

- **Carlos Rojas-Ulloa**¹, Hélène Morch¹, Ehssen Betaieb¹, Víctor Tuninetti², Laurent Duchêne¹ and Anne Marie Habraken¹
- ¹: ArGEnCo department, University of Liège, Belgium
- ²: Department of mechanical engineering, University of La Frontera, Chile

LIÈGE université Sciences Appliquées Materials

Contents

1 Introduction

- A Creep: a brief overview
- B Creep in 800H alloy
- c > Scientific challenge

2 Finite element (FE) model

- A > Chaboche law
- B > New viscoplastic law
- c Integration algorithm
- D Results

3 Conclusions & remarks

Creep overview

Creep in 800H

Scientific challenge

ACOMEN 2022 fn's 😻 MSM

A numerical model to predict the creep-fatigue behavior of 800H:

Available Chaboche-type law

Formulation

• <u>Yield function</u> : von-Mises criterion $f_y = J_2(\underline{\widetilde{\sigma}} - \underline{X}) - \sigma_y \le 0$ $J_2(\underline{\widetilde{\sigma}} - \underline{X}) = \Sigma_{VM} = \left[\frac{3}{2}(\underline{\widetilde{\sigma}} - \underline{X})^d : (\underline{\widetilde{\sigma}} - \underline{X})^d\right]^{0.5}$ where	$\widetilde{\mathbf{\sigma}} = (1 - D)^{-1} \underline{\mathbf{\sigma}} \qquad Effective stress (effect of damage)$ $\underline{\mathbf{\dot{X}}} = \sum_{i=1}^{n} \underline{\mathbf{\dot{X}}}_{AF,i} + \underline{\mathbf{\dot{X}}}_{SR,i} \qquad Hardening \& Static Recovery$ $\sigma_{y} = \sigma_{0} + Q[1 - \exp(-b \cdot \overline{\epsilon}^{p})] Voce \text{ isotropic hardening}$
• <u>Viscoplasticity</u> : Norton $\bar{\epsilon}^{p} = \left(\frac{f_{y}}{K}\right)^{N} \checkmark f_{y} = J_{2}(\tilde{\mathbf{\sigma}} - \mathbf{X}) - \sigma_{y} - K(\bar{\epsilon}^{p})^{1/N}$	(J.L. Chaboche, IJP, 2008; R. Ahmed et al., IJSS, 2016; R. Ahmed et al., IJSS, 2017; H. Morch et al., COMPLAS, 2017; H. Morch et al., EJM: A/Solids, 2021;
$ \begin{array}{c} \circ \underline{\text{Damage}}:\\ \dot{D}_{f} = \left[\frac{Y(\sigma)}{S_{f1}}\right]^{S_{f2}} \dot{\epsilon}^{p} \end{array} (\text{Len}) $	emaitre law)
$\dot{D}_{c} = \left[\frac{Y(\sigma^{d})}{S_{c1}}\right]^{S_{c2}} \frac{1}{(1-D)^{k}} (\text{Kac})$	(J. Lematire, J. Eng. Mat. Technol., 1985; L.M. Kachanov, The Theory of Creep, 1967)
Introduction A B C FE model A	ZB/C/D Conclusions & remarks

Classic Chaboche law

Modified viscoplastic law

Algorithm flowchart

Application

Results

800H creep in air at 1000°C & 35 MPa 800H creep in air at 1000°C & 11 MPa Experimental and predicted creep rate v/s creep Experimental and predicted creep rate v/s creep 2 × 10⁻⁷ 2.5 ×10⁻⁴ 1.8 Experimental creep rate (Guttmann et al., 1983) Experimental creep rate (Guttmann et al., 1983) ······ Predicted creep rate ······ Predicted creep rate 0 2 1 Δ Ś creep rate ate Δ 1.5 .2 creep True True 0.5 0.4 0.2 0.15 0.05 0.1 0.2 0.25 0.05 0.1 0.15 0.2 0.25 0.3 0.35 True creep strain (-)True creep strain (-)**FE model** Conclusions & remarks Introduction D

11

Results

Conclusions & Remarks

ntroduction

FE model

- Remarkable capabilities for predicting the complex creep behavior of 800H alloy
- Accuracy of the model must be assessed
 - Parameters identification
 - New reliable experimental data
 - New parameter identification approach
- New nitridation-dedicated function

