
University of Liège
School of Engineering

Department of Electrical Engineering & Computer Science

INDUCTIVE B IAS IN
DEEP PROBABIL I ST IC MODELL ING

a PhD dissertation

by Antoine Wehenkel

Advisor: Prof. Gilles Louppe
September 2022

This dissertation has been submitted and accepted in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer Science.

iii

The frontpage was made by Unlimited Dream Co., all rights reserved.

A word from the artist:
This piece was created in collaboration with artificial intelligence, taking an original
human-made artwork and reimagining it with VQGAN-CLIP, a text-to-image AI network.
The end result mixes 1960s Brutalist architecture and 18th-century botanical illustration
to unique effect.

iv

https://www.unlimiteddreamco.xyz/

JURY MEMBERS

Pierre Sacré, Professor at the Université de Liège (President);

Gilles Louppe, Professor at the Université de Liège (Advisor);

Pierre Geurts, Professor at the Université de Liège;

Patrick Gallinari, Professor at Sorbonne University;

Jörn-Henrik Jacobsen, Senior research scientist at Apple Inc.;

Alexandros Kalousis, Professor at the HES-SO Genève.

v

ABSTRACT

One of the most notable distinctions between humans and most other animals is our
ability to grow collective intelligence along generations. This development appears expo-
nential; we are witnessing an explosion of knowledge and technical capabilities. Since the
invention of computers, artificial intelligence (AI) has enabled machines to push further
the boundaries of our collective intelligence. The rapid progress of information technology
and the profusion of data has made machine learning (ML), a sub-field of AI, crucial for
the collective intelligence growth.
The probabilistic modelling framework unifies the ML-based and human-based knowl-

edge discovery processes, i.e. the creation of mathematical descriptions of real-world phe-
nomena. Thus it is at the root of this disruption of innovation. In this context, this thesis
collects five scientific papers that have contributed to developing modern approaches to
probabilistic modelling between 2018 to 2022.
This thesis provides a thorough introduction to modern probabilistic modelling. We

discuss the why and the how of probabilistic modelling, and we introduce two important
classes of models: probabilistic graphical models and deep probabilistic models. Then, we
contrast our work into contributions to uninformed and informed models. The former
models are prefered when data contains enough information to retrieve the targetted
model instance. In contrast, informed models embed stronger prior knowledge of the
phenomenon of interest. Data is only there to complement this knowledge. The quality
of informed model instances depends on the data and validity of the prior knowledge.
The second part of the thesis focuses on three distinct contributions to uninformed

probabilistic models. First, we are interested in bringing together distinct model classes;
the combination of diffusion models and variational auto-encoders unlocks new mod-
elling features. Second, we draw explicit connections between Bayesian networks and
normalizing flows. We exploit this connection to study some representational aspects of
normalizing flows. Finally, we present a new neural network architecture that enforces a
monotonic response. We demonstrate the effectiveness of this representation in modelling
continuous probability distributions.
In the third part of the manuscript, we consider informed probabilistic models. In the

fourth contribution, we introduce the graphical normalizing flows, a new normalizing
flow architecture that embeds independence assumptions. Finally, our last contribution
shows that informing deep probabilistic models with a partial physical understanding of
the studied phenomenon unlocks generalisation capabilities inaccessible to non-informed
models. We conclude this work with a summary and a brief prospect of future develop-
ments in deep probabilistic modelling.

vii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to the members of my jury, Alexandros
Kalousis, Jörn Jacobsen, Patrick Gallinari, Pierre Sacré, and Pierre Geurts. I greatly ap-
preciated their insightful comments, constructive criticism, and the engaging discussions
we had during the public defence.

I feel lucky to have had the opportunity to learn from Pierre during his data structure
and algorithms course. His teaching ignited my passion for computer science. I am grateful
for the foundation he provided that enabled me to pursue my research interests.
I want to give a special thanks to Jörn and Jens Behrmann for the chance they gave

me to work with them as an intern at Apple. Their positivity, expertise, and challenging
approaches significantly impacted my personal and professional growth. I feel fortunate
to have worked with such exceptional researchers and mentors.
I am incredibly fortunate to have had Gilles Louppe as my advisor throughout my

doctoral studies. Gilles, you have been an outstanding advisor, constantly challenging
my assumptions and supporting me in my desire to explore new ideas. I feel grateful
for your unwavering support, encouragement, and guidance. The many coffee breaks we
shared were not only enjoyable but also helped me to grow new perspectives and insights
on what it is to be a researcher; I will certainly miss them.
I would like to thank my colleagues at the department for their camaraderie, support,

and the great memories we shared. Nicolas, my office mate for over three years, you
made my workdays awesome, even though the quality of your humour is debatable. I feel
honoured that you trusted me to be the godfather of Elena. Pascal, who always brings
good vibes to wherever you go, I was lucky to share four years of PhD with you. Nicolas,
and Pascal, we should also be grateful to Van Anh for being so kind to tolerate almost
all of our terrible jokes. Damien, Nicolas, Pascal, and Gilles, thanks for the tremendous
Orval-intensive times we had after work, even though it was sometimes a bit harsh the
day after. I always keep an Orval in the fridge in case you visit Zürich. Laurine, thanks
for being there to share gossip at Montefiore. Guillaume Drion, Pierre Sacré, and Laurent
Mathys, thanks for our small chats during coffee breaks. Matthia, thanks for bringing
some international flavours to the department and showing me some of your Italian cook-
ing skills. I also want to thank all the others with whom I had the chance to spend lunch
breaks or have small chats in the corridor: Anthony, Antonio, Anaïs, Antoine, Arthur,
Balthazar, Eric, Gaspard, Jean-Michel, Jonathan, Kathleen, Marc, Philippe, Romain, Re-
naud, Sophie, Thibaud, and Yann. Your friendship and support were greatly appreciated,
and I feel lucky to have been part of such a wonderful group.
I am grateful to the “Dream Team + Queens”, my friends outside of work, for being

what they are. Andrea, Beniboy, Clairou, Laroushka, Mathilefou, Maximus, Pierro, Polo,

ix

Rémy, QBask8, Thibaud, TZ: I am lucky to be part of such a beautiful group of friends.
Spending time with you has helped me to maintain a healthy work-life balance and to
have fun away from work-related things.
I want to express my heartfelt gratitude to my family. They have always been a source

of love, encouragement, and inspiration. Their unwavering support and belief in me have
been critical in helping me pursue my dreams. Thomas and mother, thanks for making
fun of me and keeping me aware of the reality outside of academia. Marie, for always
being my number one supporter. You are one of those who motivated me to pursue this
PhD, and I will always be grateful for that. Dad, thank you for transmitting your love
for engineering and science to me and for always being present with good advice when I
need it.
Finally, I would like to thank you, Alice, for your patience, love, and understanding

throughout my PhD journey. Your unwavering support and encouragement have helped
me overcome various challenges and motivated me to achieve my goals. I am deeply
grateful to have you in my life.

x

CONTENTS

1 introduction 3
1.1 Research question . 6
1.2 Outline and structure . 7
1.3 Publications . 8
1.4 Additional publications . 8

i background 11
2 introduction to probabilistic modelling 15

2.1 Introduction . 15
2.2 Probabilistic model . 16
2.3 Learning . 18

2.3.1 Maximum likelihood estimation . 18
2.3.2 Learning as inference . 19

2.4 Machine learning = probabilistic modeling 20
2.5 Conclusion . 22

3 probabilistic graphical models 27
3.1 A graphical model is worth a thousand words 27
3.2 The curses of dimensionality . 28
3.3 Directed graphical models – Bayesian networks 29

3.3.1 Bayesian networks . 29
3.3.2 Parameterisation . 31
3.3.3 Inference . 31

3.3.3.1 Exact inference . 31
3.3.3.2 Inference as sampling . 32
3.3.3.3 Inference as optimization 33

3.3.4 Learning . 35
3.3.4.1 Distribution learning . 36
3.3.4.2 Structure learning . 36

3.3.5 Duality between directed graphs and distributions 37
3.3.6 Causality . 38

3.4 Undirected graphical models – Markov networks 38
3.4.1 Markov networks . 39
3.4.2 Parameterisation. 40
3.4.3 Toward neural networks . 41

3.5 Conclusion . 42
4 deep probabilistic models 45

4.1 Introduction . 45

xi

xii contents

4.2 Why neural networks? . 45
4.3 Autoregressive models . 46
4.4 Energy based models . 48

4.4.1 Markov chain Monte Carlo . 49
4.4.2 Contrastive learning . 50
4.4.3 Score matching . 52

4.5 Diffusion models . 52
4.5.1 Discrete-time diffusion . 53
4.5.2 Continuous-time diffusion . 55

4.6 Normalizing flows . 56
4.6.1 Discrete normalizing flows . 56
4.6.2 Continuous normalizing flows. 57
4.6.3 Discussion . 57

4.7 Variational auto-encoders . 58
4.8 Discussion . 60
4.9 Challenges and opportunities . 60

ii uninformed probabilistic modelling 63
5 combining models 67

5.1 Prologue . 67
5.2 The paper: Diffusion Priors In Variational Autoencoders 68

5.2.1 Author contributions . 68
5.2.2 Reading tips . 68
5.2.3 Minor corrections . 68

5.3 Epilogue . 75
5.3.1 Diffusion in the latent space . 75
5.3.2 Behind the scenes . 76
5.3.3 Scientific impact . 77
5.3.4 Conclusion and opportunities . 77

6 understanding models 81
6.1 Prologue . 81
6.2 The paper: You say Normalizing Flows I see Bayesian Networks 82

6.2.1 Author contributions . 82
6.2.2 Reading tips . 82

6.3 Epilogue . 88
6.3.1 Scientific impact . 88
6.3.2 Conclusion and opportunities . 88

7 improving models 93
7.1 Prologue . 93
7.2 The paper: Unconstrained Monotonic Neural Networks 94

7.2.1 Author contributions . 94

contents xiii

7.2.2 Reading tips . 94
7.3 Epilogue . 109

7.3.1 Discussion . 109
7.3.2 Scientific impact . 110
7.3.3 Conclusion and opportunities . 111

iii informed probabilistic modelling 113
8 structured density estimation 117

8.1 Prologue . 117
8.2 The paper: Graphical Normalizing Flows 118

8.2.1 Author contributions . 118
8.2.2 Reading tips . 118

8.3 Epilogue . 135
8.3.1 Inductive bias in normalizing flows. 135
8.3.2 Scientific impact . 137
8.3.3 Conclusion and opportunities . 137

9 hybrid probabilistic models 141
9.1 Prologue . 141
9.2 Robust Hybrid Learning With Expert Augmentation 142

9.2.1 Author contributions . 142
9.2.2 Reading tips . 142

9.3 Epilogue . 158
9.3.1 Contribution . 158
9.3.2 Beyond hybrid learning . 159
9.3.3 Conclusion and opportunities . 160

iv conclusion 163
10 conclusion 167

v appendix 171
a references 173

First, we guess a law. Then we compute the consequences of the guess and then we
compare the computation results to nature to see if it works. If it disagrees with experiment,
it’s wrong. In that simple statement is the key to science. It doesn’t make any difference
how beautiful your guess is, it doesn’t matter how smart you are who made the guess. If
it disagrees with experiment, it’s wrong. That’s all there is to it.

Richard Feynman

1
INTRODUCTION

Figure 1.1: Illustration of the scientific inquiry as a simplified 5-step process. The pictograms
sketch a cartoon of the TRAPPIST-1 planetary system discovery made by as-
tronomers from Liège University in 2016 [Gillon et al., 2017]. Scientists shall first
formulate a research question and a set of reasonable hypotheses, together they de-
fine a class of hypothetical models of the world. In order to answer their question,
scientists gather data from experiments and analyze them in the context of their mod-
elling assumptions. Checking the consistency of different hypothetical models allows
them to provide an answer to their initial question up to a certain degree of certainty.

Ever since the beginning of their existence, humans have always been curious to un-
derstand the world’s complexity. This is not only true at the individual level, as we
keep building and improving our knowledge over our lifespan, but also at the level of
humankind, where knowledge has never really stopped rising since the beginning of civil-
isation. As an objectification of our curiosity, science aims to ground the construction
of this common knowledge on rationality. In particular, the modern scientific method ar-
guably relies on five pillars, as depicted in Figure 1.1, which ensure discoveries are made
out of rigour and based on current scientific knowledge. Although the scientific method
can answer questions in the context of a specified model of the world as stated by the

3

4 introduction

hypotheses, the more fundamental goal of science is to refine these models by criticising
their ability to predict the real world. In this context, this thesis aims to explore and
contribute to modern techniques for building or refining models of the world.
Classically, scientists or engineers use their domain expertise to build incrementally

complex models and improve their faithfulness to reality. The scientific method is then
applied to validate or reject the new class of models. This strategy has not only led to
today’s state of science but also to the uttermost engineering accomplishments of modern
times. In engineering, these successes impact our daily life, such as by enabling nuclear
electricity – as predicted by special relativity – or allowing one to read this manuscript
on a smart tablet – thanks to Maxwell equations’ implications on the design of modern
computers. More abstract but arguably as impactful on our vision of the universe, the
classical model refinement strategy led to all modern scientific breakthroughs. As an
example, these models allow astronomers to observe the furthest human-known objects,
thanks to general relativity and gravitational lensing and enable the indirect observations
of black holes thanks to gravitational waves theory.
Despite these numerous achievements, machine learning has recently challenged the

classical modelling approach. Where humans fall short of finding patterns in a large
amount of data and build arbitrarily complex models by themselves, machines can auto-
matically perform these tasks day and night. The paradigm shift from hand-crafted to
automated modelling happens in a world where the most ambitious scientific experiments
generate petabytes (1015) of data per second [CERN]. On the one hand, while the com-
puting capacity continuously increases, the human brain is not better wired to apprehend
vast amounts of data than it was when Galileo Galilei set the basis of modern science
400 years ago. On the other hand, deep learning has recently proven its ability to build
accurate generative models that outperform the ones designed out of human expertise.
This is, for example, true in the context of voice synthesis [Van Den Oord et al., 2016],
text-translation [Brown et al., 2020; Devlin et al., 2018], chatbots [Alayrac et al., 2022],
or even text-to-image synthesis [Ramesh et al., 2022; Saharia et al., 2022], to cite a few.
Among these models, some impersonates human artists. For instance, Figure 1.2 shows
images produced by a small version of DALL · E 2, a machine learning model capable of
generating images from text descriptions. Under these circumstances, the paradigm shift
seems natural, even in a scientific context.
Machine learning has revolutionised the way we build models over the past decades.

Yet, modelling uncertainty with machine learning models is still a very active research
field. Models that account for uncertainty are called probabilistic models and describe non-
deterministic relationships between the quantities of interest. When it comes to machine
learning, these descriptions often take the form of a generative model that synthesise
realisations of the phenomenon of interest. For example, DALL · E 2 is what we call a
deep generative model ; it parameterises a generative process from textual description to
plausible images with deep neural networks.

introduction 5

Figure 1.2: A dog writing a PhD thesis, generated by DALL · E mini [Dayma et al., 2021].

6 introduction

Despite some great successes, automating probabilistic model discovery remains an
active research area. One of the great features of ML algorithms, their genericity, is also
an important flaw. The weak assumptions behind ML models contrast with the classical
modelling approach, which is grounded on a deep understanding of the phenomenon of
interest. The term inductive bias refers to all the weak assumptions made by the machine
learning algorithm, such as continuity or invariance. Together with large amounts of data,
the inductive bias of current ML algorithms suffices for some modelling tasks such as
image or audio synthesis. However, this approach fails in scarce data settings or on data
modality for which the inductive bias of existing learning algorithms is not appropriate.
In contrast to the classical modelling approach, ML algorithms do not exploit effectively
existing prior knowledge. Moreover, existing algorithms exhibit other limitations, such
as training instabilities and lack of expressivity, to cite a few.

Explicit vs implicit models

In general, accurate modelling requires accounting for uncertainty. Modelling
uncertainty is essential as, by definition, models are simplified representations
of reality; they cannot explicitly represent all possible sources of perturbations
deterministically. For instance, we determine the precision of any sensor by fit-
ting a model that accounts stochastically for internal and external perturbations
that may arise in practical settings such as temperature, humidity or pressure
variations. This inherent stochasticity exists both for small models that are sim-
plistic representations and for larger models that are a combination of smaller
stochastic models. These models describe the stochastic relationship between
observations x provided the models’ parameters θ.
While simple models lead to tractable likelihood functions p(x|θ), larger models
are computer programs for which the likelihood is usually intractable because of
the multiple sources of randomness. We use the terms explicit and implicit to
distinguish between models that provide direct access to the likelihood function
and those that do not. We use the same terms for deep probabilistic models that
provide access to the likelihood or solely to the generative process.

1.1 research question

Motivated by this paradigm shift and the remaining challenges in deep probabilistic
modelling, this thesis contributes to answering the following research question: How
to automate the discovery of probabilistic models with deep learning algo-
rithms? The rapid progress of information technology and the profusion of data makes
this question timely. Failing to provide answers would miss an extraordinary opportunity
for scientific and technological discoveries.
In pursuing this objective, we explore several directions that study and improve upon

various aspects of deep probabilistic models. We distinguish between data-driven models
and hybrid models. On the one hand, the performance of data-driven models mainly

1.2 outline and structure 7

depends on the learning algorithm’s inductive bias and the availability of representative
data. These algorithms are well suited to modelling tasks for which we do not have
strong domain knowledge but access to many representative data. On the other hand,
hybrid models are informed by solid prior knowledge, e.g. independencies or partial under-
standing of the underlying physics. Hybrid modelling allows the combination of domain
knowledge with data and is thus better equipped against small or less-representative
datasets. We argue that contributions to both modelling strategies are complementary
and will improve the range of application of deep probabilistic models.

1.2 outline and structure

Before diving into the core contributions of this thesis, a review of probabilistic modelling
in Part i naturally follows this introduction. We provide the notions necessary for the
appreciation of this thesis by a reader equipped with a technical background. Chapter 2 is
an accesible primer on probabilistic modelling. Then, we introduce graphical probabilistic
models and their technicalities in Chapter 3. We conclude the background by present-
ing deep probabilistic models in Chapter 4. Then, Part ii focuses on uninformed deep
probabilistic models, which only rely on the standard inductive bias of machine learning
algorithms. In contrast, with Part iii studies the effect of solid modelling assumptions
such as independencies or prescribed physical equations, leading to a class of models that
we dub informed deep probabilistic models in this thesis.

In Part ii, we aim to understand existing probabilistic models better and improve
their expressivity. To this end, we explore three distinct directions, each giving rise to
its own chapter. First, Chapter 5 chapter studies the complementarity of variational
auto-encoders [Kingma and Welling, 2013] and diffusion models [Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song and Ermon, 2019]. We demonstrate that diffusion models
are a suitable replacement for the simple Gaussian prior classically used in variational
auto-encoders. Then, Chapter 6 aims to understand better normalizing flows [Tabak and
Vanden-Eijnden, 2010; Tabak and Turner, 2013; Rezende and Mohamed, 2015, NFs] a
popular class of probabilistic models. In particular, Chapter 6 shows that affine normaliz-
ing flows, a class of explicit models, have limited modelling capacities. The second part of
this manuscript ends with Chapter 7 where we address the limited expressivity of affine
normalizing flows by introducing unconstrained monotonic neural networks.
Part iii explores hybrid modelling, a family of algorithms that embrace the opportu-

nity to combine expert knowledge and deep probabilistic models. In particular, Chapter 8
suggests explicitly handling independence assumptions in normalizing flows, and Chap-
ter 9 studies the generalisation capabilities of deep probabilistic models equipped with a
partial model of the studied process. As a conclusion and summary, Chapter 10 reflects
upon the contributions of this thesis.

8 introduction

1.3 publications

Setting aside this introduction, an original primer on probabilistic modelling in Part i
and the conclusion, the scientific content of this manuscript is exclusively borrowed from
original contributions made to deep probabilistic modelling over the last four years. Each
selected contribution sets its own chapter complemented with a prologue and an epilogue.
The manuscript builds upon the following list of publications, ordered by publication
date,

[Wehenkel and Louppe, 2019]Unconstrained monotonic neural networks, Wehenkel
Antoine and Louppe Gilles.
Advances in neural information processing systems, 2019.
→ Chapter 7.

[Wehenkel and Louppe, 2020] You say Normalizing Flows I see Bayesian Networks,
Wehenkel Antoine and Louppe Gilles.
International Conference on Machine Learning, Workshop on Invertible Neural Net-
works, Normalizing Flows, and Explicit Likelihood Models, 2020.
→ Chapter 6.

[Wehenkel and Louppe, 2021b] Graphical Normalizing Flows, Wehenkel Antoine
and Louppe Gilles.
International Conference on Artificial Intelligence and Statistics, 2021.
→ Chapter 8.

[Wehenkel and Louppe, 2021a] Diffusion Priors In Variational Autoencoders, We-
henkel Antoine and Louppe Gilles.
International Conference on Machine Learning, Workshop on Invertible Neural Net-
works, Normalizing Flows, and Explicit Likelihood Models, 2021.
→ Chapter 5.

[Wehenkel et al., 2022] Robust Hybrid Learning With Expert Augmentation, We-
henkel Antoine, Behrmann Jens, Hsu Hsiang, Sapiro Guillermo, Louppe Gilles,
and Jacobsen Jörn-Henrik.
In preparation, arXiv preprint arXiv:2202.03881.
→ Chapter 9.

1.4 additional publications

Along the pursuit of my PhD degree, I had the chance to take part in fruitful collabo-
rations not directly related to the scope of this thesis. The following list of co-authored
publications stemmed from these collaborations:

1.4 additional publications 9

[Pesah et al., 2018] Recurrent Machines For Likelihood-free Inference, Pesah Arthur,
Wehenkel Antoine and Louppe Gilles.
Advances in neural information processing systems, MetaLearn Workshop, 2018.

[Wehenkel et al., 2020] Parameter Estimation Of Three-phase Untransposed Short
Transmission Lines From Synchrophasor Measurements, Wehenkel Antoine, Mukhopad-
hyay Arpan, Le Boudec Jean-Yves, Paolone Mario.
IEEE Transactions on Instrumentation and Measurement, 2020.

[Vecoven et al., 2020] Introducing Neuromodulation In Deep Neural Networks To
Learn Adaptive Behaviours, Vecoven Nicolas, Ernst Damien, Wehenkel Antoine,
Drion Guillaume.
PloS one 15 (1), e0227922.

[Vandegar et al., 2021] Neural Empirical Bayes: Source Distribution Estimation and
its Applications to Simulation-Based Inference, Vandegar Maxime, Kagan Michael,
Wehenkel Antoine and Louppe Gilles.
International Conference on Artificial Intelligence and Statistics, 2021.

[Delaunoy et al., 2020] Lightning-Fast Gravitational Wave Parameter Inference
through Neural Amortization, Delaunoy Arnaud, Wehenkel Antoine, Hinderer
Tanja, Nissanke Samaya, Weniger Christoph, Williamson Andrew R, and Louppe
Gilles.
Advances in neural information processing systems, ML4Science Workshop, 2020.

[Hermans et al., 2021] Averting A Crisis In Simulation-based Inference, Hermans
Joeri, Delaunoy Arnaud, Rozet François, Wehenkel Antoine, and Louppe Gilles.
In preparation, arXiv preprint arXiv:2110.06581.

[Dumas et al., 2021] A Probabilistic Forecast-driven Strategy For A Risk-aware
Participation In The Capacity Firming Market, Dumas Jonathan, Cointe Colin,
Wehenkel Antoine, Sutera Antonio, Fettweis Xavier, and Cornélusse Bertrand.
IEEE Transactions on Sustainable Energy, 2021.

[Dumas et al., 2022] A Deep Generative Model For Probabilistic Energy Forecasting
In Power Systems: Normalizing Flows, Dumas Jonathan, Wehenkel Antoine,
Lanaspeze Damien, Cornélusse Bertrand ,and Sutera Antonio.
Applied Energy, 2022.

[Delaunoy et al., 2022] Towards Reliable Simulation-Based Inference with Balanced
Neural Ratio Estimation, Delaunoy Arnaud, Hermans Joeri, Rozet François, We-
henkel Antoine and Louppe Gilles.
In preparation, arXiv preprint arXiv:2208.13624.

Part I

BACKGROUND

[We must avoid] false confidence bred from an ignorance of the probabilistic nature of the
world, from a desire to see black and white where we should rightly see gray.

Immanuel Kant
as paraphrased by Maria Konnikova

2
INTRODUCTION TO PROBABIL I ST IC MODELL ING

Outline

This chapter provides a broadly accessible introduction to the probabilistic
modelling framework. We review the concepts of a model, inference, and
learning. In addition, we motivate probabilistic modelling in the context
of artificial intelligence and present it as a generalisation of machine learn-
ing. Our discussion shall convince the reader that this framework enables
abstract reasoning and is a real-world problem solver. It shall motivate
the relevance of improving this framework as a research goal.

2.1 introduction

The invention of computers has enabled the automatisation of many tasks historically
accomplished by humans. One key ingredient of this revolution is making computers
reason – to make an informed judgment based on logical arguments and observations.
The set of hypotheses on which this logic builds is a model. Both humans and machines
rely on reasoning to perform tasks. For instance, let us consider the problem of ordering
a bottle of wine at a restaurant. We first need some hypotheses, e.g., •What kind of wine
do people like at the table? Red or white? Strong or delicate? • What is the budget? •
What do we have on the menu? •What is the wine list? Etc. Provided with this model, we
can make an informed choice: remove the wines that are too expensive or would displease
someone at the table and pick one of the remaining that goes well with tonight’s dinner.
More scientific examples include a climatologist who needs a model of the earth and its
atmosphere to explain climate change; or streaming platforms which use a model that
represents users’ tastes to make video recommendations.
In these contexts and many others, the model plays a central part. In practice, we aim

for faithful models – models for which reasoning leads to a proper judgment. In the
examples mentioned above, we strive for models that help us choose the right wine; that
explain the climate over the last centuries; that keep the user longer on the platform. The
exact definition of the model’s quality depends on the targetted application. However,
certain classes of models are usually strictly better than others. A model that embeds
notions of uncertainty is more expressive than a deterministic model; the latter models
cannot accurately represent phenomena that exhibit randomness.

15

16 introduction to probabilistic modelling

It is unknown whether the laws that rule our reality are deterministic or stochas-
tic. Nevertheless, modelling requires simplifying assumptions, which cause uncertainty.
For instance, a model that acknowledges partial observability must express uncertainty
about the system’s state. Uncertainty also arises from the finite precision of measure-
ment devices or from simplifying approximations that are not strictly correct, among
other reasons.
We thus need a formal language to express this stochasticity, the language of proba-

bility [Kolmogorov and Bharucha-Reid, 2018]. Probability is the language that enables
formal statements about uncertain events. It allows contrast between what is possible
and what is plausible. This distinction is essential as it constructs deterministic decisions
by focusing on the most plausible events and discarding unlikely events. For example,
wine amateurs know that an old bottle has a higher chance of being corked than a recent
one but might also taste better. Probability allows us to express this fact and consider
it to select an appropriate bottle of wine.

Stochasticity, randomness, or uncertainty?

In our discussion, we use these terms as follows. Stochasticity refers to the prop-
erty of being well-described by the probabilistic language. It is a statement about
a model. In contrast, randomness refers to the phenomenon itself, not to a model.
Uncertainty is the result of randomness or stochasticity. It is our way of acknowl-
edging that we do not know things perfectly. It is equally Nature itself than our
modelling assumptions that cause uncertainty.

2.2 probabilistic model

A probabilistic model is a model that describes a phenomenon of interest in probabilistic
terms. Practically, it defines a probability distribution over the set of variables considered
valuable to describe the phenomenon (e.g.,X,Y, Z). The distribution modelled can be the
joint between all variables (e.g., P (X,Y, Z)) or a conditional distribution (e.g., P (X |
Y, Z)). Our discussion focuses on the former case for simplicity but with no loss of
generality.
One goal of building a probabilistic model, arguably the main, is to perform inference.

That is to answer questions in the context of a model, to reason. These questions come
in different flavours. One could for example wonder: What is the most likely value of Y
if we are to observe X? What is the conditional distribution of Y in this case? It is also
different whether we want to evaluate the value P (Y | X) or just sample from it. For these
purposes, the probabilistic models may have to handle different queries: marginalisation,
conditioning, sampling, and probability evaluation.

Certain representations are appropriate for a subset of queries and not for others. For
example, we can represent the discrete distribution between X,Y, Z with a 3D table
where each entry stores the corresponding joint probability. The evaluation of the joint

2.2 probabilistic model 17

Formalism
In this background, we will abstract the domain (discrete or continuous) of the
random variables when possible. The term (conditional) probability distribution
refers to the object P that fully describes the stochastic behaviour of a random
variable X taking values in X . When the domain X is discrete, P corresponds
to the probability function P (X = ·) : X → [0, 1] that satisfies the three Kol-
mogorov’s axioms (non-negativity, unitarity, and σ-additivity). In the case of a
continuous domain, we will narrow our discussion to real values X , Rd, where
d is the dimensionality of the random variable. In this context, the probability
distribution is described by the density function P (X = ·) : X → R+ which
defines the probability that a realization x of X lies in a sub-domain A as∫
x∈A P (X = x)dx. The probability functions implied by the density must also
satisfy Kolmogorov’s axioms. In this chapter, we clearly mention the domain of
the random variable when it matters for the discussion. In the next chapters, we
will focus on the continuous case, hence we will use the standard notation p to
denote the probability density function.

probability is very efficient with this representation. However, evaluating a conditional
distribution requires going over each entry corresponding to the conditioning value and re-
normalising the probabilities by their sum. Sampling, marginalisation, and conditioning
become very inefficient as the number of entries in the table grows exponentially with the
number of dimensions. Fortunately, alternative representations exist, such as the ones we
review in the following two chapters.

Frequentist vs Bayesian interpretation

Two interpretations of probabilities co-exist. In the above discussion, we brought
probabilities as a language to express our uncertainty about the truth of facts.
We took the Bayesian interpretation of probabilities. The reference to sir Bayes
comes from the application of Bayes’ rule to update our prior belief in the pres-
ence of new evidence. In this context, the prior is part of the model and affects
its quality. The main drawback of the Bayesian interpretation is the potential
complexity of defining the prior appropriately. The other view, referred to as
frequentist, interprets a probability as a frequency of events. With this perspec-
tive, probability does not quantify uncertainty; it expresses intrinsic randomness.
Frequentists reject the notion of prior belief, which has pros and cons. In general,
there is no interpretation better than the other. However, the Bayesian interpre-
tation provides motivations for many popular algorithms in machine learning
and is the one we will often implicitly use in our discussions. At the same time,
we do not strictly reject the frequentist point of view. For example, we discuss
the maximum likelihood principle, a frequentist concept.

18 introduction to probabilistic modelling

2.3 learning

Until now, we have implicitly assumed the model was given to us. However, this is
not realistic in many settings. For example, how can we accurately model someone’s
wine taste? Ranking all world’s wines is not a reasonable option. However, we could
ask a list of questions and then summarise the taste from the principal characteristics
of wine. The task of summarising these answers is learning – to build a compressed
representation of observations. Afterwards, we can use this representation to perform an
informed guess. This representation is a model, a simplified representation, of someone’s
wine taste. Learning is thus the task of instantiating a model from data.

In practice, we do not perform learning without additional assumptions. Instead, we
define a set of models among which we believe at least one would be a good representation
of the phenomenon of interest. If we are Bayesians, we even prescribe a probability that
encode our faith in each model. We will return to the Bayesian prospect later but for
now, let us assume we do not have any a priori of the models’ quality.
The class of possible models can be finite, e.g. the class contains two models – one

for people who like red wine and white wine; the other for people who only like red
wine. Compressing someone’s taste into one of these models goes with a significant loss
of information but might already be helpful in some settings. The class of models can be
infinite, e.g. if parameterised by real values. For example, we can summarise wine taste
by attributing an affinity score to each of the main features of wine. Let us now review
concrete learning strategies.

2.3.1 Maximum likelihood estimation

A learning strategy is a set of rules that produces a model from data. When we only
consider a finite number of models, a simple strategy exists. We test the predictive per-
formance of each model and select the one that is the most consistent with our data. If
the models describe the phenomenon with discrete events, we maximise the probability.
If it considers a continuous set of events, we maximise the density. In the case where one
of the models is correct – it is the one that generates the data – this selection algorithm
will eventually select the right model as the number of independently and identically
distributed (iid) data points tends to ∞. This selection technique is said consistent.
We can use a similar approach when the models are parameterized by a real vector

θ ∈ Rd. In this case, our goal is to estimate a good value for θ. One approach, denoted
maximum likelihood estimation [Fisher, 1922, MLE], is to select the model’s parameter θ
that maximizes the joint distribution (density or probability) of a dataset D := {xi}Ni=1

of points xi ∈ X . This quantity is called the likelihood function of the parameter θ,
denoted L(θ) , P (D | θ). Hence the MLE estimator is formally defined as

θMLE = arg max
θ

P (D | θ). (2.1)

2.3 learning 19

In the presence of iid data, this estimator is consistent – provided a class of models
that contains the ‘true‘ generative process, it eventually recovers the ‘true‘ model as the
number of points tends to ∞. Formally, the consistency property is a convergence in
probability of the estimator to the exact value, and it requires additional assumptions
that ensure the model is identifiable and the likelihood function is well behaved.
The consistency of the MLE is an appealing property. However, we must consider

the central assumption it relies on very carefully! While ensuring that the model class
contains the true generative process is fine in artificial settings, this assumption is a
metaphysical question for real data. The law of large numbers saves us if we only look
at things on average and are provided with many data, but it does not apply to all
modelling tasks. Sometimes, we know this assumption does not hold, but we would still
like to learn a good model; the MLE principle does not say much. Even if we know
the model class contains the correct model (e.g., if we consider a parametric universal
density approximator), the convergence speed with respect to the dataset size is unknown.
Moreover, the optimisation of Equation (2.1) is often non-trivial.

2.3.2 Learning as inference

The strict delimitation between possible and impossible models is another limitation of
the MLE approach. Instead of interpreting learning as model selection, we can reformulate
learning as an inference task to alleviate this limitation. In this context, the model is a
generic description of the phenomenon parameterised by some explanatory variables. For
example, the model can be a parametric function, exactly as when we define a class of
models in the MLE approach. The distinction between learning as inference and MLE
lies in our interpretation of the parameters. In the former, we consider the parameter θ as
part of the model rather than defining a class of models. The MLE is usually associated
with a frequentist interpretation of probability, whereas learning as inference is Bayesian.

Let us say we want to learn a model that predicts the conditional distribution P (Y =

y | X = x) that someone appreciates a wine with features x ∈ Rd, where y ∈ R is a real
value that represents someone’s affinity with the wine. Learning aims at summarising the
information in the data to perform the task of interest. Thus, the objective is to predict
the output P (Y | X = x,D), the conditional distribution over the output space given
features X = x and the set of observations D, which is often a set of input-output pairs
D := {(xi, yi)}Ni=1.
For example, the class of models can be a neural network fθ(·;x) : R × Rd → R+,

parameterised by θ, and which defines a parametric density function over R conditioned
on an input x. Said otherwise, fθ represents the conditional distribution P (Y | x,θ). We
denote with P (Y | X) the unknown “true” data distribution, the conditional distribution
that has generated the data we observe. We assume the parameters θ are expressive
enough to summarize all information about the “true” distribution contained in the data
D. This assumption is equivalent to the conditional independence Y ⊥ D | X,θ. Then

20 introduction to probabilistic modelling

learning requires i) to condition our predictions on the data D and; ii) to marginalize
with respect to the unknown value of parameters θ. Taking advantage of the conditional
independence Y ⊥ D | X,θ, the model for making new predictions is expressed as

P (Y = y | X = x,D) =

∫
P (Y = y | X = x,θ)P (θ | D)dθ (2.2)

=

∫
fθ(y;x)P (θ | D)dθ. (2.3)

The data are only used through the posterior distribution P (θ | D), representing our
updated belief about the best models in light of the observed data. Learning thus amounts
to compute P (θ | D), which is an inference task.
We have presented Bayesian inference in parametric spaces; however, these concepts

generalise to functional spaces [MacKay et al., 1998]. In this context, we need to define
a prior distribution over functions (e.g., L2 integrable functions) and be able to evaluate
the likelihood defined by each function. This is usually handled by kernel methods such
as Gaussian processes and will not be discussed in this thesis.
Keeping track of the complete posterior distribution can be cumbersome in practice.

We can avoid this by selecting the maximum a posteriori (MAP) sub-model. In the case
of a parametric model this means freezing the parameter θ to their most plausible value
θMAP = arg maxθ P (θ | D).
Learning as inference strictly generalises the MLE principle to settings where the prior

knowledge is more subtle than a binary choice between possible and impossible models. If
the prior is non-informative, i.e. the prior does not attribute more credibility to one value
of parameters than another, the method is equivalent to the MLE. When we have prior
knowledge, this strategy naturally reduces the importance of unlikely model instantia-
tions and prefers models that are the most plausible given the data and our prior beliefs.
Moreover, the MAP is also consistent [Schwartz, 1965]; it eventually selects a model that
encode the “true” distribution.
The advantage of the Bayesian learning paradigm is to force the explicit formalisation

of modelling assumptions and the prior knowledge associated with each learnable compo-
nent of the model. It acknowledges that learning a model is a subjective task. Occam’s
razor says we should always favour the simplest of potential explanations. The Bayesian
approach may naturally handle this principle by attributing higher plausibility to sim-
pler model instantiations. This is not true for the MLE approach, which requires ad-hoc
algorithms or regularisation objectives to favour simpler models.

2.4 machine learning = probabilistic modeling

The attentive reader will notice that machine learning (ML) was only mentioned once
until now, when discussing the Bayesian and frequentist interpretations of probability.
This may sound surprising as this thesis aims to build bridges between ML algorithms

2.4 machine learning = probabilistic modeling 21

Model complexity
0

5

10

15

20

25

30

M
e

a
n

sq
u

a
re

e
rr

o
r

Tra ining error
Tes t e rror

Figure 2.1: The light blue curves show the training error while the light red curves show the
estimated test error for 100 pairs of training and test sets drawn at random from
a known distribution. The thick blue curve is the average training error while the
thick red curve is the average test error. It shows the necessary trade-off between the
model’s complexity and generalisation performance. As the model gets too complex,
it starts overfitting the training data, decreasing test performance. This plot is taken
from Louppe [2014].

and the classical modelling approach. We did this on purpose as the distinction between
classical modelling (as performed by domain experts, e.g. in science or engineering) and
ML is often irrelevant.
We have described probabilistic modelling in generic terms that are valid for both

approaches. Whether the class of models is small, made of well-understood pieces, or a
deep neural network does not matter when describing the key steps to building and using
a model. Even a model designed with domain knowledge usually has degrees of freedom
to adapt the model to contexts. At the same time, we must not forget that learning relies
on assumptions even when using deep learning with large datasets.
Classical modelling and machine learning aim to find a model that generalises well.

On the one hand, classical modelling generally considers simple classes of models which
naturally aligns with Occam’s razor. It often leads to faithful models when the studied
process is well understood. On the other hand, machine learning tackles problems for
which classical modelling would fail because the studied phenomenon is less well un-
derstood. It does not mean ML’s job is to learn a complex model of the phenomenon,
quite the opposite. As depicted in Figure 2.1, an ML model achieves its best predictive
performance by balancing the model’s complexity and goodness of fit. This behaviour
is arguably observed with all ML algorithms, although defining the model’s complexity
is not always straightforward. A standard method to control the complexity of an ML
model is to split the data into training, validation and test sets. We use the validation
set to find the hyperparameters of the learning algorithm that lead to a trained model
that generalises well, that is, a model that has a good balance between faithfulness (good

22 introduction to probabilistic modelling

predictive accuracy for the task of interest) and complexity. We then use these hyperpa-
rameters to learn a new model with both train and validation sets and the test set to
assess how well the model generalises [Hastie et al., 2009].
Machine learning algorithms are sometimes described in deterministic terms. For ex-

ample, a classical ML task is to predict a real value y provided a set of features x. At first
glance, we might have trouble interpreting this in the probabilistic framework, limiting
the scope of our previous discussion to a subset of ML algorithms. However, we can al-
ways map a deterministic model into the probabilistic framework. Indeed, deterministic
learning objectives correspond to the MAP or the MLE of a probabilistic model that as-
sumes the uncertainty a priori. For example, fitting a regression model fθ : X → Y with
mean squared error would lead to the same model as learning a probabilistic model via
the MLE and considering a family of models that are Gaussian distributions with a fixed
variance and a mean parameterised by fθ. Similarly, mean absolute error corresponds to
assuming a Laplace distribution. The duality between the deterministic and the proba-
bilistic interpretations goes further if we observe that regularisation strategies correspond
to the prior in the MAP, e.g. ridge regression assumes a Normal prior on the coefficients
of the linear model. Khan and Rue [2021] discuss formally the relationships between a
wide range of machine-learning algorithms and the Bayesian learning framework.

Another important aspect of modelling is to select the appropriate class of models.
This choice varies with the end application which may require performing distinct types
of queries on the model. In addition, the learning scenario may also differ and impacts
the suitability of different models. As we will see soon, different models may lead to
different inference algorithms. Some models represent the distribution of interest as a
sampling procedure, while others provide access to the probability distribution. If our
goal is to generate samples, we might prefer the former models, although we could also
use Markov chain Monte Carlo to draw samples from the others. The following sections
shed light on popular classes of probabilistic models that exhibit different advantages
and shortcomings.

2.5 conclusion

We have discussed the general principles of probabilistic modelling but have avoided
practical technicalities. The following chapters present concrete classes of probabilistic
models and the corresponding algorithms for learning and inference. In particular, Chap-
ter 3 discusses probablistic graphical models [Koller and Friedman, 2009, PGMs] and
Chapter 4 reviews various deep probabilistic models [Tomczak, DPMs]. As its name
says, the former class aims for a graphical representation of the distribution. It allows un-
derstanding the modelling assumptions, such as independence hypotheses, quickly. The
latter focuses on models whose internal representations use deep neural networks. Some
of these models are especially well suited for sampling and are often called deep gen-
erative models in this case. We discuss the particularities of each class of models and

2.5 conclusion 23

provide a thorough description of the main algorithms that perform the different queries
aforementioned.
In this manuscript, we argue on multiple occasions that we shall not make a rigid

distinction between graphical and deep generative models as they are just different repre-
sentations of the same mathematical object. It is why we have first started our discussion
with a generic introduction to probabilistic modelling that is valid for all classes of models.
Some deep probabilistic models directly correspond to a graphical model, enabling ab-
stract reasoning independent of the neural network architectures. However, for clarity, we
will first introduce probabilistic graphical models. We then borrow the newly introduced
notations and concepts to describe several deep probabilistic models.

Figure 2.2: A painting by Kandinsky of a mathematician writing formulas and graphs on a black-
board. As seen by a stable diffusion model [Rombach et al., 2022].

3
PROBABIL I ST IC GRAPHICAL MODELS

Outline

This chapter introduces the class of probabilistic graphical models. We
motivate graphs as effective representations of probabilistic independence
assumptions. We distinguish between directed models – a.k.a. Bayesian
networks – and undirected models – a.k.a. Markov networks. We discuss
each representation’s qualities and limitations and present concrete infer-
ence and learning algorithms. This chapter provides all notions necessary
for the practical and theoretical understanding of probabilistic graphical
models in the context of this thesis.

3.1 a graphical model is worth a thousand words

As the saying goes, a picture is worth a thousand words. It is why we start our journey in
the probabilistic-model lands by revisiting probabilistic graphical models (PGMs). Our
trip will pass by Bayesian networks [Pearl, 2011] and make a slight detour by Markov
networks [Kindermann, 1980]. As their name hints, PGMs rely on a graphical representa-
tion of the probability distributions. We will observe that directed and undirected graphs
are appropriate to represent known (in)dependence relations. These representations lead
to specialised inference and learning algorithms which we will discuss as well.
The introduction of an undirected representation of the distribution of interacting

particles in 1902 by Gibbs [Gibbs, 1902] might be one of the first PGM. We can also
attribute one of the first directed PGM to Sewall Wright [Wright, 1921, 1934], who
introduced path analysis in genetics in the 1920s. The statistics community only started
to acknowledge the graphical framework in the 1960s [Li, 1968; Wright, 1960]. Only later,
in the late 80s, PGMs began to creep into the field of artificial intelligence [Russell, 2010,
AI] with the seminal works [Pearl, 2022; Kim and Pearl, 1983; Pearl, 1985] of Judea Pearl
and his colleagues that provided algorithms to take advantage of Bayesian networks, a
class of directed PGMs. Since then, many communities have recognised the graphical
representation as a powerful tool. It has achieved great success, such as in the modelling
of gene regulatory networks [Werhli and Husmeier, 2007], data compression [McEliece
et al., 1998], and many others. Recently, causality [Pearl, 2009; Peters et al., 2017], which
under some aspects builds upon Bayesian networks, has arguably become one of the
hottest topics in ML and might be part of the next successes in AI.

27

28 probabilistic graphical models

Many great resources on PGMs exist, and this chapter does not aim to replace them.
We aim to provide sufficient materials to get the reader interested in PGMs and under-
stand standard algorithms’ main advantages and limitations. This provides a common
ground between the reader and the author to motivate the connections with deep prob-
abilistic models and improvements to classical PGMs we have brought into the scope of
this thesis. We invite the reader interested in additional details to check the book from
Koller and Friedman [2009], the primary reference used to guide this introduction to
PGMs. We now motivate the requirement for careful design of model classes.

3.2 the curses of dimensionality

Learning is hard. Let us consider a set of d unfair coins X = [X1, . . . , Xd]
T . Given a

dataset of simultaneous throws D = {xi}Ni=1 , we want to learn a probabilistic model
P (X). A natural approach is to represent the joint probability as a d-dimensional array
with an entry for each possible realisation. In this context, learning corresponds to filling
the 2d values in the table. We can reduce this number by factorising the distribution as

P (X) = P (X1)Π
d
i=2P (Xi | X1, . . . , Xi−1),

and by acknowledging that the (conditional) probabilities of a tail and a head sum up to
1. Unfortunately, we do not gain much as the number of entries in the table still grows
exponentially (

∑d
i=1 2i−1 = 2d−1− 1). Learning becomes intractable as the number of di-

mensions grows. This phenomenon is broadly referred to as a curse of dimensionality and
also hits continuous variables. However, this is just a recall to reality: we need assumptions
to create models. The good news is that we can fight the curse of dimensionality with
modelling assumptions. For example, it is reasonable to assume the coin throws are inde-
pendent events. The joint distribution then factorises into d terms: P (X) = Πd

i=1P (Xi).
For continuous variables, smoothness and constraints on the possible interactions be-
tween variables may allow us to achieve modelling results that challenge the curse of
dimensionality.

Sampling is hard. We want to sample realisations provided the joint distribution P (X).
To this end, we may use approximate sampling schemes, e.g., Markov Chain Monte
Carlo [Gilks et al., 1995; Geyer, 1992, MCMC] or importance sampling [Tokdar and Kass,
2010]. These algorithms rely on a proposal distribution (e.g., a normal distribution) and
an acceptance/rejection strategy. As the number of dimensions increases, the gap between
the proposal distribution expands, and the acceptance rate collapses. Hence, developing
efficient sampling strategies that rely on the modelling assumptions is necessary. We will
see later how rewarding is the joint development of the model class and the sampling
strategy. For instance, sampling algorithms for directed graphical models exploit the
network structure.

3.3 directed graphical models – bayesian networks 29

Interpreting is hard. The complexity of a model naturally grows with the number of
variables we consider. Clearly, humans are not able to apprehend correctly more than
a few dimensions. Thus, we shall rely on specific modelling frameworks that enable un-
derstanding how different assumptions impact the model. Probabilistic graphical models
offer a nice balance between expressivity and interpretability.

