
ABSTRACT

The purposes of this study were (1) to explore the 
relationship between 3 milk mid-infrared predicted 
features including nitrogen intake (NINT), milk true 
protein N (MTPN), and milk urea-N yield (MUNY); 
(2) to integrate these 3 features into an N efficiency 
index (NEI) and analyses approximate genetic correla-
tions between the NEI and 37 traits (indices) of inter-
est; and (3) to assess the potential effect of including 
the NEI into breeding programs of bulls. The edited 
data were 1,043,171 test-day records on 342,847 cows 
in 1,931 herds and 143,595 test-day records on 53,660 
cows in 766 herds used for estimating breeding values 
(EBV) and variance components, respectively. The 
used records were within 5 to 50 d in milk. The re-
cords were grouped into primiparous and multiparous. 
The genetic parameters for the included mid-infrared 
features and EBV of the animals included in the pedi-
gree were estimated using a multiple-trait repeatability 
animal model. Then, the EBV of the NINT, MTPN, 
MUNY were integrated into the NEI using a selection 
index assuming weights based on the N partitioning. 
The approximate genetic correlations between the NEI 
and 37 traits of interest were estimated using the EBV 
of the selected bulls. The bulls born from 2011 to 2014 
with NEI were selected and the NEI distribution of 
these bulls having EBV for the 8 selected traits (in-
dices) was checked. The heritability and repeatability 
estimates for NINT, MTPN, and MUNY ranged from 
0.09 to 0.13, and 0.37 to 0.65, respectively. The genetic 
and phenotypic correlations between NINT, MTPN, 
and MUNY ranged from −0.31 to 0.87, and −0.02 
to 0.42, respectively. The NEI ranged from −13.13 to 
12.55 kg/d. In total, 736 bulls with reliability ≥0.50 
for all included traits (NEI and 37 traits) and at least 
10 daughters distributed in at least 10 herds were se-
lected to investigate genetic aspects of the NEI. The 

NEI had positive genetic correlations with production 
yield traits (0.08–0.46), and negative genetic correla-
tions with the investigated functional traits and indices 
(−0.71 to −0.07), except for the production economic 
index and functional type economic index. The daugh-
ters of bulls with higher NEI had lower NINT and 
MUNY, and higher MTPN. Furthermore, 26% of the 
bulls (n = 50) with NEI born between 2011 to 2014 had 
higher NEI and global economic index than the average 
in the selected bulls. Finally, the developed NEI has 
the advantage of large-scale prediction and therefore 
has the potential for routine application in dairy cattle 
breeding in the future.
Key words: N intake, genetic correlation, health, mid-
infrared spectrum

INTRODUCTION

The economic importance of genetic improvement for 
efficiency traits in cattle is recognized by the world’s 
cattle producers (Brito et al., 2020). Measuring and im-
proving efficiency is not only beneficial to the protection 
of the environment, but also beneficial to the farm, can 
promote the sustainable economic development of dairy 
production (Chen et al., 2021c), and strengthen its so-
cial acceptability. In the process of studying efficiency, 
researchers put forward various indicators representing 
dairy cow efficiency which can be defined very broadly. 
In the context of direct efficiency of a given animal, 
efficiency is often linked to feeding efficiency (FE) that 
can be divided further (i.e., into energy and nitrogen 
efficiency). Often FE is associated with the energy [e.g., 
energy intake (EI), energy balance (EB)] and an ex-
pression as residual trait compared with expectations 
[e.g., residual feed intake (RFI)] is used. Many works 
for FE and energy have been done (McParland et al., 
2015; Brito et al., 2020), especially FE has started be-
ing used in the dairy cattle breeding system in some 
countries (e.g., Australia, the United States; Pryce et 
al., 2014; Parker Gaddis et al., 2021). However, there 
are relatively few studies on N use efficiency (NUE) of 
dairy cows, except for those addressing milk urea con-
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centration (MU) or MUN as implicit proxies (Bobbo 
et al., 2020; Chen et al., 2021b). To our knowledge, 
only we have recently performed the genetic analyses of 
predicted NUE for dairy cows in early lactation (Chen 
et al., 2021c). Moreover, the NUE by cattle is very low 
(20–44%) and could be improved (Cantalapiedra-Hijar 
et al., 2018; Grelet et al., 2020). For example, recently 
Spanghero and Kowalski (2021) conducted a meta-
analysis of 86 N balance experiments carried out in the 
past 20 yr, and found that the average NUE in cattle 
was 27% and more than half of the feed N is excreted 
through urine and feces.

As often for novel traits, the definition of NUE can 
be very different. Based on Calsamiglia et al. (2010), 
Grelet et al. (2020) defined NUE as milk N divided 
by the N intake (NINT). This definition has several 
shortcomings. First, from a mathematical point of view 
changes in ratios are highly unpredictable as they can 
come from changes in the denominator or the numera-
tor. Moreover, as mentioned by Grelet et al. (2020), 
this definition for NUE does not account for the actual 
N losses through urine and feces, making it impossible 
to calculate the N balance. Consequently, early lacta-
tion cows having limited intake capacities and produc-
ing high quantities of milk may experience a negative 
N balance on top of the negative EB. Looking only at 
NINT and milk N, the NUE would be artificially high. 
There is then a risk of confusing artificially high NUE 
with negative N balance, and trying to improve NUE 
may increase the difficulty induced by severe mobiliza-
tion of body reserves. Additionally, our previous study 
found that the genetic correlation between predicted 
NUE and MU was close to 0 (Chen et al., 2021a). Based 

