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Abstract

We show explicitely how to construct scaling functions and wavelets which
are quintic deficient splines with compact support and symmetry properties.

1 Introduction

For m ∈ IN, it is well known that the functions Nm+1(. − k) (k ∈ ZZ ), where
Nm+1 = χ[0,1] ∗ . . . ∗ χ[0,1] (m + 1 factors), constitute a Riesz basis of the set of
smoothest splines of degree m,

V0 = {f ∈ L2(IR) : f |[k,k+1] = P
(m)
k , k ∈ ZZ and f ∈ Cm−1(IR)}

where P
(m)
k is a polynomial of degree at most m; for m = 0, it is simply the set

of functions in L2(IR) which are constant on every interval [k, k + 1] , k ∈ ZZ .
Moreover, if we define

Vj = {f ∈ L2(IR) : f(2−j.) ∈ V0}, j ∈ ZZ

then the sets Vj (j ∈ ZZ ) constitute a multiresolution analysis of L2(IR) and the
function Nm+1 is a scaling function for it; hence one gets bases of wavelets from
standard constructions ([6]; Chui-Wang biorthogonal wavelets,[2]; Battle-Lemarié
orthonormal wavelets, [7]).

∗P. Laubin died on February 21, 2001. Bastin and Laubin started working on this paper
together. That’s why both are quoted as authors.
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For numerical analysis purposes, splines of odd degree are of special interest;
moreover, it is also useful to consider the set of deficient splines of degree 2m + 1
(m ∈ IN), that is to say

V0 := {f ∈ L2(IR) : f |[k,k+1] = P
(2m+1)
k , k ∈ ZZ and f ∈ Cm+1(IR)}

(see [3], [8]). As for the space V0, a standard argument shows that the space V0 is a
closed subspace of L2(IR). For m = 1, this is the set of smoothest cubic splines; for
m = 2 , we denote this set as the set of

deficient quintic splines.

In what follows, we want to show explicitely how to construct scaling functions
and wavelets which are quintic deficient splines with compact support and symmetry
properties.

We go straithforward to the heart of the problem of the construction of the
multiresolution analysis, with all direct computations and without referring or using
other results. The construction of the wavelets is also a direct computation adapted
to the problem. The idea of the proof that they are a Riesz basis comes from [4],
[5]. For the sake of completeness, we give here all the justifications.

2 Definitions and notations

We say that a sequence of functions fk (k ∈ ZZ ) in a Hilbert space (H, ‖.‖) satisfies
the Riesz condition if they are A,B > 0, A ≤ B such that

A
∑

(k)

|ck|2 ≤ ‖
∑

(k)

ckfk‖2 ≤ B
∑

(k)

|ck|2 (RC)

for every finite sequence (ck) of complex numbers. If we denote by L the closed
linear hull of the fk (k ∈ ZZ ) then the map

T : l2 → L (ck)k∈ZZ 7→
+∞∑

k=−∞

ckfk

is then a topological isomorphism. We say that the functions fk (k ∈ ZZ ) constitute
a Riesz basis for L.

We use the notation f̂(ξ) for the Fourier transform
∫
IR e

−ixξf(x) dx of f .
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In case H = L2(IR) and fk(x) = f(x − k) (k ∈ ZZ ), taking Fourier transforms,
the inequality (RC) of the Riesz condition can be written as follows

A
∑

(k)

|ck|2 ≤ ‖p
√
w‖2

L2([0,2π]) ≤ B
∑

(k)

|ck|2 (RCF)

with

w(ξ) =
+∞∑

l=−∞

|f̂(ξ + 2lπ)|2 ∈ L1
loc, p(ξ) =

∑

(k)

cke
−ikξ.

Finally, using a classical argument (based on Fejer kernel for example), one shows
that (RFC) is satisfied for every finite sequence (ck) if and only if

A ≤ w(ξ) ≤ B a.e.

(see for example [1],[7]).

For the sake of completeness, we also recall the standard definition of multires-
olution analysis. We say that a sequence of closed linear subspaces Vj (j ∈ ZZ )
of L2(IR) constitutes a multiresolution analysis of L2(IR) if the following properties
hold:
(i) Vj ⊂ Vj+1 ∀j ∈ ZZ , ∪j∈ZZ Vj

L2
= L2(IR), ∩j∈ZZ Vj = {0}

(ii) f ∈ V0 ⇔ f(.− k) ∈ V0 ∀k ∈ ZZ
(iii) ∀j ∈ Z, f ∈ Vj ⇔ f(2−j.) ∈ V0

(iv) there is ϕ ∈ L2(IR) such that the functions ϕ(.− k), k ∈ ZZ , are a Riesz basis
for V0.

From a mutiresolution analysis, one constructs a Riesz basis of L2(IR) from
a standard procedure (see for example [6], [7]), using the spaces Wj, orthogonal
complement of Vj in Vj+1 (j ∈ ZZ ).

Here we use this procedure but with two functions instead of one for property
(iv).

3 Construction of a multiresolution analysis

Let us denote by V0 the following set of quintic splines

V0 := {f ∈ L2(IR) : f |[k,k+1] = P
(5)
k , k ∈ ZZ and f ∈ C3(IR)}.

