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Abstract

We show explicitely how to construct scaling functions and wavelets which
are quintic deficient splines with compact support and symmetry properties.

1 Introduction

For m € IN, it is well known that the functions N,,.1(. — k) (k € Z ), where
Npt1 = Xjoa] * --- * Xjoq] (m + 1 factors), constitute a Riesz basis of the set of
smoothest splines of degree m,

Vo={f € Ls(R) : flpnsr = P™ k€ Zand f € Cp_i(R)}

where Pk(m) is a polynomial of degree at most m; for m = 0, it is simply the set
of functions in L?*(IR) which are constant on every interval [k, k+1], k € Z.
Moreover, if we define

Vi={feLl(R): f(277)eVo}, jEZL

then the sets V; (j € Z ) constitute a multiresolution analysis of L*(IR) and the
function N,,.1 is a scaling function for it; hence one gets bases of wavelets from
standard constructions ([6]; Chui-Wang biorthogonal wavelets,[2]; Battle-Lemarié
orthonormal wavelets, [7]).

*P. Laubin died on February 21, 2001. Bastin and Laubin started working on this paper
together. That’s why both are quoted as authors.
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For numerical analysis purposes, splines of odd degree are of special interest;
moreover, it is also useful to consider the set of deficient splines of degree 2m + 1
(m € IN), that is to say

Voi={f € Ly(R) : flppsny = Pk € Zand [ € Cpya(R)}

(see [3], [8]). As for the space V), a standard argument shows that the space V; is a
closed subspace of L?(IR). For m = 1, this is the set of smoothest cubic splines; for

[m = 2], we denote this set as the set of

‘ deficient quintic splines.

In what follows, we want to show explicitely how to construct scaling functions
and wavelets which are quintic deficient splines with compact support and symmetry
properties.

We go straithforward to the heart of the problem of the construction of the
multiresolution analysis, with all direct computations and without referring or using
other results. The construction of the wavelets is also a direct computation adapted
to the problem. The idea of the proof that they are a Riesz basis comes from [4],
[5]. For the sake of completeness, we give here all the justifications.

2 Definitions and notations

We say that a sequence of functions fi (k € Z ) in a Hilbert space (H, ||.||) satisfies
the Riesz condition if they are A, B > 0, A < B such that

AY el <Y enfill> < BY el (RC)
® ) ®

for every finite sequence (cg) of complex numbers. If we denote by L the closed
linear hull of the f (k € Z ) then the map

—+00

T:02 > L (k) pe, = Z Crfr

k=—o00

is then a topological isomorphism. We say that the functions fy (k € Z ) constitute
a Riesz basis for L. R
We use the notation f(€) for the Fourier transform [ e ¢ f(z) dz of f.



In case H = L*(R) and fiy(z) = f(x — k) (k € Z ), taking Fourier transforms,
the inequality (RC) of the Riesz condition can be written as follows

AY erl? < lIpvwlzagozm < B Y lexl? (RCF)
(k) (k)

with N
w@)= S |fE+2an)Pell, pE) =3 ce ™
(k)

l=—o0
Finally, using a classical argument (based on Fejer kernel for example), one shows
that (RFC) is satisfied for every finite sequence (¢i) if and only if

A<w() < B ae.

(see for example [1],[7]).

For the sake of completeness, we also recall the standard definition of multires-
olution analysis. We say that a sequence of closed linear subspaces V; (j € Z)
of L*(IR) constitutes a multiresolution analysis of L*(IR) if the following properties
hold:

(1) V} - V}-H Vje, Uje% ‘/jLQ = L2(IR)7 mjez ‘/J = {0}

i) feVo & f(.—k)eVWWWVkel

(i)VieZ, feV, & f(279)eW

(iv) there is ¢ € L?(IR) such that the functions o(. — k), k € Z , are a Riesz basis
for V.

From a mutiresolution analysis, one constructs a Riesz basis of L?(IR) from
a standard procedure (see for example [6], [7]), using the spaces W;, orthogonal
complement of V; in Vi, (j € Z).

Here we use this procedure but with two functions instead of one for property

(iv).