on the above reasons, we aimed to build a new N ef-
ficiency index (NEI) considering the NUE and N losses 
at the same time to avoid these shortcomings (Figure 
1). The NEI and its composition both differ from the 
predicted NUE trait of our previous study. The MUN 
yield (MUNY) is linearly proportional to the urinary 
urea-N excretion when defined as a quantity excreted 
(Wattiaux, 2015). So the NEI index can be built based 
on NINT, milk true protein N (MTPN), and MUNY. 
Among these 3 features, MTPN and MUNY can be 
easily measured using traits that are currently recorded 
as explained later. However, the NINT is a feature 
that is difficult and expensive to measure in routine. 
The composition of milk is affected by the animal 
diet, and milk mid-infrared (MIR) spectra can reflect 
the changes in milk composition, which suggests that 
MIR can indirectly reflect the composition of the diet. 
(Klaffenböck et al., 2017). Grelet et al. (2020) devel-
oped a NINT prediction equation for dairy cows based 
on milk MIR spectra, which have been already applied 
to the Walloon region of Belgium data set (Chen et al., 
2021a). The MIR spectra is an inexpensive method for 
predicting features, and it has been applied to predict 
various traits in dairy cows (Grelet et al., 2021). At 
the same time, if a new trait is added to the breeding 
program, it is necessary to know its potential effects on 
other traits included in the selection index and proxies 
of NUE (e.g., MU).

The purposes of this research were (1) to estimate 
the genetic parameters and EBV of NINT, MTPN, and 
MUNY; (2) to integrate these 3 features into an NEI 
based on the selection index and investigate the ap-
proximate genetic correlations between the NEI and 37 
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Figure 1. A new N efficiency index was built based on EBV from N intake, milk true protein N, and milk urea N yield.
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traits of interest based on EBV of selected bulls; and 
(3) to assess the potential effect of including the NEI 
into breeding programs of bulls.

MATERIALS AND METHODS

Data

The data used in this research were collected from 
2001 to 2019 by the official milk recording in the 
Walloon region of Belgium; thus, institutional animal 
care approval was not required. The milk samples 
were analyzed by MIR spectrometry (commercial 
instruments from FOSS) to assess milk compositions 
(including MU) and generate MIR spectra. Daily milk 
yield (MY), protein percentage (PP), and MU were 
restricted to the range of 1 to 90 kg, 1 to 7%, and 2 to 
70 mg/dL, respectively. The filtering procedure used 
for NINT was the same as that explained by Chen et al. 
(2021c). In brief, 2 criteria are considered in the filtering 
procedure: (1) the standardized Mahalanobis distance 
between the new predicted spectrum and the calibra-
tion data set is ≤3, (2) the predicted value of NINT is 
within the range of 3 standard deviations (SD) of the 
mean. The formulas used to compute MTPN = [(MY 
× PP/6.38) − MUNY]; and MUNY = [(MU/2.14) × 
MY] (WHO and FAO, 2011) allowed to transform the 
concentration to yield. Furthermore, the range of DIM 
was restricted between 5 and 50, lactation number was 
restricted between one and 5, and calving age was re-
stricted between 22 to 39, 34 to 53, 47 to 68, 59 to 83, 
and 71 to 98 mo for the first to fifth parity, respectively. 
At least 2 of the 3 included features had to be available. 
Finally, 1,043,171 test-day records on 342,847 cows in 
1,931 herds collected between 2001 and 2019 remained. 
The pedigree related to the data set comprised 504,333 
animals (17,573 males). In addition, each feature was 
divided into primiparous (n = 404,312) and mul-
tiparous (second to fifth parity; n = 638,859) classes. 
Hereafter, the features for NINT, MTPN, and MUNY 
are identified as NINT1, MTPN1, and MUNY1 for 
primiparous cows, and NINT2+, MTPN2+, and 
MUNY2+ for multiparous cows.

Milk MIR spectra of 53,660 cows in 776 herds were 
used leading to 143,595 NINT records. All milk MIR 
spectra were standardized according to Grelet et al. 
(2015). The NINT of each cow were predicted by the 
equation developed based on the models established by 
Grelet et al. (2020) using milk MIR spectra, MY, and 
parity as additional predictors, through support vector 
machine regression. The determination coefficient (R2) 
and root mean square error of validation of the NINT 
model were 0.71 and 0.07 kg/d, respectively.

(Co)variance Components and Genetic Parameters

In total, 143,595 records (NINT1, MTPN1, MUNY1, 
NINT2+, MTPN2+, and MUNY2+) on 53,660 cows 
were used to estimate (co)variance components. The 
used pedigree included 132,056 animals (7,340 males). 
A 6-trait (3 features in 2 parity classes) repeatability 
animal model was used to estimate the (co)variance 
components. The used model was based on that pre-
sented by Chen et al. (2021c) to a different set of 6 
traits:

 y = Hh + Xb + Qq + W1c + W2p + Za + e,  
  [1]

where y was a vector of NINT1, MTPN1, MUNY1, 
NINT2+, MTPN2+, and MUNY2+. In each trait, 
all effects in this model were the same as Chen et al. 
(2021c). In brief, h was a vector of fixed effect of herd-
year-season of calving; b was a vector of fixed regression 
coefficients for standardization DIM and its quadratic; 
q was a vector of fixed regression coefficients of the 
standardization age of calving, defined as a constant, 
linear and quadratic regression defined inside parities 
(from first to fifth parity); c was a vector of nongenetic 
cow random effect; p was a vector of nongenetic cow × 
parity random effect, this effect was only modeled for 
NINT2+, MTPN2+, and MUNY2+, as they allowed 
to distinguish records for the same cow but occurring 
during different parities (from second to fifth parity); 
a was a vector of the random additive genetic effect; e 
was a vector of random residual effect. In addition, H, 
X, Q, W1, W2, and Z were incidence matrices assign-
ing observations to effects.

