

Development of a 2.5D Representative Volume Element model of AlSi10Mg material produced by additive manufacturing

C. Bouffioux, L. Papeleux, S. Tran, J-P. Ponthot, L. Duchêne, <u>A. M. Habraken</u>

27-04-2022 ESAFORM 2022 Braga PT

Content

- Target application and methodology
- □ Features of AISi10Mg FSP microstructure
- Nanoindentations
- RVE development and validation
- Conclusions

Long Life AM project - Experimental context

Tensile test AlSi10Mg SLM as – built versus build platform temperature

Post treatment effects (thermal treatment TT1, TT2 or Friction Stir Processing FSP)

(Santos Macías et al., Scripta Materialia 170, 2019)

Statistical observations taken into account to build RVE

Post treatment ULiege

(Zhao et al., MSEA 2019)

Si particles described by equivalent ellipses:

- equivalent circle diameter \emptyset_{eq} [0.118; 0.695] µm
- aspect ratio: AR = $\emptyset_{min} / \emptyset_{max}$
- angle major axis / horizontal axis of image: α
- Pearson correlation coefficients: r

- \rightarrow higher rate of small particles
- \rightarrow few elongated grains
- \rightarrow no dominant orientation angle
- → weak correlations between \emptyset_{eq} , AR, α

Nanoindentations: grid α-AI or single target indent Si case of matrix + particle material

Si particle:

Elastic behavior characterized from literature & Si nanoindentation (Dedry et al., ESAFORM PoPuPs, 2021)

α-Al matrix elasto-plastic behavior:

- Inverse modelling (Berkovich indenter, based on the total set of available curves) Tran H.S. et al. 2022 (revision Int. J. of Mech. Sc.)
- Dao & Bucaille method (3 ≠ indenters, use of lower curves of the grid) Bouffioux C. et al. (soon)

α-AI matrix characterization by Berkovich & inverse modelling

Finite Element Inverse model of lowest curve: assumed α -Al \rightarrow data set A Sensitivity analysis of indent position and size of Si

Berkovich

 $\sigma_{y, \alpha-AI} / \sigma_{y, Si} = 0.036$ D [0.118; 0.695] µm

Si of $\,$ D < 0.2 μm

→ not effect on forcedisplacement curve

Indent further than 0.345 μ m from Si particle $\rightarrow \alpha$ -Al matrix behavior

α-AI matrix characterization by Berkovich & inverse modelling

Data set A validation

Prediction / Experiment of cube corner

α-AI matrix characterization by nanoindentations & Dao-Bucaille 1 point ($\epsilon_{r,\theta}$, $\sigma_{r,\theta}$) for each indenter characterized by its angle α

- Nanoindentation curves
 - \rightarrow F= C_{θ}. h²

٠

with F: normal force, h: penetration depth, C_{θ} : constant

 $\rightarrow \quad \frac{1}{E^*} = \frac{1-\nu^2}{E} + \frac{1-{\nu_i}^2}{E_i}$

with E*: reduced modulus of the curve

- K.L. Johnson (J. Mech. Phys. Solids, 1970) \rightarrow characteristic strain $(\epsilon_{r,\theta})$ per indenter
 - $\Rightarrow \overbrace{\varepsilon_{r,\theta}} = K \cdot \cot(\theta)$ with θ : angle of the equivalent cone, K = 0,105 (Bucaille, Acta Mat. 51, 2003) $\Rightarrow \theta = \arctan\left(\sqrt{\frac{3.\sqrt{3}}{\pi}} \cdot \tan(\alpha)\right)$ with α : angle of indenter
 - Dao's method (Acta Mat. 49, 2001) + Bucaille method (Acta Mat. 51, 2003)

$$\Rightarrow \Pi_{1\theta} = \underbrace{C_{\theta}}_{\sigma_{r\theta}} = tan^{2}(\theta) \cdot \left\{ 0.02552 \cdot \left[ln \underbrace{E^{*}}_{\sigma_{r\theta}} \right]^{3} - 0.72526 \cdot \left[ln \underbrace{E^{*}}_{\sigma_{r\theta}} \right]^{2} + 6.34493 \cdot \left[ln \underbrace{E^{*}}_{\sigma_{r\theta}} \right] - 6.47458 \cdot \left[ln \underbrace{E^{*}}_{\sigma_{r\theta}} \right]^{2} + 0.72526 \cdot \left[ln \underbrace{E^{*}$$

 \rightarrow the characteristic stress $\sigma_{r,\theta}$ per indenter

α-AI matrix characterization by nanoindentations

Indentations on grids with 3 different indenters \rightarrow lowest curves for matrix

→ Swift or Voce hardening law fitting

infinity of solutions if σ_v not defined

- $\rightarrow \sigma_v$ from macro tensile test or analytical formula
- \rightarrow Ok high ratio Si / α -Al strength & low fraction of Si particles

(Tran et al. 2022, under revision in Int. J. of Mech. Sc.)

Matrix + Particles \rightarrow RVE

Medium A – 10 Si part. & ≠ mesh sizes

Target: macro tensile test in Y dir.

≠ model, mesh sizes, 1 layer of 3D elements, 3D law
Macro level : ε_{XX} ≈ ε_{ZZ} (isotropic material)
Local level: strength in Z direction ≈ for all particles
(Bouffioux et al., 2022, nearly submitted)

11

Macroscopic σ - ϵ computed from RVE

Tensile test in y direction

Experimental validation

Effect of boundary conditions in Z direction

Sensitivity of local max σ_{vv} mesh & RVE size

Local stress field

Effect of boundary conditions applied in Z direction

Stress distribution in Y & X directions

Damage mechanism in static loading → Cohesive interface elements

Cohesive zone modelling

Microstructure of AlSi10Mg after FSP

Sensitivity of local field assumption at macro strain 0.1

Tensile

Stress-YY

stress in

Cohesive Interfaces

Decohesion starts at similar macro strain as experiment

RVE 2.5D ready to model fatigue

Conclusions Toward numerically optimized microstructure by RVE ?

Development of 2.5D RVE model \rightarrow macro stress strain tensile curve validated

- \rightarrow local stress and strain fields available
- \rightarrow damage mechanism in static loading ongoing

A tool available for "isotropic matrix + precipitate material"

Input data from experiments here However, Phase Field approach possible (see EMMC18 conf.)

Next steps: fatigue

→ Fatigue experimental campaign
 → RVE predictions via damage constitutive laws

Thank you Any questions ?

Anne.Habraken@uliege.be Chantal.Bouffioux@uliege.be