3 Construction of a multiresolution analysis

Let us denote by Vj the following set of quintic splines
Vo= {f € Ly(R) : flpssn) = ¥k € Zand f € C5(R)}.

Looking for f € V, with support [0, 3] (smaller interval does not give anything), we
are lead to a homogenous linear system of 18 unknowns and 16 equations; this let
us think that two scaling functions will be needed to generate V.
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Proposition 3.1 A function f with support [0, 3] belongs to Vg if and only if

nat + az® if 2 € [0,1]
5 4 3
br=3) welr=3) +dlr-3)
fe)= te(zr—3) +f(z—3)+g ifzelL2]
h(3 =) +j(3 —x)° if 2 € 2,3]
0 if z ¢ [0,3]
with
b:19a+5—57n CZ%(I*I»%TL d:_4_§a_2_2'7n 6:—%(1,—%”
f=Yga+Sn g=Ya+ S h=15a+10n  j=-10a-En

Proof. The particular form in which we write the polynomials are due to the fact that
we have in mind to construct functions with symmetry. Moreover, the polynomial
on [0,1] (resp. [2,3]) can immediately be written in this form because we want Cs
regularity at the point 0 (resp. 3) and support in [0, 3].

The coefficients are obtained using the definition of the quintic splines; we get
an homogenous system of 8 linear equations with 10 unknowns.O

Among the functions described above, there exists symmetric and antisymmetric
ones (the symmetry is naturally considered relatively to 3). We are also going to

2
show that they generate V.

Theorem 3.2 The following functions p, and pg

T — 157 if x € [0,1]
pula) = 8T~ 3) 3@ —5) =G =) ifw el 2
' ~B-2)' + ;B2 if z € [2,3]
0 ifr<Oorxz>3
a5 if 2 € [0,1]
os(z) = %—ﬂf—?kﬂﬂ—34ﬁxeﬂﬂ
(3-2)'=3B-2) it z € [2,3]
0 ifr<Ooraxz>3

3

are respectively antisymmetric and symmetric with respect to 5

{Spa<' -

constitutes a Riesz basis of Vj.

and the family
k)? kGZ}U{(pS(.—k), k’EZ}



Here is a picture of ¢y, ¢,.
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Proof. Construction of @, .
We use the notations and the result of Proposition (3.1). We look for a,n such
that

n=~h n=—h
a=17j a=—J
b=0 (resp. c=0 )
d=20 d=20
f=0 g=0.
This system is equivalent to the single equation
S5a+3n=0 (resp. 15a + 11n =0).

With n=1,a = —2 (resp. n=1,a = —32), we get ¢, (resp. @q).

Riesz condition.
For every k € 7Z , we define

ak(T) = @a(r — k) and o, i(z) = ps(z — k).

We first prove that the functions ¢, (k € Z ) (resp. @5 (k € Z)) form a Riesz
family. Indeed, since we have

[ —|| che M oa( e m) = 7T|| S ek /wa(§)||%2([o,2w])
(k) (k)
for every finite sequence (c) of complex numbers and where

+o0o
= > |@a(&+20m) P,

l=—00



it suffices to show that there are constants ¢, C' > 0 such that
c<w,(§) <C, €€0,2n].
Using the definition of ¢,, we get

—~ —16i —3i€/2 3¢ £ .38 s
0a(§) = Fe / (35(008(7) + 9008(5)) —-11 sm(?) - 278111(5)
167 ..
= ?626316/2 (65 cos(g)(ll +cos&) — 2 sin(g)(lf) +11 cosf)) :
Using
+o00 1 (_l)r 71_2
= Dy, eN, EeR\Z
D Ny R U
some computations lead to
= 23247 — 21362 cos £ — 385 cos(2¢)
L(6) = o 27m)|* =
hence to the conclusion. The same can be done for ¢,. We get
9% .,
Fi(E) = ge " sin(5) (€(2 + cosg) — 3sin)

and
14445 + 7678 cos € 4 53 cos(2€)

+oo
€)= 3 B+ 2P = = .