3.3 directed graphical models – bayesian networks

The curses of dimensionality prevent probabilistic modelling without appropriate assump-
tions on the modelled distribution. We now introduce Bayesian networks (BNs), which
fight this intractability with independence assumptions. As we have seen, representing
d simultaneous coins tosses requires the specification of at least 2d−1 − 1 numbers. This
number drops to d if we consider all the variables independent, which is reasonable as the
realisation of one coin toss does not impact the outcome for another coin. BNs explicit
these (conditional) independencies with a graphical representation and help parameterise
distributions more compactly. The term Bayesian takes source from the Bayes’ rule, which
factorises the joint distribution into compact factors that encode the dependence between
variables represented by the graph.

3.3.1 Bayesian networks

X1 X2

X3 X4

(a)

X1 X2

X3 X4

(b)

Figure 3.1: Two Bayesian networks of a 4D variable. (a) No independence. (b) A couple of
independencies, hence a reduced number of edges and of parameters.

A Bayesian network is a directed acyclic graph (DAG) that represents independence as-
sumptions between the components of a random vector. Formally, let X = [X1, . . . , Xd]

T

be a random vector taking values x ∈ X1 × · · · × Xd distributed under P (X). A BN for
X has one vertex for each random variable Xi of X. In this DAG, the absence of edges
models conditional independence between groups of components through the concept of
d-separation [Geiger et al., 1990]. A BN is a valid representation of a random vector X
iff its probability distribution (continuous or discrete) factorizes as

P (X) =

d∏

i=1

P (Xi | Pi), (3.1)

30 probabilistic graphical models

where Pi = {Xj : Aj,i = 1} denotes the set of parents of the vertex i and A ∈ {0, 1}d×d is
the adjacency matrix of the BN. A BN, together with the related conditional probability
distributions, is a PGM. For simplicity, we will use the term BN to refer to this couple
and explicitly mention the terms topology or structure when talking about the BN’s
structure.
Figure 3.1a is a valid BN for any distribution over X as it does not state any in-

dependence and leads to the chain rule factorisation. However, in practice, we seek a
sparse BN faithful to existing independencies in X. These sparse networks lead to an
efficient factorisation of the modelled probability distributions. It is worth noting that
making hypotheses on the graph structure is equivalent to assuming certain conditional
independencies between some of the vector’s components.
Understanding the independence assumptions underlying a DAG is key to appreciating

BNs. For this purpose, d-separation [Geiger et al., 1990] describes rules to check whether
certain conditional independence holds in all distributions that factorise over a DAG.
Algorithm 3.1 describes this algorithm which allows checking whether the topology is well
suited to model a phenomenon of interest. In addition, it also enables characterising all
(conditional) independencies that follow from a set of distinct independence assumptions.
D-separation is sound, it only detects existing independencies. However, it is not complete
as it misses independence assumptions hidden in the parameterisation of conditional
distributions. For example, the BN in Figure 3.1a can model any joint distribution for
X; applying d-separation to this graph would reject all independence, even though the
distribution modelled could satisfy some independence relations.

Algorithm 3.1 D-separation.
function IsIndependent(X, Y , Z, G)

. X,Y and Z are three sets of nodes from G.
. Return True iff X ⊥ Y | Z is modelled by the Bayesian network with topology G.

A← AllAncestorsOf(Z,G)

for Pi 6= Pj ∈ A do . Getting rid of immoralities.
if HasACommonChild(Pi, Pj , G) then

G← AddUndirectedEdge(Pi, Pj , G) . Marry parents.
end if

end for
for N ∈ Z do

G← RemoveNode(N,G)

end for
return IsNotReachable(X, Y , G)

end function

3.3 directed graphical models – bayesian networks 31

3.3.2 Parameterisation

BNs reduce the description of a joint distribution into 1) a DAG and 2) conditional
distributions. As mentioned earlier, learning aims at selecting (or weighting) within a
class of models. A natural way to define a model class is to use parameters to describe
the free parts of the model. For BNs, domain knowledge often prescribes the topology,
while learning the conditional distributions from data is more common. Moreover, it is
simpler to parameterise and learn (conditional) distribution than graph structures that
lead to combinatorial problems.
For discrete variables, we use categorical distributions, and each conditioning factor

corresponds to distinct parameter values in the worst case. The parameterisation of
continuous variables distribution offers many alternatives. For instance, we can use an
exponential family with linear functions that compute the natural parameters given the
conditioning factors. Gaussians with linear interactions are arguably one of the most
popular parameterisations. These models, dubbed Gaussian Bayesian networks, were
historically the only ones with an efficient training algorithm as they correspond to
multivariate Gaussian distributions [Wermuth, 1980] for which closed-form MLE exists.
In Chapter 8, we introduce normalising flows as a more expressive parameterisation.

3.3.3 Inference

Almost any task we may want to perform on a model can be cast as inference. With no
loss of generality, we focus on the generic the conditional probability query P (Y | E = e),
where Y denotes a subset of the model’s variable and e is the value of another subset
E of the variables, the remaining variables M = {Xi : Xi /∈ Y ∪ E} are marginalised
out. For example, we might be interested in evaluating P (X1 | X3 = x3, X4 = x4) in
Figure 3.1.

3.3.3.1 Exact inference

As mentioned earlier, inference gets more complicated when the number of variables
increases. However, a BN adds structure to this problem by making some of the indepen-
dencies explicit. For BNs, inference stays NP-hard in the worst case. However, there exist
algorithms able to exploit the structure for most inference tasks efficiently. For example,
Pearl’s message-passing algorithm [Pearl, 1987] is an efficient exact inference algorithm
for polytrees, a subclass of BNs that have acyclic skeleton. Variable elimination (VE) is
another popular algorithm that works on all discrete BNs and reduces the complexity of
inference to the width (maximum distance between two nodes) of the graph. Sanner and
Abbasnejad [2012] adapts VE to continuous variables with a symbolic version of VE. How-
ever, VE uses marginalisation and distribution products, which are not straightforward
operations in the continuous setting.

32 probabilistic graphical models

3.3.3.2 Inference as sampling

The case of continuous variables motivates us to formulate inference differently. We look
for formulations that do not explicitly mention marginalisation or the product of densities.
A solution is to replace exact inference with conditional sampling from P (Y | E = e).
In BNs, ancestral sampling (AS) draws samples from the joint distribution by traversing
the graph from parents to children and attributing a value to each node by sampling
conditionally on the parents’ values. AS can thus perform inference if the conditioning
variables are ancestors of all variables in Y .

Ancestral sampling draws samples from each factor P (Xi | Pi) which is usually straight-
forward. For example, provided the corresponding cumulative distribution (CDF) func-
tion F (·;Pi) : Xi → [0, 1] and a uniform random variable U in [0, 1], xi = F−1(u;Pi)
follows P (Xi | Pi). This method is known as inversion sampling (IS).
Rejection sampling (RS) is an alternative to inversion sampling, for example, when

we cannot evaluate the inverse CDF directly. The idea is to sample z ∈ Xi from a
proposal distribution Pz and u from a uniform between 0 and 1, then accept the sample
if u <

Pxi (z)

KPz(z)
where K is chosen such that KPz(xi) ≥ Pxi(xi) ∀xi ∈ Xi. RS works

for multidimensional variables even when the joint distribution is only known up to a
normalising factor. In that sense, it has more broadly applicable than IS. However, it
becomes inefficient as the number of dimensions grows. Another limitation appears if
we want to condition on a subset of the sampled variables, in which case the rejection
rate blows up with the number of possible values for the conditioning variables (e.g., an
infinite number in the continuous setting).
Another possibility called likelihood weighting (LW) consists in freezing the condition-

ing factors E to their value e and to sample values (y1,m1), . . . , (yk,mk) via AS. These
samples does not follow P (Y,M | E = e) however we may approximate the expected
value of a function g with respect to P (Y | E = e) by keeping track of the corresponding
weights P (Y,M,E = e) given by Equation (3.1). The approximation of the expected
value takes the following form

EP (Y |E=e) [g(y)] ≈
∑k

i=1 g(yi)P (Y = yi,M = mi, E = e)
∑k

i=1 P (Y = yi,M = mi, E = e)
.

For discrete variables, LW provides an approximate alternative to VE as

P (Y = y | E = e) ≈
∑k

i=1 P (Y = 1{yi = y},M = mi, E = e)
∑k

i=1 P (Y = yi,M = mi, E = e)
.

Likelihood weighting is a special case of importance sampling when the samples of the pro-
posal distribution comes from ancestral sampling. Likelihood weighting is more efficient
if the conditioning factors are close to the root of the BN.
Importance sampling does not provide iid samples from the posterior distribution,

but MCMC (with independent resampling) does. MCMC is a family of algorithms that

3.3 directed graphical models – bayesian networks 33

samples from distributions known up to a normalising factors. Hence, MCMC algorithms
are particularly interesting to sample from conditional distributions. These algorithms
run a Markov chain whose stationary distribution follows the given distribution. Each
MCMC algorithm defines its own transition probability P (Y k | Y k−1). Many instances
exist, such as Metropolis-Hastings MCMC [Hastings, 1970], Hamiltonian MCMC [Neal
et al., 2011], slice sampling [Neal, 2003], etc. Gibbs sampling [Sorensen et al., 1995] is an
instance that exploits the BN structure in the transition probability. Let us suppose that
M is empty, then at each transition step, Gibbs sampling only updates one component
Yi of the vector Y k. It samples Yi from the posterior P (Yi | Y k−1

−i) where Y k−1
−i contains

the values of the evidence E and the previous state Y k−1 except the ith component.

3.3.3.3 Inference as optimization

We finally introduce variational inference [Blei et al., 2017, VI] as a third option for
inference. VI formulates inference as an optimisation problem in which we look for a
distribution Q(Y) that is as close as possible to the posterior of interest P (Y | E = e).
For this purpose, we consider a parametric family of distributions Qθ(Y), e.g., a BN
with a prescribed structure but parametric distributions. Our goal is to optimise for the
set of parameters θ? that minimise the discrepancy between the targetted and learnt
distributions,

θ? = arg min
θ

D [Qθ(Y)‖P (Y | E = e)] , (3.2)

where D is an appropriate divergence between distributions. For the rest of this discussion,
let us fix D to the Kullback-Leibler (KL) divergence which is an appropriate choice as it
is only minimized when Q = P . As of now, we also restrain our discussion to the case of
continuous variables. Formally, the KL compares two distributions P (X) and Q(X) as

KL [P‖Q] ,
∫

x∈X
P (x) log

P (x)

Q(x)
dx.

The integral can be replaced by a sum for discrete random variables. The KL is not a
proper distance as it is not symmetric. Depending on the context, we will switch the two
arguments P and Q, which is fine as in both cases Equation (3.2) is minimized iff the
two arguments are equal.
Solving Equation (3.2) is possible if we have a parametric family of distributions for

which density evaluation and sampling are differentiable functions of the parameters.
This family could be another BN but also a normalizing flow, a deep probabilistic model
we describe in the next chapter. Let us denote by Qθ the probability density function
and the procedure to generate samples as

y := fθ(z) where z ∼ N (0, I),

34 probabilistic graphical models

where N (0, I) denotes a normal distribution. In this ideal case, the optimization problem
becomes:

θ? = arg min
θ

KL [Qθ(Y)‖P (Y | E = e)] (3.3)

= arg min
θ

KL [Qθ(Y)‖P (Y,E = e)] + Ey [logP (E = e)] (3.4)

= arg min
θ

Ez
[
log

Qθ(fθ(z))

P (fθ(z), E = e)

]
. (3.5)

We can optimise this equation with stochastic gradient descent (SGD) by approximating
the objective function with Monte Carlo samples at each gradient step.
Evaluating P (fθ(z), E = e) in the last equation is not always possible (e.g.; if the vari-

ables in M are not leaves). In this context, we may create an approximation Qθ?(Y,M |
E = e) of P (Y,M | E = e) instead. We can then generate samples from the joint and
thus from the marginal P (Y | E = e). If we need to evaluate the approximate

Qθ?(Y | E = e) :=

∫

m∈M
Qθ?(Y,M = m | E = e)dm,

we can find a surrogate model Q̃ψ by solving the following optimization problem:

ψ? = arg min
ψ

KL
[
Qθ?(Y,M | E = e)‖Q̃ψ(Y)

]
. (3.6)

We can also optimize this equation with SGD and Monte Carlo samples as it only requires
to sample from and evaluate Qθ?(Y,M | E = e), and to evaluate Qψ(Y). We can convince
ourselves that the solution to Equation (3.6) corresponds to Qθ?(Y | E = e),

arg min
Q

KL [P (Y,M)‖Q(Y)] (3.7)

= arg min
Q

EP (Y)P (M |Y) [logP (Y) + logP (M | Y)− logQ(Y)] (3.8)

= arg min
Q

EP (Y)P (M |Y) [logP (Y)− logQ(Y)] (3.9)

= arg min
Q

EP (Y) [logP (Y)− logQ(Y)] (3.10)

= arg min
Q

KL [P (Y)‖Q(Y)] . (3.11)

We observe that VI can only achieve good results if the family of distributions contain
instances close to the true posterior. In addition, solving the optimisation can be compli-
cated even if provided with a parametric universal density approximator. However, VI is
often preferable to sampling strategies for multiple reasons. It eventually becomes faster
than sampling because Equation (3.2) returns a model from which we can generate as
many samples as we want. This approach also automatically provides a surrogate of the

3.3 directed graphical models – bayesian networks 35

posterior density. Finally, we can apply this approach to learning a parametric posterior
distribution that approximates P (Y | E = e) for any value of e.
Another interesting application of VI is for estimating a bound on the log-marginal

logP (E) of the larger model P (Y,E). We can directly derive from Equation (3.4):

KL [Qθ(Y)‖P (Y | E = e)] ≥ 0 (3.12)

KL [Qθ(Y)‖P (Y,E = e)] + Ey [logP (E = e)] ≥ 0 (3.13)

Ey∼Qθ(Y=y)

[
log

P (E = e | Y = y)P (Y = y)

Qθ(Y = y)

]
≤ logP (E = e) (3.14)

Ey∼Qθ(Y=y) [logP (E = e | Y = y)]−KL [Qθ(Y)‖P (Y)]
︸ ︷︷ ︸

ELBO

≤ logP (E = e) (3.15)

This estimated lower bound on the evidence (ELBO) is useful to approximate the log-
likelihood of a parametric model Pψ(E) defined as the marginal of a larger model
Pψ(Y,E) parameterised by Pψ(Y | E) and Pψ(E). VI allows learning deep probabilistic
models that formulates the generative process as a stochastic map from latent variables
to observations, as we will see in the next chapter.

3.3.4 Learning

With VI, we have seen for the second time that inference and learning are two faces
of the same coin. We now describe learning strategies to fit the parameters of a BN
given data. A BN combines a graph G ∈ G, where G denotes the set of DAGs, and
F = {Pθi(Xi | Pi)}di=1 is the corresponding set of parametric conditional distributions
that together model a joint distribution. Ideally, we would like to adapt both G and
fθ ∈ F to the learning dataset D = {Xi}Ni=1.
Assuming iid data, we can express the learning task as a generic optimisation problem:

B? = arg max
B∈B

N∑

i=1

logPB(Xi)−R(B), (3.16)

where B = G×F denotes the set of possible BNs and R(·) : G×F → R is a regularisation
term which can be interpreted as the prior over plausible BNs and is constant if we
do MLE. We insist on the importance of R(B) for obtaining a good model. Although
BNs with complete DAGs are strictly more expressive than sparse structures, we prefer
the latter as they explicit independence assumptions and lead to simpler conditional
distributions.
The formulation in Equation (3.16) does not say much about concrete strategies to fit

the parameters of a BN. In practice, we often separate structure learning from distribution
fitting. Structure learning is a combinatorial problem, whereas fitting the parameters of
conditional distributions is a continuous optimisation problem; solving both issues jointly
remains difficult. In Chapter 8, we will see one strategy to formulate the combinatorial

36 probabilistic graphical models

topology learning problem into a continuous one; these are advanced concepts beyond
this background’s scope. Now, we focus on the two sub-problems independently.

3.3.4.1 Distribution learning

We suppose a prescribed topology and only focus on learning the best factors in Equa-
tion (3.1). For this purpose we can parameterize the factors with a vector θ := {θ1, · · · ,θd}
and update Equation (3.16) into

θ? = arg max
θ

N∑

i=1

log
d∏

j=1

Pθj (X
i
j | Pj) + log π(θ). (3.17)

In practice, we approach θ? via stochastic gradient ascent on the objective of Equa-
tion (3.17). The choice of the parameterisation and the prior π are crucial to finding a
good model when N is finite.

3.3.4.2 Structure learning

It is sometimes difficult to define a relevant structure a priori, and it may be interesting
to learn it from data instead. Structure learning aims to find a sparse topology that does
not imply (conditional) independence in contradiction with the data. We can formulate
this search as an optimisation problem under constraints in the space of DAGs G:

G? = arg min
G∈G

d∑

i=1

d∑

j=1

Ai,j(G) such that I(G) ⊆ I(D), (3.18)

where A(G) is the adjacency matrix of the graph G, I(G) is the set of (conditional)
independence encoded by G, and I(D) is the set of independence observed in the data.
The constraints ensure that only independencies observed in the data are encoded in the
structure, and the objective penalizes the number of edges.
Fixing the topological ordering in advance reduces drastically the size of the search

space and allows greedy algorithms. In this case, the solution’s quality depends on the
chosen order. In addition to being intractable, the formulation in Equation (3.18) does
not take advantage the prior knowledge. A partial solution is to reduce the search space
G to the structures we consider plausible. Expressing more subtle priors over graphs and
handling them efficiently in structure learning is still an active research question.
The evaluation of I(D) is essential for structure learning. In theory, testing for inde-

pendence in the data is difficult as it requires accessing the (conditional) distribution
between the two variables tested, which is what we are trying to learn. In practice, we
create statistical independence tests by making assumptions on the class of interactions
and marginal distributions (e.g. linear Gaussian, discretisation of variables, etc.). These
tests are reasonably accurate for unconditional independence but not for conditional in-
dependence. Interestingly, while pure independence between continuous variables is hard

3.3 directed graphical models – bayesian networks 37

to prove in practice, it is often beneficial to consider weakly dependent variables as if
they were independent. This usually simplifies the model and improves its generalisation
to unseen data.
In parallel to this, there exist specialized algorithms for learning BNs’ structures.

Some implement greedy solutions which provide a useful approximation of the true so-
lution [Tsamardinos et al., 2006]. Others focus on sub-class of BNs for which efficient
solutions exist [Cooper and Herskovits, 1992; Chow and Liu, 1968]. In general, topology
learning is hard. It has recently regained great attention from the machine learning com-
munity in the context of causal discovery [Khemakhem et al., 2020; Balgi et al., 2022a;
Vowels et al., 2021; Brouillard et al., 2020].

3.3.5 Duality between directed graphs and distributions

If a distribution P factorises over a Bayesian network with graph G, we can check whether
some conditional independence holds with d-separation. In this case, we say that the
Bayesian network is an I-map of the independence in P – any independence expressed by
the BN is present in P . However, we have also observed that any distribution factorises
over the complete graph. Complete Bayesian networks are unsatisfactory as they do not
reflect any independence assumptions necessary for manipulating the distribution effi-
ciently. For example, Figure 3.1a depicts a BN that is an I-map for any distribution over
the four variables X1, X2, X3, X4. In contrast, Figure 3.1b is an I-map over a distribution
over these variables only if it factorises under the ancestral ordering of the network, which
implies some independencies such as X1 | X2.
Our goal is thus to find a sparse graph that only represents independence present in

the distribution we aim to model. In particular, we say that a graph G is a minimal
I-map for a set of independencies if it is an I-map and if the removal of even a single
edge breaks the I-map property. We are generally only interested in these minimal I-map.
For example, if the independencies modelled by Figure 3.1b holds in the distribution, we
will prefer it over Figure 3.1a. Nevertheless, minimal I-map are not perfect because they
can miss some independencies in P . When possible, we aim to find a graph G that is a
P-map for a set of independencies I present in the distribution we aim to model. It is
the case if the independence modelled by the graphs IG are equal to I – that is, any
independence modelled by G is in I, and all independencies in I are modelled by G.
Clearly, any P-map is a minimal I-map, and the best BNs are the ones that are P-maps

of the distribution of interest. Unfortunately, Bayesian networks are not universal P-maps.
Some sets of independencies I are impossible to express faithfully with directed graphs.
In such a case, either the graph misses some independence or expresses false independence.
We will see that undirected graphs can faithfully represent such independencies but have
other limitations and are not universal P-maps either.

38 probabilistic graphical models

3.3.6 Causality

It is natural to interpret the arrows in a BN as causal relationships between variables. This
interpretation is dangerous as it is not necessarily correct. For example, two complete BNs
with opposed arrows may express the same distribution but opposite causal relationships.
However, the reverse interpretation is ok – causal graphs are BNs. In these graphs, a
directed edge from X to Y represents the causation of Y by X. The BN corresponding
to a causal graph is an I-map of the distributions between the variables present in the
causal graph.
We can recycle algorithms and interpretation from BNs to causal graphs but not vice-

versa. We can also try to understand some algorithms by assuming the BN is a valid causal
graph. For example, causality implies that we shall first sample parents to generate the
children and provides a natural interpretation of the ancestral sampling algorithm. As we
will see in the next section, some (in)dependence assumptions are inherently non-causal,
which hints at why BNs are not universal P-maps.

Causality has become a significant sub-field of artificial intelligence and strongly im-
pacts machine learning. Do-calculus [Pearl, 1994] is a tool that allows inference with
causal rather than probabilistic facts. Such reasoning patterns are necessary to answer
counterfactual questions scientifically [Morgan and Winship, 2015]. In addition, causal as-
sumptions prove the generalisation and robustness of some machine learning algorithms.
The recent interest in causal modelling provides additional motivations for using directed
graphs, hence BNs, to model distributions.

3.4 undirected graphical models – markov networks

The duality between Bayesian and causal networks provides a simple procedure to con-
strain the structure of the networks when we have a causal understanding of the studied
process. However, the duality also implies that BNs are not universal P-maps, as shown
in the following example. Let X1, X2, X3, X4 be four random variables related by the fol-
lowing independence statements: {X1 ⊥ X3 | (X2, X4), X2 ⊥ X4 | (X1, X3)}. A Bayesian
network cannot faithfully represent such independence statements. Indeed the assump-
tions impose that X2 and X4 d-separate X1 and X3 and vice versa. This imposes that
the structure of the BN resembles Figure 3.2b. However, it is impossible to add directions
to the edges without adding a cycle or a V-structure that would contradict at least one
of the independence hypotheses.
This example is even more straightforward if we take a concrete example where such

assumptions would be reasonable and observe that it contradicts any causal interpretation
of the BN. Let us consider that the four random variables correspond to the opinion
of four wine amateurs about a Côtes de Provence rosé. Each amateur tastes the wine
twice, on two different days, with two distinct amateurs. As they discuss together, the
opinion of each amateur is influenced by the view of the others and vice versa. Because

3.4 undirected graphical models – markov networks 39

X1 X2

X3 X4

(a)

X1 X2

X3X4

(b)

Figure 3.2: Two Markov networks of a 4D variable. (a) No independence. (b) Cycle dependen-
cies. A Bayesian network cannot represent all implied independencies but a Markov
network can.

we expect each pair to reach some consensus, all opinions should influence each other,
sometimes indirectly. Each amateur will have a final opinion about the wine eventually.
This contradicts a causal interpretation in which at least one of the variables, a root,
should not be influenced by another.
It sounds more natural to express similar configurations with an undirected graph.

Undirected graphical models can indeed represent such conditional independence faith-
fully. However, undirected graphs are not universal P-maps either, as they cannot repre-
sent independence assumptions rooted in causal interpretation. For example, it is impos-
sible to express that two independent variables can become dependent when conditioned
on a third variable (V-structure in BNs) which naturally arises when the two independent
variables cause the third. Nevertheless, undirected representations sometimes handle non-
causal assumptions more naturally than Bayesian networks. We briefly introduce these
models, united under the term Markov networks. Our discussion is intentionally more
superficial than for directed representations, as Markov networks are not directly related
to any of the contributions in this thesis.

3.4.1 Markov networks

A Markov network (MN), also called Markov Random Field, is an undirected graph that
describes Markov properties between random variables. Formally, let X = [X1, . . . , Xd]

T

be a vector collecting d random variables. The global Markov property states that any
two subsets of variables are conditionally independent given a separating subset. In math-
ematical terms: XA ⊥ XB | XS , where the subset of variables XS separates the subsets
XA and XB; XS blocks all path from XA to XB in the graph. For example, the Markov
network in Figure 3.2a does not impose any independence whereas the one in Figure 3.2b
implies the following independence: {X1 ⊥ X3 | (X2, X4), X2 ⊥ X4 | (X1, X3)}.

40 probabilistic graphical models

X1

X2 0 1

0 10 30

1 50 10

(a)

X1

X2 0 1

0 0.1 0.3

1 0.5 0.1

(b)

Table 3.1: The numerical values associated with a two nodes (X1 and X2) Markov network. (a)
The unnormalised factor. (b) The factor normalised corresponds to the joint distribu-
tion.

3.4.2 Parameterisation.

The unidirectionality of Markov networks imposes some symmetry in their parameteri-
sation. In contrast to BNs, the numerical values cannot represent conditional distribu-
tions which would break the symmetry of the undirected relationship between two nodes
(P (A | B) 6= P (B | A)). An alternative parameterisation could be to encode all the
2D joint distributions. Unfortunately, this would be impractical. Let us suppose we pa-
rameterise the wine-amateurs Markov network in Figure 3.2b with the corresponding
2D joint distributions (P (X1, X2), P (X2, X3), P (X3, X4), P (X1, X4)). Satisfying the Kol-
mogorov’s axioms with such a parameterisation is a real challenge; e.g., it would imply
that P (X1) =

∑
x2
P (X1, X2 = x2) must be equal to P (X1) =

∑
x4
P (X1, X4 = x4). It

is unclear how we could practically ensure this equality with a simple parameterisation.
It is why instead Markov networks rely on unormalised functions called factors for

their parameterisation. A factor is a real-valued function φ(·) : X → R that describes
the interactions between a set of random variables X. We can combine multiple factors
to create a joint distribution. This parameterisation is called a Gibbs distribution. It
parameterises the joint distribution of a random vector X = [X1, . . . , Xd]

T with a set
of factors φ = {φ1(D1), . . . , φK(DK)}. Each Di is a, potentially overlapping, different
subset of variables. The Gibbs distribution is defined as follows:

Pφ(X) =
1

Z
P̃φ(X),

where
P̃φ(X) = φ1(D1)× · · · × φK(DK).

The normalising factor is Z =
∑
x∈X P̃φ(X = x) if the random vector is discrete or

Z =
∫
x∈X P̃φ(X = x)dx if it is continuous.

We sometimes write the unnormalized probability distribution as the negative expo-
nential of an energy function E(·) : X → R, P̃φ(X) = e−Eφ(X). The denomination energy
comes from physics which describes the probability of observing a system in a given state
as a Gibbs distribution parameterised by the state’s energy (and temperature) [Gibbs,
1902].

3.4 undirected graphical models – markov networks 41

V1 . . . Vm

H1 . . . Hn

Figure 3.3: A Restricted Boltzmann machines compose of n hidden units Hi and m visible units
Vj . The Markov network is a bipartite graph separating hidden and visible units into
two groups fully connected to each other.

In BNs, the ancestral factorisation ensures that the parameterisation respects the in-
dependencies modelled by the graph structure. Similarly, a Gibbs distribution respects
the independence of a Markov network if the factors only take a subset of variables that
are complete network subgraphs. For example, we can parameterise the wine-amateur
joint distribution with four 2D factors {φk(·, ·) : {0, 1} × {0, 1} → R}4k=1 that encode
the interactions between the four amateurs, e.g. as the one in Table 3.1a. In addition,
we could also use 1D factors. However, the parameterisation with maximal complete
subgraphs, also called maximal clique potentials, is sufficiently expressive to encode the
marginals over subsets. Thus we can stick to the 2D factors in this example and, in
general, parameterise the maximal clique potentials only.
Parameterising Markov networks with factors over maximal clique potentials may ob-

scure the structure in the lower-dimensional original set of factors. As the number of
nodes grows, the graph’s complexity and the maximal clique’s size grow. For discrete
variables, the number of entries in the table representing the factor grows exponentially
with the dimensionality of the input vector. Hence we usually try to minimise the num-
ber of edges in the graph, or we only parameterise 2D factors and ignore higher-order
interactions.

3.4.3 Toward neural networks

Provided the graph structure and factors, we can use sampling algorithms, such as MCMC
algorithms, to generate realisations. However, without additional constraints on the struc-
ture manipulating these models is difficult. Restricted Boltzmann machines [Hinton, 2002,
RBMs] are a popular class of Markov networks where binary variables are split into vis-
ible units, denoted V ∈ {0, 1}m, and hidden units, H ∈ {0, 1}n, with a bipartite graph
as depicted in Figure 3.3. This restriction allows efficient learning algorithms inspired by
the Hebbian plasticity of the brain. The parameterisation of RBMs is a matrix of weights
W ∈ Rm×n that describes the interactions between visible and hidden units and two vec-

42 probabilistic graphical models

tors of offset bH and bV respectively for hidden and visible units. The joint distribution
between visible and hidden units is computed as

P (V = v, H = h) =
1

Z
φ(V = v, H = h),

where the factor is φ(V,H) = e−E(V,H) and the energy function takes the particular form

E(V = v, H = h) = −bTHh− bTV v − vTWh.

We can train these networks on a dataset of visible variables with an algorithm that
combines Gibbs sampling (on the hidden units) and gradient descent to update the
weights. RBMs are among the first success of neural networks. They have been used for
unsupervised learning problems such as dimensionality reduction, collaborative filtering,
and others. RBMs naturally transition between PGMs and deep probabilistic models we
will discuss in the next chapter.

3.5 conclusion

In this chapter, we have discussed motivations for a graphical representation of proba-
bilistic models. We have introduced Bayesian and Markov networks as the main classes
of probabilistic graphical models. In addition, we have presented various inference al-
gorithms. Some algorithms apply to all probabilistic models, while others exploit the
graphical structure. Undoubtedly, this chapter has outlooked the parameterisation of
continuous distributions, even when they are unidimensional. Our discussion ended with
a preamble on neural networks. The next chapter goes further and details various strate-
gies to parameterise probability distributions with neural networks.

The basic laws of the universe are simple, but because our senses are limited, we can’t
grasp them. There is a pattern in creation.

Albert Einstein

4
DEEP PROBABIL I ST IC MODELS

Outline

This chapter comprehensively reviews various strategies to parameterise
probabilistic models with neural networks. We present the main algorithms
used in practice, and we discuss the pros and cons of each class of models.
The distinction between two models is sometimes artificial. It is why, we
highlight relevant connections between these strategies when possible. Our
aim is to convince the reader of the effectiveness and flexibility of deep
probabilistic models. Finally, we provide the primary motivations for the
contributions presented in this thesis.

4.1 introduction

Restricted Botzmann Models [Hinton, 2002] are arguably one of the first generative mod-
els built upon neural networks. This chapter discusses other successful approaches for pa-
rameterising probabilistic models with neural networks. While graphical models describe
probabilistic models with graphs and are appealing for understanding and prescribing
modelling assumptions, they do not rigorously describe efficient parameterisations of the
conditional probability distributions in the continuous setting. Deep probabilistic models
encompass methods for parameterising these probability distributions with neural net-
works. We call some of these models deep generative models when they are well suited for
sample generation. We will highlight the correspondence of some of these models within
the probabilistic graphical models when possible.

4.2 why neural networks?

We abstract neural networks as parametric functions that map an input space X to an
output space Y and are differentiable functions fθ : X → Y of their parameters θ. More-
over, backpropagation allows computating of the first-order derivative ∇θfθ of neural
networks automatically. Although neural networks are universal function approximators,
the parameterisation of a probability distribution is challenging and requires the right
architectural choices. We often present neural networks as deterministic models; however,
many strategies exist to parameterise probability distributions, as we will see in the next
sections.

45

46 deep probabilistic models

For example, normalizing flows are neural networks that directly parameterise the
probability distribution but require strong architectural constraints, as we will see later.
This is particularly inconvenient when working with structured data (e.g. images, sound,
graphs, etc.) because specialised architectures (e.g. convolutional networks [LeCun et al.,
1995]) do not directly satisfy the architectural constraints. Another possibility is to use a
neural network to parameterise a known distribution such as a Gaussian. For example, we
can model P (Y |X) as a multivariate Gaussian N (µ,Σ) where a free-form neural network
computes the mean vector and covariance matrix as a parametric function of the input
X. This strategy makes a strong assumption on the form of P (Y | X), which may be
inaccurate, e.g. if X is a piece of text describing the image Y . An alternative is to see
the neural network as a generator of samples similar to the training set, mapping a noise
vector to realisations [Goodfellow et al., 2020]. These deep generative models define the
probability distribution implicitly and allow us to use complex architectures well suited
to the modelling task. However, they also require specialised training algorithms.
Neural networks are better suited to parameterise distributions than other machine

learning models. In particular, their differentiability and training procedure based on
stochastic gradient descent allows us to optimise objectives corresponding to the MLE or
MAP directly. In parallel, considerable efforts have been made over the last year to create
architectures with inductive biases adapted to different data types, e.g. graph neural
networks [Xu et al., 2018; Satorras et al., 2021] and recurrent neural networks [Hochreiter
and Schmidhuber, 1997; Cho et al., 2014]. The availability of large pre-trained models is
another advantage of working with neural networks [Bommasani et al., 2021].
In the following we ignore the conditioning variable X. Indeed, the main challenges

in modelling distributions with neural networks is usually orthogonal to handling con-
ditioning variables. Instead we focus on the modelling of the joint distributions of a
d-dimensional random vector Y = [Y1, . . . , Yd] that takes value in Y = Y1× · · · ×Yd. For
simplicity, we consider that Y1 = · · · = Yd and the domains are either discrete classes
(e.g. a pixel value in {0, . . . , 255}3) or real numbers R.

4.3 autoregressive models

Autoregressive models [Graves, 2013; Germain et al., 2015; Van den Oord et al., 2016;
Wong and Li, 2000] reduce the modelling of d-dimensional distributions into d distri-
butions via the product rule (P (A,B) = P (A)P (B | A)) as shown in Figure 4.1. The
autoregressive structure is there to account for the piling-up conditioning factors. These
models can represent all kinds of dependencies between the components of the random
vector modelled. Formally, autoregressive models decompose the joint distribution as

P (Y) = P (Y1)Π
d
i=2P (Yi|Y<i), where Y<i , [Y1, . . . , Yi−1] . (4.1)

When the domain is discrete, we can parameterise each 1D factor with a classifier. If the
domain is continuous, the common practice is to parameterise a 1D Gaussian distribution

4.3 autoregressive models 47

P (Y1)

P (Y2 | y1)

y1 y2

P (Yd | y<d)

yd

Figure 4.1: The forward computation of an autoregressive model. Each 1D distribution is condi-
tioned autoregressively on the input vector.

48 deep probabilistic models

with a neural network that predicts the mean and log-variance given the conditioning
vector. Mixture density networks [Bishop, 1994, MDNs] are an effective alternative that
easily accounts for multimodality. MDNs parameterise a mixture of m 1D distributions
(e.g., Gaussian distributions) with a neural network that assigns a normalised weight to
each mixture component, in addition to their parameters (e.g. the mean and log-variance).
Autoregressive models involve the parameterization of d functions with different input
dimensionalities which might be very inefficient if d is large (e.g. 216 for 256×256 images).
Sharing parameterisation between factors is an important aspect of autoregressive

models. One strategy is to use recurrent neural networks where the hidden vector carries
and updates the information of the successive conditioning variables[Van Oord et al.,
2016]. However, this strategy is slow because it processes the input vector sequentially.
Moreover, the inductive bias of recurrent neural networks is not ideal for signals with
long-range or spatial dependencies such as audio or images. A better solution is to use
causal convolutional neural networks [Oord et al., 2016a, Causal CNNs], which process the
complete vector simultaneously and enforce the autoregressive structure in the outputs.
Causal CNNs have achieved great success in modelling audio [Van Den Oord et al.,
2016, 2018]. The PixelCNN autoregressive model [Oord et al., 2016b] generalises this
architecture to 2D signals and has shown great modelling capabilities.
We can train autoregressive models efficiently by maximising their likelihood given

data. Evaluating the likelihood only requires passing the data once in the network and
computing the product of the d conditional distribution evaluated at the input vectors.
Unfortunately, sampling is a sequential process as each variable is sampled according
to the preceding. Sampling from of autoregressive models is slow for images or long
time series and is one of their main drawbacks. The lack of independence assumptions
and poor inductive bias are other limitations of these models. This is especially true with
images for which the enforced causality between successive pixels and sampling algorithm
is ineffective. We rarely use autoregressive models alone but in combination with other
models, such as variational auto-encoders [Kingma and Welling, 2013].

4.4 energy based models

We have already encountered the term energy when discussing the parameterisation of
Markov networks. There, and in the context of energy-based models [Teh et al., 2003,
EBMs], the energy relates to the definition of a Gibbs distribution, taking the form

Pθ(Y = y) =
1

Z(θ)
e−Eθ(y), (4.2)

where Eθ(·) : Y → R is the energy function and Z(θ) is called the partition function.
Figure 4.2a shows the energy function of a 2D distribution with two modes, the integral
over the support is not equal to 1, but the energy is proportional to the logarithm of the
probability density function.

4.4 energy based models 49

Y1

Y2

2.4

4.0

5.6

7.2

8.8

10.4

12.0

13.6

15.2

16.8

(a)

Y1

Y2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(b)

Figure 4.2: The energy landscape of a 2D bi-modal distribution (a) and the corresponding prob-
ability density function (b).

The interest of EBMs is to parameterise probability distributions with free-form real
functions. For instance, any neural network can potentially parameterise an EBM. This
property is very appealing as it allows combining the flexibility and efficient inductive
bias of neural networks, which was fundamental reasons for the greatest successes of
deep learning. Unfortunately, this flexible parameterisation prevents direct access to the
likelihood function, which requires the intractable computation of the partition function.
This prevents us from directly using the MLE learning strategy. Inspired by the recent
review paper on EBMs by Song and Kingma [2021], we now review the main approaches
for learning EBMs for continuous variables.

4.4.1 Markov chain Monte Carlo

In order to find the best set of parameters θ, we need to evaluate Pθ and potentially its
derivative, not only the energy function. A natural strategy would be to compute the
integral Z(θ) =

∫
y∈Y e

−Eθ(y)dy. However, as soon as the energy function is non-trivial,
this integral becomes intractable. Thus, we need to find a better strategy. We see below
how sampling from the EBM can save us the pain of explicitly computing Z(θ).
Let us formalise the learning problem for a given dataset D := {yi}Ni=1 of N iid samples.

A reasonable strategy is to find the MLE,

θ? = arg max
θ

Pθ(D) (4.3)

= arg max
θ

logPθ(D) (4.4)

= arg max
θ

1

N

N∑

i=1

logPθ(Y = yi). (4.5)

In practice we cannot solve this last equation directly and we would like to use standard
optimization techniques such as (stochastic) gradient ascent [Amari, 1993; Bottou, 2012].

50 deep probabilistic models

In this case, learning the EBMs eventually reduces to evaluating ∇θ logPθ(Y = yi) for
any yi ∈ D. Unfortunately, this gradient explicitly depends on the parition function,

∇θ logPθ(y) = ∇θ logZ(θ)−∇θEθ(y). (4.6)

We can obtain the first term with automatic differentiation. In contrast, the second term
requires computing the gradient of an intractable integral and requires additional tricks
to be evaluated.
However, we can rewrite the problematic term as an expectation over samples from

the EBMs:

∇θ logZ(θ) = ∇θ log

∫

y∈Y
e−Eθ(y)dy (4.7)

=

(∫

y∈Y
e−Eθ(y)dy

)−1 ∫

y∈Y
∇θ
(
e−Eθ(y)

)
dy (4.8)

=

∫

y∈Y

(∫

y∈Y
e−Eθ(y)dy

)−1
e−Eθ(y)

︸ ︷︷ ︸
=Pθ(y)

∇θ (−Eθ(y)) dy (4.9)

= −EPθ(y) [∇θEθ(y)] . (4.10)

Then, we can use MCMC to sample from the EBM and estimate the gradient of the
log-likelihood function. There exist MCMC algorithms, such as Langevin MCMC [Parisi,
1981; Grenander and Miller, 1994] or Hamiltonian Monte Carlo [Duane et al., 1987; Neal
et al., 2011], that are specifically designed to exploit the fact that the score function
∇y logPθ(y) = −∇yEθ(y) is directly accessible. These algorithms are usually more
efficient than Metropolis-Hastings MCMC [Hastings, 1970].
Running MCMC until convergence is expensive. Hence, the requirement to do it at

each gradient step leads to inefficient learning algorithms. Many improvements to the
naive learning strategy, which starts each MCMC run from scratch, have been proposed.
For example, contrastive divergence [Hinton, 2002] starts each chain from a data point
rather than a random initial state. A similar strategy named persistent contrastive diver-
gence [Tieleman, 2008] use persistent states between successive gradient estimations and
update steps.

4.4.2 Contrastive learning

Sampling is inefficient in highly-dimensional spaces or even for low-dimensional that are
multimodal. Although strategies to improve the efficiency of MCMC-based training exists,
it often leads to biased gradient estimates [Fischer and Igel, 2011]. This observation has
motivated the development of alternative learning strategies. For instance, Gutmann
and Hyvärinen [2012] proposed noise contrastive learning, which jointly estimates the
partition and energy functions. Gutmann and Hyvärinen [2012] notice that if the energy

4.4 energy based models 51

function models correctly the training distribution, it enables discriminating between
noise and samples from the distribution.
Let us consider a balanced binary classification problem where samples from class

C = 0 follow a known noise distribution Pn. The positive class C = 1 is the training
set and it follows the unknown distribution P (Y). As long as the noise and the training
distributions’ supports match, we can learn a Bayes optimal classifier as a function of
the ratio between the two densities [Devroye et al., 2013; Faragó and Lugosi, 1993]. This
classifier attributes the posterior probability to C given a sample y as

P (C = 0 | y) =
Pn(y)

Pn(y) + P (y)
. (4.11)

We can replace P (y) by the EBM Pθ(y) and solve the corresponding classification prob-
lem as a function of the EBM’s parameters θ and of the normalizing constant α , Z(θ).
Formally we aim to recover the Bayes optimal classifier, that is, for all y to be able to

return the posterior distribution P (C | y). This objective gives the following optimisation
problem:

θ? = arg min
θ

KL [P (C | y)‖Pθ(C | y)] ∀y ∈ Y (4.12)

= arg min
θ

EP (y)KL [P (C | y)‖Pθ(C | y)] (4.13)

= arg min
θ

−EP (y)EP (C|y) [logPθ(C | y)] + C (4.14)

= arg min
θ

−EP (C)EP (y|C) [logPθ(C | y)] (4.15)

= arg min
θ

−EPn(y)
[
log

(
Pn(y)

Pn(y) + Pθ(y)

)]
− EP (y)

[
log

(
Pθ(y)

Pn(y) + Pθ(y)

)]
.

(4.16)

The last term is the standard cross-entropy loss applied to a classifier that resembles
Equation (4.11) parameterised by an EBM.
Then learning corresponds to minimising a cross-entropy loss of a classifier expressed

as a function of the EBM. It will eventually lead to the correct EBM if the classifier gets
optimal. In practice, this strategy is sensitive to the distribution of noise. Indeed, the cross-
entropy loss is more sensitive to errors on Pθ(y) in regions where the data and the noise
distributions overlap. Intuitively, in the low-density regions of the noise, the classification
is simple because Pn(y) is very small. Hence the sensitivity of Equation (4.11) to Pθ(y)

is small. In contrast, in high-density regions of both the noise and data distributions, the
discriminator is very sensitive to errors in Pθ(y).
The sensitivity of contrastive learning to the noise distribution restricts its applicability.

For instance, high-dimensional data often lives in manifolds corresponding to low-density
regions of tractable noise distributions. Thus, many methods have been proposed to
address this issue by tuning the noise distribution automatically, e.g., [Bose et al., 2018;
Ceylan and Gutmann, 2018; Gao et al., 2020].

52 deep probabilistic models

4.4.3 Score matching

Score matching [Hyvärinen and Dayan, 2005] fixes the innacuracy of contrastive learning
in low density regions of the noise distribution. This training strategy notices that the
data score function, the gradient of the log-likelihood with respect to the data, is indepen-
dent from the partition function. Thus learning a good energy function can be achieved
by minimizing the distance between the model score function −∇YEθ(Y = ·) : Rd → Rd,
and the data score function s(·) , ∇Y logP (Y = ·) : Rd → Rd. Formally this leads to
the following optimization problem

θ? = arg min
θ

∫

y∈Rd
P (Y = y)‖s(y) +∇YEθ(y)‖2dy. (4.17)

This formulation is still difficult to optimise as it would require accessing the data’s score
function, which is what we are implicitly trying to estimate by learning the energy func-
tion. However, under weak regularity conditions, we can express the objective function
in Equation (4.17) as

J(θ) =

∫

y∈Rd
P (Y = y)

d∑

i=1

[−∂∇YEθ[i]

∂yi
+

1

2
(∇YEθ[i])2

]
dy + C, (4.18)

where ∇YEθ[i] = ∂Eθ
∂yi

is the partial derivative of the energy function with respect to the
ith component of the input vector y. The constant C is independent from the parameters
θ. For neural network-based energy functions, the objective directly translates into a loss
function that depends on the diagonal of the Hessian and can be optimised via stochastic
gradient descent. We note that score matching does not perform maximum likelihood
estimation of the parameters. MLE corresponds to searching for the best models with
the KL divergence and score matching the Fisher divergence [Lyu, 2012].
Back in 2010, Vincent [2011] suggested to use score matching to learn denoising models.

Denoising models represents the conditional distribution P (Y | Ỹ) of a clean random
variable Y given a noisy version Ỹ = Y + n perturbed by some noise n (e.g. a white
Gaussian noise). The idea of stacking many denoising models lead to diffusion models
that have recently become state-of-the-art deep generative models for image synthesis
and are presented below.

4.5 diffusion models

Diffusion models encompass deep generative models that are all connected by the idea
of corrupting structured data into noise and learning a model that reverses the cor-
ruption process. We distinguish two sub-classes of diffusion models: i) Continuous-time
models [Song and Ermon, 2019; Song et al., 2020b] that formalise the diffusion and gen-
erative process as stochastic differential equations and learn the model with denoising

4.5 diffusion models 53

YT Yt Yt−1 . . . Y

N (0, I) Pθ(Yt−1|Yt) ≈ P (Y)

(a)

YT . . . Yt Yt−1 . . . Y

Q(Yt|Yt−1) P (Y)≈ N (0, I)

(b)

Figure 4.3: The description of a discrete-time diffusion with Bayesian networks, more precisely
Markov chains. (a) The reverse (generative) process samples an initial state from a
normal distribution and generates observations Y by transiting between states with
the learned conditional distributions Pθ(Yt−1|Yt). (b) The diffusion process progres-
sively corrupts observations from the dataset Y ∼ P (Y) with prescribed corruption
kernels Q(Yt|Yt−1) that eventually converge to noise.

score-matching; ii) Discrete-time models dubbed denoising diffusion probabilistic mod-
els [DDPM Sohl-Dickstein et al., 2015; Ho et al., 2020] that fix the number of corruption
steps as a hyperparameter of the model and use variational inference to derive a bound
on the model’s likelihood.
We first provide a thorough description of discrete-time models and then discuss intu-

itively continuous-time. We encourage the reader interested in continuous-time models
to look at the following papers for more information: [Song and Ermon, 2019; Song et al.,
2020b, 2021; Dockhorn et al., 2021].

