

∆ui =
3

2
|e|r1cos(θ), (9)

with θ the angle between the electric field and the vec-
tor going from the centre of the cell to the point of the
membrane where the ITP is calculated.

Consequently, the maximum value of ∆ui is obtained
for θ = 0. To avoid using an arbitrary value for r1, we
finally compute

max(∆ui)

r1
=

3

2
|e|. (10)

2.9.2 Spheroidal cell

Pyramidal cortical cells are not spherical, thus we also
consider spheroidal cells r1 > r2 = r3 with a shape ratio
γ = r1/r2 and elongated along the normal of the cortical
surface. For such cells, Valic et al. [56] gives the following
expression of the ITP,

∆ui = |e|sin(ϕ)
r2sin(θ)

1− lx
+ |e|cos(ϕ)

r1cos(θ)

1− lz
, (11)

where ϕ is the angle between the electric field and the
main axis of the cell and lx and lz are the depolarization
factors

lz =
1− λ2

2λ3

(
log

(
1 + λ

1− λ

)
− 2λ

)
, (12)

lx =
1

2
(1− lz), (13)

with λ =
√

1− (1/γ)2.
Since we already computed the tangential and radial

components of the electric field denoted by |et| and |er|,
we have

∆ui = |et|
r2sin(θ)

1− lx
+ |er|

r1cos(θ)

1− lz
, (14)
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which is maximized when

θ = θmax = atan

(
|et|(1− lz)

|er|γ(1− lz)

)
. (15)

Following what we did for the spherical cell, we derive
the size independent expression

max(∆ui)

r1
= |et|

sin(θmax)

γ(1− lx)
+ |er|

cos(θmax)

1− lz
. (16)

3 Results

Figure 5 shows the distributions of the measured values of
¯|e| and ¯|er| (mV m−1) for the different experiments defined

in Table 1 (See also Figures S21-32a-b). Overall, the mean
absolute magnitude of the electric field ranges from 47.2
to 644.2 mV m−1 and its component normal to the cortical
surface from 24.2 to 470.7 mV m−1 for the simulations,
while for the GPRs, ¯|e| ranges from 139.2 to 398.5 mV m−1

and ¯|er| ranges from 69.5 to 223.9 mV m−1.
In order to better picture the results, we show the data

obtained for the C3-C4 electrode montage targeting the
motor cortex, based on the conductivity profiles drawn
from Ωuniform, all along the following sections. Figure 6
shows the results for this specific montage, and the out-
come of the other experiments are provided in supplemen-
tary materials.

3.1 Anode placement

Based on the measurements acquired for each anode place-
ments shown in Figure 7 for the C3-C4 electrode montage
(See Figures S22-32e-f for the other experiments), we fit-
ted the model from Equation 5 and computed the 95 %

HDI of βp and β
(com)
p which are given in Tables S4/8a-b.

Overall, for the results obtained using Ωuniform, most
of the 95 % HDI intercept with the ROPE for more than
2.5 % but none of them is fully included (i.e., more than
97.5 %) in the ROPE. Consequently, we cannot state
whether an error of 1 cm on the placement of the anode
plays a significant role or not in the electric field induced
in the ROIs.

However, by computing the boundaries of the absolute
ratio between the values of βp and the intercept, we get
that such an error on the anode placement yields an ab-
solute relative difference with the reference value up to
27.6 % for ¯|e| and up to 27.1 % % for ¯|er|.

When moving to Ωnorm, the trend is reversed and most
of the 95 % HDI do not intercept with the ROPE, while
the maximum absolute ratios between the values of βp
and the intercept drop to 18.5 % and 17.6 % for ¯|e| and
¯|er| respectively.

3.2 Tissues electrical conductivity

Similarly to the anode placement, Figure 8 shows the re-
sults for the C3-C4 montage (See Figures S22-32c-d for
the other experiments).

Following the descriptions of the pooled and hierarchic
models from Equation 6, we determined values for each βk
and β

(com)
k for both ¯|e| and ¯|er| (See Tables S7/11a-b for

the 95 % HDI).

As opposed to the anode placement, the majority of the
95 % HDI computed on Ωuniform fall completely outside the
ROPE, meaning that the uncertainty on the conductivity
of the tissues has a significant influence on the electric field
computed in the ROI.