Now, let us consider both families ¢, (k € Z ) and ¢y, (k € Z ) together. For
every finite sequence (¢;) and (dy) of complex numbers, we have

—+o00
1> - (crpar + dk%,k)ﬂiz(m) = > 1> _(crpas—j + dk%,kﬁ)”%mo,u)-
(k) j=—00 (k)

On [0, 1], only @a, ¢s; with [ = —2, —1, 0 are not identically 0; moreover, these func-
tions are linearly independant (see appendix for a proof). As on a finite dimensional
space, all norms are equivalent, we get that there are r, R > 0 such that

r (H ZCkSOa,k—j”%%[o,l]) + |l deSDs,k—jH%?([o,u))

(k) (%)

<[l Z(Ck%,kfj + dk%,kﬁ)”%?([o,u)
(k)

<R (H chSOa,k—j”%%[o,l]) + |l deSDs,k—jH%?([o,l])) :
(k) (k)



Now, writing again

Z | ch‘Pak JHL2(01]) = | ZCkSOak”LQ(IR

j=—00
Z ”de%k 2o = | de%kﬂp
j=—00

and using what has been done on each family separately, we conclude.

Riesz basis for Vj.

Let us show that Vj is the closed linear hull of the .k, psi (k € Z ).

On one hand, as the set Vj is a closed subspace of L*(IR) containing each @, x
and ¢, , it contains the closed linear hull of these functions.

On the other hand, using Fourier transforms, we see that it suffices to show that
for every f € Vp, there are p,q € L?,. and 27— periodic such that

F&) = p(O)Ba(&) + q(O)Fa(é) ace.

Let f € Vp. Because of the definition of Vj, there are (cx), 77, (di), .7 € [* such
that

m

D6f = lim Z (ckék —+ dkél;)

Mmoo k=—m

in the distribution sense, where d; and d;, are respectively the Dirac and the deriva-
tive of the Dirac distribution at k (see appendix for proof). Taking Fourier trans-
forms, we get also

m

(@)°F(&) = lim > (eve™™ +idige™™);

it follows that there are m(§), n(¢) € L7, and 27— periodic such that

(i€)°F(€) = m(&) +¢én() ac.
Hence the problem is to find p,q € L}, and 2r— periodic such that
m(§) + &n(§)
(1€)°
Using the explicit expression of the Fourier transform of ¢, and ¢,, we are lead to
look for p, ¢ such that

{ Cm(e) = _315/25 3 96 sin & sin($)p(&) + 16i(11sin(%) + 27sin(§))q($))
—n(&) = e ¥/2(96(2 + cos€)sin(5)p(€) — 48i(cos(Z) + 9cos($))g( 5))

= p(§)@s(€) + q(§)Pal)-

(%)
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For fixed &, this is a linear system of two equations and two unknowns; as

—3.96sin€sin(§)  16i(11sin(%) +27sin(5)) \ . . &
det < 96(2 + cos &) Sin(Qg) —482'(003(%5) N 9cos(§2)) = C'sin® 2

2
with C' = —3 2'%}, we get

i63i£/2
p(§) = 2,6?6(%) <3m(§)(cos(%) + 9008(%)) +n(&)(11 sin(%) + 275111(%)))
and o652
q(§) = #6(5) (3”(5) sinfsin(g) +m(&)(2 + cos§) sin(%)) :

These functions are 27— periodic; it remains to prove that they are Li,.. Indeed,
using m(§) = —€n(&) — €0 (E) we get

3m(§)(cos(%) + 9008(%)) +n(&)(11 sin(%) + 27sin(§))

= —3¢57(¢) (cos(%) + 9cos(g)> +n(é) [%g - 0(59)]

and

3n(§) sinfsin(g) +m(&)(2 + cos&) sin(g)

~

- sin(g) (—§6<2 +cos€) f(€) +n(€) [—6—105 + 0(57)])

and we conclude.O

Remark 3.3 1) The previous proof also shows that a function f of L*(IR) belongs
to Vo if and only if there exist m,n € L2, 2n— periodic such that

locy

~

(i6)°f(§) = m(€&) +&n(§) ae.