4.5.1 Discrete-time diffusion

Inspired by non-equilibrium statistical physics, Sohl-Dickstein et al. [2015] originally in-
troduced DDPMs. Ho et al. [2020] demonstrated only more recently how to train these
models for image synthesis and achieved results close to the state-of-the-art on this task.
DDPMs formulate generative modelling as the reverse operation of diffusion, a physi-
cal process which progressively destroys information. These processes take the form of
Markov chains as depicted in Figure 4.3.
Formally, the reverse process is a latent variable model of the form

Pθ(Y = y) :=

∫
Pθ(Y0:T = y0:T)dy1:T ,

54 deep probabilistic models

where Y0 := Y takes value in Y , Rd and denotes the observations. The latent variables
Y1, . . . , YT have the same dimensionality as Y . The joint distribution Pθ(Y0:T) is modelled
as a first order Markov chain with Gaussian transitions, that is

Pθ(Y0:T) := Pθ(YT)

T∏

t=1

Pθ(Yt−1|Yt), (4.19)

where Pθ(YT) := N (0, I) and Pθ(Yt−1|Yt) := N (µψ(Yt, t), σ
2
t I). (4.20)

We want to estimate the parameters of the generative (reverse) process with maximum
likelihood estimation. However, we do not have access to the likelihood function Pθ(Y) ex-
plicitly but only to the joint distribution between the observation and the latent variables
Pθ(Y0:T). This is exactly the setting that motivated us to discuss and derive the ELBO

in Equation (3.15). Here, the approximate posterior Q(Y1:T |Y0) is a diffusion process that
is also a first order Markov chain with Gaussian transitions,

Q(Y1:T |Y0) :=
T∏

t=1

Q(Yt|Yt−1), (4.21)

Q(Yt|Yt−1) := N (
√

1− βtYt−1, βtI), (4.22)

where β1, . . . , βT are the variance schedule that is either fixed as training hyper-parameters
or learned. The ELBO is then given by

ELBO := EQ
[
log

Pθ(Y0:T)

Q(Y1:T |Y0)

]
≤ logPθ(Y0). (4.23)

Provided that the variance schedule βt is small and that the number of timesteps T is
large enough, the Gaussian assumptions on the generative process Pθ are reasonable. Ho
et al. [2020] take advantage of the Gaussian transitions by expressing the ELBO as

EQ
[
KL [Q(YT |Y0)‖Pθ(YT)]− logPθ(Y0|Y1) +

T∑

t=2

KL [Q(Yt−1|Yt, Y0)‖Pθ(Yt−1|Yt)]
]
.

(4.24)

The inner sum in Equation (4.24) is made of comparisons between the Gaussian gener-
ative transitions Pθ(Yt−1|Yt) and the conditional forward posterior Q(Yt−1|Yt, Y0) which
can also be expressed in closed form as Gaussians N (µ̃t(Y0, Yt), β̃tI), where µ̃t and β̃t
depends on the variance schedule. The KL can thus be calculated with closed form ex-
pressions which reduces the variance of the final expression. In addition, Ho et al. [2020]
empirically demonstrate that it is sufficient to take optimisation steps on uniformly sam-
pled terms of the sum instead of computing it completely. The final objective resembles
denoising score matching over multiple noise levels [Vincent, 2011]. These observations,
combined with additional simplifications, lead to a simplified objective

LDDPM(Y0;θ) := Et,yt|Y0=y0

[
1

2σ2t
‖µθ(Yt = yt, t)− µ̃t(Y0 = y0, Yt = yt)‖2

]
,

(4.25)

4.5 diffusion models 55

where µ̃t(y0,yt) is the mean of Q(Yt−1 = yt−1|Y0 = y0, Yt = yt), the forward diffusion
posterior conditioned on the observation y0. We refer the reader to Ho et al. [2020] for
the detailed derivation of the simplified loss function.

4.5.2 Continuous-time diffusion

Denoising score matching and DDPM rest on perturbing data at multiple noise scales.
Continuous-time diffusion generalises this idea to an infinite number of noise scales cor-
responding to formulating the forward and reverse processes as stochastic differential
equations (SDE). Song et al. [2020b] formally describe the diffusion process as the solu-
tion to an Itô SDE:

dy = f(y, t)dt+ g(t)dw, (4.26)

where w is the standard Wiener process (a.k.a., Brownian motion) [Wiener and Masani,
1957; Freedman, 2012], f(·, t) : Rd → Rd is a vector-valued function called the drift
coefficient of y(t), and g(·) : R→ R is a scalar function known as the diffusion coefficient
of y(t).
In this formulation, y(·) : R→ Rd becomes a function of time where initial states y(0)

are provided by the training samples. We design the drift and diffusion coefficients to
enforce a known noise distribution PT (e.g., PT = N (0, I)) after running the SDE from
t = 0 to t = T . We can then generate artificial samples from P0 = P (Y) by sampling an
initial state yT ∼ PT and running the reverse SDE defined by Anderson [1982] as

dy =
[
f(y, t)dt− g(t)2∇Y logPt(Y = y)

]
dt+ g(t)dw, (4.27)

where the Wiener process and time flow from t = T to t = 0. The reverse process closely
resembles stochastic Langevin dynamics [Welling and Teh, 2011] with infinitesimal steps.
The score functions ∇Y logPt(Y = y) are indexed by time t and parameterized by

a neural network sθ(·, t) : Rd → Rd that takes both the state y(t) and the time t. We
train the neural networks with score matching at all noise scales. Formally, the learning
problem is

θ? = arg min
θ

Et

[
Ey(0)Ey(t)|y(0)

[
‖sθ(y(t), t)−∇Yt logP0:t

(
y(t) | y(0)

)
‖2
]]
.

(4.28)

For adequate drift and diffusion coefficients, the diffusion kernel P0:t

(
y(t) | y(0)

)
is easy

to sample from and can be evaluated in closed-form. In this case, we can train a neural
network with stochastic gradient descent and Monte Carlo estimations of the objective
function in Equation (4.28). When the diffusion kernel cannot be evaluated directly, we
can resort to sliced score matching [Song et al., 2020a] to optimize sθ from samples of
the forward process.

56 deep probabilistic models

There exists a duality between SDEs and ordinary differential equations (ODE) that al-
lows us to transform one into the other while maintaining the same marginal distribution
over the states. The ODE corresponding to Equation (4.27) is

dy =

[
f(y, t)− 1

2
g(t)2∇Y logPt(Y = y)

]
dt. (4.29)

Provided the approximation sθ and an initial random state yT ∼ PT we can then use an
ODE solver to generate samples.
This duality is very important as it provides a direct way of evaluating the model’s like-

lihood via the instantaneous change of variables [Chen et al., 2018]. This theorem states
that the change in log probability of a continuous random variables y(t) ∼ P (y(t)) trans-
formed by an ODE dy

dt = h(y(t), t), where h is uniformly Lisphitz, follows a differential
equation

∂ logP (y(t))

∂t
= − tr(

dh

dy(t)
), (4.30)

where tr(dh
dy(t)) is the trace of the Jacobian of h. This draws a direct connection between

diffusion models and normalizing flows that constitute the next class of deep probabilistic
models we are going to discuss.

4.6 normalizing flows

A Normalizing Flow [NF, Rezende and Mohamed, 2015] is defined as a sequence of
invertible transformations ui : Rd → Rd (i = 1, ..., k) composed together to create an
expressive invertible mapping u = u1 ◦ · · · ◦ uk : Rd → Rd. This mapping can be used
to perform density estimation, using u(·;θ) : Rd → Rd to map a sample y ∈ Rd onto
a latent vector z ∈ Rd equipped with a prescribed density Pz(z) such as an isotropic
Normal. The transformation u implicitly defines a density p(x;θ) as given by the change
of variables formula,

P (y;θ) = PZ(u(y;θ))
∣∣det Ju(y;θ)

∣∣ , (4.31)

where Ju(y;θ) is the Jacobian of u(y;θ) with respect to x. The resulting model is trained
by maximising the likelihood of the data D := {yi}Ni=1.

4.6.1 Discrete normalizing flows

It is common for normalizing flows to stack the same parametric function ui (with differ-
ent parameters values) and to reverse variables ordering after each transformation. For
this reason, we will focus on presenting a popular strategy to build one of these repeated
transformations, which we further refer to as g : Rd → Rd.

4.6 normalizing flows 57

In general the step g take any form as long as it defines a bijective map. Many neural
architectures of normalizing flows can be mathematically described as

g(y) =
[
g1(y1; c

1(y)) . . . gd(yd; c
d(y))

]T
, (4.32)

where the ci are the conditioners which role is to constrain the structure of the Jaco-
bian of g into triangularizable matrices. The functions gi, called normalizers, partially
parameterized by their conditioner, must be invertible with respect to their input vari-
able yi. For such architectures, the determinant of the Jacobian reduces to the product
of the partial derivatives ∂gi

∂yi
, which is sign-constant. This implies that the determinant

of the Jacobian never cancels out and convinces us that g is bijective.
The conditioners impose an autoregressive structure or, more generally, any structure

representing a directed acyclic graph. In Chapter 6 and Chapter 8, we show why this is
true and draw a clear relationship between normalizing flows and Bayesian networks. The
normalizer gi can be any function as long as it is a monotonic function of its main input
yi. In terms of neural networks, an affine normalizer g : R × R2 → R can be expressed
as g(x;m, s) = x exp(s) + m, where m ∈ R and s ∈ R are computed by the conditioner.
There also exist methods to parameterize monotonic normalizers [Huang et al., 2018;
De Cao et al., 2020; Durkan et al., 2019; Jaini et al., 2019] with neural networks and one
contribution of this thesis is to introduce one of them called Unconstrained Monotonic
Neural Networks [UMNNs, Wehenkel and Louppe, 2019] in Chapter 7.

4.6.2 Continuous normalizing flows.

We have described normalizing flows for which k is discrete. There also exist continuous
normalizing flows that correspond to infinitesimal transformations defined by an ODE
dy
dt = h(y(t), t) as mentioned at the end of the discussion on diffusion models. Continuous
NFs were first introduced in the seminal work on neural ordinary equations by Chen et al.
[NODE, 2018]. Soon after, Grathwohl et al. [2018] proposed to use the Hutchinson trace
estimator in Equation (4.30) to reduce the computation cost of continuous NFs. As
previously mentioned, continuous NFs can be parameterised by any Lipshitz continuous
function and are thus easy to parameterise with neural networks. For a thorough review of
normalizing flow archirecture we refer the reader to Papamakarios et al. [2019a]; Kobyzev
et al. [2020-08] .

4.6.3 Discussion

Remarkably, NFs are among the rare deep probabilistic models that explicitly provide
access to the likelihood function, hence to the learned density. In contrast to other deep
probabilistic models that do not directly lead to a tractable optimisation objective, the
learning algorithm of NFs is straightforward. It is just the gradient descent of the negative

58 deep probabilistic models

YZ

Pθ(Y | Z)P (Z)

(a)

YZ

P (Y)Qψ(Z | Y)

(b)

Figure 4.4: The description of a variational auto-encoder with Bayesian networks. (a) The decod-
ing process samples the latent variables from P (Z) and generates observations Y by
sampling conditionaly from Pθ(Y | Z). (b) The encoding process takes an observa-
tion from the dataset Y ∼ P (Y) and computes the approximate posterior Qψ(Z | Y)

corresponding to the model in (a).

log-likelihood. Explicit models are also particularly interesting for parameterising the
approximate posterior in VI [Rezende and Mohamed, 2015] and have played an essential
role in many simulation-based inference algorithms as well [Papamakarios et al., 2019b;
Greenberg et al., 2019].
The tractability of the likelihood function has a price. Discrete NFs impose strong

constraints on the neural architecture used to parameterise the bijective transformations.
This often leads to poor inductive bias and reduces these models’ efficiency for some
data modalities such as images. For continuous models, the principal cost is the potential
complexity of solving the associated neural ODE and the difficulty of optimising NODE
models. In general, the most fundamental issue of NFs is to enforce a latent space that has
the same dimensionality as the data whereas it is often more reasonable to assume these
data lie on a lower-dimensional manifold. People have worked at solving this issue, e.g.,
Brehmer and Cranmer [2020] introduced M-flow that learns a manifold and a density
on it jointly; however these methods either require a prescribed manifold, or they resort
to adversarial optimization which complicates the simple training loop of classical NFs.
A simpler solution is to formulate the generative process as a stochastic mapping be-

tween low dimensional latent variables to observations instead and use NFs to model
conditional distributions. These models are called variational auto-encoders and are cov-
ered below.

4.7 variational auto-encoders

We have already discussed some generative models based on latent variables with diffu-
sion models. The main difference here is to not assume a prescribed mapping from the
observations Y to the latent Z. Instead a variational auto-encoder [VAE, Kingma and
Welling, 2013] trains jointly an encoder network that models the posterior distribution
Qψ(Z | Y) ≈ P (Z | Y) and a decoder network that parameterizes the stochastic mapping
Pθ(Y | Z) from latent variables to observations. This allows us to embed good inductive
bias in the decoder that generates observations from latent variables. A good example
is the NVAE [Vahdat and Kautz, 2020] that formulates this mapping hierarchically for

4.7 variational auto-encoders 59

images, using different latent variables to describe the high-level and low-level structure
of the image.
Formally, we want to learn a generative model of an unknown distribution P (Y) given

a dataset D , {yi}Ni=1 of N i.i.d observations yi ∼ P (Y) sampled from this unknown
distribution. The original VAE postulates a two-step generative process in which some
unobserved variables z ∈ Rh are first sampled from a prior distribution P (Z) and then ob-
servations y are generated from a conditional distribution Pθ(Y | Z = z). The generative
process can be expressed mathematically as

z ∼ P (Z) and y ∼ Pθ(Y | Z = z). (4.33)

The prior P (Z) is often an isotropic Gaussian while the likelihood Pθ(Y | Z = z)

is parameterised with a neural network. The likelihood model decodes latent variables
into observations and is thus usually referred to as the decoder in the literature. In
its original formulation, the likelihood is parameterized with a multivariate Gaussian

N
(
µθ(z),diag

(
σ2θ(z)

))
when the domain Y is continuous, and a categorical distribution

when it is discrete.
Training aims to find the parameters θ of the decoder that maximize the sum of the

marginal likelihoods of individual points, the MLE which optimises

logPθ(D) =
∑

y∈D
log

∫
Pθ(y | z)P (z)dz.

These integrals are intractable but we rely on variational inference again to approxi-
mate the MLE objective. The introduction of an encoder network that approximates the
posterior distribution Qψ(Z | Y) allows maximizing the associated evidence lower bound

ELBO(y;θ,ψ) := EQ
[
log

Pθ(y | z)P (z)

Qψ(z | y)

]
(4.34)

= logPθ(y)−KL [Qψ(Z | y)‖Pθ(Z | y)] (4.35)

≤ logPθ(x). (4.36)

The ELBO becomes tighter as the approximate posterior Qψ(z|y) gets closer to the
true posterior. Learning the generative model is finally performed by jointly optimising
the parameters θ of the decoder and ψ of the approximate posterior via stochastic gra-
dient ascent. In the original VAE, the encoder models the approximate posterior as a
conditional multivariate Gaussian distribution N (µψ(y),diag(σ2ψ(y))).
In practice, the good optimisation of VAEs depends on the ability of the encoder

Qψ(Z|Y) to approximate the posterior well at all possible observations Y . This also
implies that marginalizing out Y from the encoder, i.e., Q(Z) , 1

N

∑
yi∈DQψ(Z|Y),

should closely match the prior distribution P (Z) which is often difficult. A strategy is
to make both the posterior and prior distribution generic by parameterising them with
normalizing flows [Berg et al., 2018].

60 deep probabilistic models

4.8 discussion

As we have seen, the separation between two classes of models is sometimes blurry. Nor-
malizing flows and autoregressive models have more in common than differences. Simi-
larly, the most notable difference between a VAE and a diffusion model is in the parame-
terisation of the approximate posterior distribution. Moreover, diffusion models achieve
the same goal as NFs; they map a noise distribution to the data distribution with an in-
vertible transformation. Energy-based models are slightly more distinct in contrast. Still,
most algorithms designed for unnormalised models are also relevant for other models. For
instance, continuous diffusion models define implicitly the distribution via the gradient
of its logarithm – it is an energy-based model.
In this background, we have set aside some aspects of deep generative models because

we do not believe these are necessary to apprehend the rest of this thesis. In particu-
lar, we have avoided providing details about the neural architectures used in practice,
although this is decisive for achieving good performance with deep probabilistic mod-
els. These choices are usually motivated by experience and depend on the data type.
New architectures leading to better performance in discriminative tasks often lead to
the corresponding advances in unsupervised modelling tasks. In addition, there also exist
architectures designed for sub-classes of deep probabilistic models such as hierarchical
VAEs [Vahdat and Kautz, 2020], causal convolutions [Van Den Oord et al., 2016], etc.
Furthermore, years of research in deep probabilistic models has lead to many tricks that
can improve the performance of these models in different contexts.

4.9 challenges and opportunities

We have presented the main deep probabilistic models (DPMs). Each model offers a
different balance between simplicity, tractability and expressivity. Some models, such as
diffusion and energy-based models, define the probabilistic model implicitly and even
involve sampling algorithms to express the modelled distribution. In contrast, NFs and
autoregressive models parameterise the distribution explicitly – we have direct access to
the model’s likelihood. Sampling these models is not always computationally efficient.
Nevertheless, it is a deterministic procedure that does not depend on hyperparameters
in contrast to sampling diffusion or energy-based models. Finally, VAEs offer a nice bal-
ance between expressivity and tractability. Although the model’s likelihood is intractable,
sampling from these models is straightforward.
Chapter 3 has introduced graphical models. This approach to probabilistic modelling

is closer to classical modelling than DPMs. Indeed, the topology, often prescribed, de-
fines a set of strong assumptions on the modelled phenomenon. The learning task mostly
amounts to fitting conditional distributions. Similarly, classical modelling combines ex-
isting models that are assumed faithful to sub-components of the phenomenon. In oppo-

4.9 challenges and opportunities 61

sition, deep models mainly rely on the soft constraints induced by the neural networks’
architecture and training algorithm.
In this thesis, we reject the classical separation of somewhat distinct classes of models.

We argue that there exist meaningful connections between all probabilistic models, some-
times yet to be disovered. Ignoring these connections leads to an unnecessary profusion of
equivalent algorithms and terminologies. This profusion reduces the accessibility of prob-
abilistic modelling, yet one of the most fundamental tools of engineers and scientists. In
addition, we foresee at least two other motivations for drawing connections between dif-
ferent types of models. First, it provides a new prospect on the concerned models, which
has countless positive outcomes: it unlocks the sharing of algorithms, interpretations or
pre-trained models, to cite a few advantages. The second motivation is to simplify the
compositionality of different classes of models together, which is critical for creating mod-
els aligned with prescribed knowledge. Such informed models may generalise outside the
training distributions and require fewer data as they rely on a more substantial inductive
bias.
Aligned with this objective, we discuss and improve the expressivity of VAEs and NFs

in Part ii. In Chapter 5. We show that modelling the prior of VAEs with diffusion mod-
els is beneficial. Then, in Chapter 6, we draw connections between NFs and Bayesian
networks and prove the limitations of existing affine NFs. In Chapter 7, we introduce a
new neural architecture for modelling monotonic functions. This architecture overcomes
the expressivity issues of affine NFs. In Part iii, we explore informed probabilistic mod-
elling. We demonstrate that Bayesian networks and NFs can serve each other’s purpose
in Chapter 8. In Chapter 9, we show that combining deterministic models and VAEs
leads to hybrid models that generalise outside the training distributions under appropri-
ate assumptions. Finally, Chapter 10 concludes with a summary of our contribution and
presents our perspectives on the future of probabilistic modelling.

Part II

UN INFORMED PROBABIL I ST IC MODELL ING

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point.

Claude Shannon

5
COMBIN ING MODELS

Outline

We demonstrate the benefits of mixing distinct classes of probabilistic
models. In particular, we study the complementary between variational au-
toencoders (VAEs) and denoising diffusion probabilistic models (DDPMs).
While VAEs offer scalable amortised posterior inference and fast sampling,
they are often outperformed by competing models such as normalizing
flows (NFs) or deep-energy models. We improve VAEs by modelling the
prior distribution of the latent variables with a diffusion process. The dif-
fusion prior model improves upon Gaussian priors of classical VAEs and
is competitive with NF-based priors. This contribution shows that con-
necting different classes of models can unlock modelling capacities and
properties that are unreachable by each model class independently.

5.1 prologue

This chapter expresses the relevance of unifying the frameworks associated with distinct
(deep) probabilistic models. Indeed, building a broad and deep understanding of dif-
ferent probabilistic modelling frameworks unlocks potential model combinations. These
combinations may help reduce the weaknesses of each class of models separately while
maintaining their assets. We notice the relevance of this unification for deep probabilis-
tic models. Indeed, gradient-descent-based training framework allows jointly training all
components of a ‘super‘ model if the objective function is a differentiable function of the
model’s components. We rely on this observation to combine denoising diffusion proba-
bilistic models and variational autoencoders.
As will see in the paper, combining DDPMs and VAEs is pretty straightforward and

leads to better modelling for image synthesis. We believe that further interplay between
different probabilistic models is essential in developing tomorrow’s probabilistic modelling
toolbox. In an ideal world, combining two classes of deep probabilistic models should be
as simple as replacing a Normal distribution with a Laplace distribution in a probabilistic
program. Building this ideal world should eventually help practitioners to define models
with all the key properties required for their final application. The paper shall highlight
the relevance of this idea.

67

68 combining models

5.2 the paper: diffusion priors in variational autoencoders

5.2.1 Author contributions

Gilles Louppe and I co-authored the paper. As the leading author, I developed the connec-
tions between diffusion models and variational autoencoders, did experiments, and wrote
the article. I derived the ELBO associated with the denoising diffusion priors in VAES.
Gilles supervised me throughout this project, offered suggestions, and helped write the
paper.

5.2.2 Reading tips

The reader may skip Section 2, which presents VAEs and DDPMs already introduced in
the background chapter. The reader interested in deeply understanding the implemen-
tation of DDPMs should look at Ho et al. [2020]. The rest of the paper should flow
smoothly.

5.2.3 Minor corrections

There is a missing negative sign in Equation (20) which becomes

L(x;φ, θ, ψ) := −Eqψ
[
log

pθ(x|z)

qψ(z|x)

]
+ Eqψ [LDDPM(z0;φ)] .

Diffusion Priors In Variational Autoencoders

Antoine Wehenkel 1 Gilles Louppe 1

Abstract

Among likelihood-based approaches for deep
generative modelling, variational autoencoders
(VAEs) offer scalable amortized posterior infer-
ence and fast sampling. However, VAEs are also
more and more outperformed by competing mod-
els such as normalizing flows (NFs), deep-energy
models, or the new denoising diffusion probabilis-
tic models (DDPMs). In this preliminary work,
we improve VAEs by demonstrating how DDPMs
can be used for modelling the prior distribution
of the latent variables. The diffusion prior model
improves upon Gaussian priors of classical VAEs
and is competitive with NF-based priors. Finally,
we hypothesize that hierarchical VAEs could sim-
ilarly benefit from the enhanced capacity of diffu-
sion priors.

1. Introduction
Over the last few years, the interest of the deep learning
community for generative modelling has increased steadily.
Among the likelihood-based approaches for deep generative
modelling, variational autoencoders (Kingma & Welling,
2013, VAEs) stand as one of the most popular, although
competing approaches now demonstrate better performance.
In particular, Ho et al. (2020); Nichol & Dhariwal (2021);
Dhariwal & Nichol (2021) recently showed that denoising
diffusion probabilistic models (DDPMs) are competitive
deep generative models, obtaining samples quality simi-
lar to those of the best implicit deep generative models
such as ProgressiveGAN (Karras et al., 2017) and Style-
GAN (Karras et al., 2019). Similarly to VAEs, DDPMs
train on a variational bound and may be interpreted under
the encoding-decoding framework.

In the original formulation of VAEs, the prior and the pos-
terior distributions over the latent variables are assumed to

*Equal contribution 1University of Liège, Liège, Bel-
gium. Correspondence to: Antoine Wehenkel <an-
toine.wehenkel@uliege.be>.

Third workshop on Invertible Neural Networks, Normalizing
Flows, and Explicit Likelihood Models (ICML 2021). Copyright
2021 by the author(s).

be both Gaussian. However, these assumptions are often
incompatible and are thus limiting the performance of VAEs
for complex modelling tasks (Tomczak & Welling, 2018;
Chen et al., 2018). A natural solution to this problem is to
parameterize the prior, sometimes also the posterior, with
more expressive distributions. In this preliminary work, we
improve VAEs by demonstrating how DDPMs can be used
for modelling the prior distribution of the latent variables.
In addition to boosting DDPM with the compression proper-
ties of VAEs, combining the two models should eventually
lead to greater generative performance by enabling complex
generative modelling even with simple decoder architecture.
Finally, working in the latent space should eventually re-
duce the computational burden associated with diffusion
generative models.

2. Latent generative models
2.1. Variational autoencoder

We want to learn a generative model of an unknown dis-
tribution p(x) given a dataset X ∈ RN×d of N i.i.d ob-
servations x sampled from this unknown distribution. The
original VAE postulates a two-step generative process in
which some unobserved variables z ∈ Rh are first sam-
pled from a prior distribution p(z) and then observations x
are generated from a conditional distribution pθ(x|z). The
generative process can be expressed mathematically as

z ∼ p(z) and x ∼ pθ(x|z). (1)

The prior p(z) is chosen Gaussian while the likelihood
pθ(x|z) is modeled with a neural network. The likelihood
model decodes latent variables into observations and is thus
usually refereed as the decoder in the literature. In its orig-
inal formulation, the likelihood is parameterized with a
multivariate Gaussian N (µθ(z),diag(σ

2
θ(z))) when the ob-

servations are continuous, and a categorical distribution
when they are discrete.

Training the generative model is achieved by finding the
parameters θ of the decoder that maximize the sum of the
marginal likelihoods of individual points

pθ(X) =
∑

x∈X
log

∫
pθ(x|z)p(z)dz.

These integrals are intractable but the introduction of an

Diffusion Priors In Variational Autoencoders

encoder network that approximates the posterior distribution
qφ(z|x) allows maximizing the associated evidence lower
bound

ELBO := Eq
[
log

pθ(x|z)p(z)
qψ(z|x)

]
(2)

= log pθ(x)−KL [qψ(z|x)||pθ(z|x)] (3)
≤ log pθ(x). (4)

The ELBO becomes tighter as the approximate posterior
qψ(z|x) gets closer to the true posterior. Learning the gen-
erative model is finally performed by jointly optimizing the
parameters θ of the decoder and φ of the approximate poste-
rior via stochastic gradient ascent. In the original VAE, the
encoder models the approximate posterior as a conditional
multivariate Gaussian distribution N (µφ(x),diag(σ

2
φ(x))).

The ELBO loss presents two antagonistic goals to the en-
coder. It should be able to both encodes the data accurately
while being as close as possible to the prior distribution.
Consequently, the Gaussian assumptions made on both the
prior and the posterior distributions are often incompatible
and limit the generative performance. A possible solution
consists in learning a prior distribution that is compatible
with the learned posteriors. For example, Habibian et al.
(2019) and Chen et al. (2017) respectively showed that au-
toregressive models and normalizing flows (Rezende & Mo-
hamed, 2015, NFs) greatly improve the performance of
VAEs when used as prior distributions. In the following we
present how denoising diffusion probabilistic models can be
used to improve the performance of classical VAEs.

2.2. Denoising diffusion probabilistic models

Inspired by non-equilibrium statistical physics, Sohl-
Dickstein et al. (2015) originally introduced DDPMs while
Ho et al. (2020) demonstrated only more recently how to
train these models for image synthesis, achieving results
close to the state-of-the-art on this task. DDPMs formulate
generative modelling as the reverse operation of diffusion, a
physical process which progressively destroys information.
Formally, the reverse process is a latent variable model of
the form

pφ(x0) :=

∫
pφ(x0:T)dx1:T ,

where x0 := x denotes the observations and x1, . . . ,xT
denote latent variables of the same dimensionality as x0.
The joint distribution pφ(x0:T) is modelled as a first order
Markov chain with Gaussian transitions, that is

pφ(x0:T) := pφ(xT)

T∏

t=1

pφ(xt−1|xt), (5)

pφ(xT) := N (0, I), (6)

pφ(xt−1|xt) := N (µφ(xt, t), σ
2
t I). (7)

Similar to VAEs, the reverse Markov chain is trained on an
ELBO. However, the approximate posterior q(x1:T |x0) is
fixed to a diffusion process that is also a first order Markov
chain with Gaussian transitions,

q(x1:T |x0) :=

T∏

t=1

q(xt|xt−1), (8)

q(xt|xt−1) := N (
√

1− βtxt−1, βtI), (9)

where β1, . . . , βT are the variance schedule that is either
fixed as training hyper-parameters or learned. The ELBO
is then given by

ELBO := Eq
[
log

pφ(x0:T)

q(x1:T|x0)

]
≤ log pφ(x0). (10)

Provided that the variance schedule βt is small and that
the number of timesteps T is large enough, the Gaussian
assumptions on the generative process pφ are reasonable.
Ho et al. (2020) take advantage of the Gaussian transitions
to express the ELBO as

Eq
[
KL [q(xT |x0)||p(xT)]− log pφ(x0|x1)

+
T∑

t=2

KL [q(xt−1|xt,x0)||pφ(xt−1|xt)]
]
. (11)

The inner sum in Equation (11) is made of comparisons
between the Gaussian generative transitions pφ(xt−1|xt)
and the conditional forward posterior q(xt−1|xt,x0) which
can also be expressed in closed form as Gaussians
N (µ̃t(x0,xt), β̃tI), where β̃t are functions of the variance
schedule. The KL can thus be calculated with closed form
expressions which reduces the variance of the final expres-
sion. In addition, Ho et al. (2020) empirically demonstrate
that it is sufficient to take optimization steps on uniformly
sampled terms of the sum instead of computing it com-
pletely. The final objective closely resembles denoising
score matching over multiple noise levels (Song & Ermon,
2019). These observations combined with additional simpli-
fications leads to a simplified loss

LDDPM(x0;φ) := Et,x0,xt

[
1

2σ2
t

||µφ(xt, t)− µ̃t(x0,xt)||2
]
,

(12)

where µ̃t(x0,xt) is the mean of q(xt−1|x0,xt), the forward
diffusion posterior conditioned on the observation x0.

3. Prior modelling with denoising diffusion
We now introduce our contribution which consists in using
a DDPM for modelling the prior distribution in VAEs. We

Diffusion Priors In Variational Autoencoders

formulate the generative model as

zT ∼ N (0, I) (13)
zt−1|t ∼ pφ(zt−1|zt) ∀t ∈ [T, . . . , 1] (14)
x ∼ pθ(x|z0), (15)

where φ denotes the parameters of the reverse diffusion
model encoding the prior distribution. Equations (13)
and (14) implicitly define a prior distribution over the usual
latent variables z0 which is modelled with a reverse diffu-
sion process.

Unfortunately, we cannot train a VAE with a diffusion prior
directly on the ELBO as expressed in Equation (2) as pφ(z0)
cannot be evaluated. However, Equation (2) can be further
developed as

Eqψ [log pθ(x|z0)]− Eqψ [log q(z0|x)] + Eqψ [log pφ(z0)]
(16)

in which a lower bound on the last term can be expressed by
Equation (10). This finally leads to the following expression

Eqψ
[
log pθ(x|z0)− log q(z0|x) + Eq

[
log

pφ(z0:T)

q(z1:T|z0)

]]

(17)

≤ Eqψ [log pθ(x|z0)− log q(z0|x) + log pφ(z0)] (18)
≤ log pθ(x), (19)

which is a valid ELBO. Finally, the diffusion prior pφ is
trained jointly with the approximate posterior qψ and the
likelihood models pθ which are optimized as in a classical
VAE. This leads to the following loss function:

L(x;φ, θ, ψ) := Eqψ
[
log

pθ(x|z)
qψ(z|x)

]
+ Eqψ [LDDPM(z0;φ)] .

(20)

4. Related work
Various approaches have been proposed to improve the mod-
elling capacity and the training of VAEs. As a first example,
some state-of-the-art deep generative models based on VAEs
model the posterior with normalizing flows or autoregres-
sive models (Kingma et al., 2016; Vahdat & Kautz, 2020).
Autoregressive models are also often used as a replacement
of the original likelihood parameterization, which assumes
conditional independencies that are often unrealistic (Oord
et al., 2016). Another popular improvement made to the
original VAE is the embedding of structure in the latent
variables. In particular, hierarchical VAEs (Sønderby et al.,
2016; Kingma et al., 2016) combined with careful training
demonstrate impressive results on generative modelling for
images (Vahdat & Kautz, 2020).

Vahdat et al. (2021) concurrently proposed to use diffusion
for modelling the prior distributions of VAEs. They obtain

state-of-the-art results on image synthesis by combining
continuous diffusion models and VAEs. Not as close to our
work but related, Chen et al. (2017) proposed to learn the
prior as a solution to the mismatch between the approximate
and the true posteriors. They model the prior with an au-
toregressive flow, which also closely relates to modelling
the posterior distribution with an inverse autoregressive flow
(Kingma et al., 2016). Tomczak & Welling (2018) takes
inspiration from the aggregated posterior 1

N

∑N
i=1 qψ(z|x)

(Hoffman & Johnson, 2016; Makhzani et al., 2015) to intro-
duce the VampPrior defined as a mixture of learned pseudo-
inputs. An orthogonal line of work suggests that the mis-
match between the approximate posterior and the exact pos-
terior can be reduced by over-weighting the terms related
to the prior and to the approximate posterior in the ELBO
(Higgins et al., 2016; Chen et al., 2018).

5. Experiments
We now compare VAEs for different choices of priors, in-
cluding the original Gaussian prior, an NF prior, and the
proposed diffusion prior. All models share a same backbone
encoder-decoder architecture inspired from DCGAN (Rad-
ford et al., 2015). Optimization is performed with Adam for
250 epochs with a learning rate set to 0.0005. After each
epoch, the models are evaluated on a validation set used to
select the best one for each training setting. We compare the
models on the CIFAR10 and CelebA datasets for 3 different
latent variables dimensionality (40, 100, 200). The NF used
in our experiments is a 3-step autoregressive affine flow with
simple MLP backbones similar to the one used to model the
transition function of DDPM.

Table 1 presents the FID scores for the different models. We
first notice the large scores reached by all models on the
CIFAR10 dataset. This can be explained by the simplicity
of the models trained in our experiments. We believe these
scores could be greatly improved by using a more sophis-
ticated likelihood model such as a PixelCNN (Oord et al.,
2016). Although FID scores suggest that the Gaussian prior
outperforms the diffusion prior in terms of generative per-
formance, the visual inspection of Figure 1 shows that the
diffusion prior results in samples slightly more realistic than
those of the classical VAE. The best FID score is achieved
by the NF prior, although its samples do not seem to reflect
this superiority. In this case, we believe the FID scores
are not entirely informative about the quality of the images
synthesized by the models and should be interpreted with
a grain of salt. Although learned priors seem to improve
generative performance on CIFAR10, additional work is
needed to reach results that would justify using a diffusion
prior for this dataset.

On CelebA however, we observe in Table 1 that diffusion
priors outperform the Gaussian prior. This is in line with

Diffusion Priors In Variational Autoencoders

Table 1. FID scores for different models for prior modelling in
VAEs and for different latent size. Diffusion priors outperform
classical VAE on CelebA but are slightly worse than NFs. FID
scores do not reveal the superiority of any method on CIFAR10.

Dataset CelebA CIFAR10
Latent Size 40 100 200 40 100 200
Gaussian 154.3 149.4 139.1 176.0 126.2 123.9
NF 72.9 59.49 54.7 167.6 129.1 129.6
Diffusion 114.8 67.95 88.3 177.9 160.5 153.1

the visual inspection of Figure 2a and Figure 2c. As for
CIFAR10, the NF prior outperforms the Gaussian and dif-
fusion priors in terms of FID scores, although the visual
inspection of the corresponding samples in Figure 2b does
not reveal a much better quality of images when compared to
those resulting from the diffusion prior. We conclude from
these observations that diffusion priors offer an interesting
alternative to NFs for modelling the prior in a VAE.

6. Conclusion and future work
This preliminary work presents how denoising diffusion
probabilistic models can be used as a new class of learnable
priors for VAEs. As a notable contribution, we empirically
demonstrate that optimizing implicitly a prior on an ELBO
can be performed jointly to training the encoder and the
decoder of the VAE. In addition, our results suggest DDPM
performs on par with NFs for modelling prior distribution.

A large spectrum of future research directions could benefit
from the basic idea expressed in this preliminary work. As
an example, recent advances in diffusion models such as the
continuous formulation (Song et al., 2020) or improvement
to the training procedure of DDPM (Nichol & Dhariwal,
2021) could be implemented in the prior model. Similarly,
many improvements could be made to the architectures used
for the VAE and to the training procedure. In particular, im-
age synthesis with hierarchical VAEs which organizes the
latent variables into multiple scales images could reveal the
full potential of diffusion priors. This would indeed com-
bine the structural knowledge embed by such type of VAEs
with the impressive performance of DDPM for modelling
distributions over images. Finally, diffusion does not con-
strain the neural networks architectures and so enables the
embedding of a larger choice of inductive biases in the prior
distribution compared to autoregressive models and NFs.

References
Chen, R. T., Li, X., Grosse, R., and Duvenaud, D. Isolating

sources of disentanglement in variational autoencoders.
arXiv preprint arXiv:1802.04942, 2018.

Chen, X., Kingma, D. P., Salimans, T., Duan, Y., Dhariwal,

P., Schulman, J., Sutskever, I., and Abbeel, P. Variational
lossy autoencoder. ICLR, 2017.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on
image synthesis. arXiv preprint arXiv:2105.05233, 2021.

Habibian, A., Rozendaal, T. v., Tomczak, J. M., and Cohen,
T. S. Video compression with rate-distortion autoen-
coders. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7033–7042, 2019.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X.,
Botvinick, M., Mohamed, S., and Lerchner, A. beta-
vae: Learning basic visual concepts with a constrained
variational framework. 2016.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. arXiv preprint arXiv:2006.11239, 2020.

Hoffman, M. D. and Johnson, M. J. Elbo surgery: yet
another way to carve up the variational evidence lower
bound. In Workshop in Advances in Approximate
Bayesian Inference, NIPS, volume 1, pp. 2, 2016.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196, 2017.

Karras, T., Laine, S., and Aila, T. A style-based genera-
tor architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4401–4410, 2019.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. Improving variational
inference with inverse autoregressive flow. arXiv preprint
arXiv:1606.04934, 2016.

Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and
Frey, B. Adversarial autoencoders. arXiv preprint
arXiv:1511.05644, 2015.

Nichol, A. and Dhariwal, P. Improved denoising diffusion
probabilistic models. arXiv preprint arXiv:2102.09672,
2021.

Oord, A. v. d., Kalchbrenner, N., Vinyals, O., Espeholt,
L., Graves, A., and Kavukcuoglu, K. Conditional im-
age generation with pixelcnn decoders. arXiv preprint
arXiv:1606.05328, 2016.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Diffusion Priors In Variational Autoencoders

(a) Gaussian prior (b) NF prior (c) Diffused prior

Figure 1. Samples generated by a VAE trained on CIFAR10 for three different prior models. The diffusion prior leads to slightly better
sampling quality than the Gaussian distribution and similar to the NF prior.

(a) Gaussian prior (b) NF prior (c) Diffused prior

Figure 2. Samples generated by a VAE trained on CelebA for three different prior models. The diffusion prior leads to better sampling
quality than the Gaussian distribution and similar to the NF prior.

Diffusion Priors In Variational Autoencoders

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, pp. 1530–1538. PMLR, 2015.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K.,
and Winther, O. Ladder variational autoencoders. arXiv
preprint arXiv:1602.02282, 2016.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. In Proceedings
of the 33rd Annual Conference on Neural Information
Processing Systems, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Tomczak, J. and Welling, M. Vae with a vampprior. In
International Conference on Artificial Intelligence and
Statistics, pp. 1214–1223. PMLR, 2018.

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical vari-
ational autoencoder. arXiv preprint arXiv:2007.03898,
2020.

Vahdat, A., Kreis, K., and Kautz, J. Score-based
generative modeling in latent space. arXiv preprint
arXiv:2106.05931, 2021.

5.3 epilogue 75

5.3 epilogue

5.3.1 Diffusion in the latent space

One of the main limitations of diffusion models is their computational inefficiency both at
training and synthesis time. Indeed, diffusion models use a one-to-one function and thus
work directly in the data space. Training the largest models costs millions of euros without
accounting for the cost of architecture search and hyperparameter optimisation [alexjc].
Synthesis is not better, as it requires the successive application of the same U-Net hun-
dreds of times and can take up to a few minutes on modern hardware. Leaving the data
space for a lower-dimensional latent space alleviates this limitation but necessitates the
development of new algorithms. In addition to the paper presented in this chapter, we
now discuss three alternative strategies respectively dubbed Score-based generative mod-
eling in latent space [Vahdat et al., 2021], Diffusion-Decoding Models [Sinha et al., 2021],
and Stable diffusion [Rombach et al., 2022].
Concurrently to our work, Vahdat et al. [2021] proposed to train a score-based model,

i.e., a continuous-time diffusion model, for modelling the latent space of variational auto-
encoder. Similar to us, Vahdat et al. [2021] decompose the ELBO of the VAE into three
components,

ELBO(x;φ, ψ) = Eqψ [log pθ(x|z0)]︸ ︷︷ ︸
reconstruction term

−Eqψ [log q(z0|x)]
︸ ︷︷ ︸
encoder entropy

+Eqψ [log pφ(z0)]︸ ︷︷ ︸
cross entropy

. (5.1)

In our case, we lower-bounded the cross entropy (CE) term to get a proper ELBO.
We use this ELBO to train the encoder, the decoder, and the diffusion model jointly.
However, this approach does not directly work for continuous-time models trained via
denoising score matching at multiple noise levels. We refer the reader to Section 4.5.2 for
more details about the notations and continous diffusion models. Instead, Vahdat et al.
[2021] show that the cross entropy term is equal to

Eqψ [log pφ(z0)] = Et∼U [0,1]
[
g(t)2

2
Eq(zt,z0|x)

[
|∇zt log q(zt | z0)− log p(zt)|22

]]
+ C,

(5.2)

under mild conditions. The symbol t denotes the time; it starts from 0 with structured
data and ends in 1 with noise. We can use stochastic gradient descent to optimise this
term, the encoder entropy, and reconstruction terms jointly. In order to evaluate Equa-
tion (5.2), we first encode the sample (q(z0 | x)), draw t ∼ U [0, 1] and the corresponding
zt ∼ q(zt | z0) that follows a known Normal transition kernel N

(
µt(z0), σ

2
t I
)
. We notice

that Equation (5.2) resembles the ELBO objective used to train discrete-time models,
which is what we use to replace the CE. However, there remains a surprising difference
between the equation (12) in the paper and Equation (5.2). In our case, the inverse vari-
ance 1

σ2
t
weights each term while Equation (5.2) weights with g(t)2 which is supposed to

76 combining models

have a similar meaning to σ2t in the discrete case. Vahdat et al. [2021] suggest moving
away from this weighting to obtain better results in practice. We wonder if there is a
connection between this practical trick and the observed discrepancy between the losses
of the continuous and discrete latent variables models.
Diffusion-Decoder models [Sinha et al., 2021, D2C] is another architecture that com-

bines VAEs with discrete-time diffusion models. They combine a loss similar to the ELBO
we derive in our paper with a self-supervised loss that encourages meaningful latent rep-
resentations via data augmentation. They also conclude that replacing the CE with a
diffusion loss leads to a proper ELBO. In addition, they discuss the ability of latent dif-
fusion models to close “prior holes“ resulting from the mismatch between the aggregated
posteriors and the prior of VAEs. Finally, they also show that the representations learned
by D2C enables effective few-shot conditional generation.
Stable diffusion [Rombach et al., 2022] is arguably one of the most notable contributions

to openly accessible machine learning models over the last decades. Rombach et al. [2022]
combines an auto-encoder architecture with a discrete-time diffusion model to reduce the
computing cost associated with pure diffusion models. Large pre-trained stable diffusion
models have been publicly released and have had a significant impact. In a few weeks
only, many tools that exploit the computational efficiency and impressive synthesis results
of Stable diffusion have appeared. For example, Dream studio is a website that allows
synthesising images from text interactively.
In contrast to our work, Stable diffusion does not train the auto-encoder and the

diffusion model synchronously. Instead, they first train a vanilla auto-encoder with the
combination of a perceptual loss [Zhang et al., 2018] and a patch-based adversarial ob-
jective [Dosovitskiy and Brox, 2016; Esser et al., 2021; Yu et al., 2021]. Only then do
they train a diffusion model on the latent representations. The diffusion model should
eventually learn the distribution over the latent space and allows synthesis. However, this
would never happen in practice without additional care. First, Rombach et al. [2022] also
regularises the latent space’s entropy to avoid high-variances latent spaces that would
be hard to learn. They rely on a strong architectural inductive bias that conserves the
spatial structure of images but allows perceptual compression. In contrast, the diffusion
model completes the semantic compression.

5.3.2 Behind the scenes

Our initial motivation for combining diffusion models and VAEs was not to improve
VAEs, nor to speed up diffusion models, although these two outcomes are highly relevant
in practice. Instead, our broader objective was to enable new types of noise for training
diffusion models. As with any other component of the DDPM learning algorithm, the
noise model is part of the inductive bias. Adapting the noise to the data modality might
thus help to learn diffusion models for new modalities. We thought heat equations would
make an excellent inductive bias for image synthesis. Heat equation blurs the image

https://beta.dreamstudio.ai/

5.3 epilogue 77

through time, which amounts to first discarding perceptual information and later the
semantic content.
Our idea was to use a VAE formulation to bypass the closed-form gaussian kernel

required for obtaining a tractable training objective. We thought using distinct diffusion
speeds inside the latent variables of the VAE would eventually encourage disentanglement
and allow extracting high and low-level semantic information from images automatically.
Although we did not manage to achieve sufficiently good results to write a publication

on it, Rissanen et al. [2022] had a similar idea and achieved state-of-the-art image synthe-
sis with a diffusion model based on the heat equation. This work hints that combining
heat diffusion with VAEs to compress data into human-interpretable latent variables
representing high and low-level features might still be a valuable research direction.

5.3.3 Scientific impact

According to Google Scholar, our article has received five citations between its publication
in June 2021 and August 2022. The impact of our work is arguably marginal compared
to the publications discussed above, particularly Stable diffusion [Rombach et al., 2022].
However, we believe testing our joint learning of the VAE and diffusion latent prior might
still be beneficial. Our idea to place diffusion models for the latent variable distribution
was original at the time of its publication. We are glad to notice a scientific and practical
interest in this idea.

5.3.4 Conclusion and opportunities

Since the publication of this article, diffusion models have become very popular, owing
part of their success to the astonishing results achieved by large text-to-images models
created by OpenAI [DALL ·E 2 Ramesh et al., 2022] and Google [Imagen Saharia et al.,
2022]. Diffusion models have also percolated in audio modelling [Kong et al., 2020]. Close
to our work, Yu et al. [2022] recently proposed to use energy-based models trained with
denoising score matching to model the prior distribution of VAEs for interpretable text
modelling.
Shortly, the attractivity of diffusion models for modelling distributions over images,

and other data modalities, should stay high. However, diffusion models also have some
limitations, and many interesting questions remain. Why do diffusion models represent
high dimensional data such as images so well? Can we fasten the sampling process of
diffusion models? An answer to the former question relies upon the inductive bias of
diffusion models; however, which part exactly is an open question. Related to the latter
question, pushing further the connections between diffusion models and other probabilis-
tic models, such as normalizing flows and VAEs, might help reduce the sample synthesis’s
complexity.