Looking for f ∈ V0 with support [0, 3] (smaller interval does not give anything), we
are lead to a homogenous linear system of 18 unknowns and 16 equations; this let
us think that two scaling functions will be needed to generate V0.
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Proposition 3.1 A function f with support [0, 3] belongs to V0 if and only if

f(x) =





nx4 + ax5 if x ∈ [0, 1]

b
(
x− 3

2

)5
+ c

(
x− 3

2

)4
+ d

(
x− 3

2

)3

+e
(
x− 3

2

)2
+ f

(
x− 3

2

)
+ g if x ∈ [1, 2]

h(3 − x)4 + j(3 − x)5 if x ∈ [2, 3]
0 if x 6∈ [0, 3]

with

b = 19a+ 57
5
n c = 15

2
a + 11

2
n d = −45

2
a− 27

2
n e = −45

4
a− 33

4
n

f = 135
16
a + 81

16
n g = 117

32
a+ 627

160
n h = 15a+ 10n j = −10a− 33

5
n

Proof. The particular form in which we write the polynomials are due to the fact that
we have in mind to construct functions with symmetry. Moreover, the polynomial
on [0, 1] (resp. [2, 3]) can immediately be written in this form because we want C3

regularity at the point 0 (resp. 3) and support in [0, 3].
The coefficients are obtained using the definition of the quintic splines; we get

an homogenous system of 8 linear equations with 10 unknowns.2

Among the functions described above, there exists symmetric and antisymmetric
ones (the symmetry is naturally considered relatively to 3

2
). We are also going to

show that they generate V0.

Theorem 3.2 The following functions ϕa and ϕs

ϕa(x) =





x4 − 11
15
x5 if x ∈ [0, 1]

−9
8
(x− 3

2
) + 3(x− 3

2
)3 − 38

15
(x− 3

2
)5 if x ∈ [1, 2]

−(3 − x)4 + 11
15

(3 − x)5 if x ∈ [2, 3]
0 if x < 0 or x > 3

ϕs(x) =





x4 − 3
5
x5 if x ∈ [0, 1]

57
80

− 3
2
(x− 3

2
)2 + (x− 3

2
)4 if x ∈ [1, 2]

(3 − x)4 − 3
5
(3 − x)5 if x ∈ [2, 3]

0 if x < 0 or x > 3

are respectively antisymmetric and symmetric with respect to 3
2

and the family

{ϕa(.− k), k ∈ ZZ } ∪ {ϕs(.− k), k ∈ ZZ }

constitutes a Riesz basis of V0.
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Here is a picture of ϕs, ϕa.
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Proof. Construction of ϕa, ϕs.
We use the notations and the result of Proposition (3.1). We look for a, n such

that 



n = h
a = j
b = 0
d = 0
f = 0

(resp.





n = −h
a = −j
c = 0
d = 0
g = 0.

)

This system is equivalent to the single equation

5a+ 3n = 0 (resp. 15a+ 11n = 0).

With n = 1, a = − 3
5

(resp. n = 1, a = − 11
15

), we get ϕs (resp. ϕa).

Riesz condition.

For every k ∈ ZZ , we define

ϕa,k(x) = ϕa(x− k) and ϕs,k(x) = ϕs(x− k).

We first prove that the functions ϕa,k (k ∈ ZZ ) (resp. ϕs,k (k ∈ ZZ )) form a Riesz
family. Indeed, since we have

‖
∑

(k)

ckϕa,k‖2
L2(IR) =

1

2π
‖
∑

(k)

cke
−ikξϕ̂a(ξ)‖2

L2(IR) =
1

2π
‖
∑

(k)

cke
−ikξ

√
ωa(ξ)‖2

L2([0,2π])

for every finite sequence (ck) of complex numbers and where

ωa(ξ) =
+∞∑

l=−∞

|ϕ̂a(ξ + 2lπ)|2,
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it suffices to show that there are constants c, C > 0 such that

c ≤ ωa(ξ) ≤ C, ξ ∈ [0, 2π] .

Using the definition of ϕa, we get

ϕ̂a(ξ) =
−16i

ξ6
e−3iξ/2

(
3ξ(cos(

3ξ

2
) + 9 cos(

ξ

2
)) − 11 sin(

3ξ

2
) − 27 sin(

ξ

2
)

)

=
−16i

ξ6
e−3iξ/2

(
6ξ cos(

ξ

2
)(4 + cos ξ) − 2 sin(

ξ

2
)(19 + 11 cos ξ)

)
.

Using
+∞∑

l=−∞

1

(ξ + k)r+2
=

(−1)r

(r + 1)!
Dr
ξ

π2

sin2(πξ)
, r ∈ IN, ξ ∈ IR \ ZZ ,

some computations lead to

ωa(ξ) =
+∞∑

l=−∞

|ϕ̂a(ξ + 2lπ)|2 =
23247 − 21362 cos ξ − 385 cos(2ξ)

311850

hence to the conclusion. The same can be done for ϕs. We get

ϕ̂s(ξ) =
96

ξ6
e−3iξ/2 sin(

ξ

2
) (ξ(2 + cos ξ) − 3 sin ξ)

and

ωs(ξ) =
+∞∑

l=−∞

|ϕ̂s(ξ + 2lπ)|2 =
14445 + 7678 cos ξ + 53 cos(2ξ)

34650
.

Now, let us consider both families ϕa,k (k ∈ ZZ ) and ϕs,k (k ∈ ZZ ) together. For
every finite sequence (ck) and (dk) of complex numbers, we have

‖
∑

(k)

(ckϕa,k + dkϕs,k)‖2
L2(IR) =

+∞∑

j=−∞

‖
∑

(k)

(ckϕa,k−j + dkϕs,k−j)‖2
L2([0,1]).

On [0, 1], only ϕa,l, ϕs,l with l = −2,−1, 0 are not identically 0; moreover, these func-
tions are linearly independant (see appendix for a proof). As on a finite dimensional
space, all norms are equivalent, we get that there are r, R > 0 such that

r


‖

∑

(k)

ckϕa,k−j‖2
L2([0,1]) + ‖

∑

(k)

dkϕs,k−j‖2
L2([0,1])




≤ ‖
∑

(k)

(ckϕa,k−j + dkϕs,k−j)‖2
L2([0,1])

≤ R


‖

∑

(k)

ckϕa,k−j‖2
L2([0,1]) + ‖

∑

(k)

dkϕs,k−j‖2
L2([0,1])


 .
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Now, writing again

+∞∑

j=−∞

‖
∑

(k)

ckϕa,k−j‖2
L2([0,1]) = ‖

∑

(k)

ckϕa,k‖2
L2(IR),

+∞∑

j=−∞

‖
∑

(k)

dkϕs,k−j‖2
L2([0,1]) = ‖

∑

(k)

dkϕs,k‖2
L2(IR)

and using what has been done on each family separately, we conclude.