• $\dot{\bar{\epsilon}_N^p} = K_N e^{\frac{T}{C}} [\Sigma_{VM}^{eq}]^{n_N} (\bar{\epsilon}^p)^{m_N} \rightarrow f$

Conclusions & remarks

Conclusions & Remarks

Conclusions & Remarks

- The model exhibits good numerical convergence
 - Comparable to Chaboche-type law
- Convergence issues within creep rate slope changes
- Visualization in creep v/s time curves:

- **Carlos Rojas-Ulloa**¹, Hélène Morch¹, Ehssen Betaieb¹, Víctor Tuninetti², Laurent Duchêne¹ and Anne Marie Habraken¹
- ¹: ArGEnCo department, University of Liège, Belgium
- ²: Department of mechanical engineering, University of La Frontera, Chile

LIÈGE université Sciences Appliquées Materials

Annex 1

Conclusions & remarks

Detailed 800H creep micromechanics

FE model

Introduction A B

17

Annex 2: Integration scheme

Conclusions & remarks

18

			Reference integration scheme	New integration scheme
	$(\underline{R}_{\underline{\epsilon}}^e :$	=	$\Delta \underline{\boldsymbol{\epsilon}}_{n+1} - \Delta \underline{\boldsymbol{\epsilon}}_{n+1}^{th} - \Delta \underline{\boldsymbol{\epsilon}}_{n+1}^{p} - \Delta \underline{\boldsymbol{\epsilon}}_{n+1}^{e}$	$\Delta \underline{\mathbf{\epsilon}}_{n+1} - \Delta \underline{\mathbf{\epsilon}}_{n+1}^{th} - \Delta \underline{\mathbf{\epsilon}}_{n+1}^{p} - \Delta \underline{\mathbf{\epsilon}}_{n+1}^{e}$
	$\underline{R}_{\overline{\epsilon}}p$	=	$\Sigma_{VM}^{eq} - \sigma_0 - Q[1 - \exp(-b\bar{\epsilon}^p)] - K(\dot{\bar{\epsilon}}^p)^{\frac{1}{N}}$	$\Delta \bar{\epsilon}^p_{n+1} - \sum_{j=1}^{\nu p_i} K_j e^{\frac{\mathrm{T}}{C}} [\Sigma_{VM}^{eq}]^{n_j} (\bar{\epsilon}_{n+1}^p)^{m_j} \Delta t - K_T \dots$
$\underline{R} = \langle$	<u>R</u> <u></u>	=	$\Delta \underline{\mathbf{\epsilon}}_{n+1}^{e} - inv(\underline{\mathbf{C}}_{n+1}^{e}) \cdot \underline{\widetilde{\mathbf{\sigma}}}_{n+1}$	$\Delta \underline{\mathbf{\epsilon}}_{n+1}^e - inv(\underline{\mathbf{C}}_{n+1}^e) \cdot \underline{\widetilde{\mathbf{\sigma}}}_{n+1}$
	$\underline{R}_{\underline{\mathbf{X}}_{j}}$:	=	$\Delta \underline{\mathbf{X}}_{i_{n+1}} - \frac{2}{3}C_j \Delta \underline{\mathbf{\epsilon}}_{n+1} - \dots + \frac{1}{C_j} \frac{dC_j}{dT} \Delta T \underline{\mathbf{X}}_{i_{n+1}}$	$\Delta \underline{\mathbf{X}}_{i_{n+1}} - \frac{2}{3}C_j \Delta \underline{\mathbf{\epsilon}}_{n+1} - \dots + \frac{1}{C_j} \frac{dC_j}{d\mathbf{T}} \Delta \mathbf{T} \underline{\mathbf{X}}_{i_{n+1}}$
		=	$\Delta D_{n+1} - \Delta D_f \left(\underline{\boldsymbol{\sigma}}_{n+1}, \bar{\boldsymbol{\epsilon}}_{n+1}^p\right) + \Delta D_c \left(\underline{\boldsymbol{\sigma}}_{n+1}, D_{n+1}\right)$	$D_{n+1} - K_D \Sigma_{VM}^{eq} \Delta t - K_{TD} \Delta T (\bar{\epsilon}_{n+1}^p)^{m_{TD}}$

ABCD

 \underline{R} Is our matrix of local residuals

FE model

Objective: $|\underline{R}| \approx 0$

Introduction A / B / C

*

Annex 3: Algorithm

Integration algorithm: NR

19