2) Since
3¢ (cos(%g) + 9COS<§)> —11 sin(%g) - 27sin(g) = 2_8%57 +0(&%)
and
£(2+ cosé) —3siné = 555 +0(€7)
we get

4

FO)=0.  F(0)-:



For every j € 7ZZ we define
V= {f € IAR) : f270.) € Vo

Proposition 3.4 The sequence V; (j € Z ) is an increasing sequence of closed sets
of L*(R) and

N Vi={}, U V;=LR)

jeZl jeZl

Moreover, the functions @,, ps satisfy the following scaling relation

Ps(26) s(8)
= My(§)

Pa(26) Pal(8)
where My (§) is the matriz (called filter matrix)

e/ ( 3%(308(%)(19+13COS§) E—?COSQ(%)SiD(%) )
e* 2,

Mo(c) ‘
Lsin(5)(16 + 11cosé) & cos(5)(8 — TcosE))

(
o2 ( 5lcos(§) + 13 cos(%)  —9i(sin(§) +sin(%)) )

0 \i(sin() +215in(§) 7 cos(%) +9cos(§))

Ezxpressed in terms of the functions instead of the Fourier transform, the scaling
relation can be written as follows

e(3) = 5(130,(@) + 5lpu(e — 1) +5lpy(z — 2) + 136,(r — 3)
_9@a(x) - 9@a(x - 1) + 9(,0(1(1‘ - 2) + 9(,0(1(1‘ - 3))
pul3) = Gi(Uga(e) + 2z — 1)~ 21 (e 2) ~ gy — 3)

_7@a(x) + 9%@ - 1) + 9(,0a(l‘ - 2) - 790a(x - 3))

Proof. Using the definition of Vj and of the V; (j € Z ), it is clear that V; C V4
for every j € Z . The density of the union is due to the facts that a smoothest spline
is also a deficient spline (V; C V;) and that the union U, 7 V; is dense in L*(IR).

Now, let f € NeZZ V. For every j < 0, there is then a polynomial P; (resp. @)
such that f = P; on [0,277] (resp. f = Q; on [—277,0]). It follows that P; = P
(resp. Q; = Q) for every j,5/ < 0 hence f is a polynomial on [0, +oo[ (resp.
]—00,0]). Since f € L*(IR), this implies f = 0 on [0, +oo[ (resp. ]—o0,0]).
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Let us show how to obtain the scaling relation. We have

G(26) = Be ¥ sin g (2+ cos(26)) e sin € sin(2€)

& 26°
_ _ —3ie ¥ (cos(3E) +9cos) ie ¥ (11sin(3€) + 27sin¢)
(pa(Qg) - 2§5 + 4§6
We define

ms(§) = ge_?”f sinésin(28),  ns(€) = —3e 3 gin¢ (2 + cos(2¢))

ma(€) = _Zie_gig(ll sin(3€) +27siné), nu(§) = %6_3i£(008(3§) + 9cos§)

and use the resolution of the linear system (*) occuring in the proof of Theorem 3.2
to get

_9-8,3i£/2
PO = ey (I + 0eon(§)) + (o) 115 ) + 27
6732‘5/2 5
= 5 COS(§) (19 + 13 cos &)
© = 237 (n @ singsingS) + ma()2 +cos)sn)
qs = ) ns(§) sin € sin(7) +m, cos&)sin(3) | -
e e €
= TG (§)s1n(§)
_9—8,3i€/2
pa(§) = ;STG@<3ma(§)(cos<%)+9cos<g))+na(g)(11sm<%)+27sm<g))>
je 2 ¢
= 3 sm(§) (16 + 11 cos &)
2771'63@'5/2 ‘ . g ‘ 5
. = W<3na(§)sm£sm(§)+ma(§)(2—|—cos§)sm(§)>.
673i£/2 g 35
= 1 (9005(5)—7005(?))
such that
Ps(26) = ps(§)@s(8) + ¢5(§)Pal8)
Pa(28) = Pa(§)Ps(E) + ¢a(§)Pal§)
O