Riesz basis for V0.

Let us show that V0 is the closed linear hull of the ϕa,k, ϕs,k (k ∈ ZZ ).
On one hand, as the set V0 is a closed subspace of L2(IR) containing each ϕa,k

and ϕs,k, it contains the closed linear hull of these functions.
On the other hand, using Fourier transforms, we see that it suffices to show that

for every f ∈ V0, there are p, q ∈ L2
loc and 2π− periodic such that

f̂(ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ) a.e.

Let f ∈ V0. Because of the definition of V0, there are (ck)k∈ZZ , (dk)k∈ZZ ∈ l2 such
that

D6f = lim
m→+∞

m∑

k=−m

(ckδk + dkδ
′
k)

in the distribution sense, where δk and δ′k are respectively the Dirac and the deriva-
tive of the Dirac distribution at k (see appendix for proof). Taking Fourier trans-
forms, we get also

(iξ)6f̂(ξ) = lim
m→+∞

m∑

k=−m

(cke
−ikξ + idkξe

−ikξ);

it follows that there are m(ξ), n(ξ) ∈ L2
loc and 2π− periodic such that

(iξ)6f̂(ξ) = m(ξ) + ξn(ξ) a.e.

Hence the problem is to find p, q ∈ L2
loc and 2π− periodic such that

m(ξ) + ξn(ξ)

(iξ)6
= p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ).

Using the explicit expression of the Fourier transform of ϕs and ϕa, we are lead to
look for p, q such that




−m(ξ) = e−3iξ/2
(
−3 96 sin ξ sin( ξ

2
)p(ξ) + 16i(11 sin( 3ξ

2
) + 27 sin( ξ

2
))q(ξ)

)

−n(ξ) = e−3iξ/2
(
96(2 + cos ξ) sin( ξ

2
)p(ξ) − 48i(cos( 3ξ

2
) + 9 cos( ξ

2
))q(ξ)

)
.

(∗)
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For fixed ξ, this is a linear system of two equations and two unknowns; as

det

(
−3. 96 sin ξ sin( ξ

2
) 16i(11 sin( 3ξ

2
) + 27 sin( ξ

2
))

96(2 + cos ξ) sin( ξ
2
) −48i(cos( 3ξ

2
) + 9 cos( ξ

2
))

)
= C sin6 ξ

2

with C = −3 212i, we get

p(ξ) =
16ie3iξ/2

C sin6( ξ
2
)

(
3m(ξ)(cos(

3ξ

2
) + 9 cos(

ξ

2
)) + n(ξ)(11 sin(

3ξ

2
) + 27 sin(

ξ

2
))

)

and

q(ξ) =
96e3iξ/2

C sin6( ξ
2
)

(
3n(ξ) sin ξ sin(

ξ

2
) +m(ξ)(2 + cos ξ) sin(

ξ

2
)

)
.

These functions are 2π− periodic; it remains to prove that they are L2
loc. Indeed,

using m(ξ) = −ξn(ξ) − ξ6f̂(ξ) we get

3m(ξ)(cos(
3ξ

2
) + 9 cos(

ξ

2
)) + n(ξ)(11 sin(

3ξ

2
) + 27 sin(

ξ

2
))

= −3ξ6f̂(ξ)

(
cos(

3ξ

2
) + 9 cos(

ξ

2
)

)
+ n(ξ)

[
3

280
ξ7 +O(ξ9)

]

and

3n(ξ) sin ξ sin(
ξ

2
) +m(ξ)(2 + cos ξ) sin(

ξ

2
)

= sin(
ξ

2
)
(
−ξ6(2 + cos ξ)f̂(ξ) + n(ξ)

[
− 1

60
ξ5 +O(ξ7)

])

and we conclude.2

Remark 3.3 1) The previous proof also shows that a function f of L2(IR) belongs
to V0 if and only if there exist m,n ∈ L2

loc, 2π− periodic such that

(iξ)6f̂(ξ) = m(ξ) + ξn(ξ) a.e.

2) Since

3ξ

(
cos(

3ξ

2
) + 9 cos(

ξ

2
)

)
− 11 sin(

3ξ

2
) − 27 sin(

ξ

2
) =

−3

280
ξ7 +O(ξ9)

and

ξ(2 + cos ξ) − 3 sin ξ =
1

60
ξ5 +O(ξ7)

we get

ϕ̂a(0) = 0, ϕ̂s(0) =
4

5
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For every j ∈ ZZ we define

Vj = {f ∈ L2(IR) : f(2−j.) ∈ V0}.

Proposition 3.4 The sequence Vj (j ∈ ZZ ) is an increasing sequence of closed sets
of L2(IR) and ⋂

j∈ZZ
Vj = {0},

⋃

j∈ZZ
Vj = L2(IR).