The expected values and variances in Equation [1] 
were defined similarly to Chen et al. (2021c) but applied 
to a different set of 6 traits. The matrices of V(c) and 
V(a) both contained a block of 6 × 6 (co)variance ma-
trices. For V(e), the diagonal and off-diagonal elements 
of the matrix were nonzero and zero, respectively. For 
V(p) the elementary (co)variance matrix was reduced 
to a 3 × 3 matrix, because only the (co)variances as-
sociated with NINT2+, MTPN2+, and MUNY2+ were 
present.

All computations were performed in the BLUPF90 
programs (Misztal et al., 2018). The (co)variance com-
ponents for NINT, MTPN, and MUNY were estimated 
by Gibbs sampling in THRGIBBS1F90 (version 2.118) 
through Equation [1], and posterior convergence was 
analyzed by POSTGIBBSF90 (version 3.14). Among 
them, the posterior means of (co)variances, heritabili-
ties (h2), repeatability (REP), genetic and phenotypic 
correlations were obtained using 40,000 samples, which 
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is from a single chain of 220,000 after a burn-in of 
20,000, and 1 in every 5 samples was saved. The for-
mulas used to calculate the later 4 parameters were the 
same as those used by Chen et al. (2021c). Approxi-
mate standard errors (SE) of all calculated parameters 
were obtained using the POSTGIBBSF90 (version 
3.14) program.

Estimated Breeding Value

A total of 1,043,171 records were used to estimate 
EBV for the included 6 traits based on the estimated 
(co)variance components. The EBV of the included 
traits were estimated according to a precondition con-
jugate algorithm implemented in the BLUP90IOD2 
(version 3.81, http: / / nce .ads .uga .edu/ wiki/ doku .php 
?id = readme .pcg2) program using Equation [1]. Multi-
trait reliability (REL) of EBV could not be calculated 
directly for the 6 included traits, therefore we divided 
the 6 included traits into 2-trait models (all effects were 
the same as Equation [1]) according to NINT, MTPN, 
and MUNY. This allows calculating the REL of EBV 
separately by direct inversion of the coefficient matrix 
for the NINT, MTPN, and MUNY. The 2-trait models 
were then solved using the BLUPF90 (version 1.70) 
program to extract diagonal elements of the inverted 
coefficient matrix allowing to compute REL in this 
way hereafter called RELS. From this point, selection 
index theory was used based on a strategy proposed 
by VanRaden et al. (2018) to calculate REL. First, we 
restore the 6-trait REL as RELM, the RELM assum-
ing that the 6-trait solutions could have been obtained 
as index traits combing the 2-trait solutions. Needed 
regression coefficients were calculated using selection 
index theory:

 B = GG*−1, 

where G was the full 6 × 6 matrix of the estimated 
genetic (co)variance of the explained 6-trait model, G* 
was equal to the G excluding the covariances between 
NINT, MTPN, and MUNY that were put to zero, and 
B was a 6 × 6 matrix of regression coefficients. Reli-
abilities of the 6 solutions were computed as the ratios 
between explained variances and total or maximum 
variances. Maximum (co)variances of 6-trait solutions 
were computed as follows:

 VM = BGB′. 

In the next step, for each animal i, the matrix Ri was 
obtained by multiplying each element of B by the 
square root of the relevant element of RELS for this 

animal. This allowed us to compute the (co)variances 
explained for this specific animal:

 VSi = RiGRi′. 

Finally, with only the variance ratios being relevant, 
the following formula was used to obtain RELM for 
animal i:

 RELMi = diag(VSi)diag(VM)−1. 

Nitrogen Efficiency Index

The NEI was calculated as follows:

 NEI = a′u, 

where u was a vector of EBV for the 6 included traits 
(NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and 
MUNY2+), and a was a vector of relative weights. Se-
lection index theory for desired selection response was 
used to obtain the a coefficients by computing a = 
G−1rorg, where G was the 6 × 6 matrix of the genetic 
(co)variances for the 6 included traits, and rorg was 
the selection response vector of the 6 included traits. 
We assumed that the selection responses (r) for NINT, 
MTPN, and MUNY were 0, 1, –1 [r = (0 1 –1)′], re-
spectively, which means keeping NINT unchanged, in-
creasing MTPN, but decreasing MUNY. All traits were 
expressed in the same unit (kg/d); therefore, selection 
responses were defined in the original scale. As the r 
was defined for the 3 combined features across the 2 
parity classes, a transformation matrix T was needed 
to convert G to Gt.

 T =



















0 5 0 0 0 5 0 0
0 0 5 0 0 0 5 0
0 0 0 5 0 0 0 5

. .
. .

. .
, 

 Gt = TGT′, 

 a rGtt =
−1, 

 a = atT. 

The REL of NEI was calculated using the method given 
by VanRaden et al. (2018):

 REL
wGw
aGaNEI = ,

′
′
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where RELNEI was the REL of NEI and w was ob-
tained by multiplying the elements of a by the square 
root of RELM for the EBV of the 6 traits.