Moreover, by calculating the same absolute ratio be-
tween the different βk and α, we found that some con-
ductivity profiles could induce a difference relative to the
reference of up to 112.5 % and 146.6 % for ¯|e| and ¯|er|
respectively.

Once again, using Ωnorm inverses the trend and all the
computed 95 % HDI intercept for more than 2.5 % with
the ROPE, and some are fully embedded in, meaning that
changing the conductivity profile yields easier no signif-
icant variation or a variation that cannot be classified
as significant or not. The maximum ratios obtained for
these results drop considerably when compared to those
obtained from Ωuniform. Indeed, the values are 13.1 % for
¯|e| and 14.2 % for ¯|er|.

3.3 Bipolar and unipolar electrode mon-
tages

Figure 9 provides an overview of the metrics of interest
computed for the two electrode montages targeting the
motor cortex.

By fitting the model from Equation 7, we determined
the difference between the results computed for the bipo-
lar and unipolar electrode montages targeting both the
motor cortex and the dorsolateral prefrontal cortex (See

Table S5/9a-b for the 95 % HDI of β
(com)
uni ).

Using the unipolar montage when stimulating the MC
yields an electric field of up to 13.7 % lower than with the
bipolar montage for both Ωuniform and Ωnorm. However,
the effect on the normal component of the electric field is
not determined when considering Ωuniform but is signifi-
cant for Ωnorm.

On the other hand, both montages yield equivalent nor-
mal components of the electric field when targeting the
dlPFC.

3.4 Induced transmembrane potential

As described in Section 2.9, we computed the induced
transmembrane potential resulting from the electric field
generated in the ROIs for the different electrode montages
using analytical expressions for spherical and spheroidal
cells. The calculated ranges of ∆ui/r1 are shown in Ta-
ble S6/10.

Across all the experiments, the spherical and spheroidal
cell models respectively yield values ranging from 70.9 to
966.3 mV m−1 and from 21.5 to 441.5 mV m−1 when con-
sidering Ωuniform and from 208.9 to 597.7 mV m−1 and 62.3
to 209.8 mV m−1 when using Ωnorm.

4 Discussion

The results of the models assessing the effect of differ-
ent conductivity profiles in Ωuniform are concerning. As
for the anode placement, the F3-Fp2 electrode montage is
the most influenced, with a difference of up to 112.5 % on
¯|e|. Still, it is interesting to note that the direction of the

6



(a) ¯|e| (Ωuniform) (b) ¯|er| (Ωuniform)

(c) ¯|e| (Ωnorm) (d) ¯|er| (Ωnorm)

MC (C3-C4) MC (C3-Fp2) dlPFC (F3-F4) dlPFC (F3-Fp2) vmPFC (F7-F8) IPS (P3-P4)

Fig. 5 (a/c) The average absolute magnitude of the electric field ¯|e| and (b/d) the average absolute magnitude of the normal component
of the electric field ¯|er| recorded for all the simulations for the different ROIs and electrode montages.

(a) ¯|e| (b) ¯|er|

Fig. 6 The average absolute value of (a)the magnitude of the electric field and (b) its radial component for the C3-C4 electrode montage
targeting the motor cortex.

(a) ¯|e| (b) ¯|er|

Fig. 7 The average absolute value of (a)the magnitude of the electric field and (b) its radial component for the C3-C4 electrode montage
targeting the motor cortex, grouped by anode placements.
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(a) ¯|e| (b) ¯|er|

Fig. 8 The average absolute value of (a)the magnitude of the electric field and (b) its radial component for the C3-C4 electrode montage
targeting the motor cortex, grouped by conductivity profiles.

(a) ¯|e| (b) ¯|er|

Fig. 9 The average absolute value of (a)the magnitude of the electric field and (b) its radial component for the uni- and bi-lateral electrode
montages targeting the motor cortex.

electric field varies the most in the IPS when using the
P3-P4 electrode montage. Indeed, the maximum relative
difference can be up to 146.6 % on ¯|er|.