Moreover, the functions ϕa, ϕs satisfy the following scaling relation



ϕ̂s(2ξ)

ϕ̂a(2ξ)


 = M0(ξ)



ϕ̂s(ξ)

ϕ̂a(ξ)




where M0(ξ) is the matrix (called filter matrix)

M0(ξ) = e−3iξ/2




1
32

cos( ξ
2
)(19 + 13 cos ξ) −9i

16
cos2( ξ

2
) sin( ξ

2
)

i
32

sin( ξ
2
)(16 + 11 cos ξ) 1

32
cos( ξ

2
)(8 − 7 cos ξ))




=
e−3iξ/2

64




51 cos( ξ
2
) + 13 cos( 3ξ

2
) −9i(sin( ξ

2
) + sin(3ξ

2
))

i(11 sin(3ξ
2
) + 21 sin( ξ

2
)) −7 cos( 3ξ

2
) + 9 cos( ξ

2
))


 .

Expressed in terms of the functions instead of the Fourier transform, the scaling
relation can be written as follows

ϕs(
ξ

2
) =

1

64
(13ϕs(x) + 51ϕs(x− 1) + 51ϕs(x− 2) + 13ϕs(x− 3)

−9ϕa(x) − 9ϕa(x− 1) + 9ϕa(x− 2) + 9ϕa(x− 3))

ϕa(
x

2
) =

1

64
(11ϕs(x) + 21ϕs(x− 1) − 21ϕs(x− 2) − 11ϕs(x− 3)

−7ϕa(x) + 9ϕa(x− 1) + 9ϕa(x− 2) − 7ϕa(x− 3))

Proof. Using the definition of V0 and of the Vj (j ∈ ZZ ), it is clear that Vj ⊂ Vj+1

for every j ∈ ZZ . The density of the union is due to the facts that a smoothest spline
is also a deficient spline (Vj ⊂ Vj) and that the union ∪

j∈ZZ Vj is dense in L2(IR).

Now, let f ∈ ∩
j∈ZZ Vj. For every j ≤ 0, there is then a polynomial Pj (resp. Qj)

such that f = Pj on [0, 2−j] (resp. f = Qj on [−2−j, 0]). It follows that Pj = Pj′
(resp. Qj = Qj′) for every j, j ′ ≤ 0 hence f is a polynomial on [0,+∞[ (resp.
]−∞, 0]). Since f ∈ L2(IR), this implies f = 0 on [0,+∞[ (resp. ]−∞, 0]).
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Let us show how to obtain the scaling relation. We have

ϕ̂s(2ξ) =
3e−3iξ sin ξ (2 + cos(2ξ))

ξ5
− 9e−3iξ sin ξ sin(2ξ)

2ξ6

ϕ̂a(2ξ) =
−3ie−3iξ(cos(3ξ) + 9 cos ξ)

2ξ5
+
ie−3iξ(11 sin(3ξ) + 27 sin ξ)

4ξ6

We define

ms(ξ) =
9

2
e−3iξ sin ξ sin(2ξ), ns(ξ) = −3e−3iξ sin ξ (2 + cos(2ξ))

ma(ξ) =
−i
4
e−3iξ(11 sin(3ξ) + 27 sin ξ), na(ξ) =

3i

2
e−3iξ(cos(3ξ) + 9 cos ξ)

and use the resolution of the linear system (*) occuring in the proof of Theorem 3.2
to get

ps(ξ) =
−2−8e3iξ/2

3 sin6( ξ
2
)

(
3ms(ξ)(cos(

3ξ

2
) + 9 cos(

ξ

2
)) + ns(ξ)(11 sin(

3ξ

2
) + 27 sin(

ξ

2
))

)

=
e−3iξ/2

32
cos(

ξ

2
) (19 + 13 cos ξ)

qs(ξ) =
2−7ie3iξ/2

sin6( ξ
2
)

(
3ns(ξ) sin ξ sin(

ξ

2
) +ms(ξ)(2 + cos ξ) sin(

ξ

2
)

)
.

=
−9e−3iξ/2

16
cos2(

ξ

2
) sin(

ξ

2
)

pa(ξ) =
−2−8e3iξ/2

3 sin6( ξ
2
)

(
3ma(ξ)(cos(

3ξ

2
) + 9 cos(

ξ

2
)) + na(ξ)(11 sin(

3ξ

2
) + 27 sin(

ξ

2
))

)

=
ie−3iξ/2

32
sin(

ξ

2
) (16 + 11 cos ξ)

qa(ξ) =
2−7ie3iξ/2

sin6( ξ
2
)

(
3na(ξ) sin ξ sin(

ξ

2
) +ma(ξ)(2 + cos ξ) sin(

ξ

2
)

)
.

=
e−3iξ/2

64
(9 cos(

ξ

2
) − 7 cos(

3ξ

2
))

such that

ϕ̂s(2ξ) = ps(ξ)ϕ̂s(ξ) + qs(ξ)ϕ̂a(ξ)

ϕ̂a(2ξ) = pa(ξ)ϕ̂s(ξ) + qa(ξ)ϕ̂a(ξ)

2
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The scaling relation leads to the following formula1

Property 3.5 We have

W (2ξ) = M0(ξ)W (ξ)M∗
0 (ξ) + M0(ξ + π)W (ξ + π)M ∗

0 (ξ + π) (R1)

where

W (ξ) =

(
ωs(ξ) ωm(ξ)

ωm(ξ) ωa(ξ)

)

with

ωa(ξ) =
+∞∑

l=−∞

|ϕ̂a(ξ + 2lπ)|2 =
23247 − 21362 cos ξ − 385 cos(2ξ)

311850

ωs(ξ) =
+∞∑

l=−∞

|ϕ̂s(ξ + 2lπ)|2 =
14445 + 7678 cos ξ + 53 cos(2ξ)

34650

ωm(ξ) =
+∞∑

l=−∞

ϕ̂s(ξ + 2lπ)ϕ̂a(ξ + 2lπ) = − i

51975
sin ξ (6910 + 193 cos ξ).

Proof. Define

φ(ξ) =

(
ϕ̂s(ξ)
ϕ̂a(ξ)

)
.