When we define P as the 6 × 6 matrix of the summed 
(co)variances for the 6 traits, hNEI

2  was the h2 of NEI 
can be computed as

 hNEI
2 =

aGa
aPa
′
′
, 

where a and G were explained previously.

Approximate Genetic Correlations

The approximate genetic correlations between the 
NEI and 37 traits of interest were estimated using the 
procedure proposed by Blanchard et al. (1983) based 
on the EBV of selected bulls. Those bulls that had 
NEI and had at least 10 daughters distributed in at 
least 10 herds, and their reliability of EBV for the NEI 
and 37 traits was at least 0.50, were selected. The SE 
of the estimated approximate genetic correlations was 
estimated using 1,000 bootstrapped replicates (Chen et 
al., 2021c). At the same time, the selected bulls were 
used to perform the same computation for the 6 traits 
included in the NEI; however, the reliability of the EBV 
of these 6 traits was required to be greater than 0.30 
(Chen et al., 2021c).

In this study, we used EBV and its REL of 36 traits 
or indices (except for the MU) obtained by the national 
genetic evaluation system of dairy cows in the Walloon 
region of Belgium in April 2021 (https: / / www .elinfo 
.be/ telechargerEN .html). The model and algorithm 
used for calculating EBV of the 36 traits of interest 
can be found in documents (Belgium) submitted to 
INTERBULL (https: / / interbull .org/ ib/ geforms) or 
reported by Vanderick et al. (2020). The EBV of MU 
and its REL were reported by Chen et al. (2021b), and 
we used the average daily EBV of the first 3 parities, 
which was expressed on a standardized scale with a 
mean of 100 and an SD of 10.

The 37 traits of interest were as follows: MU, MY, fat 
yield (FY), protein yield (PY), fat percentage (FP), 
PP, udder health (UH, which represents the opposite 
SCS), longevity (LONG), female fertility (FF), direct 
calving ease (DCE), maternal calving ease (MCE), 
production economic index, member economic index, 
capacity economic index, udder economic index, func-
tional type economic index, functional economic index, 
global economic index, stature, chest width, body 
depth, rump angle, rump width, foot angle, rear leg 

set, rear leg rear view, udder depth, udder support, fore 
udder, front teat placement, teat length, rear udder 
height, rear teat placement, angularity, overall feet and 
leg score, overall udder score, and overall conformation 
score (OCS). The definitions of all indexes and their 
proportions to the global economic index have been 
explained by Vanderick et al. (2020).

Potential Effect of the Selection of NEI in Bulls

Two different approaches (phenotypic and genetic 
levels) were used to check the potential effect and pos-
sibility of selecting NEI in bulls.

In the first approach, we checked the phenotypes of 
cows. Based on EBV computed in the previous sec-
tion, bulls with bottom 5% and top 5% NEI values 
were selected. Based on the newly selected bulls, their 
daughters were screened. The means and SD for the 
traits (MY, PP, MU, NINT, MTPN, MUNY) of these 
daughters were obtained by groups of bulls. The t-test 
was used to detect differences between the 2 groups for 
these 6 traits.

In the second approach, we showed the distribution 
between NEI and 8 traits or indices in bulls. Bulls born 
from 2011 to 2014 with reliability ≥0.50 for 8 selected 
traits or indices (MU, MY, PY, UH, and member, ud-
der, functional, or global economic indices) from 37 
traits (indices) and at least 10 daughters distributed 
in at least 10 herds were selected. The distribution 
between the NEI of the selected bulls and the new 8 se-
lected traits (indices) was investigated. The paired trait 
distribution map was divided into 4 regions based on 
the average value of the traits (indices) of the selected 
bulls. The bulls that fall into the upper right corner are 
considered to be better bulls, except for MU (needed in 
the bottom right).

To make the NEI comparable to the selected traits 
(indices), NEI was standardized as follows:

 NEI  
NEI  Mean

SDsi
i=
− 2015

2015
, 

where NEIis and NEIi were, respectively, the standard-
ized and nonstandardized NEI of i individual, Mean2015 
and SD2015 were the average and SD of NEI from the 
cows born in 2015 (n = 17,597), respectively. Then, 
the NEIis was expressed on a standardized scale with a 
mean of 100 and an SD of 10, which is the same as the 
LONG and other included functional traits (Vanderick 
et al., 2020). Additional data preparation and process-
ing were done using R (https: / / r -project .org).
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RESULTS AND DISCUSSION

Descriptive Statistics

The descriptive statistics of the traits involved in 
this study are presented in Table 1. The average, SD, 
and coefficient of variation (CV) of the included 6 
traits in the primiparous were lower than those in the 
multiparous cows (parity 2+), except for the CV of 
NINT. The MUNY has the largest CV in primiparous 
and multiparous. The average of MTPN (0.13 kg/d) is 
about one-third of NINT (0.42 kg/d), which indicates 
that the NUE of the animals included in this research 
is about 33%. This value is within the range of 20 to 
44% reported by Cantalapiedra-Hijar et al. (2018) and 
Grelet et al. (2020).