78 combining models

Combining auto-encoders and other probabilistic models is not new to diffusion models.
Similarly to Stable diffusion, VQ-VAE [Razavi et al., 2019a,b] achieved state-of-the-art
image synthesis by combining a classical auto-encoder with an autoregressive model to
encode the distribution of the latent variables. Another popular strategy discussed in
our paper is to use flexible density approximators such as normalizing flows. Indeed,
both flows and autoregressive models provide access to the corresponding density and do
not require re-formulating the ELBO. However, the inductive bias of normalizing flows
limits their effectiveness for spatially structured data, which is part of the success of
Stable diffusion. Encoding spatial structure with normalizing flows is possible [Kingma
and Dhariwal, 2018]. However, it is not straightforward because of the strict invertibility
requirement. In the next chapter, we show that some normalizing flows have a limited
capacity to model distributions.
Retrospectively, the complementarity of auto-encoders and (quasi-)invertible proba-

bilistic models is not surprising. On the one hand, auto-encoders naturally embed the in-
ductive bias that data lie in a low-dimensional manifold which maps to a low-dimensional
Euclidean space. However, finding a continuous mapping from the data space to this man-
ifold is difficult. The classical Normal prior used in VAEs enforces an orthogonal latent
space which is often hard to identify robustly. On the other hand, (quasi-)invertible
models build a dimensionality-preserving invertible mapping from an unstructured noise
distribution to the data space. While this is a bad inductive bias when the data lie in a
lower-dimensional space, this constraint is beneficial when the data lives in its own space.

Technological progress has merely provided us with more efficient means for going back-
wards.

Aldous Huxley

6
UNDERSTANDING MODELS

Outline

We show that drawing connections between different classes of models can
help us better understand existing classes of models. In particular, we use
connections between normalizing flows and Bayesian networks to prove
three essential properties of affine normalizing flows. First, we show that
stacking multiple transformations in a normalizing flow relaxes indepen-
dence assumptions and entangles the model distribution. Second, we show
that a fundamental leap of capacity emerges when the depth of affine flows
exceeds three transformation layers. Third, we prove the non-universality
of the affine normalizing flow, regardless of its depth.

6.1 prologue

This chapter further highlights the relevance of connecting distinct classes of probabilis-
tic models. These connections provide new viewpoints that can help us focus on some
models’ components and abstract others less relevant to what we want to understand. We
derive properties of affine normalizing flows relevant to practitioners. We show that stack-
ing more than three steps of normalizing flows is poorly motivated. Adding more steps
unnecessarily slows down the inversion of the flow for no gain in expressivity. We also
reveal one failure mode of affine normalizing flows, which implies they are not universal
density approximators.
This chapter shall convince the reader that gaining a theoretical understanding of

probabilistic models is key to using these models appropriately. For this purpose, taking a
new perspective by drawing connections between different types of models, here graphical
and deep probabilistic models, is a worthy effort. We can then reason intuitively on the
class of models with simple analogies.

81

82 understanding models

6.2 the paper: you say normalizing flows i see bayesian networks

6.2.1 Author contributions

The paper is co-authored by Gilles Louppe and I. As the leading author, I developed the
connections between normalizing flows and Bayesian networks, conducted experiments,
and wrote the paper. Gilles helped me throughout this project, offered suggestions and
actively participated in writing the paper.

6.2.2 Reading tips

The reader may skip section 2 which presents normalizing flows and Bayesian networks
already introduced in Part i. We encourage the reader to first focus on understanding the
relationship between Figure 1 and coupling layers presented in section 3.2. The reader
can then focus on understanding section 3.3 which provides the ground for the rest of
the paper.

You say Normalizing Flows I see Bayesian Networks

Antoine Wehenkel 1 Gilles Louppe 1

Abstract
Normalizing flows have emerged as an impor-
tant family of deep neural networks for modelling
complex probability distributions. In this note, we
revisit their coupling and autoregressive transfor-
mation layers as probabilistic graphical models
and show that they reduce to Bayesian networks
with a pre-defined topology and a learnable den-
sity at each node. From this new perspective, we
provide three results. First, we show that stacking
multiple transformations in a normalizing flow
relaxes independence assumptions and entangles
the model distribution. Second, we show that a
fundamental leap of capacity emerges when the
depth of affine flows exceeds 3 transformation lay-
ers. Third, we prove the non-universality of the
affine normalizing flow, regardless of its depth.

1. Introduction
Normalizing flows [NF, 5] have gained popularity in the
recent years because of their unique ability to model com-
plex data distributions while allowing both for sampling
and exact density computation. This family of deep neural
networks combines a base distribution with a series of in-
vertible transformations while keeping track of the change
of density that is caused by each transformation.

Probabilistic graphical models (PGMs) are well-established
mathematical tools that combine graph and probability the-
ory to ease the manipulation of joint distributions. They
are commonly used to visualize and reason about the set
of independencies in probabilistic models. Among PGMs,
Bayesian networks [BN, 4] offer a nice balance between
readability and modeling capacity. Reading independencies
stated by a BN is simple and can be performed graphically
with the d-separation algorithm [2].

In this note, we revisit NFs as Bayesian networks. We
first briefly review the mathematical grounds of these two
worlds. Then, for the first time in the literature, we show that
the modeling assumptions behind coupling and autoregres-

1University of Liège. Correspondence to: Antoine Wehenkel
<antoine.wehenkel@uliege.be>.

sive transformations can be perfectly expressed by distinct
classes of BNs. From this insight, we show that stacking
multiple transformation layers relaxes independencies and
entangles the model distribution. Then, we show that a
fundamental change of regime emerges when the NF archi-
tecture includes 3 transformation steps or more. Finally, we
prove the non-universality of affine normalizing flows.

2. Background
2.1. Normalizing flows

A normalizing flow is defined as a sequence of invertible
transformation steps gk : Rd → Rd (k = 1, ...,K) that
are composed together to create an expressive invertible
mapping g = g1 ◦ · · · ◦gK : Rd → Rd. This mapping can be
used to perform density estimation, using g(·; θ) : Rd → Rd

to map a sample x ∈ Rd to a latent vector z ∈ Rd equipped
with a density pz(z). The transformation g implicitly defines
a density p(x; θ) as given by the change of variables formula,

p(x; θ) = pz(g(x; θ))
∣∣∣det Jg(x;θ)

∣∣∣ ,

where Jg(x;θ) is the Jacobian of g(x; θ) with respect to x.
The resulting model is trained by maximizing the likelihood
of the data {x1, ...,xN}. NFs can also be used for data
generation tasks while keeping track of the density of the
generated samples such as to improve the latent distribution
in variational auto-encoders [5]. In the rest of this paper, we
will not distinguish between g and gk when the discussion
will be focused on only one of these steps gk.

In general, steps g can take any form as long as they define a
bijective map. Here, we focus on a sub-class of normalizing
flows for which these steps can be mathematically described
as

g(x) =
[
g1(x1; c

1(x)) . . . gd(xd; c
d(x))

]
,

where the ci are denoted as the conditioners and constrain
the structure of the Jacobian of g. The functions gi, partially
parameterized by their conditioner, must be invertible with
respect to their input variable xi. These are usually defined
as affine or strictly monotonic functions, with the latter
being the most general class of invertible scalar continuous
functions. In this note, we mainly discuss affine normalizers

You say Normalizing Flows I see Bayesian Networks

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(b)

x1 x2

x3 x4

z1 z2

z3 z4

(c)

Figure 1. Bayesian networks for single-step normalizing flows on
a vector x = [x1, x2, x3, x4]

T . (a) BN for an autoregressive
conditioner. (b) BN for a coupling conditioner. (c) Pseudo BN for
a coupling conditioner, with the latent variables shown explicitly.
Double circles stand for deterministic functions of the parents and
non-directed edges stand for bijective relationships.

u1 u2

u3 u4

z1 z2

z3 z4

x1 x2

x3 x4

Figure 2. A Bayesian network equivalent to a 2-step normalizing
flow based on coupling layers. Independence statements are re-
laxed by the second step.

that can be expressed as g(x;m, s) = x exp(s) +m where
m ∈ R and s ∈ R are computed by the conditioner.

2.2. Bayesian networks

Bayesian networks allow for a compact and natural represen-
tation of probability distributions by exploiting conditional
independence. More precisely, a BN is a directed acyclic
graph (DAG) which structure encodes for the conditional
independencies through the concept of d-separation [2].
Equivalently, its skeleton supports an efficient factorization
of the joint distribution.

A BN is able to model a distribution p if and only if it is an
I-map with respect to p. That is, iff the set of independencies
stated by the BN structure is a subset of the independencies
that holds for p. Equivalently, a BN is a valid representation
of a random vector x iff its density px(x) can be factorized
by the BN structure as

px(x) =
d∏

i=1

p(xi|Pi), (1)

where Pi = {j : Ai,j = 1} denotes the set of parents of the
vertex i and A ∈ {0, 1}d×d is the adjacency matrix of the
BN. As an example, Fig. 1a is a valid BN for any distribution
over x because it does not state any independence, leading
to a factorization that results in the chain rule.

3. Normalizing flows as Bayesian networks
3.1. Autoregressive conditioners

Autoregressive conditioners can be expressed as

ci(x) = hi
([
x1 . . . xi−1

]T)
,

where hi : Ri−1 → Rl are functions of the first i− 1 compo-
nents of x and whose output size depends on architectural
choices. These conditioners constrain the Jacobian of g

to be lower triangular, making the computation of its de-
terminant O(d). The multivariate density p(x; θ) induced
by g(x; θ) and pz(z) can be expressed as a product of d
univariate conditional densities,

p(x; θ) = p(x1; θ)
d∏

i=2

p(xi|x1:i−1; θ). (2)

When pz(z) is a factored distribution pz(z) =
∏d
i=1 p(zi),

we identify that each component zi coupled with the
corresponding function gi encodes for the conditional
p(xi|x1:i−1; θ). An explicit connection between BNs and
autoregressive conditioners can be made if we define Pi =
{x1, . . . , xi−1} and compare (2) with (1). Therefore, and
as illustrated in Fig. 1a, autoregressive conditioners can be
seen as a way to model the conditional factors of a BN that
does not state any independence.

3.2. Coupling conditioners

Coupling conditioners [1] are another popular type of condi-
tioners used in normalizing flows. The conditioners ci made
from coupling layers are defined as

ci(x) =

{
hi if i < k

hi(x<k) if i ≥ k

where the hi symbol define constant values. As for autore-
gressive conditioners, the Jacobian of g made of coupling
layers is lower triangular. Assuming a factored latent distri-
bution, the density associated with these conditioners can
be written as follows:

p(x; θ) =

k−1∏

i=1

p(xi)
d∏

i=k

p(xi|x<k),

where p(xi) = p(gi(xi;h
i))
∂gi(xi;h

i)

∂xi

and p(xi|x<k) = p(gi(xi;h
i(x<k))

∂gi(xi;h
i(x<k))

∂xi
.

The factors define valid 1D conditional probability distribu-
tions because they can be seen as 1D changes of variables
between zi and xi. This factorization can be graphically

You say Normalizing Flows I see Bayesian Networks

expressed by a BN as shown in Fig. 1b. In addition, we
can see Fig. 1b as the marginal BN of Fig. 1c which fully
describes the stochastic process modeled by a NF that is
made of a single transformation step and a coupling condi-
tioner. In contrast to autoregressive conditioners, coupling
layers are not by themselves universal density approxima-
tors, even when associated with very expressive normalizers
gi. Indeed, d-separation reveals independencies stated by
this class of BN, such as the conditional independence be-
tween each pair in x≥k knowing x<k. These independence
statements do not hold in general.

3.3. Stacking transformation steps

In practice, the invertible transformations discussed above
are often stacked together in order to increase the represen-
tation capacity of the flow, with the popular good practice of
permuting the vector components between two transforma-
tion steps. The structural benefits of this stacking strategy
can be explained from the perspective of the underlying BN.

First, a BN that explicitly includes latent variables is faithful
as long as the sub-graph made only of those latent nodes
is an I-map with respect to their distribution. Normalizing
flows composed of multiple transformation layers can there-
fore be viewed as single transformation flows whose latent
distribution is itself recursively modeled by a normalizing
flow. As an example, Fig. 2 illustrates a NF made of two
transformation steps with coupling conditioners. It can be
observed that the latent vector u is itself a normalizing flow
whose distribution can be factored out by a class of BN.

Second, from the BN associated to a NF, we observe that
additional layers relax the independence assumptions de-
fined by its conditioners. The distribution modeled by the
flow gets more entangled at each additional layer. For ex-
ample, Fig. 2 shows that for coupling layers, the additional
steps relax the strong conditional independencies between
x1 and x2 of the single transformation NF of Fig. 1c. Indeed,
we can observe from the figure that x1 and x2 have com-
mon ancestors (z3 and z4) whereas they are clearly assumed
independent in Fig. 1b.

In general, we note that edges between two nodes in a BN
do not model dependence, only the absence of edges does
model independence. However, because some of the rela-
tionship between nodes are bijective, this implies that these
nodes are strictly dependent on each other. We represent
these relationships with undirected edges in the BN, as it
can be seen in Fig. 2.

4. Affine normalizing flows unlock their
capacity with 3 transformation steps

We now show how some of the limitations of affine nor-
malizers can be relaxed by stacking multiple transformation

z1

z2

u11

u12

u21

u22

x1

x2

Figure 3. The Bayesian network of a three-steps normalizing flow
on vector x = [x1, x2]

T ∈ R4. It can be observed that the distribu-
tion of the intermediate latent variables, and at the end of the vector
x, becomes more entangled at each additional transformation step.
Considering the undirected edges as affine relationships, we see
that while u1

1 and u1
2 are affine transformations of the latent z, the

vector x cannot be expressed as a linear function of the latent z.

steps. We also discuss why some limitations cannot be
relaxed even with a large number of transformation steps.
We intentionally put aside monotonic normalizers because
they have already been proven to lead to universal density
approximators when the conditioner is autoregressive [3].
We focus our discussion on a multivariate normal with an
identity covariance matrix as base distribution pz(z).

We first observe from Fig. 1 that in a NF with a single
transformation step at least one component of x is a function
of only one latent variable. If the normalizer is affine and
the base distribution is normal, then this necessarily implies
that the marginal distribution of this component is normal
as well, which will very likely not lead to a good fit. We
easily see that adding steps relaxes this constraint. A more
interesting question to ask is what exactly the modeling
capacity gain for each additional step of affine normalizer is.
Shall we add steps to increase capacity or shall we increase
the capacity of each step instead? We first discuss a simple
2-dimensional case, which has the advantage of unifying
the discussion for autoregressive and coupling conditioners,
and then extend it to a more general setting.

Affine NFs made of a single transformation step induce
strong constraints on the form of the density. In particular,
these models implicitly assume that the data distribution can
be factorized as a product of conditional normal distribu-
tions. These assumptions are rexaled when accumulating
steps in the NF. As an example, Fig. 3 shows the equivalent
BN of a 2D NF composed of 3 steps. This flow is mathe-
matically described with the following set of equations:

u11 := z1 u12 := exp(s12(z1))z2 +m1
2(z1)

u22 := u12 u21 := exp(s21

(
u12

)
)z1 +m2

1

(
u12

)

x1 := u21 x2 := exp(s32

(
u21

)
)u22 +m3

2

(
u21

)

From these equations, we see that after one step the latent
variables u11 and u12 are respectively normal and condition-
ally normal. This is relaxed with the second step, where the
latent variable u21 is a non-linear function of two random
variables distributed normally (by assumption on the dis-

You say Normalizing Flows I see Bayesian Networks

1 step 2 steps 3 steps 4 steps 5 steps Universal

Figure 4. Evolution of an affine normalizing flow’s capacity as the
number of steps increases. For comparison, the density learned by
a universal density approximator is shown on the last column.

zI u1I uiI uK−1
I

xI

Figure 5. The equivalent BN of a component with a unique latent
variable as ancestor.

tribution of z1 and z2). However, u22 is a stochastic affine
transformation of a normal random variable. In addition, we
observe that the expression of u21 is strictly more expressive
than the expression of u22. Finally, x1 and x2 are non-linear
functions of both latent variables z1 and z2. Assuming that
the functions sij and mij are universal approximators, we ar-
gue that the stochastic process that generates x1 and the one
that generates x2 are as expressive as each other. Indeed, by
making the functions arbitrarily complex the transformation
for x1 could be made arbitrarily close to the transformations
for x2 and vice versa. This is true because both transforma-
tions can be seen as an affine transformation of a normal
random variables whose scaling and offset factors are non-
linear arbitrarily expressive transformations of all the latent
variables. Because of this equilibrium between the two ex-
pressions, additional steps do not improve the modeling
capacity of the flow. The same observations can be made
empirically as illustrated in Fig. 3 for 2-dimensional toy
problems. A clear leap of capacity occurs from 2-step to
3-step NFs, while having 4 steps or more does not result in
any noticeable improvement when sij and mij already have
enough capacity.

For d > 2, autoregressive and coupling conditioners do not
correspond to the same set of equations or BN. However, if
the order of the vector is reversed between two transforma-
tion steps, the discussion generalizes to any value of d for
both conditioners. Indeed, in both cases each component of
the intermediate latent vectors can be seen as having a set
of conditioning variables and a set of independent variables.
At each successive step the indices of the non-conditioning
variables are exchanged with the conditioning ones and thus
any output vector’s component can be expressed either as a
component of the vector form of x1 or of x2.

5. Affine normalizing flows are not universal
density approximators

We argue that affine normalizers do not lead to universal den-
sity approximators in general, even for an infinite number
of steps. In the following, we assume again that the latent
variables are distributed according to a normal distribution
with a unit covariance matrix.

To prove the non-universality of affine normalizing flows,
one only needs to provide a counter-example. Let us con-
sider the simple setup in which one component xI of the
random vector x is independent from all the other compo-
nents. Let us also assume that xI is distributed under a
non-normal distribution. We can then consider two cases.
First, xI has only one component of the latent vector z as an
ancestor. This implies that the equivalent BN would be as in
Fig. 5, hence that xI is a linear function of this ancestor and
is therefore normally distributed. Else, xI has n components
of the latent vector as ancestors. However, this second case
would imply that at least one undirected edge is removed
from the original BN considered in Section 3.3. This cannot
happen since it would deadly hurt the bijectivity of the flow.

Besides proving the non-universality of affine NFs, this dis-
cussion provides the important insight that when affine nor-
malizers must transform non-linearly some latent variables
they introduce dependence in the model of the distribution.
In some sense, this means that the additional disorder re-
quired to model this non-normal component is performed at
the cost of some loss in entropy caused by mutual informa-
tion between the random vector components.

6. Summary
In this preliminary work, we have revisited normalizing
flows from the perspective of Bayesian networks. We have
shown that stacking multiple transformations in a normaliz-
ing flow relaxes independence assumptions and entangles
the model distribution. Then, we have shown that affine
normalizing flows benefit from having at least 3 transforma-
tion layers. Finally, we demonstrated that they remain non-
universal density approximators regardless of their depths.

We hope these results will give practitioners more intuition
in the design of normalizing flows. We also believe that this
work may lead to further research. First, unifying Bayesian
networks and normalizing flows could be pushed one step
further with conditioners that are specifically designed to
model Bayesian networks. Second, the study could be ex-
tended for other type of normalizing flows such as non-
autoregressive monotonic flows. Finally, we believe this
study may spark research at the intersection of structural
equation modeling, causal networks and normalizing flows.

You say Normalizing Flows I see Bayesian Networks

Acknowledgments

The authors would like to thank Matthia Sabatelli, Jo-
hann Brehmer and Louis Wehenkel for proofreading the
manuscript. Antoine Wehenkel is a research fellow of the
F.R.S.-FNRS (Belgium) and acknowledges its financial sup-
port. Gilles Louppe is recipient of the ULiège - NRB Chair
on Big data and is thankful for the support of NRB.

References
[1] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density

estimation using real nvp. In International Conference
in Learning Representations, 2017.

[2] D. Geiger, T. Verma, and J. Pearl. d-separation: From
theorems to algorithms. In Machine Intelligence and
Pattern Recognition, volume 10, pages 139–148. Else-
vier, 1990.

[3] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville.
Neural autoregressive flows. In International Confer-
ence on Machine Learning, pages 2083–2092, 2018.

[4] J. Pearl. Bayesian networks. 2011.

[5] D. Rezende and S. Mohamed. Variational inference
with normalizing flows. In International Conference on
Machine Learning, pages 1530–1538, 2015.

88 understanding models

6.3 epilogue

6.3.1 Scientific impact

After the publication of this short article, the idea of combining NFs and BNs has led to
Graphical Normalizing Flows presented in Chapter 8. At the same workshop, Khemakhem
et al. [2020] presented connections between autoregressive NFs and causal networks, a
sub-class of BNs featured with causal interpretation. Subsequent work has also focused
on combining probabilistic graphical models with normalizing flows such as Mouton and
Kroon [2022a,b].
We regret that our work has not gained more attention from practitioners who use affine

normalizing flows. As of August 2022, this article has received 8 citations according to
Google Scholar since its publication in July 2019. It is unfortunately still widespread to
stack tens of NF steps (e.g., [Dax et al.]). This inconsistent usage still happens, although
other work reached the same conclusion regarding the number of steps in affine NFs.
In particular, Koehler et al. [2021] shows that three steps of affine coupling flows are
sufficient to express any distribution on Rd when d is even.
On the one hand, Koehler et al. [2021]’s result aligns with ours; it confirms that stacking

more than three steps does not increase the expressivity of an NF. On the other hand,
it also contradicts our statement about the non-universality of affine flows. Similarly,
Huang et al. [2020] showed that normalizing flows padded with zeros are universal density
approximators. However, these networks are not trainable anymore via direct MLE and
may issue numerical instabilities.
We explain the mismatch between our result and Koehler et al. [2021] by observing that,

similarly to Huang et al. [2020], Koehler et al. [2021] allows degenerate flows. These flows
exhibit exploding or vanishing Jacobians, which corresponds to non-invertibility and was
implicitly discarded in our discussion. In addition, our definition of universality is different
from theirs. In our case, universality occurs when the model class contains all possible
continuous distributions. In contrast, Koehler et al. [2021] defines universality as the
ability to approach any distribution as close as wanted in Wasserstein distance. Our study
highlights the numerical instabilities of modelling independent multi-modal distributions
with coupling layers. This issue is related to the problem pointed out by Behrmann
et al. [2021], which shows that exploding Jacobians cause numerical instabilities with the
training and sampling of NFs and can reduce their effectiveness.

6.3.2 Conclusion and opportunities

It is now clear that stacking more than three steps does not increase the expressivity
of the class of models. However, we must acknowledge that our study hides the posi-
tive impacts additional steps might have on training the flow in practice. Indeed the
log-likelihood of a flow directly uses the Jacobian of each step; this may act as some

6.3 epilogue 89

skip connection in the gradient flow and potentially overcome numerical instabilities at
training time. Understanding this aspect of normalizing flows should help practitioners
efficiently parameterise these probabilistic models.
At a higher level, this chapter has shown in what sense drawing connections between

distinct model classes may provide insights for a better understanding of models. Building
such understanding is relevant for the real-world application of deep probabilistic mod-
elling because it helps practitioners correctly use the model’s key features. This chapter
also highlights the limitations of affine transformations. This limitation motivates the
next chapter, which introduces more expressive transformations.

All generalizations, with the possible exception of this one, are false.

Kurt Gödel

7
IMPROVING MODELS

Outline

In this chapter, we improve the expressivity of deep probabilistic mod-
els; we introduce unconstrained monotonic neural networks, a new neural
parameterisation of monotonic functions. Architectures that ensure mono-
tonicity typically enforce constraints on weights and activation functions,
limiting the expressiveness of the resulting transformations. In contrast,
unconstrained monotonic neural networks lean on the insight that mono-
tonic functions have sign-constant derivatives. Hence, any free-form neural
network with a positive output satisfies this simple condition. We define a
new class of density approximators by combining these networks within au-
toregressive flows. This new class is a universal approximator of continuous
distributions. We demonstrate the effectiveness of this new transformation
on density estimation experiments.

7.1 prologue

Finding an appropriate parameterisation of deep probabilistic models is essential in prac-
tice. As for any machine learning model, we aim to find a flexible parameterisation and
satisfy prescribed constraints. These constraints may take many forms. For instance, hier-
archical layers structure the transformation into discrete processing steps. Convolutional
neural networks respect time or space equivariance, which are appropriate constraints
for structured signals. Autoregressive layers causally process the input and lead to a
tractable likelihood. Thus, an essential part of research in DPMs is devoted to finding
new differentiable layers that match the requirements of certain DPMs.
One particular class of models that forces us to invent specific neural parameterisations

are normalizing flows. These models require bijective transformations, which are not
guaranteed with free-form neural networks. A common solution is to combine scalar
invertible transformations with a constrained structure of the Jacobian. For instance,
autoregressive or coupling layers enforce a triangular Jacobian. In addition, Rezende and
Mohamed [2015], and shortly after Kingma et al. [2016]; Dinh et al. [2017], use sign-
constant affine layers to parameterise invertible scalar transformations. The previous
chapter has highlighted the limitations of these transformations. Their inability to split
the density of a unimodal base distribution into multiple modes. This limitation lies in

93

94 improving models

the lack of expressivity of affine transform that only plays with the first two modes of
the base distribution.
This chapter introduces a new parameterisation of monotonic transformations with

neural networks. The term monotonic is a synonym for continuously bijective scalar
functions. Thus, monotonic functions are appealing parameterisations for normalizing
flows. We observe that having a constant-sign first-order derivative enforces a monotonic
behaviour in any continuous function. We propose to parameterise this first-order deriva-
tive rather than the monotonic function itself. This parameterisation allows us to use any
neural network as long as its output is signed-constant, which we induce with an appro-
priate output activation function. We discuss the consequences of our new architecture
in detail and compare it to alternative parameterisations in the paper and Section 7.3.

7.2 the paper: unconstrained monotonic neural networks

7.2.1 Author contributions

Gilles Louppe and I co-authored the paper. The idea of enforcing monotonicity via sign-
constant first-order derivative came out during a discussion with Gilles. It is attributable
to him. I had the original ideas of implicit differentiation via the Leibniz rule and the
use of binary search for inverting the transformation. As the leading author, I wrote the
code for the Clenshaw-Curtis quadrature and its implicit differentiation, together with
the code for the autoregressive normalizing flows and corresponding experiments. Gilles
gave substantial help writing the paper.

7.2.2 Reading tips

The reader can skip section 3.1 and 3.2, which describe autoregressive normalizing flows
and are very similar to the corresponding section in the background. The rest of the
paper flows by itself.

Unconstrained Monotonic Neural Networks

Antoine Wehenkel
University of Liège

Gilles Louppe
University of Liège

Abstract

Monotonic neural networks have recently been proposed as a way to define in-
vertible transformations. These transformations can be combined into powerful
autoregressive flows that have been shown to be universal approximators of con-
tinuous probability distributions. Architectures that ensure monotonicity typically
enforce constraints on weights and activation functions, which enables invertibil-
ity but leads to a cap on the expressiveness of the resulting transformations. In
this work, we propose the Unconstrained Monotonic Neural Network (UMNN)
architecture based on the insight that a function is monotonic as long as its deriva-
tive is strictly positive. In particular, this latter condition can be enforced with a
free-form neural network whose only constraint is the positiveness of its output.
We evaluate our new invertible building block within a new autoregressive flow
(UMNN-MAF) and demonstrate its effectiveness on density estimation experi-
ments. We also illustrate the ability of UMNNs to improve variational inference.

1 Introduction

Monotonic neural networks have been known as powerful tools to build monotone models of a
response variable with respect to individual explanatory variables [Archer and Wang, 1993, Sill,
1998, Daniels and Velikova, 2010, Gupta et al., 2016, You et al., 2017]. Recently, strictly mono-
tonic neural networks have also been proposed as a way to define invertible transformations. These
transformations can be combined into effective autoregressive flows that can be shown to be univer-
sal approximators of continuous probability distributions. Examples include Neural Autoregressive
Flows [NAF, Huang et al., 2018] and Block Neural Autoregressive Flows [B-NAF, De Cao et al.,
2019]. Architectures that ensure monotonicity typically enforce constraints on weight and activa-
tion functions, which enables invertibility but leads to a cap on the expressiveness of the resulting
transformations. For neural autoregressive flows, this does not impede universal approximation but
typically requires either complex conditioners or a composition of multiple flows.

Nevertheless, autoregressive flows defined as stacks of reversible transformations have proven
to be quite efficient for density estimation of empirical distributions [Papamakarios et al., 2019,
2017, Huang et al., 2018], as well as to improve posterior modeling in Variational Auto-Encoders
(VAE) [Germain et al., 2015, Kingma et al., 2016, Huang et al., 2018]. Practical successes of these
models include speech synthesis [van den Oord et al., 2016, Oord et al., 2018], likelihood-free infer-
ence [Papamakarios et al., 2019], probabilistic programming [Tran et al., 2017] and image genera-
tion [Kingma and Dhariwal, 2018]. While stacking multiple reversible transformations improves the
capacity of the full transformation to represent complex probability distributions, it remains unclear
which class of reversible transformations should be used.

In this work, we propose a class of reversible transformations based on a new Unconstrained Mono-
tonic Neural Network (UMNN) architecture. We base our contribution on the insight that a function
is monotonic as long as its derivative is strictly positive. This latter condition can be enforced with
a free-form neural network whose only constraint is for its output to remain strictly positive.

We summarize our contributions as follows:

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

• We introduce the Unconstrained Monotonic Neural Network (UMNN) architecture, a new
reversible scalar transformation defined via a free-form neural network.

• We combine UMNN transformations into an autoregressive flow (UMNN-MAF) and we
demonstrate competitive or state-of-the-art results on benchmarks for normalizing flows.

• We empirically illustrate the scalability of our approach by applying UMNN on high di-
mensional density estimation problems.

2 Unconstrained monotonic neural networks

Our primary contribution consists in a neural network architecture that enables learning arbitrary
monotonic functions. More specifically, we want to learn a strictly monotonic scalar function
F (x;ψ) : R → R without imposing strong constraints on the expressiveness of the hypothesis
class. In UMNNs, we achieve this by only imposing the derivative f(x;ψ) = ∂F (x;ψ)

∂x to remain of
constant sign or, without loss of generality, to be strictly positive. As a result, we can parameterize
the bijective mapping F (x;ψ) via its strictly positive derivative f(x;ψ) as

F (x;ψ) =

∫ x

0

f(t;ψ) dt +F (0;ψ)︸ ︷︷ ︸
β

, (1)

where f(t;ψ) : R → R+ is a strictly positive parametric function and β ∈ R is a scalar. We make
f arbitrarily complex using an unconstrained neural network whose output is forced to be strictly
positive through an ELU activation unit increased by 1. ψ denotes the parameters of this neural
network.

Forward integration The forward evaluation of F (x;ψ) requires solving the integral in Equa-
tion (1). While this might appear daunting, such integrals can often be efficiently approximated nu-
merically using Clenshaw-Curtis quadrature. The better known trapezoidal rule, which corresponds
to the two-point Newton-Cotes quadrature rule, has an exponential convergence when the integrand
is periodic and the range of integration corresponds to its period. Clenshaw-Curtis quadrature takes
advantage of this property by using a change of variables followed by a cosine transform. This
extends the exponential convergence of the trapezoidal rule for periodic functions to any Lipschitz
continuous function. As a result, the number of evaluation points required to reach convergence
grows with the Lipschitz constant of the function.

Backward integration Training the integrand neural network f requires evaluating the gradient of
F with respect to its parameters. While this gradient could be obtained by backpropagating directly
through the integral solver, this would also result in a memory footprint that grows linearly with the
number of integration steps. Instead, the derivative of an integral with respect to a parameter ω can
be expressed with the Leibniz integral rule:

d

dω

(∫ b(ω)

a(ω)

f(t;ω) dt

)
= f(b(ω);ω)

d

dω
b(ω)− f(a(ω);ω) d

dω
a(ω) +

∫ b(ω)

a(ω)

∂

∂ω
f(t;ω) dt .

(2)

Applying Equation (2) to evaluate the derivative of Equation (1) with respect to the parameters ψ,
we find

∇ψF (x;ψ) = f(x;ψ)∇ψ (x)− f(0;ψ)∇ψ (0) +

∫ x

0

∇ψf(t;ψ) dt +∇ψβ

=

∫ x

0

∇ψf(t;ψ) dt +∇ψβ. (3)

When using a UMNN block in a neural architecture, it is also important to be able to compute its
derivative with respect to its input x. In this case, applying Equation (2) leads to

d

dx
F (x;ψ) = f(x;ψ). (4)

2

Equations (3) and (4) make the memory footprint for the backward pass independent from the num-
ber of integration steps, and therefore also from the desired accuracy. Indeed, instead of computing
the gradient of the integral (which requires keeping track of all the integration steps), we integrate the
gradient (which is memory efficient, as this corresponds to summing gradients at different evaluation
points). We provide the pseudo-code of the forward and backward passes using Clenshaw-Curtis
quadrature in Appendix B.

Numerical inversion In UMMNs, the modeled monotonic function F is arbitrary. As a result,
computing its inverse cannot be done analytically. However, since F is strictly monotonic, it admits
a unique inverse x for any point y = F (x;ψ) in its image, therefore inversion can be computed
efficiently with common root-finding algorithms. In our experiments, search algorithms such as the
bisection method proved to be fast enough.

3 UMNN autoregressive models

3.1 Normalizing flows

A Normalizing Flow [NF, Rezende and Mohamed, 2015] is defined as a sequence of invertible
transformations ui : Rd → Rd (i = 1, ..., k) composed together to create an expressive invertible
mapping u = u1 ◦ · · · ◦ uk : Rd → Rd. It is common for normalizing flows to stack the same
parametric function ui (with different parameters values) and to reverse variables ordering after each
transformation. For this reason, we will focus on how to build one of these repeated transformations,
which we further refer to as g : Rd → Rd.

Density estimation NFs are most commonly used for density estimation, that map empirical sam-
ples to unstructured noise. Using normalizing flows, we define a bijective mapping u(·; θ) : Rd →
Rd from a sample x ∈ Rd to a latent vector z ∈ Rd equipped with a density pZ(z). The transfor-
mation u implicitly defines a density p(x; θ) as given by the change of variables formula,

p(x; θ) = pZ(u(x; θ))
∣∣det Ju(x;θ)

∣∣ , (5)

where Ju(x;θ) is the Jacobian of u(x; θ) with respect to x. The resulting model is trained by maxi-
mizing the likelihood of the data {x1, ...,xN}.

Variational auto-encoders NFs are also used in VAE to improve posterior modeling. In this case,
a normalizing flow transforms a distribution pZ into a complex distribution q which can better model
the variational posterior. The change of variables formula yields

q(u(z; θ)) = pZ(z)
∣∣det Ju(z;θ)

∣∣−1
. (6)

3.2 Autoregressive transformations

To be of practical use, NFs must be composed of transformations for which the determinant of
the Jacobian can be computed efficiently, otherwise its evaluation would be running in O(d3). A
common solution consists in making the transformation g autoregressive, i.e., such that g(x; θ) can
be rewritten as a vector of d scalar functions,

g(x; θ) =
[
g1(x1; θ) . . . gi(x1:i; θ) . . . gd(x1:d; θ)

]
,

where x1:i = [x1 . . . xi]
T is the vector including the i first elements of the full vector x. The

Jacobian of this function is lower triangular, which makes the computation of its determinant O(d).
Enforcing the bijectivity of each component gi is then sufficient to make g bijective as well.

For the multivariate density p(x; θ) induced by g(x; θ) and pZ(z), we can use the chain rule to
express the joint probability of x as a product of d univariate conditional densities,

p(x; θ) = p(x1; θ)
d−1∏

i=1

p(xi+1|x1:i; θ). (7)

3

(a) Normalizing flow
x

g

g

...

g

z

(b) UMNN-MAF
transformation

h1 h2 h3

g1 g2 g3

x

(c) UMNN

t

h3
dt

∫
x3

z3

Figure 1: (a) A normalizing flow made of repeated UMNN-MAF transformations g with identical
architectures. (b) A UMNN-MAF which transforms a vector x ∈ R3. (c) The UMNN network used
to map x3 to z3 conditioned on the embedding h3(x1:2).

When pZ(z) is a factored distribution pZ(z) =
∏d
i=1 p(zi), we identify that each component zi

coupled with the corresponding function gi encodes for the conditional p(xi|x1:i−1; θ). Autoregres-
sive transformations strongly rely on the expressiveness of the scalar functions gi. In this work, we
propose to use UMNNs to create powerful bijective scalar transformations.

3.3 UMNN autoregressive transformations (UMNN-MAF)

We now combine UMNNs with an embedding of the conditioning variables to build invertible au-
toregressive functions gi. Specifically, we define

gi(x1:i; θ) = F i(xi,h
i(x1:i−1;φ

i);ψi)

=

∫ xi

0

f i(t,hi(x1:i−1;φ
i);ψi) dt +βi(hi(x1:i−1;φ

i)), (8)

where hi(·;φi) : Ri−1 → Rq is a q-dimensional neural embedding of the conditioning variables
x1:i−1 and β(·)i : Ri−1 → R. Both degenerate into constants for g1(x1). The parameters θ of the
whole transformation g(·; θ) is the union of all parameters φi and ψi. For simplicity we remove the
parameters of the networks by rewriting f i(·;ψi) as f i(·) and hi(·;φi) as hi(·).
In our implementation, we use a Masked Autoregressive Network [Germain et al., 2015, Kingma
et al., 2016, Papamakarios et al., 2017] to simultaneously parameterize the d embeddings. In what
follows we refer to the resulting UMNN autoregressive transformation as UMNN-MAF. Figure 1
summarizes the complete architecture.
Log-density The change of variables formula applied to the UMMN autoregressive transformation
results in the log-density

log p(x; θ) = log pZ(g(x; θ))
∣∣det Jg(x;θ)

∣∣

= log pZ(g(x; θ)) + log

∣∣∣∣∣
d∏

i=1

∂F i(xi,h
i(x1:i−1))

∂xi

∣∣∣∣∣

= log pZ(g(x; θ)) +

d∑

i=1

log f i(xi,h
i(x1:i−1)). (9)

Therefore, the transformation leads to a simple expression of (the determinant of) its Jacobian, which
can be computed efficiently with a single forward pass. This is different from FFJORD [Grathwohl
et al., 2018] which relies on numerical methods to compute both the Jacobian and the transformation
between the data and the latent space. Therefore our proposed method makes the computation of
the Jacobian exact and efficient at the same time.

Sampling Generating samples require evaluating the inverse transformation g−1(z; θ). The com-
ponents of the inverse vector xinv = g−1(z; θ) can be computed recursively by inverting each com-

4

ponent of g(x; θ):

xinv
1 =

(
g1
)−1 (

z1;h
1
)

if i = 1 (10)

xinv
i =

(
gi
)−1 (

zi;h
i
(
xinv
1:i−1

))
if i > 1 (11)

where (gi)−1 is the inverse of gi. Another approach to invert an autoregressive model would be to
approximate its inverse with another autoregressive network [Oord et al., 2018]. In this case, the
evaluation of the approximated inverse model is as fast as the forward model.

Universality Since the proof is straightforward, we only sketch that UMNN-MAF is a univer-
sal density approximator of continuous random variables. We rely on the inverse sampling the-
orem to prove that UMNNs are universal approximators of continuously derivable (C1) mono-
tonic functions. Indeed, if UMNNs can represent any C1 monotonic function, then they can
also represent the (inverse) cumulative distribution function of any continuous random variable.
Any continuously derivable function f : D → I can be expressed as the following integral:
f(x) =

∫ x
a
df
dxdx + f(a), ∀x, a ∈ D. The derivative df

dx is a continuous positive function and
the universal approximation theorem of NNs ensures it can be successfully approximated with a NN
of sufficient capacity (such as those used in UMNNs).

4 Related work

The most similar work to UMNN-MAF are certainly Neural Autoregressive Flow [NAF, Huang
et al., 2018] and Block Neural Autoregressive Flow [B-NAF, De Cao et al., 2019], which both rely
on strictly monotonic transformations for building bijective mappings. In NAF, transformations are
defined as neural networks which activation functions are all constrained to be strictly monotonic
and which weights are the output of a strictly positive and autoregressive HyperNetwork [Ha et al.,
2017]. Huang et al. [2018] shows that NAFs are universal density approximators. In B-NAF, the
authors improve on the scalability of the NAF architecture by making use of masking operations
instead of HyperNetworks. They also present a proof of the universality of B-NAF, which extends to
UMNN-MAF. Our work differs from both NAF and B-NAF in the sense that the UMNN monotonic
transformation is based on free-form neural networks for which no constraint, beyond positiveness
of the output, is enforced on the hypothesis class. This leads to multiple advantages: it enables the
use of any state-of-the-art neural architecture, simplifies weight initialization, and leads to a more
lightweight evaluation of the Jacobian.

More generally, UMNN-MAF relates to works on normalizing flows built upon autoregressive net-
works and affine transformations. Germain et al. [2015] first introduced masking as an efficient
way to build autoregressive networks, and proposed autoregressive networks for density estimation
of high dimensional binary data. Masked Autoregressive Flows [Papamakarios et al., 2017] and
Inverse Autoregressive Flows [Kingma et al., 2016] have generalized this approach to real data, re-
spectively for density estimation and for latent posterior representation in variational auto-encoders.
More recently, Oliva et al. [2018] proposed to stack various autoregressive architectures to create
powerful reversible transformations. Meanwhile, Jaini et al. [2019] proposed a new Sum-of-Squares
flow that is defined as the integral of a second order polynomial parametrized by an autoregressive
NN.

With NICE, Dinh et al. [2015] introduced coupling layers, which correspond to bijective transfor-
mations splitting the input vector into two parts. They are defined as

z1:k = x1:k and zk+1:d = eσ(x1:k) � xk+1:d + µ(x1:k), (12)

where σ and µ are two unconstrained functions Rd−k → Rd−k. The same authors introduced
RealNVP [Dinh et al., 2017], which combines coupling layers with normalizing flows and multi-
scale architectures for image generation. Glow [Kingma and Dhariwal, 2018] extends RealNVP by
introducing invertible 1x1 convolutions between each step of the flow. In this work we have used
UMNNs in the context of autoregressive architectures, however UMNNs could also be applied to
replace the linear transformation in coupling layers.

Finally, our architecture also shares a connection with Neural Ordinary Differential Equa-
tions [NODE, Chen et al., 2018]. The core idea of this architecture is to learn an ordinary dif-
ferential equation which dynamic is parameterized by a neural network. Training can be carried

5

Figure 2: Density estimation and sampling with a UMNN-MAF network on 2D toy problems. Top:
Samples from the empirical distribution p(x). Middle: Learned density p(x; θ). Bottom: Sam-
ples drawn by numerical inversion. UMNN-MAF manages to precisely capture multi-modal and/or
discontinuous distributions. Sampling is possible even if the model is not invertible analytically.

out by backpropagating efficiently through the ODE solver, with constant memory requirements.
Among other applications, NODE can be used to model a continuous normalizing flow with a free-
form Jacobian as in FFJORD [Grathwohl et al., 2018]. Similarly, a UMNN transformation can be
seen as a structured neural ordinary differential equation in which the dynamic of the vector field is
separable and can be solved efficiently by direct integration.

5 Experiments

In this section, we evaluate the expressiveness of UMNN-MAF on a variety of density estimation
benchmarks, as well as for approximate inference in variational auto-encoders. The source code is
accessible at https://github.com/AWehenkel/UMNN.

Experiments were carried out using the same integrand neural network in the UMNN component
– i.e., in Equation 8, f i = f with shared weights ψi = ψ for i ∈ {1, . . . , d}. The functions
βi are taken to be equal to one of the outputs of the embedding network. We observed in our
experiments that sharing the same integrand function does not impact performance. Therefore, the
neural embedding function hi must produce a fixed size output for i ∈ {1, . . . , d}.

5.1 2D toy problems

We first train a UMNN-MAF on 2-dimensional toy distributions, as defined by Grathwohl et al.
[2018]. To train the model, we minimize the negative log-likelihood of observed data

L(θ) = −
N∑

n=1

[
log pZ(g(x

n; θ)) +
d∑

i=1

log f(xni ,h
i(xn1:i−1))

]
. (13)

The flow used to solve these tasks is the same for all distributions and is composed of a single
transformation. More details can be found in Appendix A.1.

Figure 2 demonstrates that our model is able to learn a change of variables that warps a simple
isotropic Gaussian into multimodal and/or discontinuous distributions. We observe from the figure
that our model precisely captures the density of the data. We also observe that numerical inversion
for generating samples yields good results.

5.2 Density estimation

We further validate UMNN-MAF by comparing it to state-of-the-art normalizing flows. We carry
out experiments on tabular datasets (POWER, GAS, HEPMASS, MINIBOONE, BSDS300) as well
as on MNIST. We follow the experimental protocol of Papamakarios et al. [2017]. All training
hyper-parameters and architectural details are given in Appendix A.1. For each dataset, we report

6

Table 1: Average negative log-likelihood on test data over 3 runs, error bars are equal to the standard
deviation. Results are reported in nats for tabular data and bits/dim for MNIST; lower is better. The
best performing architecture for each dataset is written in bold and the best performing architecture
per category is underlined. (a) Non-autoregressive models, (b) Autoregressive models, (c) Mono-
tonic and autoregressive models. UMNN outperforms other monotonic transformations on 4 tasks
over 6 and is the overall best performing model on 2 tasks over 6.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

(a)

RealNVP - Dinh et al. [2017] −0.17±.01 −8.33±.14 18.71±.02 13.55±.49 −153.28±1.78 -

Glow - Kingma and Dhariwal [2018] −0.17±.01 −8.15±.40 19.92±.08 11.35±.07 −155.07±.03 -

FFJORD - Grathwohl et al. [2018] −0.46±.01 −8.59±.12 14.92±.08 10.43±.04 −157.40±.19 -

(b)

MADE - Germain et al. [2015] 3.08±.03 −3.56±.04 20.98±.02 15.59±.50 −148.85±.28 2.04±.01

MAF - Papamakarios et al. [2017] −0.24±.01 −10.08±.02 17.70±.02 11.75±.44 −155.69±.28 1.89±.01

TAN - Oliva et al. [2018] −0.60±.01 −12.06±.02 13.78±.02 11.01±.48 −159.80±.07 1.19

(c)

NAF - Huang et al. [2018] −0.62±.01 −11.96±.33 15.09±.40 8.86±.15 −157.73±.30 -

B-NAF - De Cao et al. [2019] −0.61±.01 −12.06±.09 14.71±.38 8.95±.07 −157.36±.03 -

SOS - Jaini et al. [2019] −0.60±.01 −11.99±.41 15.15±.1 8.90±.11 −157.48±.41 1.81

UMNN-MAF (ours) −0.63±.01 −10.89±.7 13.99±.21 9.67±.13 −157.98±.01 1.13±.02

results on test data for our best performing model (selected on the validation data). At testing time
we use a large number of integration steps (100) to compute the integral, this ensures its correctness
and avoids misestimating the performance of UMNN-MAF.

Table 1 summarizes our results, where we can see that on tabular datasets, our method is competitive
with other normalizing flows. For POWER, our architecture slightly outperforms all others. It is
also better than other monotonic networks (category (c)) on 3 tabular datasets over 5. From these
results, we could conclude that Transformation Autoregressive Networks [TAN, Oliva et al., 2018]
is overall the best method for density estimation. It is however important to note that TAN is a flow
composed of many heterogeneous transformations (both autoregressive and non-autoregressive).
For this reason, it should not be directly compared to the other models which respective results
are specific to a single architecture. However, TAN provides the interesting insight that combining
heterogeneous components into a flow leads to better results than an homogeneous flow.

Notably, we do not make use of a multi-scale architecture to train our model on MNIST. On this task,
UMNN-MAF slightly outperforms all other models by a reasonable margin. Samples generated
by a conditional model are shown on Figure 3, for which it is worth noting that UMNN-MAF is
the first monotonic architecture that has been inverted to generate samples. Indeed, MNIST can be
considered as a high dimensional dataset (d = 784) for standard feed forward neural networks which
autoregressive networks are part of. NAF and B-NAF do not report any result for this benchmark,
presumably because of memory explosion. In comparison, BSDS300, which data dimension is
one order of magnitude smaller than MNIST (63 � 784), are the largest data they have tested
on. Table 2 shows the number of parameters used by UMNN-MAF in comparison to B-NAF and
NAF. For bigger datasets, UMNN-MAF requires less parameters than NAF to reach similar or better
performance. This could explain why NAF has never been used for density estimation on MNIST.

Figure 3: Samples generated by numerical in-
version of a conditional UMNN-MAF trained
on MNIST. Samples z are drawn from an
isotropic Gaussian with σ = .75. See Appendix
C for more details.