Using the scaling relation, we have

φ(2ξ) φ∗(2ξ) = M0(ξ)φ(ξ) φ∗(ξ)M∗
0 (ξ). (∗∗)

As we also have

φ(ξ) φ∗(ξ) =

(
|ϕ̂s(ξ)|2 ϕ̂s(ξ) ϕ̂a(ξ)

ϕ̂a(ξ) ϕ̂s(ξ) |ϕ̂a(ξ)|2
)

1In case V0 is generated by one single function ϕ, we recall that we have

|m0(ξ)|2ω(ξ) + |m0(ξ + π)|2ω(ξ + π) = ω(2ξ)

where m0 is the filter and where

ω(ξ) =

+∞∑

k=−∞

|ϕ̂(ξ + 2kπ)|2.

11



hence
+∞∑

l=−∞

φ(ξ + 2lπ) φ∗(ξ + 2lπ) = W (ξ)

we finally get from (**)

W (2ξ) = M0(ξ)W (ξ)M∗
0 (ξ) +M0(ξ + π)W (ξ + π)M ∗

0 (ξ + π).

2

From the previous results, we obtain that the closed subspaces Vj (j ∈ ZZ ) form
a multiresolution analysis of L2(IR) with the difference that V0 is generated using
two functions.

A next step is then to define W0 as the orthogonal complement of V0 in V1

and to construct mother wavelets in that context, that is to say functions which
will genererate W0 and which will be compactly supported deficient splines with
symmetry properties.

4 Construction of wavelets

Proposition 4.1 A function f belongs to W0 if and only if there exists p, q ∈ L2
loc,

2π− periodic such that

f̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)

and

M0(ξ) W (ξ)

(
p(ξ)
q(ξ)

)
+M0(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e. (∗ ∗ ∗)

where M0 is the filter matrix obtained in Proposition 3.4 and W (ξ) is the matrix
defined in Property 3.5.

Proof. We have

f ∈ W0 ⇔ f ∈ V1and f⊥V0

⇔ ∃p, q ∈ L2
loc, 2π − per. : f̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)and f⊥V0.

Let us develop the orthogonality condition, assuming the decomposition of f in
terms of p, q. We have

f⊥V0 ⇔ 〈f, ϕs,k〉 = 0 and 〈f, ϕa,k〉 = 0 ∀k ∈ ZZ

⇔
∫

IR
dξ e2ikξ(p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ))φ̂(2ξ) = 0 ∀k ∈ ZZ

12



where

φ(ξ) =

(
ϕ̂s(ξ)
ϕ̂s(ξ)

)
.

using the scaling relation φ(2ξ) = M0(ξ)φ(ξ) we get

f⊥V0 ⇔
∫

IR
dξ e2ikξM0(ξ)(p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ))φ̂(ξ) = 0 ∀k ∈ ZZ

⇔
∫ 2π

0
dξ e2ikξM0(ξ)

(
p(ξ)ωs(ξ) + q(ξ)ωm(ξ)
p(ξ)ωm(ξ) + q(ξ)ωa(ξ)

)
= 0 ∀k ∈ ZZ

We finally obtain

f⊥V0 ⇔
∫ 2π

0
dξ e2ikξM0(ξ)W (ξ)

(
p(ξ)
q(ξ)

)
= 0 ∀k ∈ ZZ

⇔ M0(ξ) W (ξ)

(
p(ξ)
q(ξ)

)
+M0(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e.

2

Property 4.2 Define

p(ξ) =
8∑

k=0

pke
−ikξ, q(ξ) =

8∑

k=0

qke
−ikξ.

Then

M0(ξ) W (ξ)

(
p(ξ)
q(ξ)

)
+M0(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0

if and only if

p0 = −3889626976749167 q6
5994139826128818

+
131897103348532083 q7

1998046608709606

p1 = −309465997116423653 q6
5994139826128818

+
31475411718124505275 q7

5994139826128818

p2 = −2910616639302037153 q6
11988279652257636

+
98460203039930868151 q7

3996093217419212

p3 = −63116209243492295 q6
11988279652257636

+
2752877157983350339 q7

11988279652257636

p4 =
1001080766452619117 q6

3996093217419212
− 305442606074749693691 q7

11988279652257636
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p5 =
586477042773225505 q6

11988279652257636
− 18702491649774784079 q7

3996093217419212

p6 =
8697 q6
9722

− 815185 q7
29166

p7 =
q6

29166
+

7671 q7
9722

p8 = 0

q0 =
817983890541088 q6
999023304354803

− 83213460955642643 q7
999023304354803

q1 =
83213460955642643 q6

999023304354803
− 8464081159439223030 q7

999023304354803

q2 =
3076490626693617437 q6

3996093217419212
− 312581647446378659929 q7

3996093217419212

q3 =
6206512064613183305 q6

3996093217419212
− 627609716223521838981 q7

3996093217419212

q4 =
3093733577622211529 q6

3996093217419212
− 307145202958857943389 q7

3996093217419212

q5 =
318992113046003613 q6

3996093217419212
− 28693660332222110321 q7

3996093217419212
q8 = 0

It follows that there exists deficient spline wavelets with support in [0, 5], i.e.
functions ψ such that

ψ̂(2ξ) =
7∑

k=0

pke
−ikξϕ̂s(ξ) +

7∑

k=0

qke
−ikξϕ̂a(ξ)

or
1

2
ψ(x) =

7∑

k=0

pkϕs(2x− k) +
7∑

k=0

qkϕa(2x− k).

Proof. The degree of the polynomials p, q are due to a look to the system that has
to be solved. The resolution of the linear system is a Mathematica computation.2

Property 4.3 For every q6, q7, the function ψ has (at least) one vanishing moment.