The scaling relation leads to the following formula®
Property 3.5 We have
W(28) = Mo(OW (Mg () + Mo(§ +m)W(§ + m) Mg (€ + ) (R1)

where

with

(€)= *ZO" (e 4 22 = 23T = 21862 cos€ — 385 cos(2¢)

l=—00 311850
= 14445 + 7678 cos & + 53 cos(2€)
s = /; 21| =
wl) = ¥ @ +20m) ot
+00 i
win(§) = Z 0s(€ + 2lm)pg (€ + 2Im) = ~E0TE sin& (6910 + 193 cos ).
l=—00

Proof. Define

Using the scaling relation, we have

$(28) 97(26) = Mo(§)P(E) @™ ()M (£).  (x)

As we also have

Pa(&) @s(€) |@a ()1

'In case Vj is generated by one single function ¢, we recall that we have

[mo (&) Pw(€) + [mo (€ + m)[Pw(€ +7) = w(2€)

B(E) 6(€) = ( GO B Fld) )

where my is the filter and where

+oo
w(@) = > 1P+ 2km).

k=—0o0

11



hence .
> d(E+2m) ¢7(§ +20m) = W(E)
l=—00

we finally get from (**)
W (2€) = Mo(§)W(§) Mg (€) + Mo (€ + m)W (€ + m) Mg (§ + 7).

From the previous results, we obtain that the closed subspaces V; (j € Z ) form
a multiresolution analysis of L*(IR) with the difference that Vj is generated using
two functions.

A next step is then to define Wy as the orthogonal complement of V; in Vj
and to construct mother wavelets in that context, that is to say functions which
will genererate W, and which will be compactly supported deficient splines with
symmetry properties.

4 Construction of wavelets

2
locr

Proposition 4.1 A function f belongs to Wy if and only if there exists p,q € L
2m— periodic such that

~

f(28) = p()@s(€) + q(§)Pa(€)

and

MO(OW(gEg ) + Mo(€ + ) W(f+ﬁ)<zggig ) =0 a.e. (% * %)

where My is the filter matriz obtained in Proposition 3.4 and W (&) is the matriz
defined in Property 3.5.

Proof. We have

feW, & feViand fLV
& 3Ip.ge L. 2m —per. : f(28) = p(&)B5(&) + q(€)Pa(&)and fLVj.

Let us develop the orthogonality condition, assuming the decomposition of f in
terms of p, q. We have

fAVh < (f,psk) =0and (f,@ur) =0 VkeZ

& | dg M pEP() + (P26 =0 Wk € Z

12



where

fL & [ ds RO +aOF()9E) =0 ke Z
- /Ozw d¢ e N, (€) < ZE

We finally obtain

- Mo<s>W<§<'9 ) M) WEF ) ( e ) 0 ae

Property 4.2 Define
p(&) =D me ™, q(&) =Y ae™™.
k=0 k=0

Then

3889626976749167 ¢ 131897103348532083 ¢

Po = 5994139826128818 * 1998046608709606
_309465997116423653 ¢e n 31475411718124505275 g~
h 5994139826128818 5994139826128818
~2910616639302037153 ge n 98460203039930868151 g7
b2 11988279652257636 3996093217419212
~ 63116209243492295 g6 2752877157983350339 ¢
bs 11988279652257636 11988279652257636
_1001080766452619117 g5 305442606074749693691 ¢~
b 3996093217419212 11988279652257636

13



586477042773225505 q¢  18702491649774784079 g7
Ps = -

11988279652257636 3996093217410212
8697 g5 815185 ¢
Ps = 9799 29166
_ | T6TLg
PT = 59166 T 9722
ps = 0
| 817983890541088 g 83213460955642643 g
© = T999023304354803 999023304354803
_ 83213460955642643 g5 8464081159439223030 g
T = TT999023304354803 099023304354803
_ 3076490626693617437 g5 312581647446378659929 g
© = TT3996093217410212 3996093217410212
| 6206512064613183305 g5 627609716223521838981 g
% = T 3996093217419212 3996093217410212
| 3093733577622211520 g5 307145202958857943389 g
“ = T73996093217410212 3996093217410212
 318092113046003613 g 28693660332222110321 ¢
% = T3996093217419212 3996093217410212
g = 0

It follows that there exists deficient spline wavelets with support in [0,5], i.e.
functions ¢ such that

o~ 7 . 7 .
0(28) = pee (&) + DY ae ™ Ea(€)
k=0 k=0
or

11/1(:(:) — Zpkgps(Ql‘ —k) + Z arpa(22 — k).