Table 2: Comparison of the number of param-
eters between NAF, B-NAF and UMNN-MAF.
In high dimensional datasets, UMNN-MAF re-
quires fewer parameters than NAF and a similar
number to B-NAF.

Dataset NAF B-NAF UMNN-MAF

POWER (d = 6) 4.14e5 3.07e5 5.09e5

GAS (d = 8) 4.02e5 5.44e5 8.15e5

HEPMASS (d = 21) 9.27e6 3.72e6 3.62e6

MINIBOONE (d = 43) 7.49e6 4.09e6 3.46e6

BSDS300 (d = 63) 3.68e7 8.76e6 1.56e7

7

Table 3: Average negative evidence lower bound of VAEs over 3 runs, error bars are equal to the
standard deviation. Results are reported in bits per dim for Freyfaces and in nats for the other
datasets; lower is better. UMNN-NAF is performing slightly better than IAF but is outperformed by
B-NAF. We believe that the gap in performance between B-NAF and UMNN is due to the way the
NF is conditioned by the encoder’s output.

Dataset MNIST Freyfaces Omniglot Caltech 101

(a)

VAE - Kingma and Welling [2013] 86.65±.06 4.53±.02 104.28±.39 110.80±.46

Planar - Rezende and Mohamed [2015] 86.06±.32 4.40±.06 102.65±.42 109.66±.42

IAF - Kingma et al. [2016] 84.20±.17 4.47±.05 102.41±.04 111.58±.38

Sylvester - Berg et al. [2018] 83.32±.06 4.45±.04 99.00±.04 104.62±.29

FFJORD - Grathwohl et al. [2018] 82.82±.01 4.39±.01 98.33±.09 104.03±.43

(b)
B-NAF - De Cao et al. [2019] 83.59±.15 4.42±.05 100.08±.07 105.42±.49

UMNN-MAF (ours) 84.11±.05 4.51±.01 100.98±.13 110.45±.69

5.3 Variational auto-encoders

To assess the performance of our model, we follow the experimental setting of Berg et al. [2018] for
VAE. The encoder and the decoder architectures can be found in the appendix of their paper. In VAE
it is usual to let the encoder output the parameters of the flow. For UMNN-MAF, this would cause
the encoder output’s dimension to be too large. Instead, the encoder output is passed as additional
entries of the UMNN-MAF. Like other architectures, the UMNN-MAF also takes as input a vector
of noise drawn from an isotropic Gaussian of dimension 64.

Table 3 presents our results. It shows that on MNIST and Omniglot, UMNN-MAF slightly outper-
forms the classical VAE as well as planar flows. Moreover, on these datasets and Freyfaces, IAF,
B-NAF and UMNN-MAF achieve similar results. FFJORD is the best among all, however it is
worth noting that the roles of encoder outputs in FFJORD, B-NAF, IAF and Sylvester are all differ-
ent. We believe that the heterogeneity of the results could be, at least in part, due to the different
amortizations.

6 Discussion and summary

Static integral quadrature can be inaccurate. Computing the integral with static Clenshaw-
Curtis quadrature only requires the evaluation of the integrand at predefined points. As such, batches
of points can be processed all at once, which makes static Clenshaw-Curtis quadrature well suited
for neural networks. However, static quadratures do not account for the error made during the
integration. As a consequence, the quadrature is inaccurate when the integrand is not smooth enough
and the number of integration steps is too small. In this work, we have reduced the integration error
by applying the normalization described by Gouk et al. [2018] in order to control the Lipschitz
constant of the integrand and appropriately set the number of integration steps. We observed that as
long as the Lipschitz constant of the network does not increase dramatically (< 1000), a reasonable
number of integration steps (< 100) is sufficient to ensure the convergence of the quadrature. An
alternative solution would be to use dynamic quadrature such as dynamic Clenshaw-Curtis.

Efficiency of numerical inversion. Architectures relying on linear transformations [Papamakar-
ios et al., 2017, Kingma et al., 2016, Dinh et al., 2017, Kingma and Dhariwal, 2018] are trivially
exactly and efficiently invertible. In contrast, the UMNN transformation has no analytic inverse.
Nevertheless, it can be inverted numerically using root-finding algorithms. Since most such algo-
rithms rely on multiple nested evaluations of the function to be inverted, applying them naively to
a numerical integral would quickly become very inefficient. However, the Clenshaw-Curtis quadra-
ture is part of the nested quadrature family, meaning that the evaluation of the integral at multiple
nested points can take advantage of previous evaluations and thus be implemented efficiently. As an
alternative, Oord et al. [2018] have shown that an invertible model can always be distilled to learn its
inverse, and thus make the inversion efficient whatever the cost of inversion of the original model.

Scalability and complexity analysis. UMNN-MAF is particularly well suited for density estima-
tion because the computation of the Jacobian only requires a single forward evaluation of a NN.

8

Together with the Leibniz integral rule, they make the evaluation of the log-likelihood derivative
as memory efficient as usual supervised learning, which is equivalent to a single backward pass on
the computation graph. By contrast, density estimation with previous monotonic transformations
typically requires a backward evaluation of the computation graph of the transformer NN to obtain
the Jacobian. Then, this pass must be evaluated backward again in order to obtain the log-likelihood
derivative. Both NAF and B-NAF provide a method to make this computation numerically stable,
however both fail at not increasing the size of the computation graph of the log-likelihood derivative,
hence leading to a memory overhead. The memory saved by the Leibniz rule may serve to speed
up the quadrature computation. In the case of static Clenshaw-Curtis, the function values at each
evaluation point can be computed in parallel using batch of points. In consequence, when the GPU
memory is large enough to store "meta-batches" of size d × N × B (with d the dimension of the
data, N the number of integration steps and B the batch size) the computation is approximately as
fast as a forward evaluation of the integrand network.

Summary We have introduced Unconstrained Monotonic Neural Networks, a new invertible
transformation built upon free-form neural networks allowing the use of any state-of-the-art ar-
chitecture. Monotonicity is guaranteed without imposing constraints on the expressiveness of the
hypothesis class, contrary to classical approaches. We have shown that the resulting integrated
neural network can be evaluated efficiently using standard quadrature rule while its inverse can be
computed using numerical algorithms. We have shown that our transformation can be composed
into an autoregressive flow, with competitive or state-of-the-art results on density estimation and
variational inference benchmarks. Moreover, UMNN is the first monotonic transformation that has
been successfully applied for density estimation on high dimensional data distributions (MNIST),
showing better results than the classical approaches.

We identify several avenues for improvement and further research. First, we believe that numerical
integration could be fasten up during training, by leveraging the fact that controlled numerical errors
can actually help generalization. Moreover, the UMNN transformation would certainly profit from
using a dynamic integration scheme, both in terms of accuracy and efficiency. Second, it would
be worth comparing the newly introduced monotonic transformation with common approaches for
modelling monotonic functions in machine learning. On a similar track, these common approaches
could be combined into an autoregressive flow as shown in Section 3.3. Finally, our monotonic
transformation could be used within other neural architectures than generative autoregressive net-
works, such as multi-scale architectures [Dinh et al., 2017] and learnable 1D convolutions [Kingma
and Dhariwal, 2018].

Acknowledgments

The authors would like to acknowledge Matthia Sabatelli, Nicolas Vecoven, Antonio Sutera and
Louis Wehenkel for useful feedback on the manuscript. They would also like to thank the anony-
mous reviewers for many relevant remarks. Antoine Wehenkel is a research fellow of the F.R.S.-
FNRS (Belgium) and acknowledges its financial support.

9

References
N. P. Archer and S. Wang. Application of the back propagation neural network algorithm with

monotonicity constraints for two-group classification problems. Decision Sciences, 24(1):60–75,
1993.

R. v. d. Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester normalizing flows for
variational inference. In Conference on Uncertainty in Artificial Intelligence (UAI), 2018.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equa-
tions. In Advances in Neural Information Processing Systems, pages 6571–6583, 2018.

H. Daniels and M. Velikova. Monotone and partially monotone neural networks. IEEE Transactions
on Neural Networks, 21(6):906–917, 2010.

N. De Cao, I. Titov, and W. Aziz. Block neural autoregressive flow. arXiv preprint
arXiv:1904.04676, 2019.

L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. In
International Conference in Learning Representations workshop track, 2015.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. In International
Conference in Learning Representations, 2017.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder for distribution
estimation. In International Conference on Machine Learning, pages 881–889, 2015.

H. Gouk, E. Frank, B. Pfahringer, and M. Cree. Regularisation of neural networks by enforcing
lipschitz continuity. arXiv preprint arXiv:1804.04368, 2018.

W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. Ffjord: Free-form contin-
uous dynamics for scalable reversible generative models. In International Conference on Machine
Learning, 2018.

M. Gupta, A. Cotter, J. Pfeifer, K. Voevodski, K. Canini, A. Mangylov, W. Moczydlowski, and
A. Van Esbroeck. Monotonic calibrated interpolated look-up tables. The Journal of Machine
Learning Research, 17(1):3790–3836, 2016.

D. Ha, A. M. Dai, and Q. V. Le. Hypernetworks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings,
2017.

C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In Interna-
tional Conference on Machine Learning, pages 2083–2092, 2018.

P. Jaini, K. A. Selby, and Y. Yu. Sum-of-squares polynomial flow. arXiv preprint arXiv:1905.02325,
2019.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. In Advances
in Neural Information Processing Systems, pages 10236–10245, 2018.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International Conference
on Learning Representations (ICLR), 2013.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved varia-
tional inference with inverse autoregressive flow. In Advances in neural information processing
systems, pages 4743–4751, 2016.

J. Oliva, A. Dubey, M. Zaheer, B. Poczos, R. Salakhutdinov, E. Xing, and J. Schneider. Trans-
formation autoregressive networks. In International Conference on Machine Learning, pages
3895–3904, 2018.

A. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu, G. Driessche, E. Lockhart,
L. Cobo, F. Stimberg, et al. Parallel wavenet: Fast high-fidelity speech synthesis. In International
Conference on Machine Learning, pages 3915–3923, 2018.

10

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density estimation.
In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.

G. Papamakarios, D. C. Sterratt, and I. Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. In 22nd International Conference on Artificial Intelligence
and Statistics (AISTATS), 2019.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International Con-
ference on Machine Learning, pages 1530–1538, 2015.

J. Sill. Monotonic networks. In Advances in neural information processing systems, pages 661–667,
1998.

D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo, K. Murphy, and D. M. Blei. Deep probabilistic
programming. In 5th International Conference on Learning Representations (ICLR), 2017.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. In 9th ISCA Speech
Synthesis Workshop, pages 125–125, 2016.

S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta. Deep lattice networks and partial monotonic
functions. In Advances in Neural Information Processing Systems, pages 2981–2989, 2017.

11

A Experimental setup

A.1 Density estimation and toy problems hyperparameters

Table 4 reports the training configurations for the 2D toy problems and the 5 tabular datasets. For
tabular data the best performing architecture has been found after some preliminary experiments,
while this was not needed for the 2D toy problems. During our preliminary experiments we tested
different integrand network architectures, we tested on the number of hidden layers L ∈ {3, 4} and
on their dimension D ∈ {50, 100, 150, 200}. The architecture of the embedding networks is the
best performing MADE network used in NAF [Huang et al., 2018]. We used the Adam optimizer
and tried different learning rate λ ∈ {10−3, 5 × 10−4, 10−4}. When the learning rate chosen was
greater than 10−4 we schedule once the learning rate to 10−4 after the first plateau. We also tested
for different weights decay values W ∈ {10−5, 10−2}. The batch size was chosen to be as big as
possible while not harming the learning procedure. We observed during our preliminary experiments
that choosing the number of integration steps at random (uniformly from 20 to 100) for each batch
regularizes the complexity of the integral. For MNIST, we observed that 25 integration steps was
enough if the Lipschitz constant of the network is constraint (with the normalization proposed by
Gouk et al. [2018]) to be smaller than 1.5.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300 MNIST 2D Toys

Lipschitz - - - - 2.5 1.5 -

N°integ. steps rand rand rand rand rand 25 50

Embedding net 2 × 100 2 × 100 2 × 512 1 × 512 2 × 1024 1 × 1024 4 × 50

Integrand net (L×D) 4 × 150 3 × 200 4 × 200 3 × 50 4 × 150 3 × 150 4 × 50

Learning rate (λ) 10−3 10−3 10−3 10−3 10−4 10−3 10−3

N°flows 5 10 5 3 5 5 1

Embedding Size 30 30 30 30 30 30 10

Weight decay (W) 10−5 10−2 10−4 10−2 10−2 10−2 10−5

Batch size 10000 10000 100 500 100 100 100

Table 4: Training configurations for density estimation and toy problems.

A.2 Variational auto-encoders

Table 5 presents the architectural settings of the normalizing flows used inside the variational auto-
encoders. The number of values outputted by the encoder is always taken to be equal to 320. These
values as well as the 64-dimensional noise vector are the inputs of the embedding network which is
constantly made of one hidden layer of 1280 neurons. We have performed a small grid search on the
integrand network architecture, we took a look at 2 different number L ∈ {3, 4} of hidden layers of
dimensions D ∈ {100, 150}.

Dataset MNIST Freyfaces Omniglot Caltech 101

Lipschitz - - - -

N°integ. steps rand rand rand rand

Encoder Output 320 320 320 320

Embedding net 1 × 1280 1 × 1280 1 × 1280 1 × 1280

Integrand net 4 × 100 3 × 100 4 × 100 4 × 100

N°flows 16 8 16 16

Embedding Size 30 30 30 30

Table 5: Training configurations of variational auto-encoder.

12

B Clenshaw-Curtis module

Algorithm 1 Clenshaw-Curtis quadrature

Input: x: A tensor of scalar values that represent the superior integration bounds.
h: A tensor of vectors that representing embeddings.

Output: F : A tensor of scalar values that represent the integral of
∫ x
0
f(t;h) dt .

Hyper-parameters: f : A derivable function R→ R.
N : The number of integration steps.

1: procedure FORWARD(x, h; f , N)
2: . Compute weights and evaluation steps for Clenshaw-Curtis quadrature
3: w, δx = COMPUTE_CC_WEIGHTS(N)
4: F = 0

5: for i ∈ [1, N] do
6: xi = x0 + 1

2
(x− x0)(δx[i] + 1) . Compute the next point to evaluate

7: δF = f(xi;h)

8: F = F +w[i]δF

9: end for
10: F = F

2
(x− x0)

11: return F
12: end procedure

Inputs: x: A tensor of scalar values that represent the superior integration bounds.
h: A tensor of vectors that representing embeddings.
∇out : The derivatives of the loss function with respect to

∫ x
0
f(t;h) dt for all x.

Outputs: ∇x: The gradient of
∫ x
0
f(t;h) dt with respect to x.

∇θ: The gradient of
∫ x
0
f(t;h) dt with respect to f parameters.

∇h: The gradient of
∫ x
0
f(t;h) dt with respect to h.

Hyper-parameters: f : A derivable function R→ R.
N : The number of integration steps.

1: procedure BACKWARD(x, h,∇out; f , N)
2: . Compute weights and evaluation steps for Clenshaw-Curtis quadrature
3: w, δx = COMPUTE_CC_WEIGHTS(N)
4: F,∇θ,∇h = 0, 0, 0

5: for i ∈ [1, N] do
6: xi = x0 + 1

2
(x− x0)(δx[i] + 1) . Compute the next point to evaluate

7: δF =f(xi;h)
8: . Sum up for all samples of the batch the gradients with respect to inputs h
9: δ∇h =

∑B
j=1∇hj

(
δjF
)
∇jout(xj − xj0)

10: . Sum up for all samples of the batch the gradients with respect to parameters θ
11: δ∇θ =

∑B
j=1∇θ

(
δjF
)
∇jout(xj − xj0)

12: ∇h =∇h +w[i]δ∇h

13: ∇θ =∇θ +w[i]δ∇θ
14: end for
15: . Gradients with respect to superior integration bound.
16: ∇x = f(x,h)∇out
17: return∇x,∇θ ,∇h

18: end procedure

13

C Generated images from MNIST

Figure 4 presents samples generated from two UMNN-MAF trained on MNIST, respectively with
(sub-figure a) and without (sub-figure b) labels. The samples are generated with different levels
of noise, which are the product of the inversion of the network with random values drawn from
N (0, T), with T being the sampling temperature. The sampling temperature increases linearly from
0.1 (top rows) to 1.0 (bottom rows). We can observe that the unconditional model fails to incorporate
digit structure when the level of noise is too small. However, when the level is sufficient it is able to
generate random digits with a high level of heterogeneity.

(a) (b)

Figure 4: (a): Class-conditional generated images from MNIST. The temperature of sampling in-
creases from 0.1 (top row) to 1.0 (bottom row). Columns correspond to different classes. (b):
Unconditional generated images from MNIST. The temperature of sampling goes from 0.1 at top
row to 1.0 at bottom row. Columns are different random noise values.

14

7.3 epilogue 109

7.3 epilogue

7.3.1 Discussion

Alternative monotonic normalizing flows. In 2018, Huang et al. [2018] proposed re-
placing the affine transformations of masked autoregressive flows [Papamakarios et al.,
2017] with neural autoregressive flows (NAFs). NAFs enforce monotonicity with mono-
tonic activation functions and positive weights. This parameterisation does not only cause
monotonicity for the desired monotonic variables but for all input variables. This aspect
of NAF is undesirable when we only want monotonicity for one variable at a time, such as
in the context of normalizing flows. Huang et al. [2018] overcome this issue by predicting
the weights of the monotonic neural network with a hyper network that takes as input the
conditioning variables. Computing the Jacobian of such flows requires backpropagation
which may be both computationally and memory demanding.

De Cao et al. [2020] replaced the hyper networks of NAFs by block monotonic neural
networks. They showed that such parameterisation achieved better results with fewer pa-
rameters. Concurrently to UMNNs, Durkan et al. [2019] proposed neural spline flows (NSFs)
as a parameterisation of monotonic transformations in NFs. Compared to (block) neural
autoregressive flows, their parameterization provides direct access to the Jacobian deter-
minant. We may generally favour NSFs over UMNNs because they do not require solving
integrals. However, the spline parameterisation can create discontinuities at the bound-
ary points. These discontinuities sometimes lead to numerical issues in practice. More
importantly, Köhler et al. [2021] showed that these discontinuities preclude smoothness
which is sometimes an expected feature.

Is universality the goal? We can easily fool ourselves into the non-realistic objective
of learning probabilistic models from data only. We have already discussed in Part i why
this objective is vain in high dimensionalities. The universality of a class of models does
not say anything about the corresponding learning algorithm’s generalisation capabilities.
Nevertheless, neural networks are universal approximators of continuous functions and
frequently generalise well to unseen data. The continuity of the multi-layer perceptron
is one possible explanation. In addition, stochastic gradient descent is an implicit reg-
ularisation [Smith et al., 2021; Barrett and Dherin, 2020] and other strategies, such as
dropout [Srivastava et al., 2014] or weight decay [Krogh and Hertz, 1991], are popular
explicit regularisation. Complex architectures, such as CNNs or GNNs, enforce substan-
tial constraints. These constraints, such as equivariance or invariance properties, induce
generalisation. Without a similar inductive bias, processing structured signals such as
images or audio with machine learning models would be ineffective.
In contrast, UMNN-MAF embeds only weak inductive bias, which may preclude us

from learning a meaningful representation of the data. For example, learning a good
representation of images, even as small as digits from MNIST (28×28 grey pixels), is very

110 improving models

difficult and hopeless for higher resolutions. The autoregressive structure of the model
naturally induces usually irrelevant dependence between all dimensionalities. In the next
part, we focus on embedding more substantial inductive bias in deep probabilistic models
such as NFs and VAEs. We show that unconstrained monotonic neural networks with
(conditional) independence assumptions have strong generalisation capabilities.

Multidimensional unconstrained monotonic neural networks. One limitation of UMNNs
is that they are limited to unidimensional monotonicity. However, we can generalise
UMNNs to any dimensionality. Indeed, we observe that the sum of k univariate mono-
tonic functions is monotonic with respect to the union of the k monotonic entries. The
Kolmogorov-Arnold representation theorem [Kolmogorov, 1956; Arnold, 2009] says that
any multivariate continuous function can be written as a double sum over univariate
functions, as

f(x1, . . . , xk) =

2n∑

q=0

gq

n∑

p=0

hq,p(xp)

 .

This decomposition hints that we can effectively parameterise multivariate-monotonic
functions with multiple levels of univariate-monotonic transformations. If needed, we can
also add non-monotonic inputs to these functions. We believe such generalised UMNNs
might also be relevant for machine learning problems where a subset of variables have a
monotonic relationship with the output.

7.3.2 Scientific impact

The paper introduces an implicit parameterisation of monotonic functions via their first-
order derivatives. We show that the Clenshaw-Curtis quadrature efficiently integrates a
neural network with respect to its input. We also overcome potential memory issues of
direct backpropagation through the numerical integration steps with the Leibniz rule,
which describe the derivative of an integral and can be computed on-the-fly. In contrast
to alternative monotonic neural networks, UMNNs are continuously differentiable and
do not necessitate automatic differentiation to evaluate their first-order derivative with
respect to the input variable. Combined with autoregressive transformations, UMNNs
lead to an efficient parameterisation of normalizing flows. We must also acknowledge that
solving integrals necessitates additional computations compared to feedforward neural
networks. However, the integration part is parallelisable on GPUs if the memory is large
enough; if this is the case, the forward and backward evaluations take two times as much
time for a UMNN than the corresponding feedforward network, not more.
Monotonic transformations are also relevant outside of normalizing flows. Among them,

model calibration is arguably an essential issue. Uncalibrated models provide biased
confidence scores; calibration corrects this bias. Recently, Gruber and Buettner [2022];
Dey et al.; Rahimi et al. [2020] relied on UMNNs to parameterise the calibration layers

7.3 epilogue 111

in diverse settings. Another application of UMNNs is to induce a monotonic relationship
between a subset of the input variables and the model’s output. For example, Yurk and
Abu-Mostafa [2021] study the effect of business closures on the speed of propagation of
COVID-19 with ML models. A UMNN enforces a monotonic relationship between the
tightness of public policies and the observed reproduction rate. UMNNs have also proven
helpful in distributional reinforcement learning [Dabney et al., 2018]. Théate et al. [2021]
parameterise the 1D distribution of the cumulative reward with UMNNs and study the
effect of different divergence or distance functions on the learned distribution.
It is unclear whether parameterising monotonic functions via their first-order deriva-

tive is always preferable given the burden of the integration. Nevertheless, UMNNs are
effective neural network architectures and have already had a good impact. According to
Google Scholar, the paper has received 102 citations as of August 2022. As mentioned,
it has been used in diverse settings ranging from model calibration to density estimation.
Graphical normalizing flows, introduced in Chapter 8, strongly rely on the universality
of UMNNs to define a simplified and unifying framework for normalizing flows.

7.3.3 Conclusion and opportunities

This chapter has introduced a new parameterisation of monotonic functions with neural
networks. In contrast to other approaches, UMNNs work with free-form neural networks
and benefit from all research on activation functions, initialisation strategies, and reg-
ularisation techniques. Since UMNNs directly provide their first-order derivative with
respect to their input variable, they are particularly well suited to parameterise the nor-
maliser functions of NFs. The corresponding NF is a universal density approximator of
continuous distributions and achieves state-of-the-art results in density estimation. Since
its publications, UMNNs have also been used successfully in diverse settings to induce
monotonic responses in ML models.
Efficient parameterisations of monotonic functions should remain valuable to ML prac-

titioners in the long run. In particular, calibration is an essential issue for applications
where the uncertainty of the predictions matters [Minderer et al., 2021; Guo et al., 2017;
Cranmer et al., 2015]. Another example is Multi-agent reinforcement learning. These al-
gorithms summarise the cumulative discounted rewards of all agents with a unique value
that is monotonic with respect to these rewards [Rashid et al., 2018; Leroy et al., 2020].
We speculate on the broader value that implicit parameterisations, similar to UMNNs,

via the first-order derivative, might have in the future. For instance, we can enforce
Lipshitzness or convexity with simple constraints on the first-order derivative of the func-
tion. Thus applications that require similar properties might benefit from similar implicit
parameterisations. Similarly to Neural ODE [Chen et al., 2018] that parameterises dy-
namical systems via an ordinary differential equation or deep equilibrium models [Bai
et al., 2019], UMNNs demonstrate that implicit layers provide a relevant parameterisation
strategy for modern machine learning.

Part III

INFORMED PROBABIL I ST IC MODELL ING

I prefer dangerous freedom over peaceful slavery.

Thomas Jefferson

8
STRUCTURED DENS ITY EST IMATION

Outline

n this chapter, we aim to go beyond uninformed probabilistic modelling.
We now focus on informed probabilistic model. For this purpose, we intro-
duce the graphical normalizing flow. This new normalizing flow embeds
explicit inductive bias in the form of prescribed independencies. This trans-
formation unifies Bayesian networks, coupling and autoregressive layers
altogether. Graphical normalizing flows embed domain knowledge in the
form of independencies while preserving the interpretability of Bayesian
networks and the representation capacity of normalizing flows. In addition
to the straightforward embedding of prescribed independencies, graphical
conditioners can also discover relevant independence from data only. We
analyse the effect of l1-penalization on the recovered probabilistic model
and show that it improves the generalisation of normalizing flows.

8.1 prologue

In Chapter 7, we have introduced a universal approximator of continuous density func-
tions called UMNN-MAF. Universality is a desirable property as it implies convergence
of the MLE toward the correct model as the number of training points grows. However,
in many practical settings, the number of points does not grow sufficiently fast to discrim-
inate between all possible models. This is the curse of dimensionality, and universality
becomes an issue rather than an solution.
One potential solution is to take a Bayesian approach and bias the learning toward

more plausible models. However, we need to express a prior distribution over the con-
sidered class of models to do this. Unfortunately, distributions over complex functions,
such as normalizing flows, are challenging to represent. As an alternative, we can exclude
models that are irrelevant for describing the phenomenon of interest. For instance, we of-
ten make (conditional) independence assumptions when building complex models. These
independencies lead to a simplified factorisation of the modelled distribution.
While the first solution is generic, it is also challenging to implement. In contrast, hu-

mans are reasonably good at drawing independence assumptions between small pieces
of a larger system. We can use Bayesian networks to encode these independencies and
understand the big picture produced by these low-level assumptions. The paper featured

117

118 structured density estimation

in this chapter introduces normalizing flows as a parameterisation of the conditional dis-
tributions of Bayesian networks for continuous variables. Similarly to the autoregressive
or coupling layers that lift invertible transformations from scalar to vector, the struc-
ture of any Bayesian network is a valid transformer for normalizing flows. This unified
framework reveals the potential of combining prescribed independencies and expressive
bijective transformations together.
Unifying Bayesian networks and normalizing flows allows years of research from each

domain to benefit the other. For example, recent advances in topology discovery [Zheng
et al., 2018] allows us to introduce a new class of probabilistic models where both the con-
ditional densities and the distribution factorisation are trainable components. This class
of models is a universal density approximator provided the appropriate parameterisation.
However, in contrast to UMNN-MAF, graphical normalizing flows with learnable struc-
ture can be elegantly regularised by penalising the absence of independence. Moreover,
the recovered structure provides interesting insights on independence properties observed
in the data and hypothesised by the learnt model.
This contribution is again about the interplay between seemingly distinct classes of

probabilistic models. We show that unifying frameworks can create new models with
unique properties. In this case, we gain interpretability, a new inductive bias for normal-
izing flows, and a unified vision of coupling and autoregressive layers that were historically
seen as separate classes of models. This contribution is also well aligned with the notion
that building effective models requires the correct assumptions. Indeed, in contrast to
classical normalizing flows, our model naturally digests prescribed knowledge we may
have about the distribution we aim to learn.

8.2 the paper: graphical normalizing flows

8.2.1 Author contributions

Gilles Louppe and I co-authored the paper. Gilles helped me throughout the project to
shape the research idea. He also provided substantial help in writing the paper. I devel-
oped the connections between Bayesian networks and normalizing flows and the theory
to combine graphical normalizing flows with the NOTEARS algorithm for topology dis-
covery. I also wrote the code for all experiments.

8.2.2 Reading tips

The reader should be able to skip section 3 as it describes the basics of normalizing flows
and Bayesian network which were already described in the background.

Graphical Normalizing Flows

Antoine Wehenkel Gilles Louppe
ULiège ULiège

Abstract

Normalizing flows model complex probabil-
ity distributions by combining a base distri-
bution with a series of bijective neural net-
works. State-of-the-art architectures rely on
coupling and autoregressive transformations
to lift up invertible functions from scalars to
vectors. In this work, we revisit these trans-
formations as probabilistic graphical models,
showing they reduce to Bayesian networks
with a pre-defined topology and a learnable
density at each node. From this new per-
spective, we propose the graphical normal-
izing flow, a new invertible transformation
with either a prescribed or a learnable graph-
ical structure. This model provides a promis-
ing way to inject domain knowledge into nor-
malizing flows while preserving both the in-
terpretability of Bayesian networks and the
representation capacity of normalizing flows.
We show that graphical conditioners discover
relevant graph structure when we cannot hy-
pothesize it. In addition, we analyze the ef-
fect of `1-penalization on the recovered struc-
ture and on the quality of the resulting den-
sity estimation. Finally, we show that graph-
ical conditioners lead to competitive white
box density estimators. Our implementa-
tion is available at https://github.com/
AWehenkel/DAG-NF.

1 Introduction

Normalizing flows [NFs, Rezende and Mohamed, 2015,
Tabak et al., 2010, Tabak and Turner, 2013, Rip-
pel and Adams, 2013] have proven to be an effective
way to model complex data distributions with neural

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

networks. These models map data points to latent
variables through an invertible function while keeping
track of the change of density caused by the trans-
formation. In contrast to variational auto-encoders
(VAEs) and generative adversarial networks (GANs),
NFs provide access to the exact likelihood of the
model’s parameters, hence offering a sound and di-
rect way to optimize the network parameters. Nor-
malizing flows have proven to be of practical interest
as demonstrated by Van Den Oord et al. [2018], Kim
et al. [2018] and Prenger et al. [2019] for speech syn-
thesis, by Rezende and Mohamed [2015], Kingma et al.
[2016] and Van Den Berg et al. [2018] for variational
inference or by Papamakarios et al. [2019b] and Green-
berg et al. [2019] for simulation-based inference. Yet,
their usage as a base component of the machine learn-
ing toolbox is still limited in comparison to GANs or
VAEs. Recent efforts have been made by Papamakar-
ios et al. [2019a] and Kobyzev et al. [2020] to define the
fundamental principles of flow design and by Durkan
et al. [2019] to provide coding tools for modular im-
plementations. We argue that normalizing flows would
gain in popularity by offering stronger inductive bias
as well as more interpretability.

Sometimes forgotten in favor of more data oriented
methods, probabilistic graphical models (PGMs) have
been popular for modeling complex data distributions
while being relatively simple to build and read [Koller
and Friedman, 2009, Johnson et al., 2016]. Among
PGMs, Bayesian networks [BNs, Pearl and Russell,
2011] offer an appealing balance between modeling
capacity and simplicity. Most notably, these models
have been at the basis of expert systems before the
big data era (e.g. [Díez et al., 1997, Kahn et al.,
1997, Seixas et al., 2014]) and were commonly used
to merge qualitative expert knowledge and quantita-
tive information together. On the one hand, experts
stated independence assumptions that should be en-
coded by the structure of the network. On the other
hand, data were used to estimate the parameters of the
conditional probabilities/densities encoding the quan-
titative aspects of the data distribution. These mod-
els have progressively received less attention from the
machine learning community in favor of other methods

Graphical Normalizing Flows

that scale better with the dimensionality of the data.

Driven by the objective of integrating intuition into
normalizing flows and the proven relevance of BNs for
combining qualitative and quantitative reasoning, we
summarize our contributions as follows: (i) From the
insight that coupling and autoregressive transforma-
tions can be reduced to Bayesian networks with a fixed
topology, we introduce the more general graphical con-
ditioner for normalizing flows, featuring either a pre-
scribed or a learnable BN topology; (ii) We show that
using a correct prescribed topology leads to improve-
ments in the modeled density compared to autoregres-
sive methods. When the topology is not known we ob-
serve that, with the right amount of `1-penalization,
graphical conditioners discover relevant relationships;
(iii) In addition, we show that graphical normalizing
flows perform well in a large variety of density estima-
tion tasks compared to classical black-box flow archi-
tectures.

2 Background

Bayesian networks A Bayesian network is a di-
rected acyclic graph (DAG) that represents indepen-
dence assumptions between the components of a ran-
dom vector. Formally, let x = [x1, . . . , xd]

T ∈ Rd be
a random vector distributed under px. A BN associ-
ated to x is a directed acyclic graph made of d vertices
representing the components xi of x. In this kind of
network, the absence of edges models conditional inde-
pendence between groups of components through the
concept of d-separation [Geiger et al., 1990]. A BN
is a valid representation of a random vector x iff its
density can be factorized as

px(x) =

d∏

i=1

p(xi|Pi), (1)

where Pi = {j : Ai,j = 1} denotes the set of parents of
the vertex i and A ∈ {0, 1}d×d is the adjacency matrix
of the BN. As an example, Fig. 1a is a valid BN for
any distribution over x because it does not state any
independence and leads to a factorization that corre-
sponds to the chain rule. However, in practice we seek
for a sparse and valid BN which models most of the
independence between the components of x, leading
to an efficient factorization of the modeled probability
distribution. It is worth noting that making hypothe-
ses on the graph structure is equivalent to assuming
certain conditional independence between some of the
vector’s components.

Normalizing flows A normalizing flow is defined
as a sequence of invertible transformation steps gk :
Rd → Rd (k = 1, ...,K) composed together to create

x1 x2

x3 x4

(a)

x1 x2

x3 x4

(b)

x1 x2

x3 x4

z1 z2

z3 z4

(c)

Figure 1: Bayesian networks equivalent to normalizing
flows made of a single transformation step. (a) Autoregres-
sive conditioner. (b) Coupling conditioner. (c) Coupling
conditioner, with latent variables shown explicitly. Double
circles stand for deterministic functions of the parents.

an expressive invertible mapping g := g1 ◦ · · · ◦ gK :
Rd → Rd. This mapping can be used to perform den-
sity estimation, using g(·; θ) : Rd → Rd to map a sam-
ple x ∈ Rd onto a latent vector z ∈ Rd equipped with
a prescribed density pz(z) such as an isotropic Nor-
mal. The transformation g implicitly defines a density
p(x; θ) as given by the change of variables formula,

p(x; θ) = pz(g(x; θ))
∣∣det Jg(x;θ)

∣∣ , (2)

where Jg(x;θ) is the Jacobian of g(x; θ) with respect
to x. The resulting model is trained by maximizing
the likelihood of the model’s parameters θ given the
training dataset X = {x1, ...,xN}. Unless needed, we
will not distinguish between g and gk for the rest of
our discussion.

In general the steps g can take any form as long as
they define a bijective map. Here, we focus on a sub-
class of normalizing flows for which the steps can be
mathematically described as

g(x) =
[
g1(x1; c

1(x)) . . . gd(xd; c
d(x))

]T
, (3)

where the ci are the conditioners which role is to
constrain the structure of the Jacobian of g. The func-
tions gi, partially parameterized by their conditioner,
must be invertible with respect to their input variable
xi. They are often referred to as transformers, how-
ever in this work we will use the term normalizers to
avoid any confusion with attention-based transformer
architectures.

The conditioners examined in this work can be com-
bined with any normalizer. In particular, we con-
sider affine and monotonic normalizers. An affine
normalizer g : R × R2 → R can be expressed as
g(x;m, s) = x exp(s) + m, where m ∈ R and s ∈ R

Antoine Wehenkel, Gilles Louppe

are computed by the conditioner. There exist mul-
tiple methods to parameterize monotonic normalizers
[Huang et al., 2018, De Cao et al., 2020, Durkan et al.,
2019, Jaini et al., 2019], but in this work we rely on
Unconstrained Monotonic Neural Networks [UMNNs,
Wehenkel and Louppe, 2019] which can be expressed as
g(x; c) =

∫ x
0
f(t, c)dt+ β(c), where c ∈ R|c| is an em-

bedding made by the conditioner and f : R|c|+1 → R+

and β : Rd → R are two neural networks respectively
with a strictly positive scalar output and a real scalar
output. Huang et al. [2018] proved NFs built with
autoregressive conditioners and monotonic normaliz-
ers are universal density approximators of continuous
random variables.

3 Normalizing flows as Bayesian
networks

Autoregressive conditioners Due to computing
speed considerations, NFs are usually composed of
transformations for which the determinant of the Jaco-
bian can be computed efficiently, as otherwise its eval-
uation would scale cubically with the input dimension.
A common solution is to use autoregressive condition-
ers, i.e., such that

ci(x) = hi
([
x1 . . . xi−1

]T)

are functions hi of the first i − 1 components of x.
This particular form constrains the Jacobian of g to
be lower triangular, which makes the computation of
its determinant O(d).
For the multivariate density p(x; θ) induced by g(x; θ)
and pz(z), we can use the chain rule to express the
joint probability of x as a product of d univariate con-
ditional densities,

p(x; θ) = p(x1; θ)
d∏

i=2

p(xi|x1:i−1; θ). (4)

When pz(z) is a factored distribution pz(z) =∏d
i=1 p(zi), we identify that each component zi

coupled with the corresponding functions gi and
embedding vectors ci encode for the conditional
p(xi|x1:i−1; θ). Therefore, and as illustrated in Fig. 1a,
autoregressive transformations can be seen as a way
to model the conditional factors of a BN that does
not state any independence but relies on a prede-
fined node ordering. This becomes clear if we define
Pi = {x1, . . . , xi−1} and compare (4) with (1).

The complexity of the conditional factors strongly de-
pends on the ordering of the vector components. While
not hurting the universal representation capacity of

normalizing flows, the arbitrary ordering used in au-
toregressive transformations leads to poor inductive
bias and to factors that are most of the time difficult
to learn. In practice, one often alleviates the arbitrari-
ness of the ordering by stacking multiple autoregressive
transformations combined with random permutations
on top of each other.

Coupling conditioners Coupling layers [Dinh
et al., 2015] are another popular type of conditioners
that lead to a bipartite structure. The conditioners ci
made from coupling layers are defined as

ci(x) =

hi if i ≤ k
hi
([
x1 . . . xk

]T)
if i > k

where the underlined hi ∈ R|c| denote constant values
and k ∈ {1, . . . , d} is a hyper-parameter usually set to⌊
d
2

⌋
. As for autoregressive conditioners, the Jacobian

of g made of coupling layers is lower triangular. Again,
and as shown in Fig. 1b and 1c, these transformations
can be seen as a specific class of BN where Pi = {}
for i ≤ k and Pi = {1, ..., k} for i > k. D-separation
can be used to read off the independencies stated by
this class of BNs such as the conditional independence
between each pair in xk+1:d knowing x1:k. For this rea-
son, and in contrast to autoregressive transformations,
coupling layers are not by themselves universal density
approximators even when associated with very expres-
sive normalizers gi [Wehenkel and Louppe, 2020]. In
practice, these bipartite structural independencies can
be relaxed by stacking multiple layers, and may even
recover an autoregressive structure. They also lead to
useful inductive bias, such as in the multi-scale archi-
tecture with checkerboard masking [Dinh et al., 2017,
Kingma and Dhariwal, 2018].

Algorithm 1 Sampling
1: z ∼ N (0, I)
2: x← z
3: repeat
4: ci ← hi(x�Ai,:) ∀i ∈ {1, . . . , d}
5: xi ← (gi)−1(zi; c

i, θ) ∀i ∈ {1, . . . , d}
6: until x converged

4 Graphical normalizing flow

4.1 Graphical conditioners

Following up on the previous discussion, we introduce
the graphical conditioner architecture. We motivate
our approach by observing that the topological order-
ing (a.k.a. ancestral ordering) of any BN leads to a

Graphical Normalizing Flows

lower triangular adjacency matrix whose determinant
is equal to the product of its diagonal terms (proof in
Appendix B). Therefore, conditioning factors ci(x) se-
lected by following a BN adjacency matrix necessarily
lead to a transformation g whose Jacobian determi-
nant remains efficient to compute.

Formally, given a BN with adjacency matrix A ∈
{0, 1}d×d, we define the graphical conditioner as
being

ci(x) = hi(x�Ai,:), (5)

where x � Ai,: is the element-wise product between
the vector x and the ith row of A – i.e., the binary
vector Ai,: is used to mask on x. NFs built with this
new conditioner architecture can be inverted by se-
quentially inverting each component in the topological
ordering. In our implementation the neural networks
modeling the hi functions are shared to save memory
and they take an additional input that one-hot encodes
the value i. An alternative approach would be to use
a masking scheme similar to what is done by Germain
et al. [2015] in MADE as suggested by Lachapelle et al.
[2019].

The graphical conditioner architecture can be used to
learn the conditional factors in a continuous BN while
elegantly setting structural independencies prescribed
from domain knowledge. In addition, the inverse of
NFs built with graphical conditioners is a simple as it
is for autoregressive and coupling conditioners, Algo-
rithm 1 describes an inversion procedure. We also now
note how these two conditioners are just special cases
in which the adjacency matrix reflects the classes of
BNs discussed in Section 3.

4.2 Learning the topology

In many cases, defining the whole structure of a BN
is not possible due to a lack of knowledge about the
problem at hand. Fortunately, not only is the density
at each node learnable, but also the DAG structure
itself: defining an arbitrary topology and ordering, as
it is implicitly the case for autoregressive and coupling
conditioners, is not necessary.

Building upon Non-combinatorial Optimization via
Trace Exponential and Augmented lagRangian for
Structure learning [NO TEARS, Zheng et al., 2018],
we convert the combinatorial optimization of score-
based learning of a DAG into a continuous optimiza-
tion by relaxing the domain of A to real numbers in-
stead of binary values. That is,

max
A∈Rd×d

F (A)

s.t. G(A) ∈ DAGs
⇐⇒

max
A∈Rd×d

F (A)

s.t. w(A) = 0,

(6)

where G(A) is the graph induced by the weighted adja-
cency matrix A and F : Rd×d → R is the log-likelihood
of the graphical NF g plus a regularization term, i.e.,

F (A) =

N∑

j=1

log
(
p(xj ; θ)

)
+ λ`1 ||A||1, (7)

where λ`1 is an `1-regularization coefficient and N is
the number of training samples xi. The likelihood is
computed as

p(x; θ) =pz(g(x; θ))
d∏

i=1

∣∣∣∣
∂gi(xi;h

i(x�Ai,:), θ)
∂xi

∣∣∣∣ .

The function w(A) that enforces the acyclicity is ex-
pressed as suggested by Yu et al. [2019] as

w(A) := tr
(
(I + αA)d

)
− d ∝ tr

(
d∑

k=1

αkAk

)
,

where α ∈ R+ is a hyper-parameter that avoids ex-
ploding values for w(A). In the case of positively val-
ued A, an element (i, j) of Ak = AA...A︸ ︷︷ ︸

k terms

is non-null

if and only if there exists a path going from node j
to node i that is made of exactly k edges. Intuitively
w(A) expresses to which extent the graph is cyclic. In-
deed, the diagonal elements (i, i) of Ak will be as large
as there are many paths made of edges that correspond
to large values in A from a node to itself in k steps.

In comparison to our work, Zheng et al. [2018] use
a quadratic loss on the corresponding linear structural
equation model (SEM) as the score function F (A). By
attaching normalizing flows to topology learning, our
method has a continuously adjustable level of complex-
ity and does not make any strong assumptions on the
form of the conditional factors.

4.3 Stochastic adjacency matrix

In order to learn the BN topology from the data, the
adjacency matrix must be relaxed to contain reals in-
stead of booleans. It also implies that the graph in-
duced by A does not formally define a DAG during
training. Work using NO TEARS to perform topol-
ogy learning directly plug the real matrix A in (6)
[Zheng et al., 2018, Yu et al., 2019, Lachapelle et al.,
2019, Zheng et al., 2020] however this is inadequate
because the quantity of information going from node
j to node i does not continuously relate to the value
of Ai,j . Either the information is null if Ai,j = 0 or it
passes completely if not. Instead, we propose to build
the stochastic pseudo binary valued matrix A′ from A,

Antoine Wehenkel, Gilles Louppe

defined as

A′i,j =
e

log(σ(A2
i,j))+γ1

T

e
log(σ(A2

i,j
))+γ1

T + e
log(1−σ(A2

i,j
))+γ2

T

,

where γ1, γ2 ∼ Gumbel(0, 1) and σ(a) =
2(sigmoid(2a2) − 1

2) normalizes the values of A
between 0 and 1, being close to 1 for large values
and close to zero for values close to 0. The hyper-
parameter T controls the sampling temperature and
is fixed to 0.5 in all our experiments. In contrast to
directly using the matrix A, this stochastic trans-
formation referred to as the Gumbel-Softmax trick
in the literature [Maddison et al., 2016, Jang et al.,
2016] allows to create a direct and continuously
differentiable relationship between the weights of the
edges and the quantity of information that can transit
between two nodes. Indeed, the probability mass of
the random variables A′i,j is mainly located around
0 and 1, and its expected value converges to 1 when
Ai,j increases.

4.4 Optimization

We rely on the augmented Lagrangian approach to
solve the constrained optimization problem (6) as ini-
tially proposed by Zheng et al. [2018]. This optimiza-
tion procedure requires solving iteratively the follow-
ing sub-problems:

max
A

Eγ1,γ2 [F (A)]− λtw(A)−
µt
2
w(A)2, (8)

where λt and µt respectively denote the Lagrangian
multiplier and penalty coefficients of the sub-problem
t.

We solve these optimization problems with mini-batch
stochastic gradient ascent. We update the values of
γt and µt as suggested by Yu et al. [2019] when the
validation loss does not improve for 10 consecutive
epochs. Once w(A) equals 0, the adjacency matrix
is acyclic up to numerical errors. We recover an exact
DAG by thresholding the elements of A while check-
ing for acyclicity with a path finding algorithm. We
provide additional details about the optimization pro-
cedure used in our experiments in Appendix A.

5 Experiments

In this section, we demonstrate some applications of
graphical NFs in addition to unifying NFs and BN
under a common framework. We first demonstrate
how pre-loading a known or hypothesized DAG struc-
ture can help finding an accurate distribution of the
data. Then, we show that learning the graph topol-
ogy leads to relevant BNs that support generalization

Table 1: Datasets description. d=Dimension of the data.
V=Number of edges in the ground truth Bayesian Network.

Dataset d V Train Test

Arithmetic Circuit 8 8 10, 000 5, 000

8 Pairs 16 8 10, 000 5, 000

Tree 7 8 10, 000 5, 000

Protein 11 20 6, 000 1, 466

POWER 6 ≤ 15 1, 659, 917 204, 928

GAS 8 ≤ 28 852, 174 105, 206

HEPMASS 21 ≤ 210 315, 123 174, 987

MINIBOONE 43 ≤ 903 29, 556 3, 648

BSDS300 63 ≤ 1, 953 1, 000, 000 250, 000

Table 2: Graphical vs autoregressive conditioners com-
bined with monotonic normalizers. Average log-likelihood
on test data over 5 runs, under-scripted error bars are equal
to the standard deviation. Results are reported in nats;
higher is better. The best performing architecture for each
dataset is written in bold. Graphical conditioners clearly
lead to improved density estimation when given a relevant
prescribed topology in 3 out of the 4 datasets.

Conditioner Graphical Autoreg.

Arithmetic Circuit 3.99±.16 3.06±.38

8 Pairs −9.40±.06 −11.50±.27

Tree −6.85±.02 −6.96±.05

Protein 6.46±.08 7.52±.10

well when combined with `1-penalization. Finally, we
demonstrate that mono-step normalizing flows made
of graphical conditioners are competitive density esti-
mators.

5.1 On the importance of graph topology

The following experiments are performed on four dis-
tinct datasets, three of which are synthetic, such that
we can define a ground-truth minimal Bayesian net-
work, and the fourth is a causal protein-signaling net-
work derived from single-cell data [Sachs et al., 2005].
Additional information about the datasets are pro-
vided in Table 1 and in Appendix C. For each exper-
imental run we first randomly permute the features
before training the model in order to compare autore-
gressive and graphical conditioners fairly.