Proof. We have
ψ̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)

with

p(ξ) =
7∑

k=0

pke
−ikξ, q(ξ) =

7∑

k=0

qke
−ikξ.
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As
ϕ̂a(0) = 0, ϕ̂s(0) 6= 0

it suffices to check that p(0) = 0.
To obtain this property, we just use the relation (***) with ξ = 0 (the relation is

in fact an equality everywhere since p, q are polynomials in that case. Indeed, since

M0(0) =

(
1 0
0 1

32

)
, M0(π) =

(
0 0
5
32

0

)
,

and

W (0) =

(
ωs(0) 0

0 ωa(0)

)
, W (π) =

(
ωs(π) 0

0 ωa(π)

)
,

from (***) we obtain ω0(0)p(0) = 0 hence the conclusion. 2

Moreover, symmetric compactly supported wavelets can be constructed: take
q6, q7 such that p0 = p7; then p1 = p6, p2 = p5, p3 = p4, q0 = −q7, q1 = −q6, q2 =
−q5; q3 = −q4 (we denote these coefficients with an “s”) and we get (after some
normalisation)

1

2
ψs(

x

2
)

= −17951959(ϕs(x) + ϕs(x− 7)) − 12632556065

9
(ϕs(x− 1) + ϕs(x− 6))

−16090899067

3
(ϕs(x− 2) + ϕs(x− 5)) +

61066820897

9
(ϕs(x− 3) + ϕs(x− 4))

+
67958549

3
(ϕa(x) − ϕa(x− 7)) + 2276806815(ϕa(x− 1) − ϕa(x− 6))

+
57273621163

3
(ϕa(x− 2) − ϕa(x− 5)) + 21550944929(ϕa(x− 3) − ϕa(x− 4))

In the same way, antisymmetric compactly supported wavelets can be con-
structed: take q6, q7 such that p0 = −p7; then p1 = −p6, p2 = −p5, p3 = −p4, q0 =
q7, q1 = q6, q2 = q5; q3 = q4 (we denote these coefficients with an “a”) and we get
(after some normalisation)

1

2
ψa(

x

2
)

= −28619155(ϕs(x) − ϕs(x− 7)) − 2316324977(ϕs(x− 1) − ϕs(x− 6))

−25729608221

2
(ϕs(x− 2) − ϕs(x− 5)) − 22560506027

2
(ϕs(x− 3) − ϕs(x− 4))

+36109536(ϕa(x) + ϕa(x− 7)) + 3717522762(ϕa(x− 1) + ϕa(x− 6))

+
74946039675

2
(ϕa(x− 2) + ϕa(x− 5)) +

205277609199

2
(ϕa(x− 3) + ϕa(x− 4))
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Here are ψs, ψa (up to a multiplicative constant)

1 2 3 4 5

-200

-100

100

200

1 2 3 4 5

-400

-200

200

400

The preceeding definitions can also be written using Fourier transforms. We
define

ps(ξ) =
7∑

k=0

pske
−ikξ, qs(ξ) =

7∑

k=0

qske
−ikξ

pa(ξ) =
7∑

k=0

pake
−ikξ, qa(ξ) =

7∑

k=0

qake
−ikξ.

With

M1(ξ) =

(
ps(ξ) qs(ξ)
pa(ξ) qa(ξ)

)

we get (from (***))

M1(ξ)W (ξ)M∗
0 (ξ) +M1(ξ + π)W (ξ + π)M ∗

0 (ξ + π) = 0 (R2)

and

(
ψ̂s(2ξ)

ψ̂a(2ξ)

)
= M1(ξ)

(
ϕ̂s(ξ)
ϕ̂a(ξ)

)
.

Now, we want to show that the family {ψs,k : k ∈ ZZ } ∪ {ψa,k : k ∈ ZZ } is
a Riesz basis for W0. First, we give a lemma which will be of great help to get
the Riesz condition. We note here that this way of proving the Riesz condition is
different from the one used for the scaling functions. We could have used the same
method but computations became much more complicated; that’s why we tried to
get the result through another way.
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Lemma 4.4 ([5]) Let f, g ∈ L2(IR). We define fk(x) = f(x−k), gk(x) = g(x−k),
k ∈ ZZ and

H(ξ) =

(
ωf,f(ξ) ωf,g(ξ)

ωf,g(ξ) ωg,g(ξ)

)

where

ωf,f(ξ) =
+∞∑

k=−∞

|f̂(ξ + 2kπ)|2

ωg,g(ξ) =
+∞∑

k=−∞

|ĝ(ξ + 2kπ)|2

ωf,g(ξ) =
+∞∑

k=−∞

f̂(ξ + 2kπ) ĝ(ξ + 2kπ).

The following properties are equivalent:
(i) the family {fk : k ∈ ZZ } ∪ {gk : k ∈ ZZ } satisfies the Riesz condition
(ii) there exists A,B > 0 such that

A(‖(ck)‖2
l2+‖(dk)‖2

l2) ≤
∫ 2π

0

〈
H(ξ)

(
p(ξ)
q(ξ)

)
,

(
p(ξ)
q(ξ)

)〉
dξ ≤ B(‖(ck)‖2

l2+‖(dk)‖2
l2)

for every finite sequences (ck), (dk) and where

p(ξ) =
∑

(k)

cke
−ikξ, q(ξ) =

∑

(k)

dke
−ikξ

(iii) there exists A,B > 0 such that

A ≤ λi(ξ) ≤ B (i = 1, 2)

where λ1(ξ), λ2(ξ) are the eigenvalues of H(ξ).