Genetic Parameter for 6 Traits

The variance components, h2, and REP estimated for 
NINT1, MTPN1, MUNY1, NINT2+, MTPN2+, and 
MUNY2+ are presented in Table 2. The h2 and REP 
of the 6 included traits ranged from 0.09 to 0.13 and 
0.37 to 0.65, respectively. The genetic variances of the 
6 included traits explained 12.30, 10.52, 12.95, 11.21, 
11.48, and 9.22% of the corresponding total variances. 
For the 6 traits examined, as far as we know, this is the 
first report on their h2 and rep. We compared the ge-
netic parameters of these traits with those used for the 

efficiency of different nutrition factors. Compared with 
MUNY, the MU(N) has higher h2 and REP (Bobbo et 
al., 2020; Chen et al., 2021b). The NINT is similar to 
EI (energy efficiency) and DMI (FE). McParland et 
al. (2015) showed that h2 and REP of EI predicted by 
MIR spectroscopy were 0.20 and 0.33, respectively. Li 
et al. (2016) reported that h2 and REP of DMI in the 
first 4 weeks of lactation in Holstein cows were 0.26 and 
0.68, respectively. The estimated h2 of NINT was lower 
than that reported for EI and DMI, but the REP was 
somewhere in between.

Genetic and phenotypic correlations among the 6 
included traits are presented in Table 3. As expected, 
the same feature has high genetic correlations between 
primiparous and multiparous (0.82–0.89). There were 
negative genetic correlations between NINT and 
MUNY (−0.31 to −0.16), and moderate positive genet-
ic correlations were found between NINT and MTPN 
(0.40–0.51). The MTPN and MUNY showed moderate 
positive genetic correlations (0.37–0.54). However, the 
phenotypic correlations found between different features 
in the same parity class were relatively strong com-
pared with those found for the same features between 
parity classes. The phenotypic correlations between 
NINT and MTPN in the primiparous and multiparous 
classes were, respectively, 0.34 and 0.42, indicating that 
genetic and phenotype correlations between NINT and 
MTPN are high. The phenotypic correlation estimated 
between MTPN and MUNY in the primiparous and 
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Table 1. Mean, SD, and CV of related features in genetic evaluation and (co)variance component estimation 
data sets

Parity class1
MY2 

(kg/d)
PP 
(%)

MU 
(mg/dL)

NINT 
(kg/d)

MTPN 
(kg/d)

MUNY 
(kg/d × 1,000)

Genetic evaluation data set (total n = 1,043,171)
 1 (n = 404,312)       
  Mean 25.46 3.14 22.92 —3 0.12 2.73
  SD 5.72 0.33 8.42 — 0.03 1.17
  CV 22.49 10.40 36.75 — 22.68 43.05
 2+ (n = 638,859)       
  Mean 33.37 3.23 22.84 — 0.16 3.57
  SD 8.11 0.39 8.85 — 0.04 1.63
  CV 24.30 12.14 38.74 — 23.81 45.82
(Co)variance component estimation data set (total n = 143,595)
 1 (n = 44,321)       
  Mean 26.60 3.15 23.40 0.42 0.13 2.92
  SD 5.43 0.31 7.21 0.06 0.03 1.08
  CV 20.41 9.75 30.81 14.84 20.31 36.99
 2+ (n = 99,274)       
  Mean 35.50 3.20 22.30 0.49 0.17 3.73
  SD 7.80 0.36 7.87 0.07 0.04 1.57
  CV 21.97 11.19 35.29 14.27 21.74 42.09
1Parity class: the parities (1–5) were divided into 2 classes based on primiparous (class 1) and multiparous 
(class 2+).
2MY = milk yield; PP = protein percentage; MU = milk urea concentration; NINT = N intake; MTPN = milk 
true protein N; MUNY = milk urea-N yield.
3NINT has 143,595 records.
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multiparous were 0.38 and 0.41, respectively. The phe-
notypic correlations estimated between the remaining 
trait pairs were relatively low (−0.02 to 0.20).

Nitrogen Efficiency Index

The h2 of NEI is low (0.06), which is similar to that 
estimated for the predicted NUE (Chen et al., 2021c). 
It has been reported that h2 for RFI, as an indicator of 
FE, in the first 60 DIM was 0.10 (Jamrozik et al., 2020) 
and that reported for from 50 to 250 DIM was 0.14 (Li 
et al., 2020). It has been shown that h2 of RFI varied in 
different herds and countries (Tempelman et al., 2015). 
The NEI and its REL ranged from −13.13 to 12.55 
kg/d, and 0.00 to 0.95, respectively. The mean REL of 
NEI of all animals included in the pedigree was 0.21 
(SD = 0.11), which is similar to the REL of EBV of 
animals with RFI phenotype (Li et al., 2020). Li et al. 
(2020) evaluated the average REL of EBV for RFI for 
animals with genotypes and without phenotypes was 
only 0.13 (n = 1.6 million).

Although NEI has a low average REL, repeated 
predictions can be done cheaply. In this way, the REL 

of the NEI for bulls having more daughters can be 
increased. For example, the average REL of NEI for 
selected bulls in this study (n = 736) used for esti-
mating the approximate genetic correlation was 0.68 
(Figure 2).

Approximate Genetic Correlations Between the NEI 
and 37 Traits (Indices) of Interest

In total, 736 bulls with REL ≥0.50 for NEI and 37 
traits (indices) of interest and at least 10 daughters 
distributed in at least 10 herds were selected for esti-
mating the approximate genetic correlations between 
the NEI and the examined traits of interest. The distri-
bution of the REL of the examined traits (indices) for 
the selected bulls is presented in Figure 2 and Supple-
mental Table S1 (https: / / github .com/ Yansen0515/ 
Defining _NEI _and _assessing _effect _on _bull). The 
average REL of all traits (indices) in the selected bulls 
were greater than 0.63, which guaranteed the reliability 
of our subsequent results. The countries of origin of the 
most bulls were the United States (235), Canada (130), 
and the Netherlands (123).