Prescribed topology Rarely do real data come
with their associated Bayesian network however often-
times experts want to hypothesize a network topology
and to rely on it for the downstream tasks. Some-
times the topology is known a priori, as an example
the sequence of instructions in stochastic simulators
can usually be translated into a graph topology (e.g. in
probabilistic programming [van de Meent et al., 2018,
Weilbach et al., 2020]). In both cases, graphical con-
ditioners allow to explicitly take advantage of this to

Graphical Normalizing Flows

0 20 40 60 80 100
l1

15

14

13

12

11

10

Av
er

ag
e

te
st

 lo
g-

lik
el

ih
oo

d

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b)

Figure 2: (a): Test log-likelihood as a function of `1-
penalization on 8 pairs dataset. The upper bound is
the average result when given a prescribed topology, the
lower bound is the result with an autoregressive condi-
tioner. Learning the right topology leads to better results
than autoregressive conditioners. (b): The blacked cells
corresponds to one correct topology of the 8 pairs dataset
and the grey cells to the transposed adjacency matrix. The
stars denote the edges discovered by the graphical condi-
tioner when trained with λ`1 = 4. The optimization dis-
covers a relevant BN (equivalent to the ground truth).

build density estimators while keeping the assumptions
made about the network topology valid.

Table 2 presents the test likelihood of autoregressive
and graphical normalizing flows on the four datasets.
The flows are made of a single step and use mono-
tonic normalizers. The neural network architectures
are all identical. Further details on the experimental
settings as well as additional results for affine normal-
izers are respectively provided in Appendix C.2 and
C.3. We observe how using correct BN structures lead
to good test performance in Table 2. Surprisingly, the
performance on the protein dataset are not improved
when using the ground truth graph. We observed dur-
ing our experiments (see Appendix C.3) that learning
the topology from this dataset sometimes led to im-
proved density estimation performance with respect
to the ground truth graph. The limited dataset size
does not allow us to answer if this comes from to the
limited capacity of the flow and/or from the erroneous
assumptions in the ground truth graph. However, we
stress out that the graphical flow respects the assumed
causal structure in opposition to the autoregressive
flow.

Learning the topology The λ`1 coefficient intro-
duced in (7) controls the sparsity of the optimized BN,
allowing to avoid some spurious connections. We now
analyze the effect of sparsity on the density estimation
performance. Fig. 2a shows the test log-likelihood as a
function of the `1-penalization on the 8 pairs dataset.
We observe that the worst results are obtained when
there is no penalization. Indeed, in this case the al-
gorithm finds multiple spurious connections between
independent vector’s components and then overfits on

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

Figure 3: The adjacency matrix of the protein interaction
network. The blacked cells are the directed connections
proposed by domain experts and the grey is the transposed
adjacency matrix. The stars denote the edges discovered
by the graphical conditioner when trained with λ`1 = 12.
In a realistic setting, the optimization leads to a graph that
shares a lot with the one designed by experts.

these incorrect relationships. Another extreme case
shows up when the effect of penalization is too strong,
in this case, the learning procedure underfits the data
because it ignores too many relevant connections. It
can also be concluded from the plot that the optimal
`1-penalization performs on par with the ground truth
topology, and certainly better than the autoregressive
conditioner. Additional results on the other datasets
provided in Appendix C lead to similar conclusions.

Protein network The adjacency matrix discovered
by optimizing (8) (with λ`1 = 12) on the protein net-
work dataset is shown in Fig. 3. All the connections
discovered by the method correspond to ground truth
connections. Unsurprisingly, their orientation do not
always match with what is expected by the experts.
Overall we can see that the optimization procedure
is able to find relevant connections between variables
and avoids spurious ones when the `1-penalization is
optimized. Previous work on topology learning such
as Zheng et al. [2018], Yu et al. [2019], Lachapelle
et al. [2019] compare their method to others by look-
ing at the topology discovered on the same dataset.
Here we do not claim that learning the topology with
a graphical conditioner improves over previous meth-
ods. Indeed, we believe that the difference between
the methods mainly relies on the hypothesis and/or
inductive biased made on the conditional densities.
Which method would perform better is dependent on
the application. Moreover, the Structural Hamiltonian
Distance (SHD) and the Structural Inference Distance
(SID), often used to compare BNs, are not well moti-
vated in general. On the one hand the SHD does not
take into account the independence relationships mod-
eled with Bayesian networks, as an example the SHD
between the graph found on 8 pairs dataset of Fig. 2b
and one possible ground truth is non zero whereas the
two BNs are equivalent. On the other hand the SID
aims to compare causal graphs whereas the methods

Antoine Wehenkel, Gilles Louppe

Table 3: Average log-likelihood on test data over 3 runs,
under-scripted error bars are equal to the standard devia-
tion. Results are reported in nats; higher is better. The
best performing architecture per category for each dataset
is written in bold. (a) 1-step affine normalizers (b) 1-step
monotonic normalizers. Graphical normalizing flows out-
perform coupling and autoregressive architectures on most
of the datasets.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

(a)

Coup. −5.60±.00 −3.05±.01 −25.74±.01 −38.34±.02 57.33±.00

Auto. −3.55±.00 −0.34±.01 −21.66±.01 −16.70±.05 63.74±.00

Graph. −2.80±.01 1.99±.02 −21.18±.07 −19.67±.06 62.85±.07

(b)

Coup. 0.25±.00 5.12±.03 −20.55±.04 −32.04±.12 107.17±.46

Auto. 0.58±.00 9.79±.04 −14.52±.16 −11.66±.02 151.29±.31

Graph. 0.62±.04 10.15±.15 −14.17±.13 −16.23±.52 155.22±.11

discussed here do not learn causal relationships. In
general BN topology identification is an ill posed prob-
lem and thus we believe using these metrics to compare
different methods without additional downstream con-
text is irrelevant. However, we conclude from Fig. 2b
and Fig. 3 that the scores computed with graphical
NFs can be used to learn relevant BN structures.

5.2 Density estimation benchmark

In these experiments, we compare autoregressive,
coupling and graphical conditioners with no `1-
penalization on benchmark tabular datasets as intro-
duced by Papamakarios et al. [2017] for density estima-
tion. See Table 1 for a description. We evaluate each
conditioner in combination with monotonic and affine
normalizers. We only compare NFs with a single trans-
formation step because our focus is on the conditioner
capacity. We observed during preliminary experiments
that stacking multiple conditioners improves the per-
formance slightly, however the gain is marginal com-
pared to the loss of interpretability. To provide a fair
comparison we have fixed in advance the neural archi-
tectures used to parameterize the normalizers and con-
ditioners as well as the training parameters by taking
inspiration from those used by Wehenkel and Louppe
[2019] and Papamakarios et al. [2017]. The variable or-
dering of each dataset is randomly permuted at each
run. All hyper-parameters are provided in Appendix
D and a public implementation will be released on
Github.

First, Table 3 presents the test log-likelihood ob-
tained by each architecture. These results indicate
that graphical conditioners offer the best performance
in general. Unsurprisingly, coupling layers show the
worst performance, due to the arbitrarily assumed in-
dependencies. Autoregressive and graphical condition-
ers show very similar performance for monotonic nor-

Table 4: Average log-likelihood on test data over 3 runs,
under-scripted error bars are equal to the standard devia-
tion. Results are reported in nats, higher is better. The
results followed by a star are copied from the literature and
the number of steps in the flow is indicated in parenthesis
for each architecture. Graphical normalizing flows reach
density estimation performance on par with the most pop-
ular flow architectures whereas it is only made of 1 trans-
formation step.

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

Graph.-UMNN (1) 0.62±.04 10.15±.15 −14.17±.13 −16.23±.52 155.22±.11

MAF (5) 0.14±.01 9.07±.01 −17.70±.01 −11.75±.22 155.69±.14

Glow? (10) 0.42±.01 12.24±.03 −16.99±.02 −10.55±.45 156.95±.28

UMNN-MAF? (5) 0.63±.01 10.89±.70 −13.99±.21 −9.67±.13 157.98±.01

Q-NSF? (10) 0.66±.01 12.91±.01 −14.67±.02 −9.72±.24 157.42±.14

FFJORD? (5-5-10-1-2) 0.46±.01 8.59±.12 −14.92±.08 −10.43±.04 157.40±.19

malizers, the latter being slightly better on 4 out of the
5 datasets. Table 4 contextualizes the performance of
graphical normalizing flows with respect to the most
popular normalizing flow architectures. Comparing
the results together, we see that while additional steps
lead to noticeable improvements for affine normalizers
(MAF), benefits are questionable for monotonic trans-
formations. Overall, graphical normalizing flows made
of a single transformation step are competitive with
the best flow architectures with the added value that
they can directly be translated into their equivalent
BNs. From these results we stress out that single step
graphical NFs are able to model complex densities on
par with SOTA while they offer new ways of introduc-
ing domain knowledge.

Second, Table 5 presents the number of edges in the
BN associated with each flow. For power and gas,
the number of edges found by the graphical condition-
ers is close or equal to the maximum number of edges.
Interestingly, graphical conditioners outperform au-
toregressive conditioners on these two tasks, demon-
strating the value of finding an appropriate ordering
particularly when using affine normalizers. Moreover,
graphical conditioners correspond to BNs whose spar-
sity is largely greater than for autoregressive condi-
tioners while providing equivalent if not better per-
formance. The depth [Bezek, 2016] of the equivalent
BN directly limits the number of steps required to in-
verse the flow. Thus sparser graphs that are inevitably
shallower correspond to NFs for which sampling, i.e.
computing their inverse, is faster.

6 Discussion

Cost of learning the graph structure The at-
tentive reader will notice that learning the topology
does not come for free. Indeed, the Lagrangian for-

Graphical Normalizing Flows

Table 5: Rounded average number of edges (over 3 runs)
in the equivalent Bayesian network. The graphical con-
ditioners lead to sparser BNs compared to autoregressive
conditioners.

Dataset P G H M B

Graph.-Aff. 15 26 152 277 471

Graph.-Mon. 15 27 159 265 1594

Coupling 9 16 110 462 992

Autoreg. 15 28 210 903 1953

mulation requires solving a sequence of optimization
problems which increases the number of epochs be-
fore convergence. In our experiments we observed
different overheads depending on the problems, how-
ever in general the training time is at least doubled.
This does not impede the practical interest of using
graphical normalizing flows. The computation over-
head is more striking for non-affine normalizers (e.g.
UMNNs) that are computationally heavy. However,
we observed that most of the time the topology recov-
ered by affine graphical NFs is relevant. It can thus
be used as a prescribed topology for normalizers that
are heavier to run, hence alleviating the computation
overhead. Moreover, one can always hypothesize on
the graph topology but more importantly the graph
learned is usually sparser than an autoregressive one
while achieving similar if not better results. The spar-
sity is interesting for two reasons: it can be exploited
for speeding up the forward density evaluation; but
more importantly it usually corresponds to shallower
BNs that can be inverted faster than autoregressive
structures.

Bayesian network topology learning Formal BN
topology learning has extensively been studied for
more than 30 years now and many strong theoreti-
cal results on the computational complexity have been
obtained. Most of these results however focus on dis-
crete random variables, and how they generalize in the
continuous case is yet to be explained. The topic of
BN topology learning for discrete variables has been
proven to be NP-hard by Chickering et al. [2004]. How-
ever, while some greedy algorithms exist, they do not
lead in general to a minimal I-map although allowing
for an efficient factorization of random discrete vectors
distributions in most of the cases. These algorithms
are usually separated between the constrained-based
family such as the PC algorithm [Spirtes et al., 2001]
or the incremental association Markov blanket [Koller
and Friedman, 2009] and the score-based family as
used in the present work. Finding the best BN topol-
ogy for continuous variables has not been proven to be
NP-hard however the results for discrete variables sug-
gest that without strong assumptions on the function

class the problem is hard.

The recent progress made in the continuous setting re-
lies on the heuristic used in score-based methods. In
particular, Zheng et al. [2018] showed that the acyclic-
ity constraint required in BNs can be expressed with
NO TEARS, as a continuous function of the adjacency
matrix, allowing the Lagrangian formulation to be
used. Yu et al. [2019] proposed DAG-GNN, a follow up
work of Zheng et al. [2018] which relies on variational
inference and auto-encoders to generalize the method
to non-linear structural equation models. Further in-
vestigation of continuous DAG learning in the context
of causal models was carried out by Lachapelle et al.
[2019]. They use the adjacency matrix of the causal
network as a mask over neural networks to design a
score which is the log-likelihood of a parameterized
normal distribution. The requirement to pre-define
a parametric distribution before learning restricts the
factors to simple conditional distributions. In contrast,
our method combines the constraints given by the BN
topology with NFs which are free-form universal den-
sity estimators. Remarkably, their method leads to
an efficient one-pass computation of the joint density.
This neural masking scheme can also be implemented
for NF architectures such as already demonstrated by
Papamakarios et al. [2017] and De Cao et al. [2019] for
autoregressive conditioners.

Shuffling between transformation steps As al-
ready mentioned, consecutive transformation steps are
often combined with randomly fixed permutations in
order to mitigate the ordering problem. Linear flow
steps [Oliva et al., 2018] and 1x1 invertible convolu-
tions [Kingma and Dhariwal, 2018] generalize these
fixed permutations. They are parameterized by a ma-
trix W = PLU where P is the fixed permutation ma-
trix, and L and U are respectively a lower and an up-
per triangular matrix. Although linear flow improves
the simple permutation scheme, they do still rely on
an arbitrary permutation. To the best of our knowl-
edge, graphical conditioners are the first attempt to
get completely rid of any fixed permutation in NFs.

Inductive bias Graphical conditioners eventually
lead to binary masks that model the conditioning com-
ponents of a factored joint distribution. In this way,
the conditioners process their input as they would pro-
cess the full vector.We show experimentally in Ap-
pendix E that this effectively leads to good inductive
bias for processing images with NFs. In addition, we
have shown that normalizing flows built from graphi-
cal conditioners combined with monotonic transforma-
tions are expressive density estimators. In effect, this
means that enforcing some a priori known indepen-
dencies can be performed thanks to graphical normal-

Antoine Wehenkel, Gilles Louppe

izing flows without hurting their modeling capacity.
We believe such models could be of high practical in-
terest because they cope well with large datasets and
complex distributions while preserving some readabil-
ity through their equivalent BN.

Close to our work, Weilbach et al. [2020] improve
amortized inference by prescribing a BN structure
between the latent and observed variables into a
FFJORD NF, once again showing the interest of using
the potential BN knowledge. Similar to our work, Khe-
makhem et al. [2020] see causal autoregressive flows as
structural equation modelling. They show bivariate
autoregressive affine flows can be used to identify the
causal direction under mild conditions. Under similar
mild conditions, discovering causal relationships with
graphical normalizing flows could well be an exciting
research direction.

Conclusion We have revisited coupling and autore-
gressive conditioners for normalizing flows as Bayesian
networks. From this new perspective, we proposed
the more general graphical conditioner architecture for
normalizing flows. We have illustrated the importance
of assuming or learning a relevant Bayesian network
topology for density estimation. In addition, we have
shown that this new architecture compares favorably
with autoregressive and coupling conditioners and on
par to the most common flow architectures on stan-
dard density estimation tasks even without any hy-
pothesized topology. One interesting and straightfor-
ward extension of our work would be to combine it
with normalizing flows for discrete variables. We also
believe that graphical conditioners could be used when
the equivalent Bayesian network is required for down-
stream tasks such as in causal reasoning.

Acknowledgments

We thank Vân Anh Huynh-Thu, Johann Brehmer, and
Louis Wehenkel for proofreading this manuscript or
an earlier version of it. We are also thankful to the
reviewers for helpful comments. Antoine Wehenkel is
a research fellow of the F.R.S.-FNRS (Belgium) and
acknowledges its financial support. Gilles Louppe is
recipient of the ULiège - NRB Chair on Big data and
is thankful for the support of NRB.

References

Matúš Bezek. Characterizing dag-depth of directed
graphs. arXiv preprint arXiv:1612.04980, 2016.

David Maxwell Chickering, David Heckerman, and
Christopher Meek. Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine
Learning Research, 5(Oct):1287–1330, 2004.

Nicola De Cao, Ivan Titov, and Wilker Aziz.
Block neural autoregressive flow. arXiv preprint
arXiv:1904.04676, 2019.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Block
neural autoregressive flow. In Uncertainty in Artifi-
cial Intelligence, pages 1263–1273. PMLR, 2020.

Laurent Dinh, David Krueger, and Yoshua Bengio.
Nice: Non-linear independent components estima-
tion. In International Conference in Learning Rep-
resentations workshop track, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. In In-
ternational Conference in Learning Representations,
2017.

Conor Durkan, Artur Bekasov, Iain Murray, and
George Papamakarios. Neural spline flows. In Ad-
vances in Neural Information Processing Systems,
pages 7509–7520, 2019.

F.J. Díez, J. Mira, E. Iturralde, and S. Zubillaga. DI-
AVAL, a Bayesian expert system for echocardiog-
raphy. Artif. Intell. Med., 10(1):59–73, May 1997.
URL https://doi.org/10.1016/s0933-3657(97)
00384-9.

Dan Geiger, Thomas Verma, and Judea Pearl. d-
separation: From theorems to algorithms. In Un-
certainty in Artificial Intelligence, volume 10, pages
139–148. Elsevier, 1990. URL https://doi.org/
10.1016/b978-0-444-88738-2.50018-x.

Mathieu Germain, Karol Gregor, Iain Murray, and
Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference
on Machine Learning, pages 881–889, 2015.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt,
Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable re-
versible generative models. In International Con-
ference on Machine Learning, 2018.

David S Greenberg, Marcel Nonnenmacher, and
Jakob H Macke. Automatic posterior transforma-
tion for likelihood-free inference. arXiv preprint
arXiv:1905.07488, 2019.

Chin-Wei Huang, David Krueger, Alexandre Lacoste,
and Aaron Courville. Neural autoregressive flows.
arXiv preprint arXiv:1804.00779, 2018.

Priyank Jaini, Kira A Selby, and Yaoliang Yu.
Sum-of-squares polynomial flow. arXiv preprint
arXiv:1905.02325, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categori-
cal reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Matthew J Johnson, David K Duvenaud, Alex
Wiltschko, Ryan P Adams, and Sandeep R Datta.

Graphical Normalizing Flows

Composing graphical models with neural networks
for structured representations and fast inference. In
Advances in neural information processing systems,
pages 2946–2954, 2016.

Charles E. Kahn, Linda M. Roberts, Katherine A.
Shaffer, and Peter Haddawy. Construction of a
Bayesian network for mammographic diagnosis of
breast cancer. Comput. Biol. Med., 27(1):19–29,
January 1997. URL https://doi.org/10.1016/
s0010-4825(96)00039-x.

Ilyes Khemakhem, Ricardo Pio Monti, Robert Leech,
and Aapo Hyvärinen. Causal autoregressive flows.
arXiv preprint arXiv:2011.02268, 2020.

Sungwon Kim, Sang-gil Lee, Jongyoon Song, Jaehyeon
Kim, and Sungroh Yoon. Flowavenet: A generative
flow for raw audio. arXiv preprint arXiv:1811.02155,
2018.

Durk P Kingma and Prafulla Dhariwal. Glow: Gener-
ative flow with invertible 1x1 convolutions. In Ad-
vances in Neural Information Processing Systems,
pages 10236–10245, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. Im-
proved variational inference with inverse autoregres-
sive flow. In Advances in neural information process-
ing systems, pages 4743–4751, 2016.

Ivan Kobyzev, Simon Prince, and Marcus Brubaker.
Normalizing flows: An introduction and review of
current methods. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

Daphne Koller and Nir Friedman. Probabilistic graph-
ical models: Principles and techniques. MIT press,
2009.

Sébastien Lachapelle, Philippe Brouillard, Tristan
Deleu, and Simon Lacoste-Julien. Gradient-
based neural dag learning. arXiv preprint
arXiv:1906.02226, 2019.

Chris J Maddison, Andriy Mnih, and Yee Whye
Teh. The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712, 2016.

Junier Oliva, Avinava Dubey, Manzil Zaheer, Barn-
abas Poczos, Ruslan Salakhutdinov, Eric Xing, and
Jeff Schneider. Transformation autoregressive net-
works. In International Conference on Machine
Learning, pages 3895–3904, 2018.

George Papamakarios, Theo Pavlakou, and Iain Mur-
ray. Masked autoregressive flow for density estima-
tion. In Advances in Neural Information Processing
Systems, pages 2338–2347, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Laksh-

minarayanan. Normalizing flows for probabilis-
tic modeling and inference. arXiv preprint
arXiv:1912.02762, 2019a.

George Papamakarios, David C Sterratt, and Iain
Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows.
In 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS), 2019b.

Judea Pearl and Stuart Russell. Bayesian networks.
California Digital Library, 2011.

Ryan Prenger, Rafael Valle, and Bryan Catanzaro.
Waveglow: A flow-based generative network for
speech synthesis. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 3617–3621. IEEE,
2019.

Danilo Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In International
Conference on Machine Learning, pages 1530–1538,
2015.

Oren Rippel and Ryan Prescott Adams. High-
dimensional probability estimation with deep den-
sity models. arXiv preprint arXiv:1302.5125, 2013.

K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and
G. P. Nolan. Causal protein-signaling networks de-
rived from multiparameter single-cell data. Science,
308:523–529, 2005.

Robert Sedgewick and Kevin Wayne. Algorithms.
Addison-wesley professional, 2011.

Flávio Luiz Seixas, Bianca Zadrozny, Jerson
Laks, Aura Conci, and Débora Christina
Muchaluat Saade. A Bayesian network de-
cision model for supporting the diagnosis of
dementia, alzheimer’s disease and mild cog-
nitive impairment. Comput. Biol. Med.,
51:140–158, August 2014. URL https:
//doi.org/10.1016/j.compbiomed.2014.04.010.

Peter Spirtes, Clark Glymour, and Richard Scheines.
Causation, Prediction, and Search. The MIT Press,
2001. URL https://doi.org/10.7551/mitpress/
1754.001.0001.

Esteban G Tabak and Cristina V Turner. A family of
nonparametric density estimation algorithms. Com-
munications on Pure and Applied Mathematics, 66
(2):145–164, 2013.

Esteban G Tabak, Eric Vanden-Eijnden, et al. Den-
sity estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):
217–233, 2010.

Jan-Willem van de Meent, Brooks Paige, Hongseok
Yang, and Frank Wood. An introduction

Antoine Wehenkel, Gilles Louppe

to probabilistic programming. arXiv preprint
arXiv:1809.10756, 2018.

Rianne Van Den Berg, Leonard Hasenclever, Jakub M
Tomczak, and Max Welling. Sylvester normaliz-
ing flows for variational inference. arXiv preprint
arXiv:1803.05649, 2018.

Aäron Van Den Oord, Yazhe Li, Igor Babuschkin,
Karen Simonyan, Oriol Vinyals, Koray
Kavukcuoglu, George Driessche, Edward Lock-
hart, Luis Cobo, Florian Stimberg, et al. Parallel
WaveNet: Fast high-fidelity speech synthesis. In
International Conference on Machine Learning,
pages 3915–3923, 2018.

Antoine Wehenkel and Gilles Louppe. Unconstrained
monotonic neural networks. In Advances in Neural
Information Processing Systems, pages 1543–1553,
2019.

Antoine Wehenkel and Gilles Louppe. You say normal-
izing flows i see bayesian networks. arXiv preprint
arXiv:2006.00866, 2020.

Christian Weilbach, Boyan Beronov, Frank Wood, and
William Harvey. Structured conditional continuous
normalizing flows for efficient amortized inference
in graphical models. In International Conference
on Artificial Intelligence and Statistics, pages 4441–
4451. PMLR, 2020.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN:
Dag structure learning with graph neural networks.
In International Conference on Machine Learning,
pages 7154–7163, 2019.

Xun Zheng, Bryon Aragam, Pradeep K Ravikumar,
and Eric P Xing. DAGs with NO TEARS: Con-
tinuous optimization for structure learning. In Ad-
vances in Neural Information Processing Systems,
pages 9472–9483, 2018.

Xun Zheng, Chen Dan, Bryon Aragam, Pradeep
Ravikumar, and Eric Xing. Learning sparse non-
parametric dags. In International Conference on Ar-
tificial Intelligence and Statistics, pages 3414–3425.
PMLR, 2020.

Graphical Normalizing Flows

A Optimization procedure

Algorithm 2 Main Loop
epoch← 0
while !Stopping criterion do

foreach batch X ∈ Xtrain do
loss← computeLoss(flow, X)
optimize(flow, loss)

lossvalid ← computeLoss(flow,Xtest)
epoch← epoch+ 1
updateCoefficients(flow, epoch, lossvalid)
if isDagConstraintNull(flow) then

PostProcess(flow)

The method computeLoss(flow, X) is computed as described by equation (8). The optimize(flow, loss) method
performs a backward pass and an optimization step with the chosen optimizer (Adam in our experiments). The
post-processing is peformed by PostProcess(flow) and consists in thresholding the values in A such that the
values below a certain threshold are set to 0 and the other values to 1, after post-processing the stochastic door
is deactivated. The threshold is the smallest real value that makes the equivalent graph acyclic. The method
updateCoefficients() updates the Lagrangian coefficients as described in section 4.4.

B Jacobian of graphical conditioners

Proposition B.1. The absolute value of the determinant of the Jacobian of a normalizing flow step based on
graphical conditioners is equal to the product of its diagonal terms.

Proof. Proposition B.1 A Bayesian Network is a directed acyclic graph. Sedgewick and Wayne [2011] showed
that every directed acyclic graph has a topological ordering, it is to say an ordering of the vertices such that
the starting endpoint of every edge occurs earlier in the ordering than the ending endpoint of the edge. Let us
suppose that an oracle gives us the permutation matrix P that orders the components of g in the topological
defined by A. Let us introduce the following new transformation gP (xP) = Pg(P−1(Px)) on the permuted
vector xP = Px. The Jacobian of the transformation gP (with respect to xP) is lower triangular with diagonal
terms given by the derivative of the normalizers with respect to their input component. The determinant of such
Jacobian is equal to the product of the diagonal terms. Finally, we have

|det(JgP (xP))| = |det(P)||det(Jg(x))|
|det(P)|
|det(P)|

= |det(Jg(x))|,

because of (1) the chain rule; (2) The determinant of the product is equal to the product of the determinants;
(3) The determinant of a permutation matrix is equal to 1 or −1. The absolute value of the determinant of
the Jacobian of g is equal to the absolute value of the determinant of gP , the latter given by the product of
its diagonal terms that are the same as the diagonal terms of g. Thus the absolute value of the determinant of
the Jacobian of a normalizing flow step based on graphical conditioners is equal to the product of its diagonal
terms.

C Experiments on topology learning

C.1 Neural networks architecture

We use the same neural network architectures for all the experiments on the topology. The conditioner functions
hi are modeled by shared neural networks made of 3 layers of 100 neurons. When using UMNNs for the normalizer
we use an embedding size equal to 30 and a 3 layers of 50 neurons MLP for the integrand network.

Antoine Wehenkel, Gilles Louppe

Figure 4: Ground truth adjacency matrices. Black squares denote direct connections and in light grey is their transposed.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

(a) Arithmetic Circuit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b) 8 Pairs

1 2 3 4 5 6 7

1

2

3

4

5

6

7

(c) Tree

1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

8

9

10

11

(d) Human Proteins

C.2 Dataset description

Arithmetic Circuit The arithmetic circuit reproduced the generative model described by Weilbach et al.
[2020]. It is composed of heavy tailed and conditional normal distributions, the dependencies are non-linear. We
found that some of the relationships are rarely found by during topology learning, we guess that this is due to
the non-linearity of the relationships which can quickly saturates and thus almost appears as constant.

8 pairs This is an artificial dataset made by us which is a concatenation of 8 2D toy problems borrowed from
Grathwohl et al. [2018] implementation. These 2D variables are multi-modal and/or discontinuous. We found
that learning the independence between the pairs of variables is most of the time successful even when using
affine normalizers.

Tree This problem is also made on top of 2D toy problems proposed by Grathwohl et al. [2018], in particular
a sample X = [X1, . . . , X7]

T is generated as follows:

1. The pairs variables (X1, X2) and (X3, X4) are respectively drawn from Circles and 8-Gaussians;

2. X5 ∼ N (max(X1, X2), 1);

3. X6 ∼ N (min(X3, X4), 1);

4. X7 ∼ 0.5N (sin(X5 +X6), 1) + 0.5N (cos(X5 +X6), 1).

Human Proteins A causal protein-signaling networks derived from single-cell data. Experts have annoted 20
ground truth edges between the 11 nodes. The dataset is made of 7466 entries which we kept 5, 000 for training
and 1, 466 for testing.

C.3 Additional experiments

Fig. 5 and Fig. 6 present the test log likelihood as a function of the `1-penalization on the four datasets for
monotonic and affine normalizers respectively. It can be observed that graphical conditioners perform better
than autoregressive ones for certain values of regularization and when given a prescribed topology in many cases.
It is interesting to observe that autoregressive architectures perform better than a prescribed topology when an
affine normalizer is used. We believe this is due to the non-universality of mono-step affine normalizers which
leads to different modeling trade-offs. In opposition, learning the topology improves the results in comparison
to autoregressive architectures.

D Tabular density estimation - Training parameters

Table 6 provides the hyper-parameters used to train the normalizing flows for the tabular density estimation
tasks. In our experiments we parameterize the functions hi with a unique neural network that takes a one hot
encoded version of i in addition to its expected input x� Ai,:. The embedding net architecture corresponds to
the network that computes an embedding of the conditioning variables for the coupling and DAG conditioners,

Graphical Normalizing Flows

Figure 5: Test log-likelihood as a function of `1-penalization for monotonic normalizers. The red horizontal line is the
average result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.

0 20 40 60 80 100
2

0

2

4

(a) Arithmetic Circuit

0 20 40 60 80 100
9.0

8.5

8.0

7.5

7.0

(b) Tree

0 20 40 60 80 100

20

10

0

10

(c) Human Proteins

Figure 6: Test log-likelihood as a function of `1-penalization for affine normalizers. The red horizontal line is the average
result when given a prescribed topology, the green horizontal line is the result with an autoregressive conditioner.

0 20 40 60 80 100
l1

10

9

8

7

6

5

4

Av
er

ag
e

te
st

 lo
g-

lik
el

ih
oo

d

(a) Arithmetic Circuit

0 20 40 60 80 100
l1

14

13

12

11

10

9

Av
er

ag
e

te
st

 lo
g-

lik
el

ih
oo

d

(b) Tree

0 20 40 60 80 100
l1

35

30

25

20

15

10

5

0

Av
er

ag
e

te
st

 lo
g-

lik
el

ih
oo

d

(c) Human Proteins

0 20 40 60 80 100
l1

25

24

23

22

21

20

19

Av
er

ag
e

te
st

 lo
g-

lik
el

ih
oo

d

(d) 8 Pairs

for the autoregressive conditioner it corresponds to the architecture of the masked autoregressive network. The
output of this network is equal to 2 (2 × d for the autoregressive conditioner) when combined with an affine
normalizer and to an hyper-parameter named embedding size when combined with a UMNN. The number of
dual steps corresponds to the number of epochs between two updates of the DAGness constraint (performed as
in Yu et al. [2019]).

Dataset POWER GAS HEPMASS MINIBOONE BSDS300

Batch size 2500 10000 100 100 100

Integ. Net 3 × 100 3 × 200 3 × 200 3 × 40 3 × 150

Embedd. Net 3 × 60 3 × 80 3 × 210 3 × 430 3 × 630

Embed. Size 30 30 30 30 30

Learning Rate 0.001 0.001 0.001 0.001 0.001

Weight Decay 10−5 10−3 10−4 10−2 10−4

λ`1 0 0 0 0 0

Table 6: Training configurations for density estimation tasks.

In addition, in all our experiments (tabular and MNIST) the integrand networks used to model the monotonic
transformations have their parameters shared and receive an additional input that one hot encodes the index
of the transformed variable. The models are trained until no improvement of the average log-likelihood on the
validation set is observed for 10 consecutive epochs.

E Density estimation of images

We now demonstrate how graphical conditioners can be used to fold in domain knowledge into NFs by per-
forming density estimation on MNIST images. The design of the graphical conditioner is adapted to images
by parameterizing the functions hi with convolutional neural networks (CNNs) whose parameters are shared
for all i ∈ {1, ..., d} as illustrated in Fig. 7. Inputs to the network hi are masked images specified by both
the adjacency matrix A and the entire input image x. Using a CNN together with the graphical conditioner
allows for an inductive bias suitably designed for processing images. We consider single step normalizing flows
whose conditioners are either coupling, autoregressive or graphical-CNN as described above, each combined with

Antoine Wehenkel, Gilles Louppe

x Ai,:

Masking operation from the adjacency matrix. CNN

ci(x)

Figure 7: Illustration of how a graphical conditioner’s output ci(x) is computed for images. The sample x, on the left, is
an image of a 4. The stripes denote the pixel xi. The parents of xi in the learned DAG are shown as white pixels on the
mask Ai,:, the other pixels are in black. The element-wise product between the image x and the mask Ai,: is processed
by a convolutional neural network that produces the embedding vector ci(x) conditioning the pixel xi.

Model Neg. LL. Parameters Edges Depth

(a)

G-Affine (1) 1.81±.01 1×106 5016 103

G-Monotonic (1) 1.17±.03 1×106 2928 125

(b)

A-Affine (1) 2.12±.02 3×106 306936 783

A-Monotonic (1) 1.37±.04 3.1×106 306936 783

C-Affine (1) 2.39±.03 3×106 153664 1

C-Monotonic (1) 1.67±.08 3.1×106 153664 1

(c)
A-Affine (5) 1.89±.01 6×106 5×306936 5×783

A-Monotonic (5) 1.13±.02 6.6×106 5×306936 5×783

Table 7: Results on MNIST. The negative log-likelihood
is reported in bits per pixel on the test set over 3 runs
on MNIST, error bars are equal to the standard devia-
tion. The number of edges and the depth of the equivalent
Bayesian network is reported. Results are divided into 3
categories: (a) The architectures introduced in this work.
(b) Classical single-step architectures. (c) The best per-
forming architectures based on multi-steps autoregressive
flows.

Figure 8: The in (a) and out (b) degrees of the nodes in
the equivalent BN learned in the MNIST experiments.

either affine or monotonic normalizers. The graphical conditioners that we use include an additional inductive
bias that enforces a sparsity constraint on A and which prevents a pixel’s parents to be too distant from their
descendants in the images. Formally, given a pixel located at (i, j), only the pixels (i± l1, j± l2), l1, l2 ∈ {1, ..., L}
are allowed to be its parents. In early experiments we also tried not constraining the parents and observed slower
but successful training leading to a relevant structure.

Results reported in Table 7 show that graphical conditioners lead to the best performing affine NFs even if
they are made of a single step. This performance gain can probably be attributed to the combination of both
learning a masking scheme and processing the result with a convolutional network. These results also show that
when the capacity of the normalizers is limited, finding a meaningful factorization is very effective to improve
performance. The number of edges in the equivalent BN is about two orders of magnitude smaller than for
coupling and autoregressive conditioners. This sparsity is beneficial for the inversion since the evaluation of the
inverse of the flow requires a number of steps equal to the depth [Bezek, 2016] of the equivalent BN. Indeed, we
find that while obtaining density models that are as expressive, the computation complexity to generate samples
is approximately divided by 5×784

100 ≈ 40 in comparison to the autoregressive flows made of 5 steps and comprising
many more parameters.

These experiments show that, in addition to being a favorable tool for introducing inductive bias into NFs,
graphical conditioners open the possibility to build BNs for large datasets, unlocking the BN machinery for
modern datasets and computing infrastructures.

Graphical Normalizing Flows

F MNIST density estimation - Training parameters

For all experiments the batch size was 100, the learning rate 10−3, the weight decay 10−5. For the graphical
conditioners the number of epochs between two coefficient updates was chosen to 10, the greater this number
the better were the performance however the longer is the optimization. The CNN is made of 2 layers of 16
convolutions with 3 × 3 kernels followed by an MLP with two hidden layers of size 2304 and 128. The neural
network used for the Coupling and the autoregressive conditioner are neural networks with 3 × 1024 hidden
layers. For all experiments with a monotonic normalizer the size of the embedding was chosen to 30 and the
integral net was made of 3 hidden layers of size 50. The models are trained until no improvements of the average
log-likelihood on the validation set is observed for 10 consecutive epochs.

8.3 epilogue 135

8.3 epilogue

8.3.1 Inductive bias in normalizing flows.

The Lipschitz constant can be a good summary of the continuous machine learning
models’ complexity [Virmaux and Scaman, 2018; Weng et al., 2018; Bartlett et al., 2017].
Hence we may prevent overfitting by choosing the model with the smallest Lipschitz
constant between many fitting equally well the train set [von Luxburg and Bousquet,
2004]. We usually control the Lipschitz constant of the model only implicitly, e.g. by
penalising the norm of the weights [Krogh and Hertz, 1991] or adding stochasticity in
the learning algorithm [Smith et al., 2021; Bottou, 2012]. However, such strategies turn
inefficient when the loss function favours models with large Lipschitz constants.
As shown in Figure 8.1, the Lipschitz constant of normalizing flows and overfitting are

correlated. Indeed, we optimise the likelihood of the NF, which is directly related to the
Lipschitz constant of the modelled density. The density is a function of its first-order
derivative with respect to the input – the Lipshitz constant bounds the likelihood and
the highest density peak. The Lipschitz constant can quickly explode for small training
sets. Indeed, expressive models may discover spurious relationships between variables.
These spurious relationships are complicated and lead to large Lipschitz constants. Thus
by enforcing independencies, prescribed or discovered in the data, graphical normalizing
flows may avoid these traps and overfit less. Meanwhile, the relationships discover by
graphical normalizing flows are simpler and generalise better.
There may also exist a genuine deterministic relationship between variables which

implies that the data lie on a manifold. For instance, let us consider predicting the
distribution of birds on the world atlas. We must choose between a distribution over
3D real numbers or 2D longitudinal and latitudinal coordinates that encode the birds’
position. On the one hand, the 3D parameterisation contains a non-spurious deterministic
relationship which is the equation of the surface of the atlas. On the other hand, the
latter formalisation does not operate with real numbers, nor in an euclidean space. In
this context, graphical normalizing flows cannot help much. However, there is a rich
litterature [Köhler et al., 2021; Mathieu and Nickel, 2020; Gemici et al., 2016; Kalatzis
et al., 2021; Rezende et al., 2020] about normalizing flows on manifolds, which can help
prevent numerical instabilities and also provide a powerful inductive bias to ease the
learning task.
Finally, another way to improve the inductive bias of normalizing flows is to design

invertible layers that mimic effective non-invertible architectures. This translation is not
always straightforward, but it can be worth the time spent. Glow [Kingma and Dhariwal,
2018] is a perfect example; they borrow ideas from convolutions, pooling, and hierarchical
VAEs to achieve state-of-the-art image synthesis at the time.

136 structured density estimation

0 1000 2000 3000
Epoch

-1.2

-1.4

-1.6

-1.8

Lo
g-

lik
el

ih
oo

d

Training average log-likelihood
Testing average log-likelihood
Lipschitzness

12

8

4

0

Li
ps

ch
itn

es
s

Figure 8.1: Evolution of the Lipschitz constant of a normalizing flow’s log-likelihood along train-
ing with the corresponding learning and testing log-likelihood. The training and test
sets are composed of 100 iid samples from a mixture of two Gaussian distributions.
We reproduce the training 20 times and plot the corresponding mean signals. The
shaded area represents one standard deviation. As training continues overfitting, the
gap between training and testing performance increases with the Lipschitz constant
of the flow’s log-likelihood.

8.3 epilogue 137

8.3.2 Scientific impact

The graphical conditioner unifies autoregressive and coupling layers under a unique ar-
chitecture with a non-singular binary matrix that controls the topology. This unification
can ease the search for the best architecture and simplify the code behind different types
of normalizing flows. As discussed, the main feature of graphical normalizing flows is to
provide an explicit treatment of independencies. Not only does this offers more inter-
pretability, but it is also a new inductive bias that can help avoid overfitting. One-step
graphical normalizing flows achieve performance on par with multiple steps flows but have
a reduced complexity for generating samples. Graphical normalizing flows also emphasise
that powerful models rely on strong assumptions and are not often purely data-driven.
According to Google Scholar, our paper has received 17 citations between its publica-

tion at AISTATS in April 2021 and August 2022. Among these, we notice the work from
Mouton and Kroon [2022a] that combine residual networks with graphical normalizing
flows to improve the stability and efficiency of computing the inverse transformation. In
Mouton and Kroon [2022b], the same authors exploit the additional structure of graphi-
cal normalizing to improve VAEs. Another line of work proposed by Balgi et al. [2022b] is
using graphical normalizing flows to discover causal structures. They show that graphical
NFs may find relevant relationships and are well suited for counterfactual inference.

8.3.3 Conclusion and opportunities

We have introduced a new type of normalizing flow that combines Bayesian networks
with neural networks. This architecture emphasises the importance of making assump-
tions when learning probabilistic models and eases the handling of independencies within
the Normalizing flow framework. As a nice byproduct, graphical normalizing flows unify
autoregressive and coupling transformers under a unique layer. In addition to being an ex-
pressive graphical and deep probabilistic model, subsequent work has also demonstrated
that graphical normalizing flows can be equipped with a causal flag in specific contexts.
Graphical normalizing flows also have substantial limitations. One of them is that

they lose the Bayesian network interpretation as soon as the number of NF steps exceeds
one. This restriction is inconsequential as one-step graphical flows are universal density
approximators; there is no substantial motivation for stacking multiple steps. When in-
dependence assumptions live, we think that graphical normalizing flows should be tested
and might better represent the phenomenon of interest than other types of flows.
A critical limitation of normalizing flows exists when there is no prescribed indepen-

dence, and we aim to discover them from data. Although graphical NFs may learn relevant
Bayesian network topologies and generalise better than alternative flow architectures, the
corresponding optimisation problem is hard to solve. An exciting line of future work would
be to work out the numerical stability of the Lagrangian optimisation, as proposed by
Ng et al. [2022]. Another issue of our method happens during optimisation when the

138 structured density estimation

topology does not correspond to a directed acyclic graph. Hence, the corresponding nor-
malizing flow is not invertible, which impedes the inverse theorem from providing an
exact likelihood. In the future, it would be worth exploring whether sampling sub-graphs
that are acyclic improves the overall learning algorithm.
A complete Bayesian treatment of normalizing flows is out-of-reach. They rely on neu-

ral networks, and Bayesian neural networks [MacKay, 1995] are still an active research
area. It is unclear whether one day we will be able to express effectively prior and poste-
rior distributions over neural networks. Less ambitious but potentially worthy, expressing
distributions over (conditional) independence might be an alternative that could provide
valuable insights into the learnt models. In particular, we believe that graphical normal-
izing flows combined with an efficient sampling strategy that builds a valid Bayesian
network structure from the posterior distribution over (conditional) independence might
become an effective modelling strategy.
To conclude, we have once again demonstrated the relevance of drawing connections

between distinct classes of models. Here, we have argued that Bayesian networks and
normalizing flows share in common the factorisation of a joint density via the Bayes’ rule.
This new perspective enables exploiting topology discovery algorithms within normalizing
to improve the expressivity of their inductive bias. We have demonstrated the relevance
of acknowledging independence assumptions when possible and discovering them to avoid
overfitting and learn better models.

Figure 8.2: An old painting of Isaac Newton writing the theory of gravity in the language of
probability and questioning the role of models in the world. As seen by DALL · E 2.

If I have seen further, it is by standing on shoulders of giants.

Isaac Newton

9
HYBRID PROBABIL I ST IC MODELS

Outline

In this chapter we explore deep probabilistic models informed by expert
models, hybrid models. We formalise hybrid learning within the proba-
bilistic modelling framework and demonstrate that hybrid models exhibit
greater generalisation capabilities than classical machine learning models.
Hybrid models reduce the misspecification of expert models with a ma-
chine learning (ML) component learned from data. We leverage the insight
that the expert model is usually valid even outside the training domain
to introduce a hybrid data augmentation strategy termed expert augmen-
tation. In contrast to many ML algorithms, the performance guarantees
of hybrid models trained with expert augmentation are not limited to the
training distribution. We validate the practical benefits of augmented hy-
brid models on a set of controlled experiments and reflect on the broader
impact that hybrid learning may have shortly.

9.1 prologue

In this thesis, we have presented various algorithms to help practitioners build models
from data. The previous chapter has shown that inductive bias is necessary to learn
models from medium or high-dimensional data. Following the growing deployments of ML
solutions into the real world [Wehenkel, 1998] and the related demand for performance
guarantees throughout their lifetime [Lwakatare et al., 2020], the ML research community
has gained interest in out-of-distribution robustness [Sehwag et al., 2019; Hendrycks
et al., 2021]. Machine learning algorithms are not anymore judged only on their ability
to produce faithful models inside the training distribution but also on the behaviour of
these models in out-of-distributions scenarios.
Although the concept of out-of-distribution robustness seems appealing, it does not

clearly say what we seek. To use this concept rigorously, we argue that we shall first answer
the following related questions: • What is in-distribution? • What is out-of-distribution?
• What is the measure of robustness? Refusing to answer one of these questions will
inevitably lead to an ill-posed ML problem. It is essential to notice the distinction be-
tween out-of-distribution and not in-distribution. In practice, we might need to restrain
ourselves to out-of-distribution settings that correspond to a well-defined subset of what

141

142 hybrid probabilistic models

is not in distribution. Finally, we shall be able to express robustness with a quantitative
metric.
Hybrid models are the ones that explicitly combine expert models with a machine

learning component. They constitute an excellent alternative to purely data-driven solu-
tions and expert models that rely on assumptions often violated in practice. We expect
that hybrid models require less data to achieve performance on par with ML models.
They may also exhibit better interpretability. In addition, we argue that hybrid models
are particularly well suited to work within the context of out-of-distribution robustness.
Indeed, the expert model often depends on a low-dimensional set of parameters for which
we can provide an informed definition of in-distribution and out-of-distribution.

In line with this argument, we propose an augmentation strategy based on the expert
model that enforces a well-defined notion of robustness for a specific out-of-distribution
scenario. We show that existing hybrid learning algorithms may learn effective represen-
tation but require an additional augmentation step to exhibit robustness. This chapter
demonstrates that informed machine learning may achieve results that are out of reach
for uninformed solutions. It also shows, once again, that combining various models may
be beneficial.

9.2 robust hybrid learning with expert augmentation

9.2.1 Author contributions

I co-authored this paper during an internship at Apple within the Health AI team led by
Guillermo Sapiro. Hsu Hiang initially explored the idea of combining expert models with
machine learning under the advisory of Jens Behrmann and Jörn-Henrik Jacobsen. I took
over Hsu’s work and, together with Jens and Jörn, we explored a probabilistic formulation
of hybrid modelling and out-of-distribution robustness. We designed the experiments
together, and I wrote the code corresponding to the two hybrid modelling frameworks
(APHYNITY and the hybrid-VAE) used in this project. Gilles helped write the paper
and design additional experiments to check the robustness of the expert augmentation in
different settings. Guillermo gave feedback on the manuscript. Finally, Gilles, Jens, and
Jörn gave feedback on the manuscript and helped me improve its writing.

9.2.2 Reading tips

The methods explored in the paper are specific to hybrid learning and have not been de-
scribed in the background. Thus we encourage the reader to carefuly review the complete
paper.

Robust Hybrid Learning With Expert Augmentation

Antoine Wehenkel 1 2 Jens Behrmann 3 Hsiang Hsu 4 2 Guillermo Sapiro 3 Gilles Louppe 1

Jörn-Henrik Jacobsen 3

Abstract

Hybrid modelling reduces the misspecification
of expert models by combining them with ma-
chine learning (ML) components learned from
data. Like for many ML algorithms, hybrid model
performance guarantees are limited to the training
distribution. Leveraging the insight that the expert
model is usually valid even outside the training do-
main, we overcome this limitation by introducing
a hybrid data augmentation strategy termed expert
augmentation. Based on a probabilistic formal-
ization of hybrid modelling, we show why expert
augmentation improves generalization. Finally,
we validate the practical benefits of augmented
hybrid models on a set of controlled experiments,
modelling dynamical systems described by ordi-
nary and partial differential equations.