2 k=0 k=0

Proof. The degree of the polynomials p, g are due to a look to the system that has
to be solved. The resolution of the linear system is a Mathematica computation.O

Property 4.3 For every qg, g7, the function ¢ has (at least) one vanishing moment.

Proof. We have

~

¥(28) = p()@s(§) + a(§)PalE)
with

7 7
p(&) =D e, q(§) = > ae™™.
k=0 k=0

14



As
Pa(0) =0, &5(0) #0
it suffices to check that p(0) = 0.

To obtain this property, we just use the relation (***) with £ = 0 (the relation is
in fact an equality everywhere since p, ¢ are polynomials in that case. Indeed, since

wo =g ). =9 0).

32 32

- (4 8w (4 2,

from (***) we obtain wy(0)p(0) = 0 hence the conclusion. O

and

Moreover, symmetric compactly supported wavelets can be constructed: take
g6, q7 such that po = pr; then p1 = ps,ps = ps, 3 = Pa, G0 = =41, 10 = — G, @2 =

—@5;q3 = —q4 (we denote these coefficients with an “s”) and we get (after some
normalisation)
1 x

12632556065

= —17951959(ps(x) + ps(x = 7)) — 9 (os(z = 1) + ¢s(z - 6))

16090899067 61066820897
(s = 2) + s = 5)) + o (ps(r = 3) + ps(z — 4))

3 9
67958549
TP () — pulie — 7)) + 2276806815 u(x 1) ~ e — 6))
57273621163
—l—#(goa(x —2) — @a(x — 5)) + 21550944929(pu(x — 3) — pu(xz — 4))

In the same way, antisymmetric compactly supported wavelets can be con-
structed: take g, g7 such that pg = —pz; then p1 = —pg,p2 = —ps,p3 = —pa, Qo =
a7, 1 = Gs,q2 = q5;93 = g4 (we denote these coefficients with an “a”) and we get
(after some normalisation)
§¢a(§)

= —28619155(ps(x) — ps(z — 7)) — 2316324977 (ps(x — 1) — ps(x — 6))

25729608221 22560506027
B (pulw —2) — ala — 5) — 222 (2~ 8) — (o — 4)
436109536 (4 () + @alz — 7)) + 3717522762(90(1@ — 1) + pu(z — 6))
9

74946039675 20527760919
F R = 2) gl = 5) + o (pala = 3) + pale — 4)
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Here are 15,1, (up to a multiplicative constant)

400

200

-100
-200
-200

-400

The preceeding definitions can also be written using Fourier transforms. We

define
7

7
ps(€) = D pie™™, q,(€) =Y qpe™™
k=0

k=0
7 - 7 -
pa(&) = ple ™™, q (&) =D qre ™.
k=0 k=0

i ©) a©
o Ds qs
Mie) = ( Pel@) 0ul6) )

we get (from (%))

My (E)W(E) Mg (&) + My (& +m)W (E + m)Mg(§ +7) =0 (R2)

and

Now, we want to show that the family {¢s) : k € Z} U {Yor : k € Z} is
a Riesz basis for Wy. First, we give a lemma which will be of great help to get
the Riesz condition. We note here that this way of proving the Riesz condition is
different from the one used for the scaling functions. We could have used the same
method but computations became much more complicated; that’s why we tried to
get the result through another way.
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Lemma 4.4 (/5]) Let f,g € L*(R). We define fr(x) = f(x—k), gr(z) = gz —k),

e 9] (€)
_ [ Yt Wr.g
HE) = < wrg(€) wgg(€) )
where
+oo
wrp(€) = > f(E+2kn))
k=—o00
400
wege§) = D |G(€ + 2kn)|?
k=—00
+oo .
wrg&) = Y f(€+2km) g€ + 2km).
k=—00

The following properties are equivalent:
(i) the family {fr: k€ Z }yU{gr: k € Z } satisfies the Riesz condition
(i) there exists A, B > 0 such that

Al < [ (o (1) ). (1) ) de < Bl ik
for every finite sequences (cy), (di) and where

=Y e ™, q(&) =D dye ™
(k) (k)

(iii) there exists A, B > 0 such that
A<NO<B (=12
where A1(§), A2(&) are the eigenvalues of H(E).

