

1,2,4-TRIAZOLE-3-THIONE COMPOUNDS POTENTLY INHIBIT VIM AND NDM-1 METALLO-β-LACTAMASES AND RE-SENSITIZE MULTI-RESISTANT CLINICAL ISOLATES TO MEROPENEM

Alice Legru,^a Laurent Gavara,^a Federica Verdirosa,^b Yen Vo-Hoang,^a Giusy Tassone,^c Giuseppina Corsica,^b Filippo Vascone,^d Caitlyn A. Thomas,^e Georges Feller,^f Michael W. Crowder,^e Laura Cendron,^d Cecilia Pozzi,^c Stefano Mangani,^c Jean-Denis Docquier^{b,f} and Jean-François Hernandez^a

^aIBMM, CNRS, Univ Montpellier, ENSCM, France. ^bDipartimento di Biotecnologie Mediche, Università di Siena, Italy. ^cDipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Italy. ^dLaboratory of Structural Biology, Dpt of Biology, University of Padua, Italy. ^eDpt of Chemistry and Biochemistry, Miami University, Oxford, OH, USA. ^fCentre d'Ingénierie des Protéines-InBioS, Université de Liège, Belgium

Introduction Dizinc metallo- β -lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We are developing compounds containing a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported.¹⁻³ Here, we present a new series possessing an α -amino acid moiety at the 4-position of the heterocycle where the amine was mono- or disubstituted by diverse heteroaryl groups.