1. Introduction
Generalization to unseen data is a key property of a use-
ful model. When training and test data are independently
and identically distributed (IID), one way to check general-
ization is by evaluating the model on a held out subset of
the training data or with k-fold cross validation. Unfortu-
nately, this setting is often unrealistic because the training
scenario is rarely fully representative of the test scenario.
This has motivated lot of recent research efforts to focus
on the robustness of ML models (Gulrajani & Lopez-Paz,
2020; Geirhos et al., 2020; Koh et al., 2021). Common
strategies can be broadly grouped in two categories: The
first class of methods aims at aligning specific properties of
the model (e.g., invariance, equivariance, monotonicity, etc.)
with expertise on the problem of interest (Cubuk et al., 2019;
Mahmood et al., 2021; Keriven & Peyré, 2019; Silver et al.,
2017). The second category is data focused (Sagawa et al.,
2019; Arjovsky et al., 2019; Krueger et al., 2021; Creager
et al., 2021) and leverages variations present in the training

*Equal contribution 1University of Liege 2Work done as an
intern at Apple 3Apple 4Harvard University. Correspondence to:
Antoine Wehenkel <antoine.wehenkel@uliege.be>.

Copyright 2022 by the author(s).

Figure 1. APHYNITY, an existing hybrid modelling strategy, is
unable to predict accurately the dynamic of a 2D diffusion reac-
tion for a shifted test distribution although it predicts well con-
figuration that follows the training distribution. On the opposite,
APHYNITY+, the same model fine-tuned with our data augmen-
tation, generalizes to shifted distributions as expected from the
validity of the underlying physics.

data, e.g. by minimizing worst case sub-group performance,
to achieve robustness.

The data oriented methods, which include Group-
DRO (Sagawa et al., 2019) and Invariant Risk Minimiza-
tion (Arjovsky et al., 2019, IRM), can be very appealing be-
cause they only require implicit specification of invariances
via domains or environments. However, these methods’ per-
formance is limited to variations present in the training data
and the inductive bias of the ML algorithm. This may be in-
sufficient when the modelling problem is too complex or the
variations of interest are not present in the training data. On
the other hand, methods based on domain-specific expertise
do not suffer from such limitations. Embedding expertise
into a model can be done via architectural inductive biases
(LeCun et al., 1995; Xu et al., 2018), data augmentation
(Cubuk et al., 2019), or a learning objective (Cranmer et al.,
2020) that enforces established symmetries of the problem.
As an example, simple data augmentation techniques com-
bined with convolutions lead to excellent performance on
natural image problems (Cubuk et al., 2019). Another nat-
ural approach to embed expertise in ML models, and the
one studied in this paper, is called hybrid learning (HyL).
HyL combines an expert model (e.g., physics-motivated
equations) with a learned component that improves the ex-
pert model so that the combination better fits real-world

Robust Hybrid Learning With Expert Augmentation

data. A particularity of HyL is the central role played by the
expertise, which is supposed to provide a simple and well-
grounded parametric description of the process considered.
HyL usually considers the expert model as an analytical
function, or as a set of equations, that relates the expert
parameters to the quantity of interest. The expert model
is often motivated by the underlying physics of the system
considered. Hence, we will use the terms expert model and
physical model interchangeably.

In recent work (Yin et al., 2021; Takeishi & Kalousis, 2021;
Qian et al., 2021; Mehta et al., 2020; Lei & Mirams, 2021;
Reichstein et al., 2019), HyL demonstrated success in com-
plementing partial physical models and improving the infer-
ence of the corresponding parameters. However, contrarily
to the common belief that HyL achieves better generaliza-
tion than black box ML models, we argue that hybrid models
do not meet their promise regarding robustness. Although
HyL achieves strong performance on IID test distributions
by exploiting the inductive bias of the expert models, we
show that their performance collapses when the test domain
is not included in the training domain. This is unsatisfactory
as the expert model is typically well-defined for a range of
parameters that can correspond to realistic data far outside
of the training distribution. A test distribution not covered
by the training data, but for which an expert model exists,
happens often in the real world. As an example, Qian et al.
(2021) apply HyL to a pharmacological model describing
the effect of a COVID-19 treatment for which only a lim-
ited quantity of real-world data is available. In this context,
although the underlying biochemical dynamic of treatments
is well modelled, data is often scarce and biased. Therefore,
the hybrid model does not necessarily generalize to con-
figurations that are well modelled by the pharmacological
model but unseen during training.

We introduce expert augmentations for training augmented
hybrid models (AHMs), a procedure that extends the range
of validity of hybrid models and improves generalization as
pictured by Figure 1. Our contribution is to first formalise
the HyL problem as: 1) Learning a probabilistic model par-
tially defined by the expert model; 2) Performing inference
over this probabilistic hybrid model. In this context, we
show that HyL is vulnerable to distribution shifts for which
the expert model is well defined (see Figure 1, bottom row).
Motivated by our analysis, we propose to fine-tune the hy-
brid model on an expert-augmented dataset that includes
distribution shifts (see results of augmentation in Figure 1,
middle row). These expert augmentations only rely on the
hybrid model itself, leveraging that the expert model is also
well-defined outside of the training distribution. Our exper-
iments on various controlled HyL problems demonstrate
that AHMs achieve multiple orders of magnitude superior
generalization in realistic situations and can be applied to
any state-of-the-art HyL algorithm.

Ze X Za

Ye Y

Expert model

Figure 2. A hybrid probabilistic model which describes the rela-
tionship between the input X and the output Y for a configuration
of the system as defined by the latent variables Ze and Za. The pre-
scribed expert model defines the conditional density p(ye|ze, x),
where Ye is an approximation of Y . Hybrid learning aims at
learning the conditional distribution p(y|za, ye, x).

2. Hybrid learning
In order to show that our proposed expert augmentations
lead to robust models, we first formalize hybrid learning
with the probabilistic model depicted in Figure 2. In this
Bayesian network, capital letters denote random variables
(e.g., Y) and, in the following, we will use calligraphic let-
ters for the domain of the corresponding realization (e.g.,
y ∈ Y). In our formalism, the expert model is a conditional
density p(ye|x, ze) that describes the distribution of the
expert response Ye to an input x together with a parametric
description of the system ze, denoting expert or physical
parameters. We augment the expert model with the interac-
tion model which is a conditional distribution p(y|x, ye, za)
that describes the distribution of the observation Y given
the input x, the expert model response ye, and a parametric
description of the interaction model za.

Our final goal is to create a robust predictive model
p(y|x, (xo, yo)) of the random variable Y , given the input x
together with independent observations (xo, yo) of the same
system, where the subscript o denotes an observed quantity.
As a concrete example, we consider predicting the evolution
of a damped pendulum (described in Section 4.1) given its
initial angle and speed (x =

[
θ, θ̇
]
) and a sequence of obser-

vations of the same pendulum. The expert model we assume
is able to describe a frictionless pendulum whose dynamic is
only characterized by one parameter ze := ω0, denoting its
fundamental frequency. A perfect description of the system
should model the friction with a second parameter za := α,
the damping factor. In this problem, (xo, yo) and (x, y) are
IID realization of the same pendulum which corresponds,
in general terms, to samples from p(x, y|za, ze) for some
fixed but unknown values of za and ze. The expert variables
ze (e.g., ω0) together with za (e.g., α) should accurately
describe the system that produces Y (e.g., the evolution of
the pendulum’s angle and speed along time) from X (e.g.,
the initial pendulum’s state). In our setting we assume that
we are given a pair (xo, yo) (e.g., past observations) from

Robust Hybrid Learning With Expert Augmentation

which we can accurately infer the state of the system (za, ze)
as described by the interaction and expert models, and then
predict the distribution of Y for a given input x (e.g., fore-
casting future observations) to the same system. Because
the interaction between ze and y is essentially defined by
the expert model, it should be possible, and preferable, to
learn an accurate predictive model of Y whose accuracy is
independent from the training distribution of the expert vari-
ables ze. Provided all probability distributions in Figure 2
are known, the Bayes optimal hybrid predictor pB can be
written as

pB(y|x, (xo, yo)) = Ep(za,ze|(xo,yo)) [p(y|x, za, ze)] . (1)

We observe that the Bayes optimal predictor explicitly de-
pends on the posterior p(za, ze|(xo, yo)) which is itself a
function of the marginal distribution over ze. This may pre-
clude the existence of a good predictor that is invariant to
shift of p(ze). However, in the following we will consider
that the pair (xo, yo) contains enough information about the
parameters za, ze. As a consequence, the posterior distri-
bution shrinks around the correct parameters value and the
effect of the prior becomes negligible.

2.1. Hybrid generative modelling

We consider expert models that are deterministic; that is,
for which pθ(ye|x, ze) is a Dirac distribution. The expert
model describes the system as a function fe : X ×Ze → Ye
that computes the response ye to an input x, parameterized
by expert variables ze. The goal of hybrid modelling is to
augment the expert model with a learned component from
data as depicted in Figure 2. Formally, given a dataset
D = {(x(i), y(i))}Ni=1 of N IID samples, we aim to learn
the interaction model pθ(y|x, ye, za) that fits the data well
but is close to the expert model. For example, we could
define closeness via a small L2-distance between expert
and hybrid outputs or via a small Kullback-Leibler (KL)
divergence between the marginal distributions of Y and Ye.

Learning a model that is close to the expert model and fits
the training data well is a hard problem. However, the
APHYNITY algorithm (Yin et al., 2021) and the Hybrid-
VAE (Takeishi & Kalousis, 2021, HVAE) are two recent
approaches that offer promising solutions to this problem.
We now briefly describe these two methods and how they
can be used to approximate the Bayes optimal predictor of
(1). Our augmentation strategy is compatible (and effective)
with both approaches.

APHYNITY. Yin et al. (2021) formulate hybrid learning
in a context where the expert model is an ordinary differ-
ential equation (ODE). They consider an additive hybrid
model that should perfectly fit the data, which is equivalent
to assuming the conditional distribution pθ(y|x, ye, za) is
a Dirac distribution. Formally, they solve the optimization

problem

min
ze,Fa

||Fa|| s.t. ∀(x, y) ∈ D,∀t,dyt
dt

= (Fe + Fa)(yt)

with y0 := x, (2)

where || · || is a norm operator on the function space,
Fa : Yt×Za → Yt is a learned function, Fe : Yt×Ze → Yt
defines the expert model and D is a dataset of initial states
x := y0 and sequences y ∈ Y := (Yt)k, where k is the num-
ber of observed timesteps. APHYNITY solves this problem
with Lagrangian optimization and Neural ODEs (Chen et al.,
2018) to compute derivatives. In the context of ODEs, the
random variable X is the initial state of the system at t0 and
Y is the observed sequence of k states between t0 and t1.

This formulation only considers learning a missing dynamic
for one realization of the system described by Figure 2, for
a single za and ze. However, we are interested in learn-
ing a hybrid model that works for the full set of systems
described by Figure 2. As suggested in Yin et al. (2021),
we use an encoder network gψ(·, ·) : X × Y → Za × Ze
that corresponds to a Dirac distribution located at gψ as
the approximate posterior qψ(za, ze|x, y). The interaction
model is a product of Dirac distributions whose locations
correspond to the solution of the ODE

dyt
dt

= Fe(yt, ze) + Fa(yt, za; θ), y0 := x. (3)

Hence the corresponding approximate Bayes predictor re-
places the parameters (za, ze) in (3) with the prediction of
gψ and predicts a product of Dirac distributions.

Hybrid-VAE (HVAE). In contrast to APHYNITY, the
model proposed by Takeishi & Kalousis (2021) is not lim-
ited to additive interactions between the expert model and
the ML model, nor to ODEs. Instead, their goal is to learn
the generative model described by Figure 2. They achieve
this with a variational auto-encoder (VAE) where the de-
coder specifically follows Figure 2. Similarly to the amor-
tized APHYNITY model, the encoder gψ(x, y) predicts
a posterior distribution over za and ze, and the model is
trained with the classical Evidence Lower Bound on the
likelihood (ELBO). Takeishi & Kalousis (2021) observe that
relying only on an architectural inductive bias and maximum
likelihood training is not enough to ground the generative
model to the expert equations. They propose to add three
regularizers RPPC , RDA,1, and RDA,2 that encourage the
generative model to rely on the expert model. The final
objective is

max
θ,ψ

ED [ELBO((x, y);ψ, θ)] + αRPPC + βRDA,1

+ γRDA,2. (4)

The first regularizer, RPPC , encourages the marginal distri-
bution of samples generated by the complete model to be

Robust Hybrid Learning With Expert Augmentation

close to the marginal distribution that would be only gen-
erated by the physical model. The two other regularizers
specifically require the encoder network for ze to be made of
two sub-networks. The first network filters the observations
to keep only what can be generated by the expert model
alone, and the second should map the filtered observations
to the posterior distribution over ze. RDA,1 penalizes the
objective if the observations generated by the expert model
are not close to the filtered observations. Finally, RDA,2
relies on data augmentation with the expert model to enforce
that the second sub-network correctly identifies the expert
variables ze when the observations are correctly filtered. We
refer the reader to Takeishi & Kalousis (2021) for more de-
tails on HVAE. For HVAE, the approximate predictor takes
the form described by (1) where p(za, ze|(xo, yo)) is approx-
imated by the encoder qψ(za, ze|x, y) and p(y|x, ze, za) by
the learned hybrid generative model.

3. Robust hybrid learning
We now formalize our definition of out of distribu-
tion (OOD) and robustness. In general, a test scenario is
OOD if the joint test distribution p̃(x, y) is different from
the training distribution p(x, y), that is d(p̃, p) > 0 for any
properly defined divergence or distance d. In the following,
we reduce our discussion to a sub-class of distribution shifts
for which the marginal train and test distributions over ze
may be different, d(p(ze), p̃(ze)) > 0, but the marginals of
za and x are constant. As a consequence, the joint distri-
bution of (x, y) pairs is also shifted. Formally, the training
and test distributions are respectively defined as

p(x, y) := Ep(ze)p(za)p(ye|ze,x) [p(x)p(y|za, x, ye)] ,
p̃(x, y) := Ep̃(ze)p(za)p(ye|ze,x) [p(x)p(y|za, x, ye)] .

In this context, we demonstrate, theoretically and empir-
ically, that classical hybrid models fail. To address this
failure, we introduce augmented hybrid models and show
that, under some assumptions, they achieve optimal perfor-
mance on both the train and test distributions.

Our goal is to learn a predictive model

pθ,ψ(y|x, (xo, yo)) = Eqψ(za,ze|xo,yo)
p(ye|ze,x)

[pθ(y|ye, x, za)]

that is exact on both the train and test domains when they
follow the aforementioned training and testing distribu-
tion shifts. We say that a learned predictive model p̂(a|b)
is E-exact, or exact on the sample space E , if p̂(a|b) =
p(a|b) ∀(a, b) ∈ E . Here we qualify a predictive model
as robust to a test scenario if its exactness on the training
domain is sufficient to ensure exactness on the test domain.

We now define an augmented distribution
+

p(ze) over the

expert variables whose support
+

Ze includes the joint sup-
port Ze ∪ Z̃e between the train and test distribution of the

physical parameters. As depicted in Figure 3, we denote the
corresponding support over the observation space X × Y
as

+

Ω,Ω, and Ω̃, respectively. In this context, and with A1,
we may demonstrate that even under perfect learning, clas-
sical hybrid learning algorithms do not produce an Ω̃-exact
predictor while our augmentation strategy does.

Assumption 1 (A1): Hybrid modelling learns an interac-

tion model pθ(y|ye, x, za) that is
+

Ω-exact.

Although strong, A1 is consistent with the recent literature
on hybrid modelling, which assumes that p(ye|x, ze) is an
accurate description of the system, thereby pθ(y|ye, x, za)
should not be overly complex. As an example, we con-
sider an additive interaction model in our experiments for
which extrapolation to unseen ye holds if this assumption
is correct. That said, we still notice that the exactness of
the interaction model pθ on

+

Ω is insufficient to prove that

the predictive model pθ,ψ is
+

Ω-exact. Indeed, the encoder
qψ is only trained on the training data and cannot rely on a
strong inductive bias in contrast to pθ. Thus, even if the en-
coder is exact on the training distribution, the corresponding
predictive model does not achieve exactness outside Ω.

3.1. Expert augmentation

We propose a data augmentation strategy to improve the
robustness of hybrid models to unseen test scenarios. Once
trained, the hybrid model is composed of an encoder qψ
and an interaction model pθ that are respectively Ω- and
+

Ω-exact. We may create a new training distribution with a

support over
+

Ω by sampling physical parameters ze from a

distribution that covers
+

Ze. We can then train the encoder
qψ on

+

Ω, under perfect training the corresponding predictive

model pθ,ψ(y|x, (xo, yo)) is
+

Ω-exact, hence exact on both
train and test domains.

Our learning strategy is grounded in existing hybrid mod-
elling algorithms. Here, we focus on APHYNITY and
HVAE, but our approach is applicable to other HyL algo-
rithms. We first train an encoder qψ and a decoder pθ with
a HyL algorithm. Together with experts we then decide

on a realistic distribution
+

p(ze) and create a new dataset
+

D
by sampling from the hybrid generative model defined by
Figure 2 and the interaction model pθ. A notable difference

between the augmented training set
+

D and the original train-
ing set D is that the former contains ground truth values
for the expert’s variables ze. As we assume that the interac-

tion model is
+

Ω-exact, we freeze it and only fine-tune the

encoder qψ on
+

D. We use a combination of the loss function
` of the original HyL algorithm (e.g., (4) for HVAE, and the
Lagrangian of (2) for APHYNITY) and a supervision on

Robust Hybrid Learning With Expert Augmentation

Ze
Z̃e

+

Ze
+

ΩΩ̃

Ω Za
∗
Za

p(ze|x, y) ≈ qψ(ze|x, y)︸ ︷︷ ︸

︷ ︸︸ ︷
p(x, y|ze) = Ep(za)p(ye|ze, x)[p(x)p(y|za, x, ye)]

≈ Ep(za)p(ye|ze, x)[p(x)pθ(y|za, x, ye)]
Figure 3. Visualization of the distribution shifts considered in this work. The train support Ω of (x, y) results from (za, ze) ∈ Ze ×Za.

The test supports (in red) are denoted with a tilde symbols as Z̃e for ze and Ω̃ for (x, y). The augmented support
+

Ω (in green) includes both

train and test scenarios and corresponds to (za, ze) ∈
+

Ze ×Za. The outer violet domain that includes
+

Ω depicts one of our experiment

in which the domain of za is also shifted. Hybrid modelling algorithms alone may learn a mapping pθ :
+

Ze →
+

Ω but augmentation is

necessary to learn the inverse mapping qψ :
+

Ω→
+

Ze.

the latent variable objective to learn a decoder that solves

ψ = arg min
ψ

E+

D
[`(x, y; θ, ψ)− log qψ(ze|x, y)] .

In our experiments we chose a Gaussian model for the poste-
rior, which is equivalent to a mean square error (MSE) loss
on the physical parameters. We provide a detailed descrip-
tion of the expert augmentation scheme in Appendix A.

As a side note, we would like to emphasize the difference
between the data augmentation proposed in this paper and
the one from Takeishi & Kalousis (2021). While HVAE
also requires to sample new physical parameters ze, it is
only to ensure that a sub-part of the encoder is able to infer
correctly ze given ye. This augmentation does not contribute
to robustness distribution shifts on y in contrast to ours.

4. Experiments
4.1. Problem description

We assess the benefits of expert augmentation on three con-
trolled problems described and simulated by the ODE

dyt
dt

= Fe(yt; ze) + Fa(yt; za), (5)

where Fe : Yt × Ze → Yt is the expert model and Fa :
Yt × Za → Yt complements it. In our notation X is the
initial state y0 and the response Y is the sequence of states
y1:t1 := [yi∆t]

t1/∆t
i=1 . For all experiments we train the models

to maximize pθ,ψ(y = y1:t1 |x = y0) on the training data.
We validate and test the models on the predictive distribution
p(y = y1:t2 |x = y0, xo = y0, yo = y1:t1), where t2 > t1
assesses the generalization over time. A brief description of
the different problems is provided below.

The damped pendulum is often used as an example in
the hybrid modelling literature (Yin et al., 2021; Takeishi

& Kalousis, 2021). The system’s state at time t is yt =[
θt θ̇t

]T
, where θt is the angle of the pendulum at time

t and θ̇t its angular speed. The evolution of the state over
time is described by (5), where ze := ω, za = α and

Fe :=
[
θ̇ −ω2

0 sin θ
]T

and Fa :=
[
0 −αθ̇

]T
. (6)

The corresponding systems are defined by the damping fac-
tor α and ω0, the fundamental frequency of the pendulum.

The RLC series circuits are electrical circuits made of 3
electrical components that may model a large range of trans-
fer functions. These models are often used in biology (e.g.,
the Hodgkin-Huxley class of models (Hodgkin & Huxley,
1952), in photoplethysmography (Crabtree & Smith, 2003))
and in electrical engineering to model the dynamics of vari-
ous systems. The system’s state at time t is yt =

[
Ut It

]T
,

where Ut is the voltage around the capacitance and It the
current in the circuit. The evolution of the state over time is
described by (5), where ze := {L,C}, za = {R} and

Fe :=

[
It
C

1
L (V (t)− Ut)

]
and Fa :=

[
0
−RC It

]
. (7)

The dynamics described by the RLC circuit is more diverse
than for the pendulum and the system can be hard to identify.
This system is characterised by the resistanceR, capacitance
C, and inductance L, provided V (t) is known.

The 2D reaction diffusion was used by Yin et al. (2021)
to assess the quality of APHYNITY. It is a 2D FitzHugh-
Nagumo on a 32 × 32 grid. The system’s state at time t
is a 2× 32× 32 tensor yt =

[
ut vt

]T
. The evolution of

the state over time is described by (5), where ze := {a, b},
za = {k} and

Fe :=

[
a∆ut
b∆vt

]
and Fa :=

[
Ru(ut, vt; k)
Rv(ut, vt)

]
, (8)

Robust Hybrid Learning With Expert Augmentation

Figure 4. The average log-MSEs over 10 runs for three synthetic problems on the validation and test sets. We compare HVAE (in red) and
APHYNITY (in green), in light colours, to their expert augmented versions HVAE+ and APHYNITY+, in darker colours. On the test
sets, AHMs outperform the original models, and by a large margin on the pendulum and diffusion problems. Moreover, augmentation
conserves the relatively good performance on the validation set (IID w.r.t. the training set).

where ∆ is the Laplace operator, the local reaction terms are
Ru(u, v; k) = u− u3 − k− v and Rv(u, v) = u− v. This
model is interesting to study as it considers a state space
for which neural architectures may have a real advantage
compared to other ML models.

In the following experiments we analyze the effect of our
data augmentation strategy on APHYNITY and HVAE. All
models explicitly use the assumption that the interaction
model follows the structure of (5). For each problem the
validation and test sets are respectively IID and OOD with
respect to the training distribution. The best models are
always selected based on validation performance, that is
with samples from Ω. We provide additional details on
the different expert models, dataset creation, and neural
networks architectures in Appendix B.

4.2. Results

Performance gain from augmentation. This experiment
demonstrates that HVAE and APHYNITY are not robust
to OOD test scenarios in opposition to the corresponding
AHMs, as shown in Figure 1 for the 2D diffusion problem
and in Appendix C for the two other problems. We empha-
size that our intention is not to declare a winner between
HVAE and APHYNITY. Indeed, both algorithms have al-
ready demonstrated superior performance than black box
ML models. Hence, we only report a very simple baseline
that is the mean value of the signals. We want to compare
performance in OOD settings and empirically validate the
benefit of AHMs. We compare the predictive performance
in Figure 4 (see Table 2 for the raw numbers). Although
classical hybrid learning strategies do very well on the IID
validation set, they exhibit poor generalization on OOD test
sets for all three problems. We also observe some disparity
between APHYNITY and HVAE. In addition to different
learning strategies, this is probably due to differences in the
networks’ architectures as they were respectively inspired
from the corresponding pendulum experiment in each paper.
However, even if one method may outperform the other for
some problems, they both benefit from our augmentation

Dataset APH. HVAE APH.+ HVAE+

Pendulum Valid. 6±2 3±1 6±2 2±1

Test 66±9 117±10 10±4 11±2

RLC Valid. 6±3 38±2 7±5 28±1

Test 17±3 25±2 5±2 12±1

Diffusion Valid. 2±0 2±0 2±0 2±0

Test 27±2 32±10 3±1 2±0

Table 1. Comparison of mean relative precision (in %, ± indicates
one standard deviation) over 10 runs of predicted physical parame-
ters of different hybrid modelling strategies in validation and OOD
test settings. Augmented versions are denoted with a +. While the
accuracy of APHYNITY and HVAE is good on the validation set,
it collapses on the OOD test set. On the opposite, the augmented
versions perform well on both validation and test sets.

strategy (APHYNITY+, HVAE+). Overall, the effect of
augmentation goes up to dividing the test error by a factor
of e4.6 ≈ 100 in some cases.

Stability for non-exact models. The empirical results
from Figure 4 are very important as they show that even

when the decoder is not Ω-exact (and hence not
+

Ω-exact),
augmentation is still useful. In particular, Table 1 shows
that the encoder does not predict the physical parameters
perfectly. This indicates that the encoder is not Ω-exact
and neither should be the decoder. This table shows the
relative error on the physical parameters computed as∑k
i=1

1
k

∣∣∣ z
i
e−µiθ
zie

∣∣∣, where µiθ is the estimated most likely

value of the ith component of the physical parameters. We
first notice that APHYNITY and HVAE perform differently
and their performance depends on the specific problem.
While APHYNITY accurately estimates the physical param-
eters on the IID validation set for the 3 problems, HVAE’s
performance are mixed on the RLC problem as it makes
prediction that are 38% away from the nominal parameter
value on average whereas APHYNITY reduces this error to
6%. Interestingly, we observe that the proposed augmenta-
tion strategies improve the encoder such that it accurately
estimates the physical parameters also on the OOD test set
even for HVAE on the RLC problem. This confirms that
the augmentation strategy is helpful even when the hybrid

Robust Hybrid Learning With Expert Augmentation

Figure 5. The average log-MSEs over 10 runs for the damped pen-
dulum and 2D reaction diffusion problems on a test distribution
for which za, in addition to ze, is also shifted. AHM achieves
better peformance than stand HyL algorithms even when the test
distribution support za differs from the training.

model is not Ω-exact. As a conclusion, augmented hybrid
learning outperforms classical hybrid learning both on the
predictive accuracy and at inferring the expert variables.

Effect of out of expertise shift. This experiment shows
that our augmentation strategy may remain beneficial even
when the train and test supports of za are not identical.
This scenario corresponds to samples (x, y) generated by
(za, ze) ∈ (

∗
Za \ Za) × Z̃e depicted by the violet do-

mains in Figure 3. In Figure 5 we observe the log-MSE
of augmented and non-augmented hybrid models trained
for (za, ze) ∈ Za ×Ze on test data that are generated with
(za, ze) ∈ Z̃a × Z̃e. For the pendulum, the support over
za = α is [0, 0.3] in train and [0.3, 0.6] in test; For the 2D
reaction diffusion, za = k is [0.003, 0.005] in train and
[0.005, 0.008] in test. We observe that augmented models
outperform the original models by a large margin. These
results suggest that augmentation could be very valuable
in practice, even when the distribution shift is also caused
by non expert variables. However, if the shift on za be-
comes the dominant effect, augmented models also eventu-
ally becomes vulnerable to shifts on ze as demonstrated by
supplementary experiments in Appendix B.

5. Related work
5.1. Hybrid modelling

Hybrid Learning (HyL), or gray box modelling as called in
its early days in the 90’s (Psichogios & Ungar, 1992; Rico-
Martinez et al., 1994; Thompson & Kramer, 1994; Rivera-
Sampayo & Vélez-Reyes, 2001; Braun & Chaturvedi, 2002),
has been an appropriate method to learn models that are both
expressive and interpretable, while also allowing them to
be learnt on fewer data. The interest for HyL (Mehta et al.,
2020; Lei & Mirams, 2021; Reichstein et al., 2019; Saha
et al., 2020; Guen & Thome, 2020; Levine & Stuart, 2021;

Espeholt et al., 2021) has greatly renewed since the outbreak
of recent neural network architectures that simplify the com-
bination of physical equations within ML models. As an
example, Neural ODE (Chen et al., 2018) and convolutional
neural networks (LeCun et al., 1995, CNN) are privileged
architectures to work with dynamical systems described by
ODEs or PDEs. While most of the HyL’s literature focus on
the predictive performance of hybrid models, recent work
have also showed that HyL may help to infer the physical
parameter accurately (Yin et al., 2021; Takeishi & Kalousis,
2021). This is aligned with Zyla et al. (2020) (see Section
40.2.2.2) which observe that inference on incomplete mod-
els results in a systematic bias. Similar to HyL, they extend
the model with nuisance parameters in order to improve its
fidelity, and to reduce the systematic bias.

In this work, we decided to study Yin et al. (2021) and
Takeishi & Kalousis (2021) for two reasons that distinguish
them from the rest of the HyL literature. First, these are
notable examples of HyL algorithms that can be applied to
a broad class of problems in contrast to papers that focus on
specific applications (Lei & Mirams, 2021; Reichstein et al.,
2019). Second, those methods also learn a reliable inference
model for the physical parameters, suggesting that the expert
model is used properly in the generative model, which is
a key assumption for our augmentation. While Takeishi &
Kalousis (2021) claim to achieve robustness with HyL, we
argue that this statement is incomplete as HVAE fails in
OOD settings. In particular, their approach is only able to
generalize with respect to unseen time or initial state if the
model correctly identifies the latent variables za, ze.

5.2. Combining hybrid modelling and data
augmentation

Close to our idea is the one proposed in Shrivastava et al.
(2017) where they train a GAN model that improves the
realism of a simulated image while conserving its semantic
content (e.g. eyes colour) as modeled by the simulation
parameters. The generated data with their annotations may
then be used for a downstream task, such as inferring the
properties of real images that corresponds to simulation
parameters. The GAN objective from Shrivastava et al.
(2017) requires that the two distributions induced by the
semantic content of real and simulated data are identical.
On the opposite, we consider training data that corresponds
to expert parameters with limited diversity, and overcome
this scarcity with expert augmentation. Another line of
work similar to ours is Sim2Real, which considers the task
of transferring a model trained on simulated data to real
world (Doersch & Zisserman, 2019; Sadeghi et al., 2018;
2017). Robust HyL, as a way to enhance simulations, could
be used for Sim2Real.

Robust Hybrid Learning With Expert Augmentation

5.3. Robust ML and Invariant Learning

Various statistical methods have been introduced to en-
sure models generalize under distribution shift. Domain-
adversarial objectives aimed at learning (conditionally) in-
variant predictors (Ganin et al., 2016; Zhang et al., 2017; Li
et al., 2018), GroupDRO (Sagawa et al., 2019) optimizing
for worst-case loss over multiple domains and IRM (Ar-
jovsky et al., 2019) as well as sub-group calibration (Wald
et al., 2021) aiming to satisfy calibration or sufficiency con-
straints to learn features invariant across domains. Exten-
sions, able to infer domain labels from training data have
been proposed as well (Lahoti et al., 2020; Creager et al.,
2021), partially inspired by fairness objectives (Hébert-
Johnson et al., 2018; Kim et al., 2019). In contrast to AHM,
all of these methods rely on the variation of interest being
present in the training data.

6. Discussion
We now examine the assumptions we made to derive our
augmentation strategy and discuss potential limitations.

Erroneous interaction model. The exactness of the hy-
brid component pθ(y|x, ye, za) is a critical assumption un-
derlying our expert-based augmentation strategy. Unfortu-
nately, this component is learned from training data only,
hence we cannot prove its exactness on the test domain,
which corresponds to a different domain Ye. However, we
argue that soft assumptions on the class of interaction model
may alleviate this problem. As an example, when we con-
sider an additive hybrid model, as in APHYNITY (Yin et al.,
2021), and embed this hypothesis into the interaction model,
generalization to unseen ye follows. When this assump-
tion is too strong, we could still expect generalization of
pθ(y|x, ye, za) because HyL drives y samples from pθ to be
close to ye. It implies that the corresponding function ap-
proximator is smooth, which helps generalization to unseen
scenarios. This contrasts with the encoder qψ for which a a
good inductive bias usually is not available.

Diagnostic. While crucial, we cannot guarantee the ex-
actness of the decoder pθ in general because we only eval-
uate the encoder and the decoder jointly on data points
(x, y, xo, yo). However, in some cases we can detect model
misspecification by observing that the predictive model
pθ,ψ(y|x, xo, yo) is imperfect. Making this observation is
not always simple as it requires prior knowledge on the
expected accuracy of an exact model. However, when the
system is deterministically identifiable, we may argue that
the accuracy should be only limited by the intrinsic noise
between x and y given za and ze.

Relaxing exactness. Even with a strong inductive bias on
the decoder, achieving exactness is hopeless in practical
settings. However, our experiments demonstrate that expert-
augmentation works in practice. We can explain this by
taking a look at Figure 3. If the generative model that
maps x and (za, ze) is incorrect, the mapping from Za and

Ze could be slightly off from
+

Ω. However, this does not

preclude the set of augmented samples to be closer to
+

Ω

than Ω and to induce a better predictive model on
+

Ω than
the original model trained only on Ω.

Limitations We considered expert models that are param-
eterized by a small number of parameters, which can be
covered densely via sampling. Covering densely a higher
dimensional parameter space with the augmentation strat-
egy becomes quickly impossible, hence a smarter sampling
strategy would be required, such as worst-case sampling.
Another difficulty is to choose a plausible range of param-
eters that contains both the train and the test support, this
will often require a human expert in the loop. Finally, we
assume that the train distribution of za should be represen-
tative of the test distribution, we empirically observed that a
softer version of this assumption could be enough. However,
performance will eventually decline as the support of the
test distribution for za is far from the training domain.

7. Conclusion
In this work, we describe HyL with a probabilistic model
in which one component of the latent process, denoted the
expert model, is known. In this context, we establish that
state-of-the-art HyL algorithms are vulnerable to distribu-
tion shifts even when the expert model is well defined for
such configurations. Grounded in this formalisation, we
derive that expert augmentations induce robustness to OOD
settings. We discuss how our assumptions can transfer to
real-world settings and describe how to diagnose potential
shortcomings. Finally, empirical evidence asserts that ex-
pert augmentations may be beneficial even when one of our
assumptions on the class of distribution shift is violated.

Our augmentation is applicable to a large class of hybrid
models, hence it should benefit from future progress in HyL.
Thus, we believe research in HyL and formally defining
its targeted objectives is an important direction for further
improving the robustness of hybrid models. As an example,
the minimal description length principle (Grünwald, 2007)
could be a great resource to investigate the balance between
the model’s capacity and robustness. Finally, robust ML
models must eventually translate to real-world applications,
hence a next step would be to apply AHMs to real-wold
data. Paving the way to future research combining AHM
with robust ML methods.

Robust Hybrid Learning With Expert Augmentation

Acknowledgements
We would like to acknowledge Andy Miller, Dan Busbridge,
Jason Ramapuram, Joe Futoma, and Mark Goldstein for
providing useful feedback on this manuscript or an earlier
version of it.

References
Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-

Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Braun, J. E. and Chaturvedi, N. An inverse gray-box model
for transient building load prediction. HVAC&R Research,
8(1):73–99, 2002.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D.
Neural ordinary differential equations. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pp. 6572–6583, 2018.

Crabtree, V. P. and Smith, P. R. Physiological models of
the human vasculature and photoplethysmography. Elec-
tronic Systems and Control Division Research, Depart-
ment of Electronic and Electrical Engineering, Loughbor-
ough University, pp. 60–63, 2003.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P.,
Spergel, D., and Ho, S. Lagrangian neural networks.
arXiv preprint arXiv:2003.04630, 2020.

Creager, E., Jacobsen, J.-H., and Zemel, R. Environment
inference for invariant learning. In International Con-
ference on Machine Learning, pp. 2189–2200. PMLR,
2021.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation strategies
from data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–
123, 2019.

Doersch, C. and Zisserman, A. Sim2real transfer learning
for 3d human pose estimation: motion to the rescue. Ad-
vances in Neural Information Processing Systems, 32:
12949–12961, 2019.

Espeholt, L., Agrawal, S., Sønderby, C., Kumar, M., Heek,
J., Bromberg, C., Gazen, C., Hickey, J., Bell, A., and
Kalchbrenner, N. Skillful twelve hour precipitation fore-
casts using large context neural networks. arXiv preprint
arXiv:2111.07470, 2021.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–2030,
2016.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Bren-
del, W., Bethge, M., and Wichmann, F. A. Shortcut learn-
ing in deep neural networks. Nature Machine Intelligence,
2(11):665–673, 2020.

Grünwald, P. D. The minimum description length principle.
MIT press, 2007.

Guen, V. L. and Thome, N. Disentangling physical dy-
namics from unknown factors for unsupervised video
prediction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11474–
11484, 2020.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization. arXiv preprint arXiv:2007.01434, 2020.

Hébert-Johnson, U., Kim, M., Reingold, O., and Rothblum,
G. Multicalibration: Calibration for the (computationally-
identifiable) masses. In International Conference on Ma-
chine Learning, pp. 1939–1948. PMLR, 2018.

Hodgkin, A. L. and Huxley, A. F. A quantitative description
of membrane current and its application to conduction
and excitation in nerve. The Journal of physiology, 117
(4):500–544, 1952.

Keriven, N. and Peyré, G. Universal invariant and equivari-
ant graph neural networks. Advances in Neural Informa-
tion Processing Systems, 32:7092–7101, 2019.

Kim, M. P., Ghorbani, A., and Zou, J. Multiaccuracy: Black-
box post-processing for fairness in classification. In Pro-
ceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society, pp. 247–254, 2019.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pp. 5637–5664. PMLR, 2021.

Krueger, D., Caballero, E., Jacobsen, J.-H., Zhang, A., Bi-
nas, J., Zhang, D., Le Priol, R., and Courville, A. Out-
of-distribution generalization via risk extrapolation (rex).
In International Conference on Machine Learning, pp.
5815–5826. PMLR, 2021.

Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain, N.,
Wang, X., and Chi, E. H. Fairness without demographics
through adversarially reweighted learning. arXiv preprint
arXiv:2006.13114, 2020.

LeCun, Y., Bengio, Y., et al. Convolutional networks for
images, speech, and time series. The handbook of brain
theory and neural networks, 3361(10):1995, 1995.

Robust Hybrid Learning With Expert Augmentation

Lei, C. L. and Mirams, G. R. Neural network differen-
tial equations for ion channel modelling. Frontiers in
Physiology, pp. 1166, 2021.

Levine, M. E. and Stuart, A. M. A framework for machine
learning of model error in dynamical systems. arXiv
preprint arXiv:2107.06658, 2021.

Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K.,
and Tao, D. Deep domain generalization via conditional
invariant adversarial networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pp.
624–639, 2018.

Mahmood, O., Mansimov, E., Bonneau, R., and Cho, K.
Masked graph modeling for molecule generation. Nature
communications, 12(1):1–12, 2021.

Mehta, V., Char, I., Neiswanger, W., Chung, Y., Nelson,
A. O., Boyer, M. D., Kolemen, E., and Schneider, J. Neu-
ral dynamical systems: Balancing structure and flexibility
in physical prediction. arXiv preprint arXiv:2006.12682,
2020.

Psichogios, D. C. and Ungar, L. H. A hybrid neural network-
first principles approach to process modeling. AIChE
Journal, 38(10):1499–1511, 1992.

Qian, Z., Zame, W. R., van der Schaar, M., Fleuren, L. M.,
and Elbers, P. Integrating expert odes into neural odes:
Pharmacology and disease progression. arXiv preprint
arXiv:2106.02875, 2021.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M.,
Denzler, J., Carvalhais, N., et al. Deep learning and pro-
cess understanding for data-driven earth system science.
Nature, 566(7743):195–204, 2019.

Rico-Martinez, R., Anderson, J., and Kevrekidis, I.
Continuous-time nonlinear signal processing: a neural
network based approach for gray box identification. In
Proceedings of IEEE Workshop on Neural Networks for
Signal Processing, pp. 596–605. IEEE, 1994.

Rivera-Sampayo, R. and Vélez-Reyes, M. Gray-box mod-
eling of electric drive systems using neural networks. In
Proceedings of the 2001 IEEE International Conference
on Control Applications (CCA’01)(Cat. No. 01CH37204),
pp. 146–151. IEEE, 2001.

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. Sim2real
view invariant visual servoing by recurrent control. arXiv
preprint arXiv:1712.07642, 2017.

Sadeghi, F., Toshev, A., Jang, E., and Levine, S. Sim2real
viewpoint invariant visual servoing by recurrent control.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4691–4699, 2018.

Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
Distributionally robust neural networks for group shifts:
On the importance of regularization for worst-case gen-
eralization. In International Conference on Learning
Representations, 2019.

Saha, P., Dash, S., and Mukhopadhyay, S. Physics-
incorporated convolutional recurrent neural networks for
source identification and forecasting of dynamical sys-
tems. arXiv preprint arXiv:2004.06243, 2020.

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang,
W., and Webb, R. Learning from simulated and unsuper-
vised images through adversarial training. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 2107–2116, 2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Takeishi, N. and Kalousis, A. Physics-integrated variational
autoencoders for robust and interpretable generative mod-
eling. Advances in Neural Information Processing Sys-
tems, 34, 2021.

Thompson, M. L. and Kramer, M. A. Modeling chemical
processes using prior knowledge and neural networks.
AIChE Journal, 40(8):1328–1340, 1994.

Wald, Y., Feder, A., Greenfeld, D., and Shalit, U. On cali-
bration and out-of-domain generalization. arXiv preprint
arXiv:2102.10395, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

Yin, Y., Le Guen, V., Dona, J., de Bézenac, E., Ayed, I.,
Thome, N., and Gallinari, P. Augmenting physical models
with deep networks for complex dynamics forecasting.
Journal of Statistical Mechanics: Theory and Experiment,
2021(12):124012, 2021.

Zhang, Y., Barzilay, R., and Jaakkola, T. Aspect-augmented
adversarial networks for domain adaptation. Transactions
of the Association for Computational Linguistics, 5:515–
528, 2017.

Zyla, P. et al. Review of Particle Physics. PTEP, 2020(8):
083C01, 2020. doi: 10.1093/ptep/ptaa104.

Robust Hybrid Learning With Expert Augmentation

A. Additional description of expert augmentation
We provide the procedure to do expert augmentation for robust HyL as the sequence of steps below.

1. Train both the encoder qψ(za, ze|x, y) and the interaction model pθ(y|xo, za, ye) with a HyL algorithm, by minimizing
the corresponding loss L(ψ, θ) = ED [`(x, y; θ, ψ)] on the training set D;

2. Decide on an augmented distribution
+

p(ze) for ze that contains both train and test scenarios;

3. Reproduce the following steps to generate a dataset
+

D of observations and expert variables (x, y, ze) ∼
Ep(za)p(ye|ze,x,y) [p(ze)p(x)pθ(y|ye, za, x)]:

(a) Sample (xo, yo) from the data;
(b) Sample za from the posterior qψ(za|xo, yo);

(c) Sample ze from
+

p(ze);
(d) Push forward x, za and ze in the generative model as ye ∼ p(ye|xo, ze) and y ∼ pθ(y|xo, za, ye);

(e) Add the triplet (xo, y, ze) to the augmented training set
+

D.

4. Freeze the interaction model, and fine-tune the encoder qψ(za, ze|x, y) on the augmented dataset
+

D by minimizing
+

L(ψ, θ) = E+

D
[`(x, y; θ, ψ)− log qψ(ze|x, y)].

B. Additional details on experiments
B.1. Damped pendulum

Datasets. We use Neural Ordinary Differential Equations (NODE) (Chen et al., 2018) to solve the ODE ruling the
damped pendulum. Each sample is simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time resolution equal to
0.1 second. The models are trained with only the realizations between t0 and t1. At test and validation time, the pair
(xo, yo) = (y0, [yi∆t]

t1/∆t
i=1), x = yt1 and the model predicts y = [yi∆t]

t2/∆t
i=t2/∆t+1. The initial angular speed is always 0 and

θ0 ∼ U(−π2 , π2).

The training set is made of 1000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := α from Za := [0, 0.6] and ze := ω0 from Ze := [1.5, 3.1]. The shifted test set contains 100 samples
generated by sampling uniformly za in Za and ze in Z̃e := [0.5, 1.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1 as h(y0:t1) ∈
R128. An MLP with 3 layers of 150 units and ReLU activations maps h to R+ to predict ω0. The function fa : R128 × R2

is an MLP with 3 layers of 50 units and ReLU activations (no activation for the last layer). The models are trained
for 50 epochs with Adam with no weight decay and a learning rate equal to 0.0005. For the Lagrangian optimization
we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al., 2021). The augmented data are generated by sampling uniformly

ze ∈
+

Ze := [0.5, 3.5] and za from the marginal predictive prediction of the model, that is we use the training dataset to infer
values of za and use these as samples. The batch size is 100.

HVAE. We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The network
gp,1 : R2 × Rda , where da = 1 is the size of the latent space for the interaction model, is supposed to filter the observations
so that they can be generated by the expert model. It has 2 hidden layers with 128 units, gp,2 is an MLP with the
following hidden layers [128, 128, 256, 64, 32] and takes the full sequence of filtered states and predicts the mean and
variance of a normal distribution that parameterize the posterior pθ(ze|x, y, za). Another network, ga takes the sequence of
observations and predict the posterior distribution of za as a normal distribution. This network has the following hidden
layers [256, 256, 128, 32]. All networks have SeLU activations. In general the decoder of HVAE can be anything that
combines the expert model in order to produce samples in the observation space, as we made the hypothesis that the ODE is
just missing an additive term, the decoder is a NODE where the function is the sum of fe and fa a two hidden layers MLP
with 64 units and SeLU activation (except for the last layer that has no activation). The likelihood model is also Gaussian

Robust Hybrid Learning With Expert Augmentation

with the mean being predicted by the NODE and the variance learned but shared for all observations. For additional details
on our architecture and implementation details we encourage the interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.000001 and batch size 200. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also
relies on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution
for our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(0.5, 3.5).

B.2. RLC series

Datasets. Similar to the damped pendulum, we use NODE to solve the ODE ruling the RLC circuit. Each sample is
simulated for t0 = 0s, t1 = 5s, and t2 = 20s, with a time resolution equal to 0.1 second. The models are trained with only
the realizations between t0 and t1. At test and validation time, the pair (xo, yo) = (y0, [yi∆t]

t1/∆t
i=1), x = yt1 and the model

predicts y = [yi∆t]
t2/∆t
i=t2/∆t+1. In all experiments, the initial value for U0 ∼ N (0, 1) and I0 = 0, the voltage source delivers

a AC + DC tension V (t) = 2.5 sin(4πt) + 1.

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := R from Za := [1, 3] and ze := [L,C] from Ze := [1, 3] × [0.5, 1.5]. The shifted test set contains 100
samples and is generated by sampling uniformly za in Za and ze in Z̃e := [3, 5]× [1., 2.5].

APHYNITY. Our model is composed of a 1-layer RNN with 128 units that encodes the input signal y0:t1 as h(y0:t1) ∈
R128. An MLP with 3 layers of 200 units and ReLU activations maps h to R2

+ that predicts L and C. The function
fa : R128 × R2 is an MLP with 3 layers of 150 units and ReLU activations (no activation for the last layer). The models are
trained for 50 epochs with Adam with no weight decay and a learning rate equal to 0.0005. For the Lagrangian optimization
we use Niter = 5, λ0 = 10, τ2 = 5 (see (Yin et al., 2021)). The augmented data are generated by sampling uniformly

ze ∈
+

Ze := [1, 5]× [0.5, 2.5] and za from the marginal predictive prediction of the model, that is we use the training dataset
to infer values of za and use these as samples. The batch size is 100.