Chen et al.: NITROGEN EFFICIENCY INDEX AND GENETIC ANALYSIS

Table 2. Heritability (h2), repeatability, additive genetic variance σa
2( ), across-parity permanent environment (nongenetic cow) variance σc

2( ) 
(only for second and later lactations), within-parity permanent environment (nongenetic cow × parity) variance σp

2( ), and residual variance σe
2( ) 

of the proxies for traits in primiparous (n = 44,321) and multiparous (n = 99,274) Holstein cows

Trait1 h2 Repeatability σa
2 σc

2 σp
2 σe

2

NINT1 (100 g/d) 0.12 ± 0.01 0.37 ± 0.01 0.03 ± 0.002 0.06 ± 0.00  NA3 0.14 ± 0.00
MTPN1 (100 g/d) 0.11 ± 0.01 0.60 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 NA 0.02 ± 0.00
MUNY1 (g/d) 0.13 ± 0.01 0.41 ± 0.01 0.10 ± 0.01 0.21 ± 0.01 NA 0.45 ± 0.01
NINT2+ (100 g/d) 0.11 ± 0.01 0.45 ± 0.00 0.04 ± 0.00 0.03 ± 0.00 0.08 ± 0.00 0.18 ± 0.00
MTPN2+ (100 g/d) 0.11 ± 0.01 0.65 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.03 ± 0.00
MUNY2+ (g/d) 0.09 ± 0.01 0.42 ± 0.00 0.15 ± 0.01 0.13 ± 0.01 0.41 ± 0.01 0.93 ± 0.01
1Trait: NINT1 = N intake in primiparous cows; MTPN1 = milk true protein N in primiparous cows; MUNY1 = milk urea N yield in primipa-
rous cows; NINT2+ = N intake in multiparous cows; MTPN2+ = milk true protein N in multiparous cows; MUNY2+ = milk urea N yield in 
multiparous cows.
2SE is less than 0.005.
3NA = not applicable.

Table 3. Genetic correlations (above the diagonal) and phenotypic correlations (below the diagonal) among reported N-related traits in 
primiparous (n = 44,321) and multiparous (n = 99,274) Holstein cows

Trait1 NINT1 MTPN1 MUNY1 NINT2+ MTPN2+ MUNY2+

NINT1  0.48 ± 0.04 −0.31 ± 0.06 0.89 ± 0.03 0.40 ± 0.05 −0.25 ± 0.05
MTPN1 0.34 ± 0.002  0.54 ± 0.05 0.51 ± 0.05 0.82 ± 0.03 0.46 ± 0.05
MUNY1 0.06 ± 0.01 0.38 ± 0.00  −0.16 ± 0.06 0.37 ± 0.05 0.87 ± 0.02
NINT2+ 0.17 ± 0.01 0.13 ± 0.01 0.01 ± 0.01  0.49 ± 0.03 −0.19 ± 0.05
MTPN2+ 0.11 ± 0.01 0.20 ± 0.01 0.11 ± 0.01 0.42 ± 0.00  0.50 ± 0.04
MUNY2+ −0.02 ± 0.01 0.09 ± 0.01 0.15 ± 0.01 0.14 ± 0.00 0.41 ± 0.00  
1Trait: NINT1 = N intake in primiparous cows; MTPN1 = milk true protein N in primiparous cows; MUNY1 = milk urea nitrogen yield in 
primiparous cows; NINT2+ = N intake in multiparous cows; MTPN2+ = milk true protein N in multiparous cows; MUNY2+ = milk urea 
nitrogen yield in multiparous cows.
2SE is less than 0.005.

https://github.com/Yansen0515/Defining_NEI_and_assessing_effect_on_bull
https://github.com/Yansen0515/Defining_NEI_and_assessing_effect_on_bull


Journal of Dairy Science Vol. 105 No. 9, 2022

The estimated approximate genetic correlations be-
tween NEI and the included traits (indices) are shown 
in Figure 3, and will be referred to as genetic correla-
tions in the latter part of this article. As expected, the 
NEI and MU had a strong negative genetic correlation. 
This shows that increased NEI is associated with in-
creased NUE and decreased N pollution. Positive ge-
netic correlations were observed between NEI and yield 
traits (MY, FY, and PY), ranging from 0.08 to 0.46. 
The genetic correlation between NEI and FP was nega-
tive, but that found between NEI and PP was positive. 
This shows that an increased NEI is associated with in-
creased production of N (MY and PY), a decreased FP, 
and an increased PP. This finding is consistent with the 
genetic relationships reported between predicted NUE 
and production by Chen et al. (2021c). This shows that 
in the current breeding system in the Walloon region 
of Belgium, increasing production traits will increase 
the NUE of cattle when other traits are not considered. 
The former studies also proved that cows with a higher 
FE had a higher milk production (Vallimont et al., 
2011; Köck et al., 2018).

Unfavorable genetic correlations were observed be-
tween NEI and UH (−0.27). The predicted NUE and 
UH were reported to have a negative genetic correlation 
(Chen et al., 2021c). This means that efficiency traits 
and UH are negatively genetically correlated. Increased 
NEI led to increased milk production, subsequently 
increased the intensity of udder use, and reduced its 
health. The NEI had negative genetic correlations with 
LONG (−0.21) and FF (−0.24). The previous study 
found that cows with a higher FE had a longer day 
open (supports our results) and a longer production 
life (different from our results; Vallimont et al., 2013). 
Unfavorable genetic correlations were found between 
the NEI and calving ease traits (DCE, MCE). One 
explanation is that NEI and yield traits (MY, FY, and 
PY) were positively genetically correlated, but yield 
traits were negatively correlated with DCE.