Still, for all the experiments, moving from the worst
case scenario, where Ωuniform is considered, to more ed-
ucated priors on the conductivity of the tissues, when
Ωnorm is used, yields a considerable drop in the variability
of the computed metrics, which end up lower than 15 %.
This also affects the other Bayesian linear models. Indeed,
when the uncertainty lying in the conductivity is reduced,
the influence of the other factors grow.

On the other hand, the results we obtained regarding
the error on the anode placement are in line with the ones
published by Ramaraju et al. [43]. Indeed, we find that the
F3-Fp2 electrode montage is more sensitive to the anode
placement than the others. However, the 27.6 % change
in the mean absolute electric field in the left dlPFC is
comparable with the 38 % they measured in the left frontal
lobe. When improving the priors on the conductivity of
the tissues, the error on the anode placement becomes
significant in most of the cases, but the maximum error
decreases to around 18 %.

While such a difference is non-negligible, it results from
a displacement of 1 cm of the anode. Considering the work
of Rich and Gillick [46] which showed that the inter- and
intra-rater error on the electrode placement is lower than
1 cm, the shift in the anode position we studied can be
regarded as an upper bound to the plausible experimental
deviation. As a result, the actual variation of the electric

field induced in the ROI due to a misplaced electrode is
expected to be smaller than what we calculated here.

These considerable variations obtained with Ωuniform

lead us to question the information we can extract from
modelling tDCS. Until one cannot feed the models with
better priors about the electrical conductivity of the bi-
ological tissues, the randomness of the outputs makes it
almost impossible to gain insights and draw conclusions
about the electric effect of the stimulation. Using Ωnorm

resulted in a significant improvement of the outcome, but,
even though the electric conductivities of a random sub-
ject are more likely to remain closer to the reported mean,
nothing prevents them to drift toward the extrema.

Moreover, the conventional way of modelling tDCS,
which involves setting almost arbitrary values to the elec-
trical conductivity of the tissues based on the literature,
identical for each subject, appears to be an inappropriate
assumption.

Techniques such as magnetic resonance electric
impedance tomography (MREIT) [61] and conductivity
tensor imaging (CTI) [32] could provide a better descrip-
tion of the electric properties of the tissues of each subject.

Finally, tDCS is expected to generate an induced trans-
membrane potential of around 0.5 mV in the neurons of
the target ROI [37, 42]. The values we obtain analyti-
cally, considering r1 = 1 mm, are at most of the same
order of magnitude but can be smaller by up to a factor
of 20.

Once again, this value relies heavily on the conductiv-
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ity profile of the models. Still, computing ITP values of
0.02 mV, as compared to a resting potential of −70 mV
and a reference action potential threshold of −55 mV,
highlights the questionable efficiency of tDCS as a neu-
romodulation technique. This concern has already been
raised by other papers before [22].

Still, it is important to mention that, since the present
study only focused on simulations, we cannot draw conclu-
sions on the functional long-lasting effect of the different
experiments.

5 Conclusion

In the present work, we studied the influence of an error of
placement of the anode and of the unknown conductivity
profile on the computed electric field resulting from 6 dif-
ferent tDCS experiment targeting 4 ROIs on 20 subjects
using a simulation tool. A total of 12600 simulations were
performed.

The models used in this paper show that anode dis-
placements of reasonable size yield a negligible to moder-
ate effect on the electric field induced in the ROI. They
also highlight that the uncertainty regarding the electrical
conductivity of the tissues make it practically impossible
to assess the electrical effect of the stimulation in a spe-
cific ROI and that using fixed standard values could po-
tentially yield highly biased results. The comparison be-
tween Ωuniform and Ωnorm clearly shows that using more
informative priors reduces the variability of the output.

Improving the conductivity acquisition methods could
lead to a better understanding of the factors that underly
the variability of the effects of tDCS experiments. Un-
til no new method is proposed to measure tissues electric
conductivity on a subject basis, using uncertainty quantifi-
cation and sensitivity analysis with Shamo or other similar
tools could allow for more educated conclusions.

We also computed the induced transmembrane potential
induced by the stimulation for different simple cell models.
The overall size of the computed ITP is concerning.

While we did not perform functional experiments in par-
allel to the modelling work, the overall results presented
here lead us to call for caution when designing, modelling
and analysing a tDCS experiment.