Proof. We have

‖
∑

(k)

ckfk +
∑

(k)

dkgk‖2
L2(IR)

=
1

2π
‖
∑

(k)

cke
−ikξf̂(ξ) +

∑

(k)

dke
−ikξ ĝ(ξ)‖2

L2(IR)

=
1

2π

∫ 2π

0
|p(ξ)|2ωff(ξ) + |q(ξ)|2ωaa(ξ) + p(ξ)q(ξ)ωfg(ξ) + p(ξ)q(ξ)ωfg(ξ) dξ

=
1

2π

∫ 2π

0

〈
H(ξ)

(
p(ξ)
q(ξ)

)
,

(
p(ξ)
q(ξ)

)〉
dξ,

17



which shows that (i) and (ii) are equivalent.
Now, for every ξ, the matrix H(ξ) is hermitian. Therefore, for every ξ, there is

a unitary matrix U(ξ) such that U ∗(ξ)H(ξ)U(ξ) = diag(λ1(ξ), λ2(ξ)). As we have
∥∥∥∥∥U

(
p
q

)∥∥∥∥∥

2

L2([0,2π])

=
∫ 2π

0

〈
U(ξ)

(
p(ξ)
q(ξ)

)
, U(ξ)

(
p(ξ)
q(ξ)

)〉
dξ

=
∫ 2π

0

〈(
p(ξ)
q(ξ)

)
,

(
p(ξ)
q(ξ)

)〉
dξ

=

∥∥∥∥∥

(
p
q

)∥∥∥∥∥

2

L2([0,2π])

= ‖(ck)‖2
l2 + ‖(dk)‖2

l2

we obtain that (ii) is equivalent to

A(‖(ck)‖2
l2 + ‖(dk)‖2

l2) ≤
∫ 2π

0
(λ1(ξ)p(ξ) + λ2(ξ)q(ξ)) dξ ≤ B(‖(ck)‖2

l2 + ‖(dk)‖2
l2)

for every finite sequences (ck), (dk). Now, it is clear that (iii) implies (ii). To get
that (ii) implies (iii), it suffices for example to use the Fejer kernel as p, q (same
proof as for the Riesz condition). 2

Now we want to use this lemma to obtain the desired result about the wavelets.
Let us give some notations: define the matrix

Wψ(ξ) =

(
ωψs

(ξ) ωψs,ψa
(ξ)

ωψs,ψa
(ξ) ωψa

(ξ)

)

where

ωψa
(ξ) =

+∞∑

l=−∞

|ψ̂a(ξ + 2lπ)|2

ωψs
(ξ) =

+∞∑

l=−∞

|ψ̂s(ξ + 2lπ)|2

ωψs,ψa
(ξ) =

+∞∑

l=−∞

ψ̂s(ξ + 2lπ)ψ̂a(ξ + 2lπ).

Theorem 4.5 The family {ψs,k : k ∈ ZZ }∪{ψa,k : k ∈ ZZ } constitutes a Riesz basis
for W0. The functions with index s (resp. a) are symmetric (resp. antisymmetric).
The support of ψs,0 and ψa,0 is included in [0, 5].
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It follows that the functions

2j/2ψs(2
jx− k), 2j/2ψa(2

jx− k) (j, k ∈ ZZ )

form a Riesz basis of compactly supported deficient splines of L2(IR) with symmetry
properties.

Proof. Using the expression of ψa, ψs in terms of ϕa, ϕs, i.e.

(
ψ̂s(2ξ)

ψ̂a(2ξ)

)
= M1(ξ)

(
ϕ̂s(ξ)
ϕ̂a(ξ)

)
.

and by a computation similar to the one leading to (R1), we get

Wψ(2ξ) = M1(ξ)W (ξ)M1
∗(ξ) + M1(ξ + π)W (ξ + π)M1

∗(ξ + π). (R3)

Then, since W (ξ) is hermitian positive definite for every ξ, the matrix Wψ has the
same property if and only if the matrices M1(ξ) and M1(ξ+π) are not simultaneously
singular. This is the case since we have (up to an exponential function and a
multiplicative constant)

detM1(ξ)

= sin2(ξ/2) (−64944404321059950

+1483142106949117120 cos ξ + 1192353539007974745 cos(2ξ)

+605163081148101400 cos(3ξ) + 249900649739435294 cos(4ξ)

+25542907675492680 cos(5ξ) + 250030917177111 cos(6ξ))

which gives the graph for 10−37(detM1(ξ))
2 + (detM1(ξ + π))2

1 2 3 4 5 6
-0.5

0.5

1

1.5

Finally, since the elements of Wψ are trigonometric 2π-periodic polynomials,
the eigenvalues are also periodic and continuous. Since they are strictly positive,
condition (iii) of Lemma 4.4 follows. Hence the family of wavelets satisfies the Riesz
condition.
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To prove that the closure of the linear hull of the functions ψs,k, ψa,k (k ∈ ZZ ) is
W0, it remains to show that

f ∈ W0,

{
〈f, ψs,k〉 = 0
〈f, ψa,k〉 = 0

⇒ f = 0.

For f ∈ W0, we have (see Proposition 4.1) p, q ∈ L2
loc, 2π− periodic such that

f̂(2ξ) = p(ξ)ϕ̂s(ξ) + q(ξ)ϕ̂a(ξ)

and

M0(ξ) W (ξ)

(
p(ξ)
q(ξ)

)
+M0(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e. (1)

The same computation as the one leading to the equality above in Proposition 4.1,
but using orthogonality to ψs,k, ψa,k instead of to ϕs,k, ϕa,k, leads to

M1(ξ) W (ξ)

(
p(ξ)
q(ξ)

)
+M1(ξ + π) W (ξ + π)

(
p(ξ + π)
q(ξ + π)

)
= 0 a.e. (2)

Then (1) and (2) are equivalent to

(
M0(ξ) W (ξ) M0(ξ + π) W (ξ + π)

M1(ξ) W (ξ) M1(ξ + π) W (ξ + π)

)



p(ξ)
q(ξ)

p(ξ + π)
q(ξ + π)


 = 0 a.e. (3)

We have
(
M0(ξ) W (ξ) M0(ξ + π) W (ξ + π)

M1(ξ) W (ξ) M1(ξ + π) W (ξ + π)

)

=

(
M0(ξ) M0(ξ + π)

M1(ξ) M1(ξ + π)

) (
W (ξ) 0

0 W (ξ + π)

)
.