The genetic correlation found between NEI and 
production economic index (index combined of MY, 
FY, PY, FP, and PP) was close to zero. Unfavorable 
genetic correlation was observed between the NEI 
and member economic index (−0.30, representing leg 
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Figure 2. Distribution of reliability for bulls (n = 736) in nitrogen efficiency index (NEI), milk urea concentration (MU), production 
(PROD), udder health (UH), longevity (LONG), female fertility (FF), direct calving ease (DCE), maternal calving ease (MCE), production 
economic index (V€L), member economic index (V€M), capacity economic index (V€C), udder economic index (V€P), functional type economic 
index (V€T), functional economic index (V€F), global economic index (V€G), stature (STA), chest width (CWI), body depth (BDE), rump 
angle (RAN), rump width (RWI), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR), udder depth (UDE), udder support (USU), 
fore udder (FUD), front teat placement (FTP), teat length (TLE), rear udder height (RUH), rear teat placement (RTP), angularity (ANG), 
overall feet and leg score (OFL), overall udder score (OUS), and overall conformation score (OCS). Note: production includes milk yield, fat 
yield, protein yield, fat percentage, and protein percentage.
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and hoof health). Köck et al. (2018) reported positive 
genetic correlations between FE (ECM/DMI), energy 
efficiency (energy in milk/EI), and the incidence of 
lameness, which is consistent with the findings of this 
study. Genetic correlation found between NEI and 
capacity economic index (representing body size) was 
low (−0.05). An unfavorable genetic correlation was 
observed between the NEI and udder economic index 
(−0.34, representing the udder health), the reason for 
this correlation is the same as we suggested for UH. 
The functional type economic index is a combination 
of member economic, capacity economic, and udder 
economic indices. But surprisingly, the genetic corre-
lation estimated between NEI and functional type eco-
nomic index was close to zero (0.01). The genetic cor-
relation between NEI and functional economic index 
was negative, probably because functional economic 
index is a combination of UH, LONG, FF, DCE, and 

MCE. The global economic index is a combination 
of 48% production economic index, 28% functional 
economic index, and 24% functional type economic 
index. Therefore, the NEI has a negative genetic cor-
relation with global economic index. This means that 
the current in the Walloon region of Belgium used 
global economic index will not lead to a favorable cor-
related response of NUE.

The genetic correlations estimated between the NEI 
and the conformation traits ranged from −0.41 to 0.23, 
which also showed a mutually confirming relationship 
with the above results. Similar to the UH results, nega-
tive genetic correlations were found between NEI and 
rear udder height and overall udder score, suggesting 
that increased NEI is not conducive to improving ud-
der health. The NEI and angularity were negatively 
genetically correlated. This result shows that NEI can 
cause cows to become fat, which is also consistent with 
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Figure 3. Approximate genetic correlation between nitrogen efficiency index (NEI) and other traits based on EBV of selected bulls (n = 
736). Other traits included milk urea concentration (MU), milk yield (MY), fat yield (FY), protein yield (PY), fat percentage (FP), protein 
percentage (PP), udder health (UH), longevity (LONG), female fertility (FF), direct calving ease (DCE), maternal calving ease (MCE), pro-
duction economic index (V€L), member economic index (V€M), capacity economic index (V€C), udder economic index (V€P), functional type 
economic index (V€T), functional economic index (V€F), global economic index (V€G), stature (STA), chest width (CWI), body depth (BDE), 
rump angle (RAN), rump width (RWI), foot angle (FAN), rear leg set (RLS), rear leg rear view (RLR), udder depth (UDE), udder support 
(USU), fore udder (FUD), front teat placement (FTP), teat length (TLE), rear udder height (RUH), rear teat placement (RTP), angularity 
(ANG), overall feet and leg score (OFL), overall udder score (OUS), and overall conformation score (OCS). All standard errors of approximate 
genetic correlation <0.05.



Journal of Dairy Science Vol. 105 No. 9, 2022

the finding that NEI is not beneficial to the FF. The 
estimated positive genetic correlation between NEI and 
stature (0.23) combined with the above results suggests 
that cows with a higher NUE may have become taller 
and fatter. The NEI, rump angle, and rump width were 
negatively genetically correlated, which was conducive 
to the relationships between NEI, FF, and LONG of 
cattle. However, the genetic correlation found between 
NEI and OCS was close to zero (−0.02), indicating 
that the increasing NEI would not affect conformation 
traits.

The genetic correlations between 6 traits used in the 
NEI composition and 37 traits (indices) are shown in 
Supplemental Figures S1 to S3 (https: / / github .com/ 
Yansen0515/ Defining _NEI _and _assessing _effect _on 
_bull). The NINT had negative genetic correlations 
with MU, positive genetic correlations with production 
traits, functional traits, and global economic index, and 
its genetic correlations with OCS were close to zero. 
The genetic correlations of MTPN with MU were ap-
proximately 0, with production traits (except for FP), 
functional traits (except for UH and FF) and global 
economic index were positive, with OCS were negative. 
The MUNY had positive genetic correlations with MU, 
production traits (except for FP and PP), functional 
traits (except for FF), global economic index, and OCS.