Data sharing

The results from the different preprocessing steps are re-
ported in the supplementary materials section, and the
notebooks used to compute the results presented in this
paper are available at [TODO: Link to repository].

The code for Shamo is available on Github3.
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ume 7, pages 1010603–1010604. Wiley, 2008.

[15] Matthew F. Glasser, Timothy S. Coalson, Emma C. Robinson,
Carl D. Hacker, John Harwell, Essa Yacoub, Kamil Ugurbil,
Jesper Andersson, Christian F. Beckmann, Mark Jenkinson,
Stephen M. Smith, and David C. Van Essen. A multi-modal
parcellation of human cerebral cortex. Nature, 536(7615):171–
178, August 2016. ISSN 1476-4687. doi: 10.1038/nature18933.
URL https://www.nature.com/articles/nature18933.

[16] Krzysztof J. Gorgolewski, Tibor Auer, Vince D. Calhoun,
R. Cameron Craddock, Samir Das, Eugene P. Duff, Guil-
laume Flandin, Satrajit S. Ghosh, Tristan Glatard, Yaroslav O.
Halchenko, Daniel A. Handwerker, Michael Hanke, David
Keator, Xiangrui Li, Zachary Michael, Camille Maumet,
B. Nolan Nichols, Thomas E. Nichols, John Pellman, Jean-
Baptiste Poline, Ariel Rokem, Gunnar Schaefer, Vanessa
Sochat, William Triplett, Jessica A. Turner, Gaël Varoquaux,
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Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contrib-
utors. SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

[58] Jacob Westfall. Statistical details of the default priors in the
Bambi library. arXiv:1702.01201 [stat], February 2017. URL
http://arxiv.org/abs/1702.01201. arXiv: 1702.01201.

[59] Samuel J Westwood. Null Effects on Working Memory and
Verbal Fluency Tasks When Applying Anodal tDCS to the In-
ferior Frontal Gyrus of Healthy Participants. Frontiers in Neu-
roscience, 12:19, 2018.

[60] Sarah Wiethoff, Masashi Hamada, and John C. Rothwell. Vari-
ability in response to transcranial direct current stimulation of
the motor cortex. Brain Stimulation, 7(3):468–475, June 2014.
ISSN 1876-4754. doi: 10.1016/j.brs.2014.02.003.

[61] Eung Je Woo and Jin Keun Seo. Magnetic resonance electrical
impedance tomography (MREIT) for high-resolution conduc-
tivity imaging. Physiological Measurement, 29(10):R1–26, Oc-
tober 2008. ISSN 0967-3334. doi: 10.1088/0967-3334/29/10/
R01.

[62] Dongju Yang, Qiaoyi Du, Zhaoyang Huang, Liping Li, Zhang
Zhang, Liping Zhang, Xin Zhao, Xuan Zhao, Ting Li, Yicong
Lin, and Yuping Wang. Transcranial Direct Current Stimula-
tion for Patients With Pharmacoresistant Epileptic Spasms: A
Pilot Study. Frontiers in Neurology, 10, 2019. ISSN 1664-2295.
URL https://www.frontiersin.org/article/10.3389/fneur.

2019.00050.

[63] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett,
Rachel Gimpel Smith, Sean Ho, James C. Gee, and Guido
Gerig. User-guided 3D active contour segmentation of anatom-
ical structures: Significantly improved efficiency and reliability.
Neuroimage, 31(3):1116–1128, 2006.

12

http://arxiv.org/abs/1702.01201
https://www.frontiersin.org/article/10.3389/fneur.2019.00050
https://www.frontiersin.org/article/10.3389/fneur.2019.00050

	Introduction
	Materials and methods
	Dataset
	Head geometry
	Electrode placement
	Electrical conductivity
	Regions of interest
	Simulations
	Gaussian process regressors
	Models
	Anode placement
	Conductivity profile
	Bipolar and unipolar electrode montages

	Induced trans-membrane potential
	Spherical cell
	Spheroidal cell


	Results
	Anode placement
	Tissues electrical conductivity
	Bipolar and unipolar electrode montages
	Induced transmembrane potential

	Discussion
	Conclusion