Proof. We have

1Y el + > digillzm)
(k) (k)
1 —1 i
= §||che REE) + Y die ™G3 am
(k) (k)
1

= = /02” () Py () + 10(6) Pwaa(€) + p(€)a@wr(E) + DE)G(E)rg(€) dE

-5 o (50 ) (56)
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which shows that (i) and (ii) are equivalent.
Now, for every &, the matrix H () is hermitian. Therefore, for every &, there is

a unitary matrix U () such that U*(§) H(§)U(E) = diag(A1(£), A2(£)). As we have
() = L0 (28 v (20) =

- L) (1))

s >;m

= [l(e)llz + [l (i) Il

we obtain that (ii) is equivalent to

A(ll(e) iz + 1 (de)l22) < /OZW(M(S)p(f) +X2()q(6)) d€ < B(l[(ex)l7> + [1(de) 1)

for every finite sequences (cy), (dg). Now, it is clear that (iii) implies (ii). To get
that (ii) implies (iii), it suffices for example to use the Fejer kernel as p,q (same
proof as for the Riesz condition). O

Now we want to use this lemma to obtain the desired result about the wavelets.
Let us give some notations: define the matrix

o wp () wy(§)
Wal6) = ( oD W) )

where
+o0

Wy (&) = Y [dha(€ + 20m)?

l=—0
+o0

wp,(§) = X (€ +2m)?

l=—0

+oo - -
Wpowa(§) = D Ws(€+ 2lm)ha (€ + 21m).

l=—00

Theorem 4.5 The family {5y 1 k € ZZ Y U{tpo i, : k € Z } constitutes a Riesz basis
for Wy. The functions with index s (resp. a) are symmetric (resp. antisymmetric).
The support of ¥so and Vg0 is included in [0, 5)].
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It follows that the functions
22— k), DD~ k) (ke )

form a Riesz basis of compactly supported deficient splines of L*(IR) with symmetry
properties.

Proof. Using the expression of v, 1, in terms of ¢, vy, i.e.

(568) - o (58)

and by a computation similar to the one leading to (R1), we get
Wy (28) = Mi(W (M (§) + Mi(§+m)W(E+m)Mi"(§ + 7). (R3)

Then, since W () is hermitian positive definite for every &, the matrix W, has the
same property if and only if the matrices M;(§) and M; ({+7) are not simultaneously
singular. This is the case since we have (up to an exponential function and a
multiplicative constant)

det M;(€)
= sin?(¢/2) (—64944404321059950
+1483142106949117120 cos € + 1192353539007974745 cos(2€)
+605163081148101400 cos(3£) + 249900649739435294 cos(4€)
+25542907675492680 cos(5¢) + 250030917177111 cos(6€))

which gives the graph for 10737 (det M, (€))? + (det M, (€ + 7))?
1.5

1

0.5

o5l

Finally, since the elements of W, are trigonometric 27-periodic polynomials,
the eigenvalues are also periodic and continuous. Since they are strictly positive,
condition (iii) of Lemma 4.4 follows. Hence the family of wavelets satisfies the Riesz
condition.
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To prove that the closure of the linear hull of the functions ¢, 4, VYo (K € Z ) is

Wy, it remains to show that

(f ) = 0 _
f e W, { Foupy=0 = 170

For f € W, we have (see Proposition 4.1) p,q € L} ., 2r— periodic such that

f(2€) = p(O)@:() + a()@a(®)

and
p(§ +m)

mw@gg ) + Mo(€+ ) W(§+7r)<q(§+7r) ) =0 ac.