Using the relations (R1), (R2), (R3), we get

(
M0(ξ) M0(ξ + π)

M1(ξ) M1(ξ + π)

)(
W (ξ) 0

0 W (ξ + π)

)(
M0(ξ) M0(ξ + π)

M1(ξ) M1(ξ + π)

)∗

=

(
W (2ξ) 0

0 Wψ(2ξ)

)
.
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For every ξ, the matrices W (ξ),Wψ(ξ) are not singular. Hence, for every ξ the
matrix (

M0(ξ) M0(ξ + π)

M1(ξ) M1(ξ + π)

)

is not singular. The conclusion follows: from (3) we obtain p(ξ) = q(ξ) = 0 a.e.2

5 Appendix

Property 5.1 The functions ϕa,l|[0,1]
, ϕs,l|[0,1]

with l = −2,−1, 0 are linearly inde-

pendant.

Proof. For x ∈ [0, 1], we have

Pa,0(x) := ϕa,0(x) = ϕa(x) = x4 − 11

15
x5

Pa,−1(x) := ϕa,−1(x) = ϕa(x + 1) = −9

8
(x− 1

2
) + 3(x− 1

2
)3 − 38

15
(x− 1

2
)5

Pa,−2(x) := ϕa,−2(x) = ϕa(x + 2) = −(1 − x)4 +
11

15
(1 − x)5

Ps,0 := ϕs,0(x) = ϕs(x) = x4 − 3

5
x5

Ps,−1 := ϕs,−1(x) = ϕs(x + 1) =
57

80
− 3

2
(x− 1

2
)2 + (x− 1

2
)4

Ps,−2 := ϕs,−2(x) = ϕs(x + 2) = (1 − x)4 − 3

5
(3 − x)5.

If rj (j = 1, . . . , 6) are such that

r1Pa,0 + r2Pa,−1 + r3Pa,−2 + r4Ps,0 + r5Ps,−1 + r6Ps,−2 = 0

then the coefficients of xj (j = 0, . . . , 5) are equal to 0. We get the system




3r2 + 3r3 + 2r5 − 2r6 = 0
3r2 − 3r3 + r5 + r6 = 0
r5 − r6 = 0
−3r2 + 4r3 − 5r5 − 5r6 = 0
3r1 + 3r2 − 6r3 + 4r4 + 19r5 + 8r6 = 0
−9r1 + 9r3 − 11r4 − 38r5 − 11r6 = 0

which is easy to solve; the unique solution is

r1 = r2 = r3 = r4 = r5 = r6 = 0.
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Property 5.2 For every f ∈ V0, there are (ck)k∈ZZ , (dk)k∈ZZ ∈ l2 such that

D6f = lim
m→+∞

m∑

k=−m

(ckδk + dkδ
′
k)

in the distribution sense, where δk and δ′k are respectively the Dirac and the derivative
of the Dirac distribution at k.

Proof. Let f ∈ V0 and, for every k ∈ ZZ , let f |[k,k+1] = P
(k)
5 = polynomial of degree

at most 5. If a
(k)
0 , a

(k)
1 are respectively the coefficients of x4, x5 in P

(k)
5 , then

D4P
(k)
5 (x) = 5!a

(k)
1 x + 4!a

(k)
0

and, for h ∈ C∞(IR) with compact support,
∫

IR
f(x)D6h(x) dx

= 5!
∑

k∈ZZ

(
a

(k)
1 − a

(k−1)
1

)
h(k) +

(
4!(a

(k)
0 − a

(k−1)
0 ) + 5!k(a

(k)
1 − a

(k−1)
1 )

)
Dh(k).

For every k ∈ ZZ , we define

ck = 5!(a
(k)
1 − a

(k−1)
1 ),

dk = −4!(a
(k)
0 − a

(k−1)
0 ) − 5!k(a

(k)
1 − a

(k−1)
1 )

= −4!
(
(a

(k)
0 + 5ka

(k)
1 ) − (a

(k−1)
0 + 5ka

(k−1)
1 )

)

hence to conclude, it suffices to prove that
(
a

(k)
1

)
k∈ZZ

∈ l2,
(
a

(k)
0 + 5ka

(k)
1

)
k∈ZZ

∈ l2.

Do obtain this, we first remark that, on the linear space of polynomials of degree
at most 5, all norms are equivalent. Hence, there are r, R > 0 such that

r
5∑

j=0

|Aj|2 ≤
∫ 1

0
|P (x)|2 dx ≤ R

5∑

j=0

|Aj|2

for every polynomial P (x) =
∑5
j=0Ajx

j. Next, for f ∈ V0, using the same notations
as just above, we have

‖f‖2
L2(IR) =

+∞∑

k=−∞

∫ k+1

k
|P (k)

5 (x)|2 dx

=
+∞∑

k=−∞

∫ 1

0
|P (k)

5 (x + k)|2 dx.
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Moreover, in P
(k)
5 (x + k), the coefficient of x5 is a

(k)
1 and the coefficient of x4 is

a
(k)
0 + 5ka

(k)
1 . It follows that

+∞∑

k=−∞

(|a(k)
1 |2 + |a(k)

0 + 5ka
(k)
1 |2) ≤ 1

r

+∞∑

k=−∞

∫ 1

0
|P (k)

5 (x + k)|2 dx ≤ 1

r
‖f‖2

L2(IR).

Hence the conclusion.2
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