HVAE. We use the same networks’ architectures than for the damped pendulum experiment. Except that gp,1 is has 3
hidden layers with 100 units.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.000001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also
relies on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution
for our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(1, 5)× U(0.5, 2.5).

B.3. 2D reaction diffusion

Datasets. Similar to the damped pendulum, we use NODE to solve the PDE ruling the reaction diffusion. We closely
follow the experimental setting described in Yin et al. (2021) and approximate the Laplace operator with a 3× 3 discrete
version of the operator. Each sample is simulated for t0 = 0s, t1 = 1s, and t2 = 5s, with a time resolution equal to
0.1 second. The models are trained with only the realizations between t0 and t1. At test and validation time, the pair
(xo, yo) = (y0, [yi∆t]

t1/∆t
i=1), x = yt1 and the model predicts y = [yi∆t]

t2/∆t
i=t2/∆t+1. The initial state is sampled from a uniform

distribution in [0, 1].

The training set is made of 2000 samples and the validation set of 100 samples. They are both generated by sampling
uniformly za := k from Za := [0.003, 0.005] and ze := [a, b] from Ze := [0.001, 0.002]× [0.003, 0.007]. The shifted test
set contains 100 samples and is generated by sampling uniformly za in Za and ze in Z̃e := [0.002, 0.004]× [0.001, 0.1].

APHYNITY. Our model is composed of a deep CNN that encodes the input sequence of 10 images. The exact architecture
can be found in the code. The dimension of za is equal to 10. Similarly to Yin et al. (2021) the function fa is a 3-layers
CNN with ReLU activations. The models are trained for 500 epochs with Adam with no weight decay and a learning rate
equal to 0.0005. For the Lagrangian optimization we use Niter = 1, λ0 = 10, τ2 = 5.. The augmented data are generated

by sampling uniformly ze ∈
+

Ze := [0.001, 0.004] × [0.001, 0.01] and za from the marginal predictive prediction of the
model, that is we use the training dataset to infer values of za and use these as samples. The batch size is 100.

Robust Hybrid Learning With Expert Augmentation

Figure 6. Comparison of the predictions made by APHYNITY and APHYNITY+ on the damped pendulum problem for 3 diverse test
examples. It is important to mention that the support of the test distribution is disjoint from the training support. We clearly observe the
beneficial effect of augmentation which lead to more accurate predictions.

B.3.1. HVAE

We use the notations from Takeishi & Kalousis (2021) to describe the architecture of the VAE. The network gp,1 :
R2×32×32 × Rda is a conditional U-net, where da = 10 is the size of the latent space for the interaction model, is supposed
to filter the observation so that they can be generated by the expert model. The networks gp,1 and ga share a common
backbone CNN and are, in addition, respectively parameterized by 2 3-layers MLPs. All networks have ReLU activations. In
general the decoder of HVAE can be anything that combines the expert model in order to produce samples in the observation
space, as we made the hypothesis that the ODE is just missing an additive term, the decoder is a NODE where the function
is the sum of fe and fa a 3-layers CNN. The likelihood model is also Gaussian with the mean being predicted by the NODE
and the variance learned but shared for all observations. For additional details on our architecture and implementation details
we encourage the interested reader to check our code.

The networks are trained jointly for 1000 epochs with Adam optimizer, with a learning rate equal to 0.0005, weight decay
equal to 0.00001 and batch size 100. The other parameters are set to γ = 1, α = 0.01 and β = 0.01. The HVAE also relies
on some augmentation during training and in order to compare fairly our model to theirs we use the same distribution for
our augmentation and theirs that is za ∼ N (0, I) and ze ∼ U(0.001, 0.004)× U(0.001, 0.01).

C. Supplementary results
We now provide additional results for AHM versus standard HyL models.

C.1. Log-mses on the 3 synthetic problems

Dataset APH. HVAE APH.+ HVAE+

Pendulum Val. −2.7±0.3 −2.9±0.5 −3.4±0.3 −2.9±0.6

Test −0.9±0.2 −1.2±0.2 −3.3±0.3 −3.1±0.3

RLC Val. −6.3±0.2 −4.3±0.1 −6.8±0.2 −3.8±1.5

Test −2.5±0.1 −2.2±0.1 −3.0±0.3 −2.1±0.3

Diffusion Val. −2.9±0.3 −3.4±0.2 −2.7±0.3 −3.3±0.3

Test 1.0±0.4 0.9±0.8 −2.9±0.2 −3.5±0.1

Table 2. Comparison of the log-mse of different hybrid modelling strategies in validation and OOD test settings. Except on RLC,
AHMs always outperform the corresponding HyL models on the test sets. Good performance on the validation set are conserved with
augmentation.

C.2. Distribution shift visualization

Similar to Figure 1, Figure 6 and Figure 7 showcase the behaviour of APHYNITY and APHYNITY+ for OOD test samples.

Robust Hybrid Learning With Expert Augmentation

Figure 7. Comparison of the predictions made by APHYNITY and APHYNITY+ on the RLC series problem for 3 diverse test examples.
It is important to mention that the support of the test distribution is disjoint from the training support. We can perceive the beneficial effect
of augmentation which lead to more accurate predictions in some cases. However both models are inaccurate. This indicates that the
RLC series parameters are not easily identifiable, hence the generative model is not exact and augmentation is not as useful as for the
diffusion and the pendulum.

Figure 8. Damped pendulum. Effect of a distribution shift on the latent variable za of the interaction model. When the shift of za is
reasonable (less than 1), the augmented models outperforms standard HyL even when the shift is only on za.

C.3. On the effect of out of expertise shift

The additional results in Figure 8, Figure 9 and Figure 10 demonstrate that our augmentations is mostly always beneficial.
Although the benefit of augmentation decreases with the gap between the support of the distributions of za and train and test
times, it still performs either better or on par with non-augmented HyL models.

Robust Hybrid Learning With Expert Augmentation

Figure 9. RLC series. Effect of a distribution shift on the latent variable za of the interaction model. We observe that augmentation is
always beneficial, even when the shift is only on za. As the dynamics of the RLC series systems depends on the values of all 3 parameters
R,L,C, we observe that some distribution shift can even lead to improved performance for the augmented models as for APHYNITY+
when R ∈ [3, 4]

Figure 10. 2D diffusion reaction. Effect of a distribution shift on the latent variable za of the interaction model. When the shift of za is
reasonable (k < 0.008), the augmented models outperforms standard HyL even when the shift is only on za.

158 hybrid probabilistic models

9.3 epilogue

9.3.1 Contribution

The paper demonstrates that existing hybrid learning algorithms are sensitive to distri-
bution shifts, even when they only concern the parameters of the expert model. Expert
augmentation addresses this issue when the interaction model is identifiable from data
and shows hybrid learning may construct more robust predictive models than uninformed
machine learning. The main contributions are i) to provide a simplified description of two
hybrid learning algorithms within a common probabilistic modelling framework; ii) to de-
scribe a class of out-of-distribution settings for which hybrid learning is relevant; iii) to
introduce a simple strategy that enforces robustness in these settings.
When the hybrid model is an auto-encoder, expert augmentation is a simple yet effec-

tive strategy to improve the model’s performance in unseen scenarios. We did not observe
a negative impact of expert augmentation in our experiments. ML practitioners should
be aware that guaranteeing robustness to specific out-of-distribution scenarios is feasible.
It only requires an expert model that describes the gap between these scenarios and the
training data. In contrast to classical augmentation strategies which describe the out-
of-distribution data themselves, Augmented hybrid models only require understanding a
sub-part of the process related to the distribution shift.
We believe that hybrid learning can change the way measurement devices work. When

engineers design a new measurement device, they first start by modelling how the signal
of interest relates to first-principles physical effects for which efficient measurement tools
exist, such as temperature, light, or sound.
For instance, a speed camera sends light at a given frequency against cars. The reflected

light undergoes a frequency shift which can be accurately measured with an appropriate
photosensor. Then the device estimates the vehicle’s speed with the Doppler effect that
relates frequency change and speed to each other. This is only a simplified description; in
reality, engineers have developed many strategies to improve the robustness and accuracy
of speed cameras. They use multiple light frequencies and elaborate signal processing
methods and the camera must be calibrated cautiously. This is what makes these devices
expensive; they rely on costly sensors and engineering efforts.
Soon, hybrid learning might unlock the development of new measurement devices at

a reduced cost. Many practical settings exist for which we know a model of how the
signal of interest and the sensor relate to each other. However, in most cases, the model
considers an ideal setting which is free from aggressors which exist in the real world. For
example, engineers had either to develop signal processing strategies or elaborate sensors
to ensure speed cameras are insensitive to other lights than the one sent by the speed
camera itself. Developing better sensors often requires years of research and development
in contrast to signal processing. We speculate that hybrid learning might help finding

9.3 epilogue 159

better signal processing strategies and could reduce the development costs of new sensors
in the future.

9.3.2 Beyond hybrid learning

Symbolic model discovery Most modern prediction or measurement tools are still free
of machine learning solutions. They lean on a profound understanding of the underlying
processes described with simple mathematical formulas. Nevertheless, we cannot deny
the increasing impact of machine learning on the world. In some sense, symbolic model
discovery [Schmidt and Lipson, 2009; Kusner et al., 2017; Sahoo et al., 2018, SMD]
reconciles these two observations. It aims at discovering simple mathematical rules that
accurately describe data.
Recent SMD techniques [Cranmer et al., 2020b] first learn a deep probabilistic model

from a large amount of data and then fit a simple mathematical formula to the learnt
model via classical symbolic regression tools [Schmidt and Lipson, 2009]. This two-step
strategy benefits from the practical inductive bias of modern deep learning architectures
to generalise better than techniques that directly fit a symbolic model to the data. Cran-
mer et al. [2020b] demonstrated that this strategy is effective for retrieving non-trivial
cosmology and might be relevant for interpreting neural networks and discovering novel
physics. In addition to their interpretability, symbolic models usually exhibit better gen-
eralisation than the corresponding neural network. Symbolic models typically correspond
to simpler models that are less prone to overfitting – compressing the neural networks
into a few equations acts as a powerful regularisation strategy.
We believe that progress in symbolic model discovery might eventually improve hy-

brid learning algorithms. Applying SMD to extract a short mathematical description of
the interaction model might unlock efficient model discovery grounded on the partial
understanding of the phenomenon described by the expert model. In some cases, sim-
ple formulas would not be expressive enough to describe the gap between the expert
model and reality accurately. We imagine a hybrid model of three components: i) the
expert model; ii) a minimal length formula describing the most important part of the
misspecification; iii) a deep learning model accounting for the remaining gap.

Inference under misspecification The hybrid learning algorithms considered in the
paper jointly build an encoder network that identifies the parameters of the expert model
and an interaction model that accounts for the misspecification of the expert model. After
training, we can apply the encoder to unseen data and obtain an estimation of the expert
model’s parameters. However, it is unclear whether we should believe in such estimators
as the hybrid model might modify the meaning of the expert parameters.
Another problem of the hybrid model’s encoders is their incapacity to reflect uncer-

tainty faithfully. Simulation-based inference [Cranmer et al., 2020a, SBI] methods do not
acknowledge model misspecifications but provide an accurate estimation of the uncer-

160 hybrid probabilistic models

tainty of the parameters’ value [Cannon et al., 2022]. These methods provide efficient
algorithmic solutions to perform inference over the parameters of a simulator, even when
it is not differentiable. However, the guarantees of classical SBI collapse if the model
is misspecified. Recently, inspired by robust Bayesian inference [Chérief-Abdellatif and
Alquier, 2020; Knoblauch et al., 2019], robust SBI [Dellaporta et al., 2022] has acknowl-
edged that even complex simulators are misspecified. Still, we believe that robust SBI
may be inefficient, and machine learning techniques inspired by hybrid learning might
lead to efficient solutions for robust SBI. We believe that the inductive bias of machine
learning models combined with a large amount of data should outperform existing robust
SBI techniques that rely on classical statistical arguments. One challenge to achieving
this is to develop solutions compatible with non-differentiable simulators and efficiently
benefit from a large amount of unlabeled data.

9.3.3 Conclusion and opportunities

We have observed that hybrid models have robustness properties that are out of reach
for purely data-driven machine learning models. In contrast to the classical ML setting,
hybrid learning methods embed more than an inductive bias. They start from the as-
sumption that a large part of the phenomenon observed can be described with an expert
model. We formulate and achieve a notion of robustness that concerns the effects encoded
by the expert model; our simple yet effective augmentation strategy unlocks this robust-
ness in existing hybrid models. Our experiments show the benefit of the augmentation
both concerning the parameter identification quality and the hybrid model’s predictive
accuracy.
There is arguably a significant potential for future development and applications for

hybrid models. For example, we foresee the application of hybrid learning to accelerate
simulations by augmenting a simplified expert model with a fast machine learning com-
ponent to close the gap between the fast and inaccurate expert model and the expensive
and precise simulator.
We must also acknowledge that model discovery is a challenging problem and inevitably

requires some level of causal intervention. We should be careful about when and how we
use hybrid learning. In particular, some information about the expert model misspec-
ification and how it relates to the training data is necessary to apply hybrid learning
successfully. For instance, the information that some data points correspond to the same
physical parameters might suffice. In this case, the inference network should predict pa-
rameter estimates consistent within groups of attributes. We argue that the inductive
bias of the interaction model is crucial when data is scarce.
This work has only explored existing solutions that focus on differentiable expert mod-

els. Both methods considered, APHYNITY and the hybrid-VAE, provide a generic solu-
tion that does not require supervision. In the future, hybrid learning algorithms should
be compatible with other settings. For example, the differentiability requirement still

9.3 epilogue 161

limits the range of direct applications of hybrid learning. Moreover, the genericity of
existing algorithms might prevent their data efficiency in settings where we have some
information about the expert parameters of the training data. There it would make sense
to formulate hybrid learning as a semi-supervised machine learning problem rather than
an unsupervised one to benefit from the additional structure in the data.
At a higher level, this chapter has demonstrated another benefit of combining proba-

bilistic models: generalisation capabilities that defy results from a naive interpretation of
learning theory. Over the past few years, expert models have shifted from black-box lan-
guages (e.g., C++ or Matlab) to differentiable probabilistic frameworks. In this context,
we anticipate excellent opportunities for hybrid learning. This transition shall stream-
line interactions between deep probabilistic and expert models. This paradigm motivates
further theoretical and practical developments in hybrid learning. For instance, devel-
oping new algorithms and the corresponding conditions under which the hybrid model
outperforms data-driven solutions is a relevant goal to help practitioners solve real-world
problems with hybrid models.

Part IV

CONCLUS ION

We know the past but cannot control it. We control the future but cannot know it.

Claude Shannon

10
CONCLUS ION

The way Nature drives the world around us appears chaotic at first glance. However, a
proper perspective reveals patterns in this illusive disorder. Our ability to discover and
exploit these patterns is what we call intelligence. Encoding these structures into math-
ematical models eventually reduces intelligent reasoning to computing operations and
gives rise to artificial intelligence. This dissertation has studied methods for automated
model discovery, i.e., machine learning: artificial intelligence that produces intelligence.
In Part i, we argued for a probabilistic modelling approach. We provided an accessible

treatment of probabilistic modelling in Chapter 2. We discussed and drew connections
between several topics related to probabilistic models, such as maximum likelihood es-
timation, Bayesian inference and machine learning. Then, Chapter 3 introduced proba-
bilistic graphical models in which graphs serve to express probabilistic statements. We
discussed the benefits and limitations of directed and undirected representations and
presented practical inference and learning algorithms. Finally, in Chapter 3, we intro-
duced deep neural networks as an effective parameterisation of probability distributions.
This parameterisation enables gradient-based optimisation. Hence, it directly translates
classical results from statistics and probability into learning and inference algorithms.
The objectives of Part ii were to study and improve deep probabilistic models. In

Chapter 5, we established the complementarity of diffusion models and variational auto-
encoders. Then, Chapter 6 saw normalizing flows as Bayesian networks and highlighted
that affine transformations limit the expressivity of normalizing flows. In Chapter 7, we
addressed this limitation by introducing a universal parameterisation of monotonic trans-
formations. This new architecture has had an impact outside of normalizing flows; various
applications such as model calibration or distributional reinforcement learning have em-
ployed them. Overall, Part ii demonstrated that automatic model discovery benefits from
improvements and a better understanding of existing deep probabilistic models.
In the last part of this thesis, we sidestepped the expressivity considerations that were

the focus of Part ii. Part iii studied informed probabilistic models which embed prescribed
domain expertise into deep probabilistic models. Chapter 8 introduced graphical normal-
izing flows as new explicit probabilistic models. This model class combines the benefits of
the Bayesian networks’ representation of independencies with the efficient learning algo-
rithm of normalizing flows. Graphical normalizing flows are less prone to overfitting than
non-regularised explicit models and benefit from the Bayesian networks’ most-attractive
features. Finally, in Chapter 9, we discussed probabilistic models informed by a par-
tial physical understanding of the studied phenomenon. We showed that these models
outperform the generalisation capabilities of non-informed models.

167

168 conclusion

Probabilistic modelling is a powerful framework. It emphasises the necessity for nu-
anced answers and reminds us not to carve knowledge in stone. It is also a practical tool.
Probabilistic modelling brings the rigour of mathematics to answer questions in the real
world. The availability of modern computers, data, and scientific expertise combined with
recent algorithmic developments only broadens the impact of probabilistic modelling on
the world.
Over four years of research, we have witnessed and, to a certain extent, participated in

a true disruption of probabilistic modelling. Among catalysers of this revolution, program-
ming languages natively equipped with automatic differentiation and non-deterministic
operations have arguably played an important role. It has allowed the development of new
algorithms for training complex probabilistic models on large datasets. In the context of
this thesis, this paradigm has strongly supported our answer to the research question
– How to automate the discovery of probabilistic models with deep learning
algorithms? By acknowledging the connections between distinct model classes. Without
these programming languages developing hybrid models such as in Chapter 9 or diffusion
models into auto-encoders as in Chapter 5 would have been impossible.
Our answer to our research question is incomplete and we are still far from resolving

the automation of model discovery. Nevertheless, it paves the way for future research and
new tools we deem essential to develop.
How we build models is changing. In the future, combining models contextualised by

different data sources and able to represent distinct aspects of the entire phenomenon
we aim to model shall get simpler. An internet of open-sourced models and an effective
search tool to retrieve the models of interest shall be part of this future. Some models
would be nearly uninformed, and we would use data to contextualise them to the task
of interest. Others would encode our understanding of physics. Finally, some models
would be pretrained and represent a phenomenon for which others have already created
a faithful model. Open sourcing models and allowing their combination would skyrocket
our modelling capabilities.
Achieving this modelling coalescence will require algorithmic and theoretical devel-

opments. For instance, it is unclear whether simple gradient-based algorithms are suffi-
cient to train models that combine diverse components. While contextualisation of small
models corresponds to computing a posterior over the few parameters, we only infer pa-
rameters values from maximum likelihood estimation for deep probabilistic models. The
modelling unification will require reconciling these two training paradigms and to create
new inference algorithms.
Another issue that holds us away from this long-term objective is our inability to

express subtle assumptions about model interactions. For example, it is hard in hybrid
models to prevent a neural network from learning something already modelled by the
physical equations. It is unclear whether making independence assumptions between
parts of a model is an effective strategy or if more subtility could help.

conclusion 169

Finally, some models rely on non-deterministic operations or are expressed as systems
of equations. In these cases, among others, gradient-based algorithms may be ineffective.
Re-expressing these models into functions for which gradient computation is straightfor-
ward would allow these models to be part of the coveted probabilistic model’s library.

Overall, this thesis argues for reconsidering the artificial distinction between various
probabilistic models. Some models, such as deep probabilistic models, can represent vari-
ous phenomena. These models are relevant when large datasets contextualise them. Oth-
ers, such as scientific models, are very narrow; they only depend on a few parameters with
a prescribed meaning and plausible values. These models only work in specific contexts;
they are quasi-static and only necessitate a few data points, if any, for contextualisation.
The link from the former class to the latter is clear, training. Similarly to scientific models,
deep probabilistic models become tied the a specific context as defined by the training
data. The distinction between model classes is often unnecessary.

Part V

APPENDIX

A
REFERENCES

J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, I. Barr, Y. Hasson, K. Lenc, A. Mensch,
K. Millican, M. Reynolds, et al. Flamingo: a visual language model for few-shot learn-
ing. arXiv preprint arXiv:2204.14198, 2022.

alexjc. The impact of dallÂ·e on creative work. URL https://app.subsocial.network/
@creativeai/the-impact-of-dall-e-on-creative-work-610.

S.-i. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing,
5(4-5):185–196, 1993.

B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

V. I. Arnold. On functions of three variables. Collected Works: Representations of
Functions, Celestial Mechanics and KAM Theory, 1957–1965, pages 5–8, 2009.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32, 2019.

S. Balgi, J. M. Peña, and A. Daoud. Counterfactual analysis of the impact of the imf
program on child poverty in the global-south region using causal-graphical normalizing
flows. arXiv preprint arXiv:2202.09391, 2022a.

S. Balgi, J. M. Pena, and A. Daoud. Personalized public policy analysis in social sciences
using causal-graphical normalizing flows. Assoc. Adv. Artif. Intell. AI Soc. Impact
Track, 2022b.

D. G. Barrett and B. Dherin. Implicit gradient regularization. arXiv preprint
arXiv:2009.11162, 2020.

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds
for neural networks. Advances in neural information processing systems, 30, 2017.

J. Behrmann, P. Vicol, K.-C. Wang, R. Grosse, and J.-H. Jacobsen. Understanding and
mitigating exploding inverses in invertible neural networks. In International Conference
on Artificial Intelligence and Statistics, pages 1792–1800. PMLR, 2021.

R. v. d. Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester normalizing
flows for variational inference. arXiv preprint arXiv:1803.05649, 2018.

173

https://app.subsocial.network/@creativeai/the-impact-of-dall-e-on-creative-work-610
https://app.subsocial.network/@creativeai/the-impact-of-dall-e-on-creative-work-610

174

C. M. Bishop. Mixture density networks. 1994.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation
models. arXiv preprint arXiv:2108.07258, 2021.

A. J. Bose, H. Ling, and Y. Cao. Adversarial contrastive estimation. arXiv preprint
arXiv:1805.03642, 2018.

L. Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade,
pages 421–436. Springer, 2012.

J. Brehmer and K. Cranmer. Flows for simultaneous manifold learning and density
estimation. Advances in Neural Information Processing Systems, 33:442–453, 2020.

P. Brouillard, S. Lachapelle, A. Lacoste, S. Lacoste-Julien, and A. Drouin. Differentiable
causal discovery from interventional data. Advances in Neural Information Processing
Systems, 33:21865–21877, 2020.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances
in neural information processing systems, 33:1877–1901, 2020.

P. Cannon, D. Ward, and S. M. Schmon. Investigating the impact of model misspecifi-
cation in neural simulation-based inference. 2022.

CERN. Cern data centre passes the 200-petabyte milestone. URL https://home.cern/
news/news/computing/cern-data-centre-passes-200-petabyte-milestone.

C. Ceylan and M. U. Gutmann. Conditional noise-contrastive estimation of unnormalised
models. In International Conference on Machine Learning, pages 726–734. PMLR,
2018.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary dif-
ferential equations. In Advances in Neural Information Processing Systems, pages
6571–6583, 2018.

B.-E. Chérief-Abdellatif and P. Alquier. Mmd-bayes: Robust bayesian estimation via
maximum mean discrepancy. In Symposium on Advances in Approximate Bayesian
Inference, pages 1–21. PMLR, 2020.

K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural
machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone
https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone

175

C. Chow and C. Liu. Approximating discrete probability distributions with dependence
trees. IEEE transactions on Information Theory, 14(3):462–467, 1968.

G. F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistic
networks from data. Machine learning, 9(4):309–347, 1992.

K. Cranmer, J. Pavez, and G. Louppe. Approximating likelihood ratios with calibrated
discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020a.

M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and
S. Ho. Discovering symbolic models from deep learning with inductive biases. Advances
in Neural Information Processing Systems, 33:17429–17442, 2020b.

W. Dabney, M. Rowland, M. Bellemare, and R. Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

M. Dax, S. R. Green, J. Gair, J. H. Macke, A. Buonanno, and B. Schölkopf. Amortized
bayesian inference of gravitational waves with normalizing flows.

B. Dayma, S. Patil, P. Cuenca, K. Saifullah, T. Abraham, P. LÃª Kháº¯c, L. Melas, and
R. Ghosh. DallÂ·e mini, 7 2021. URL https://github.com/borisdayma/dalle-mini.

N. De Cao, W. Aziz, and I. Titov. Block neural autoregressive flow. In Uncertainty in
Artificial Intelligence, pages 1263–1273. PMLR, 2020.

A. Delaunoy, A. Wehenkel, T. Hinderer, S. Nissanke, C. Weniger, A. R. Williamson,
and G. Louppe. Lightning-fast gravitational wave parameter inference through neural
amortization. arXiv preprint arXiv:2010.12931, 2020.

A. Delaunoy, J. Hermans, F. Rozet, A. Wehenkel, and G. Louppe. Towards reliable
simulation-based inference with balanced neural ratio estimation. arXiv preprint
arXiv:2208.13624, 2022.

C. Dellaporta, J. Knoblauch, T. Damoulas, and F.-X. Briol. Robust bayesian inference for
simulator-based models via the mmd posterior bootstrap. In International Conference
on Artificial Intelligence and Statistics, pages 943–970. PMLR, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, vol-
ume 31. Springer Science & Business Media, 2013.

https://github.com/borisdayma/dalle-mini

176

B. Dey, D. Zhao, J. A. Newman, B. H. Andrews, R. Izbicki, and A. B. Lee. Calibrated
predictive distributions for photometric redshifts.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. In Inter-
national Conference in Learning Representations, 2017.

T. Dockhorn, A. Vahdat, and K. Kreis. Score-based generative modeling with critically-
damped langevin diffusion. arXiv preprint arXiv:2112.07068, 2021.

A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based
on deep networks. Advances in neural information processing systems, 29, 2016.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics
letters B, 195(2):216–222, 1987.

J. Dumas, C. Cointe, A. Wehenkel, A. Sutera, X. Fettweis, and B. Cornélusse. A prob-
abilistic forecast-driven strategy for a risk-aware participation in the capacity firming
market. IEEE Transactions on Sustainable Energy, 2021.

J. Dumas, A. Wehenkel, D. Lanaspeze, B. Cornélusse, and A. Sutera. A deep generative
model for probabilistic energy forecasting in power systems: normalizing flows. Applied
Energy, 305:117871, 2022.

C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios. Neural spline flows. In Advances
in Neural Information Processing Systems, pages 7509–7520, 2019.

P. Esser, R. Rombach, and B. Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873–12883, 2021.

A. Faragó and G. Lugosi. Strong universal consistency of neural network classifiers. IEEE
Transactions on Information Theory, 39(4):1146–1151, 1993.

A. Fischer and C. Igel. Bounding the bias of contrastive divergence learning. Neural
computation, 23(3):664–673, 2011.

R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical
transactions of the Royal Society of London. Series A, containing papers of a mathe-
matical or physical character, 222(594-604):309–368, 1922.

D. Freedman. Brownian motion and diffusion. Springer Science & Business Media, 2012.

R. Gao, E. Nijkamp, D. P. Kingma, Z. Xu, A. M. Dai, and Y. N. Wu. Flow contrastive
estimation of energy-based models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 7518–7528, 2020.

177

D. Geiger, T. Verma, and J. Pearl. d-separation: From theorems to algorithms. In Ma-
chine Intelligence and Pattern Recognition, volume 10, pages 139–148. Elsevier, 1990.

M. C. Gemici, D. Rezende, and S. Mohamed. Normalizing flows on riemannian manifolds.
arXiv preprint arXiv:1611.02304, 2016.

M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder for
distribution estimation. In International conference on machine learning, pages 881–
889. PMLR, 2015.

C. J. Geyer. Practical markov chain monte carlo. Statistical science, pages 473–483, 1992.

J. W. Gibbs. Elementary principles in statistical mechanics: developed with especial
reference to the rational foundations of thermodynamics. C. Scribner’s sons, 1902.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice.
CRC press, 1995.

M. Gillon, A. H. Triaud, B.-O. Demory, E. Jehin, E. Agol, K. M. Deck, S. M. Lederer,
J. De Wit, A. Burdanov, J. G. Ingalls, et al. Seven temperate terrestrial planets around
the nearby ultracool dwarf star trappist-1. Nature, 542(7642):456–460, 2017.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial networks. Communications of
the ACM, 63(11):139–144, 2020.

W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In Interna-
tional Conference on Machine Learning, 2018.

A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

D. S. Greenberg, M. Nonnenmacher, and J. H. Macke. Automatic posterior transforma-
tion for likelihood-free inference. International Conference on Machine Learning(2019):
2404–2414, 2019.

U. Grenander and M. I. Miller. Representations of knowledge in complex systems. Journal
of the Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.

S. Gruber and F. Buettner. Trustworthy deep learning via proper calibration errors:
A unifying approach for quantifying the reliability of predictive uncertainty. arXiv
preprint arXiv:2203.07835, 2022.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR,
2017.

178

M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statistics. Journal of machine learning
research, 13(2), 2012.

T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman. The elements of statistical
learning: data mining, inference, and prediction, volume 2. Springer, 2009.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applica-
tions. 1970.

D. Hendrycks, S. Basart, N. Mu, S. Kadavath, F. Wang, E. Dorundo, R. Desai, T. Zhu,
S. Parajuli, M. Guo, et al. The many faces of robustness: A critical analysis of out-of-
distribution generalization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021.

J. Hermans, A. Delaunoy, F. Rozet, A. Wehenkel, and G. Louppe. Averting a crisis in
simulation-based inference. arXiv preprint arXiv:2110.06581, 2021.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. 2020.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In
International Conference on Machine Learning, pages 2083–2092, 2018.

C.-W. Huang, L. Dinh, and A. Courville. Augmented normalizing flows: Bridging the gap
between generative flows and latent variable models. arXiv preprint arXiv:2002.07101,
2020.

A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

P. Jaini, K. A. Selby, and Y. Yu. Sum-of-squares polynomial flow. 2019.

D. Kalatzis, J. Z. Ye, J. Wohlert, and S. Hauberg. Multi-chart flows. arXiv preprint
arXiv:2106.03500, 2021.

M. E. Khan and H. Rue. The bayesian learning rule. arXiv preprint arXiv:2107.04562,
2021.

I. Khemakhem, R. P. Monti, R. Leech, and A. HyvÃ€rinen. Causal autoregressive flows.
2020.

179

J. Kim and J. Pearl. A computational model for causal and diagnostic reasoning in
inference systems. In International Joint Conference on Artificial Intelligence, pages
0–0, 1983.

R. Kindermann. Markov random fields and their applications. American mathematical
society, 1980.

D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
In Advances in Neural Information Processing Systems, pages 10236–10245, 2018.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In 2nd International
Conference on Learning Representations (ICLR), 2013.

D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Im-
proved variational inference with inverse autoregressive flow. In Advances in neural
information processing systems, pages 4743–4751, 2016.

J. Knoblauch, J. Jewson, and T. Damoulas. Generalized variational inference: Three
arguments for deriving new posteriors. arXiv preprint arXiv:1904.02063, 2019.

I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review
of current methods. pages 1–1, 2020-08. URL https://doi.org/10.1109/tpami.2020.
2992934. Publisher: Institute of Electrical and Electronics Engineers (IEEE) _eprint:
1908.09257.

F. Koehler, V. Mehta, and A. Risteski. Representational aspects of depth and condi-
tioning in normalizing flows. In International Conference on Machine Learning, pages
5628–5636. PMLR, 2021.

J. Köhler, A. Krämer, and F. Noé. Smooth normalizing flows. Advances in Neural
Information Processing Systems, 34:2796–2809, 2021.

D. Koller and N. Friedman. Probabilistic graphical models: Principles and techniques.
MIT press, 2009.

A. Kolmogorov. On the representation of continuous functions of several variables by
superpositions of continuous functions of lesser variable count. In Dokl. Akad. Nauk
SSSR, volume 108, 1956.

A. N. Kolmogorov and A. T. Bharucha-Reid. Foundations of the theory of probability:
Second English Edition. Courier Dover Publications, 2018.

Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

A. Krogh and J. Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

https://doi.org/10.1109/tpami.2020.2992934
https://doi.org/10.1109/tpami.2020.2992934

180

M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder.
In International conference on machine learning, pages 1945–1954. PMLR, 2017.

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli. Qvmix and qvmix-
max: Extending the deep quality-value family of algorithms to cooperative multi-agent
reinforcement learning. arXiv preprint arXiv:2012.12062, 2020.

C. Li. Fisher, wright, and path coefficients. Biometrics, pages 471–483, 1968.

G. Louppe. Understanding random forests: From theory to practice. arXiv preprint
arXiv:1407.7502, 2014.

L. E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, and H. H. Olsson. Large-scale machine
learning systems in real-world industrial settings: A review of challenges and solutions.
Information and software technology, 127:106368, 2020.

S. Lyu. Interpretation and generalization of score matching. arXiv preprint
arXiv:1205.2629, 2012.

D. J. MacKay. Bayesian neural networks and density networks. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 354(1):73–80, 1995.

D. J. MacKay et al. Introduction to gaussian processes. NATO ASI series F computer
and systems sciences, 168:133–166, 1998.

E. Mathieu and M. Nickel. Riemannian continuous normalizing flows. Advances in Neural
Information Processing Systems, 33:2503–2515, 2020.

R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng. Turbo decoding as an instance of
pearl’s" belief propagation" algorithm. IEEE Journal on selected areas in communica-
tions, 16(2):140–152, 1998.

M. Minderer, J. Djolonga, R. Romijnders, F. Hubis, X. Zhai, N. Houlsby, D. Tran, and
M. Lucic. Revisiting the calibration of modern neural networks. Advances in Neural
Information Processing Systems, 34:15682–15694, 2021.

S. L. Morgan and C. Winship. Counterfactuals and causal inference. Cambridge Univer-
sity Press, 2015.

J. Mouton and S. Kroon. Graphical residual flows. arXiv preprint arXiv:2204.11846,
2022a.

181

J. Mouton and S. Kroon. Siren-vae: Leveraging flows and amortized inference for bayesian
networks. arXiv preprint arXiv:2204.11847, 2022b.

R. M. Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte
carlo, 2(11):2, 2011.

I. Ng, S. Lachapelle, N. R. Ke, S. Lacoste-Julien, and K. Zhang. On the convergence of
continuous constrained optimization for structure learning. In International Conference
on Artificial Intelligence and Statistics, pages 8176–8198. PMLR, 2022.

A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv
preprint arXiv:1609.03499, 2016a.

A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, and K. Kavukcuoglu.
Conditional image generation with pixelcnn decoders. 2016b.

G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2338–2347,
2017.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan.
Normalizing flows for probabilistic modeling and inference. 2019a.

G. Papamakarios, D. C. Sterratt, and I. Murray. Sequential neural likelihood: Fast
likelihood-free inference with autoregressive flows. In 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS), 2019b.

G. Parisi. Correlation functions and computer simulations. Nuclear Physics B, 180(3):
378–384, 1981.

J. Pearl. Bayesian networks: A model of self-activated memory for evidential reasoning.
In Proceedings of the 7th conference of the Cognitive Science Society, University of
California, Irvine, CA, USA, pages 15–17, 1985.

J. Pearl. Distributed revision of composite beliefs. Artificial Intelligence, 33(2):173–215,
1987.

J. Pearl. A probabilistic calculus of actions. In Uncertainty Proceedings 1994, pages
454–462. Elsevier, 1994.

J. Pearl. Causality. Cambridge university press, 2009.

J. Pearl. Bayesian networks. 2011.

182

J. Pearl. Reverend bayes on inference engines: A distributed hierarchical approach. In
Probabilistic and Causal Inference: The Works of Judea Pearl, pages 129–138. 2022.

A. Pesah, A. Wehenkel, and G. Louppe. Recurrent machines for likelihood-free inference.
arXiv preprint arXiv:1811.12932, 2018.

J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and
learning algorithms. 2017.

A. Rahimi, A. Shaban, C.-A. Cheng, R. Hartley, and B. Boots. Intra order-preserving
functions for calibration of multi-class neural networks. Advances in Neural Informa-
tion Processing Systems, 33:13456–13467, 2020.

A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson. Qmix:
Monotonic value function factorisation for deep multi-agent reinforcement learning. In
International conference on machine learning, pages 4295–4304. PMLR, 2018.

A. Razavi, A. van den Oord, and O. Vinyals. Generating diverse high-resolution images
with vq-vae. 2019a.

A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high-fidelity images
with vq-vae-2. Advances in neural information processing systems, 32, 2019b.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Interna-
tional Conference on Machine Learning, pages 1530–1538. PMLR, 2015.

D. J. Rezende, G. Papamakarios, S. Racaniere, M. Albergo, G. Kanwar, P. Shanahan,
and K. Cranmer. Normalizing flows on tori and spheres. In International Conference
on Machine Learning, pages 8083–8092. PMLR, 2020.

S. Rissanen, M. Heinonen, and A. Solin. Generative modelling with inverse heat dissipa-
tion. arXiv e-prints, pages arXiv–2206, 2022.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

S. J. Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. Denton, S. K. S. Ghasemipour,
B. K. Ayan, S. S. Mahdavi, R. G. Lopes, et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022.

183

S. Sahoo, C. Lampert, and G. Martius. Learning equations for extrapolation and control.
In International Conference on Machine Learning, pages 4442–4450. PMLR, 2018.

S. Sanner and E. Abbasnejad. Symbolic variable elimination for discrete and continuous
graphical models. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

V. G. Satorras, E. Hoogeboom, and M. Welling. E (n) equivariant graph neural networks.
In International conference on machine learning, pages 9323–9332. PMLR, 2021.

M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental data.
science, 324(5923):81–85, 2009.

L. Schwartz. On bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie und ver-
wandte Gebiete, 4(1):10–26, 1965.

V. Sehwag, A. N. Bhagoji, L. Song, C. Sitawarin, D. Cullina, M. Chiang, and P. Mittal.
Analyzing the robustness of open-world machine learning. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Security, pages 105–116, 2019.

A. Sinha, J. Song, C. Meng, and S. Ermon. D2c: Diffusion-decoding models for few-
shot conditional generation. Advances in Neural Information Processing Systems, 34:
12533–12548, 2021.

S. L. Smith, B. Dherin, D. G. Barrett, and S. De. On the origin of implicit regularization
in stochastic gradient descent. arXiv preprint arXiv:2101.12176, 2021.

J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Ma-
chine Learning, pages 2256–2265. PMLR, 2015.

Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribu-
tion. In Proceedings of the 33rd Annual Conference on Neural Information Processing
Systems, 2019.

Y. Song and D. P. Kingma. How to train your energy-based models. arXiv preprint
arXiv:2101.03288, 2021.

Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to
density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584.
PMLR, 2020a.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-
based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

184

Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood training of score-
based diffusion models. Advances in Neural Information Processing Systems, 34:1415–
1428, 2021.

D. A. Sorensen, S. Andersen, D. Gianola, and I. Korsgaard. Bayesian inference in thresh-
old models using gibbs sampling. Genetics Selection Evolution, 27(3):229–249, 1995.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout:
a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

E. G. Tabak and C. V. Turner. A family of nonparametric density estimation algorithms.
Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

E. G. Tabak and E. Vanden-Eijnden. Density estimation by dual ascent of the log-
likelihood. Communications in Mathematical Sciences, 8(1):217–233, 2010.

Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for sparse
overcomplete representations. Journal of Machine Learning Research, 4(Dec):1235–
1260, 2003.

T. Théate, A. Wehenkel, A. Bolland, G. Louppe, and D. Ernst. Distributional rein-
forcement learning with unconstrained monotonic neural networks. arXiv preprint
arXiv:2106.03228, 2021.

T. Tieleman. Training restricted boltzmann machines using approximations to the likeli-
hood gradient. In Proceedings of the 25th international conference on Machine learning,
pages 1064–1071, 2008.

S. T. Tokdar and R. E. Kass. Importance sampling: a review. Wiley Interdisciplinary
Reviews: Computational Statistics, 2(1):54–60, 2010.

J. M. Tomczak. Deep generative modeling.

I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing bayesian
network structure learning algorithm. Machine learning, 65(1):31–78, 2006.

A. Vahdat and J. Kautz. Nvae: A deep hierarchical variational autoencoder. 2020.

A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio.
In 9th ISCA Speech Synthesis Workshop, pages 125–125, 2016.

185

A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing
systems, 29, 2016.

A. Van Den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. Driessche, E. Lockhart, L. Cobo, F. Stimberg, and others. Parallel WaveNet: Fast
high-fidelity speech synthesis. In International Conference on Machine Learning, pages
3915–3923, 2018.

A. Van Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning, pages 1747–1756. PMLR, 2016.

M. Vandegar, M. Kagan, A. Wehenkel, and G. Louppe. Neural empirical bayes: Source
distribution estimation and its applications to simulation-based inference. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 2107–2115. PMLR,
2021.

N. Vecoven, D. Ernst, A. Wehenkel, and G. Drion. Introducing neuromodulation in deep
neural networks to learn adaptive behaviours. PloS one, 15(1):e0227922, 2020.

P. Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

A. Virmaux and K. Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

U. von Luxburg and O. Bousquet. Distance-based classification with lipschitz functions.
Journal of Machine Learning Research, 5(Jun):669–695, 2004.

M. J. Vowels, N. C. Camgoz, and R. Bowden. D’ya like dags? a survey on structure
learning and causal discovery. ACM Computing Surveys (CSUR), 2021.

A. Wehenkel and G. Louppe. Unconstrained monotonic neural networks. In Advances in
Neural Information Processing Systems, pages 1543–1553, 2019.

A. Wehenkel and G. Louppe. You say normalizing flows i see bayesian networks. 2020.

A. Wehenkel and G. Louppe. Diffusion priors in variational autoencoders. In ICML
Workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood
Models, 6 2021a.

A. Wehenkel and G. Louppe. Graphical normalizing flows. In International Conference
on Artificial Intelligence and Statistics, pages 37–45. PMLR, 04 2021b.

A. Wehenkel, A. Mukhopadhyay, J.-Y. Le Boudec, and M. Paolone. Parameter esti-
mation of three-phase untransposed short transmission lines from synchrophasor mea-
surements. IEEE Transactions on Instrumentation and Measurement, 69(9):6143–6154,
2020.

186

A. Wehenkel, J. Behrmann, H. Hsu, G. Sapiro, G. Louppe, and J.-H. Jacobsen. Robust
hybrid learning with expert augmentation. arXiv preprint arXiv:2202.03881, 2022.

L. A. Wehenkel. Automatic learning techniques in power systems. Number 429. Springer
Science & Business Media, 1998.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11),
pages 681–688. Citeseer, 2011.

T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and L. Daniel.
Evaluating the robustness of neural networks: An extreme value theory approach. arXiv
preprint arXiv:1801.10578, 2018.

A. V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with bayesian
networks by combining expression data with multiple sources of prior knowledge. Sta-
tistical applications in genetics and molecular biology, 6(1), 2007.

N. Wermuth. Linear recursive equations, covariance selection, and path analysis. Journal
of the American Statistical Association, 75(372):963–972, 1980.

N. Wiener and P. Masani. The prediction theory of multivariate stochastic processes.
Acta Mathematica, 98(1):111–150, 1957.

C. S. Wong and W. K. Li. On a mixture autoregressive model. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 62(1):95–115, 2000.

S. Wright. Systems of mating. i. the biometric relations between parent and offspring.
Genetics, 6(2):111, 1921.

S. Wright. The method of path coefficients. The annals of mathematical statistics, 5(3):
161–215, 1934.

S. Wright. Path coefficients and path regressions: alternative or complementary concepts?
Biometrics, 16(2):189–202, 1960.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018.

J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu, J. Baldridge,
and Y. Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

P. Yu, S. Xie, X. Ma, B. Jia, B. Pang, R. Gao, Y. Zhu, S.-C. Zhu, and Y. N. Wu.
Latent diffusion energy-based model for interpretable text modeling. arXiv preprint
arXiv:2206.05895, 2022.

187

D. Yurk and Y. Abu-Mostafa. County-specific, real-time projection of the effect of busi-
ness closures on the covid-19 pandemic. medRxiv, 2021.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effective-
ness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 586–595, 2018.

X. Zheng, B. Aragam, P. K. Ravikumar, and E. P. Xing. Dags with no tears: Contin-
uous optimization for structure learning. Advances in Neural Information Processing
Systems, 31, 2018.

	Jury members
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Research question
	1.2 Outline and structure
	1.3 Publications
	1.4 Additional publications

	Background
	2 Introduction to probabilistic modelling
	2.1 Introduction
	2.2 Probabilistic model
	2.3 Learning
	2.3.1 Maximum likelihood estimation
	2.3.2 Learning as inference

	2.4 Machine learning = probabilistic modeling
	2.5 Conclusion

	3 Probabilistic graphical models
	3.1 A graphical model is worth a thousand words
	3.2 The curses of dimensionality
	3.3 Directed graphical models – Bayesian networks
	3.3.1 Bayesian networks
	3.3.2 Parameterisation
	3.3.3 Inference
	3.3.3.1 Exact inference
	3.3.3.2 Inference as sampling
	3.3.3.3 Inference as optimization

	3.3.4 Learning
	3.3.4.1 Distribution learning
	3.3.4.2 Structure learning

	3.3.5 Duality between directed graphs and distributions
	3.3.6 Causality

	3.4 Undirected graphical models – Markov networks
	3.4.1 Markov networks
	3.4.2 Parameterisation.
	3.4.3 Toward neural networks

	3.5 Conclusion

	4 Deep probabilistic models
	4.1 Introduction
	4.2 Why neural networks?
	4.3 Autoregressive models
	4.4 Energy based models
	4.4.1 Markov chain Monte Carlo
	4.4.2 Contrastive learning
	4.4.3 Score matching

	4.5 Diffusion models
	4.5.1 Discrete-time diffusion
	4.5.2 Continuous-time diffusion

	4.6 Normalizing flows
	4.6.1 Discrete normalizing flows
	4.6.2 Continuous normalizing flows.
	4.6.3 Discussion

	4.7 Variational auto-encoders
	4.8 Discussion
	4.9 Challenges and opportunities

	Uninformed probabilistic modelling
	5 Combining models
	5.1 Prologue
	5.2 The paper: Diffusion Priors In Variational Autoencoders
	5.2.1 Author contributions
	5.2.2 Reading tips
	5.2.3 Minor corrections

	5.3 Epilogue
	5.3.1 Diffusion in the latent space
	5.3.2 Behind the scenes
	5.3.3 Scientific impact
	5.3.4 Conclusion and opportunities

	6 Understanding models
	6.1 Prologue
	6.2 The paper: You say Normalizing Flows I see Bayesian Networks
	6.2.1 Author contributions
	6.2.2 Reading tips

	6.3 Epilogue
	6.3.1 Scientific impact
	6.3.2 Conclusion and opportunities

	7 Improving models
	7.1 Prologue
	7.2 The paper: Unconstrained Monotonic Neural Networks
	7.2.1 Author contributions
	7.2.2 Reading tips

	7.3 Epilogue
	7.3.1 Discussion
	7.3.2 Scientific impact
	7.3.3 Conclusion and opportunities

	Informed probabilistic modelling
	8 Structured Density Estimation
	8.1 Prologue
	8.2 The paper: Graphical Normalizing Flows
	8.2.1 Author contributions
	8.2.2 Reading tips

	8.3 Epilogue
	8.3.1 Inductive bias in normalizing flows.
	8.3.2 Scientific impact
	8.3.3 Conclusion and opportunities

	9 Hybrid Probabilistic Models
	9.1 Prologue
	9.2 Robust Hybrid Learning With Expert Augmentation
	9.2.1 Author contributions
	9.2.2 Reading tips

	9.3 Epilogue
	9.3.1 Contribution
	9.3.2 Beyond hybrid learning
	9.3.3 Conclusion and opportunities

	Conclusion
	10 Conclusion
	Appendix
	A References