The same computation as the one leading to the equality above in Proposition 4.1,
but using orthogonality to v i, ¥,k instead of to sk, Yak, leads to

&+ ) ) =0 a.e. (2)

O W (460 ) + e e (1

Then (1) and (2) are equivalent to

(1)

p(£)
( My(&) W)  My(§+m) W(+m) ) q(€) e "
M) W(E) M(E+m) W(E+m) pgg + wg -C.
qQ§ +m

We have

Mi(&) W(§)  Mi(E+m)

- (38 2) ("F )

< Mo(§) W(E)  Mo(+m) W(E+m) )
W&+ m)

(g wen ) (Y w3 Wes)



For every &, the matrices W (), Wy (€) are not singular. Hence, for every ¢ the

matrix
< Mo(§)  Mo(€§ +) )
My(&)  Mi(§+)

is not singular. The conclusion follows: from (3) we obtain p(¢) = ¢(¢) = 0 a.e.0

5 Appendix

Property 5.1 The functions Paliy,y Pl with | = —2,—1,0 are linearly inde-
pendant.

Proof. For x € [0, 1], we have

Paol®) = gug(t) = gula) = 2t~ 1207
Paal2) i= goal@) = pale +1) = —2(o—3)+3 - 3)* — Tolw— o)
Paala) = g af@) = gale +2) = —(1=2)*+ (1 - )’
P = puole) = pula) = at— 207
Poti=fuat) = @ulat1) = o0~ Do Pt (o)

Poai=pu s =pla+?) = (1-a) —5(3-o)
If r; (j=1,...,6) are such that
1 Pao+roPy 1 +1r3P o+ 14Psg+15P 1 +16P 9 =10
then the coefficients of 27 (j = 0,...,5) are equal to 0. We get the system

37‘2+3T3+2T5—2T6 = 0
3T2—3T3+T5+7’6
s — T

—3r9 + 4rg — drs — drg
3T‘1+3T2—6T3+4T4+197“5+8’/‘6 =
—9T1 +9T3 - 117"4 — 387"5 - ]_17“6 =

I
coocoo

which is easy to solve; the unique solution is

T1:7"2:7"3:T4:T5:7"6:0.
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Property 5.2 For every f € Vy, there are (ck), 77+ (di),cqg, € 1 such that

m——+o00
=—m

in the distribution sense, where 6y, and &}, are respectively the Dirac and the derivative
of the Dirac distribution at k.

Proof. Let f € Vy and, for every k € Z , let f|j pq1) = ngk) = polynomial of degree

at most 5. If aék), agk) are respectively the coefficients of z*, 2° in Pék), then

D'PH () =51 2 + 41l

and, for h € C(IR) with compact support,

/ F()DOh(z) da
R
= 50> (af? —al"V) h(k) + (4af” — oY) + 5lk(af” — ")) Dh(k).
kel
For every k € 7Z , we define

e = 5lai” —ai""),

dp, = —4!(a(()k) — aékil)) - 5!k(agk) — agkfl))
4t () + 5ka®) — (0l + ke )

hence to conclude, it suffices to prove that
(k) 2 (k) (k) 2
(al )ke% el (ao + bkay )ke% el

Do obtain this, we first remark that, on the linear space of polynomials of degree
at most 5, all norms are equivalent. Hence, there are r, R > 0 such that

5 1 5
PR S [ IP@ de < RY |4
j=0 0 §=0

for every polynomial P(z) = ?:0 A;a?. Next, for f € Vj, using the same notations
as just above, we have

—+00

k+1
k
flfw = X [ 1Y@ de

k=—o00

+00 1 &
- 3 / PP (z + k) da.
0

k=—o0
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Moreover, in Pék) (x + k), the coefficient of z° is agk) and the coefficient of z* is

a(()k) + 5kagk). It follows that

400 1 too 1 1

k k k k
> (a1 + 1o’ + 5kaP) < = 3 [ 1PP @+ W do <~y
k=—0o0 k=—o00

Hence the conclusion.O
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