In summary, NEI is genetically positively correlated 
with production traits but negatively correlated with 
the health, function, indices (except production eco-
nomic and functional type economic indices), and most 
conformation traits, consistent with our previous study 
of the predicted NUE (Chen et al., 2021c).

Potential Effect of the Selected NEI in Bull

The bottom 5% and top 5% NEI bull groups each had 
37 bulls. The mean and SD for 6 traits (MY, PP, MU, 

NINT, MTPN, MUNY) of their daughters were shown 
in Table 4. Means of the 6 included traits in daughters 
were significantly different in the 2 bull groups (all P < 
0.01). Compared with the bottom-5% bull group, the 
NINT and MUNY were lower, and MTPN was higher 
in the top-5% bull group. The results showed that if we 
choose bulls with higher NEI, their daughters would 
have higher efficiency, which have more production and 
lower N pollution per N intake unit from these cows.

Distributions between NEI of the selected bulls (n = 
50) born from 2011 to 2014 and EBV of the 8 selected 
traits (indices) are presented in Figure 4. Because the 
NEI has positive genetic correlations with MY and PY, 
we can easily find bulls with desirable NEI, MY, and 
PY at the same time (such as bull No. 45). The NEI 
has negative genetic correlations with the remaining 
6 traits (indices), so a small number of bulls fell in 
the upper right corner of the distribution map (better 
bulls). The good news is that a small number of bulls 
can have better EBV for most of the traits, including 
NEI, at the same time (such as Bull No. 15). Overall, 
26% of 50 bulls had both higher NEI and global eco-
nomic index. This shows that using the NEI in genetic 
selection is feasible.

The NEI defined in this study may need further 
optimization. Although we considered NINT, MTPN, 
and MUN (instead of urine and feces N), the N con-
sumption for maintenance of body metabolism was 
not included, and the MUNY is only an indicator of 
nitrogen losses, with limited accuracy. Therefore, in 
further steps we plan to add live weight or BCS to the 
existing NEI to improve it. The data of this study is 
based only on the first 50 DIM (limit from predicted 
NINT mode), which should be extended to the whole 
lactation. Currently, we only can use MU as an indica-
tor for the whole lactation to indirectly increase the 
NUE and directly decrease the N pollution (Chen et 
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Table 4. Mean and SD of traits1 for the daughters with bottom 5% and top 5% of nitrogen efficiency index 
sires

Group1
MY2 

(kg/d)
PP 
(%)

MU 
(mg/dL)

NINT 
(kg/d)

MTPN 
(kg/d)

MUNY 
(kg/d × 1,000)

Bottom 5% (n = 30,818)3       
 Mean 31.30 3.18 24.20 0.484 0.15 3.55
 SD 8.21 0.36 8.60 0.08 0.04 1.59
Top 5% (n = 43,322)       
 Mean 31.50 3.24 21.70 0.46 0.16 3.18
 SD 8.45 0.37 8.12 0.08 0.04 1.48
1Group: P-value < 0.01 of the t-test between the 2 groups for all traits.
2MY = milk yield; PP = protein percentage; MU = milk urea concentration; NINT = N intake; MTPN = milk 
true protein N; MUNY = milk urea N yield.
3The 30,818 records in the bottom-5% group from 9,455 cows, and 43,322 records in the top-5% group from 
13,506 cows.
4The 7,059 records for NINT in the bottom-5% group from 2,633 cows, and 13,389 records in the top-5% group 
from 4,683 cows.

https://github.com/Yansen0515/Defining_NEI_and_assessing_effect_on_bull
https://github.com/Yansen0515/Defining_NEI_and_assessing_effect_on_bull
https://github.com/Yansen0515/Defining_NEI_and_assessing_effect_on_bull
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al., 2021b). However, it should be noted that the ge-
netic correlation between predicted NUE and MU was 
very low (Chen et al., 2021a). The NUE and MU are 
working in different processes of the NUE (Figure 1), 
which can explain, at least in part, why there is a low 
genetic correlation between predicted NUE and MU. 
The advantage of NEI is that it can consider both NUE 
and N pollution at the same time, and the genetic cor-
relation between NEI and MU was −0.71. In addition, 
dairy cows in early lactation are in a state of negative 
EB. Because the utilization of N by dairy cows deeply 
depends on energy availability, the genetic relationship 
between NEI and the energy status of dairy cows still 
needs to be explored.

CONCLUSIONS

The findings of this study showed low h2 for traits of 
NINT, MTPN, and MUNY, ranging from 0.09 to 0.13. 
The genetic correlations found among NINT, MTPN, 
and MUNY were positive, except for that found between 
NINT and MUNY. The NEI defined based on NINT, 
MTPN and MUNY has a low h2 (0.06) and moderate 
REL (mean 0.21), but according to the range of NEI 
values (−13.13 to 12.55 kg/d), it has genetic selection 
potential. The NEI showed positive genetic correla-
tions with production traits (e.g., MY, PY), ranging 
from 0.08 to 0.46. The genetic correlations estimated 

between the NEI and MU, UH, LONG, FF, calving 
ease (DCE, MCE), and global economic index were 
negative, ranging from −071 to −0.07. Compared with 
the bottom 5% bull group, the NINT and MUNY were 
lower, and MTPN was higher in the top 5% bull group. 
The analyses of the selected bulls born from 2011 to 
2014 showed that the bulls can have both higher NEI 
and global economic index than average at the same 
time. Finally, the developed NEI has the advantage of 
large-scale prediction and therefore has the potential to 
be routinely used in dairy cattle breeding in the future.
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