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Abstract:   16 

Urban morphology relates to the form, structure, physical characteristics, and arrangement of buildings 17 

affecting the urban microclimate. As the morphological characteristics vary across the city, small units 18 

such as urban blocks are analysed for microclimate estimation. However, microclimatic analysis of all 19 

the blocks in a city is computationally challenging and time-consuming. Therefore, it is vital to identify 20 

representative blocks in a city to obtain a general overview of the microclimate. Urban morphological 21 

archetypes are the representative units of a homogenous group of blocks based on morphological 22 

parameters. Here, we propose a systematic approach for identifying urban morphological archetypes 23 

suited for microclimatic analysis. Specifically, we employ a well-defined, PCA-based k-means 24 

clustering approach supported by validation using external criterion analysis. We use urban 25 

morphological parameters based on form, shape, arrangement, and variations within a block in Liege, 26 

Belgium. We use the cubic clustering criterion and pseudo F statistic to identify nine distinct 27 

homogenous clusters. Then, we propose a validation approach in the absence of existing typologies 28 

using ANOVA analysis on the external criterion of land surface temperature, a proxy for measuring 29 

microclimate. The validation suggests that the clusters are significantly different, indicating successful 30 

clustering. We also compare our classification to the existing local climate zone (LCZ) classification. 31 

We identify relevant sub-classes within the broader LCZ classes essential for capturing microclimatic 32 

variation. Finally, the study provides realistic archetypes for performing microclimatic simulations at a 33 

city scale. The proposed approach can be effectively applied to other cities for urban microclimate 34 

studies.  35 

Keywords: Microclimate, urban morphological archetypes, clustering, k-means, local climate zones 36 
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1 Introduction  41 

Urban settlements alter the natural environment surrounding them, creating a unique microclimate [1]. 42 

Urban microclimates tend to produce and retain more heat, resulting in comparatively higher 43 

temperatures than their rural counterparts. This phenomenon is known as the urban heat island (UHI) 44 

effect [2,3]. The overall air and surface temperature in cities have risen gradually over the years, 45 

resulting in a significant air UHI and surface UHI effect, respectively [4,5]. The spatial variation of the 46 

UHI effect largely depends on urban morphological factors such as built-up intensity, presence of 47 

vegetation, building heights, albedo and sky-view factor (SVF) [6,7]. Therefore, microclimates 48 

encompassing buildings and urban blocks are studied to understand and mitigate the UHI effect.  49 

The urban microclimate is the outcome of dynamic interactions between the macroclimate and urban 50 

morphology [8,9]. Thus, urban morphology is a vital part of UHI-related microclimatic studies owing 51 

to its importance also for assessing mitigating solutions for the UHI effect [10,11]. Urban morphology 52 

relates to the form and the structure of an urban area and the buildings’ physical characteristics and 53 

arrangement. Urban morphological parameters influence the urban microclimate in several ways. For 54 

example, building density reduces the average wind velocity worsening the urban ventilation and 55 

intensifying the UHI effect [12,13]. Longwave radiation gets blocked in the streets due to low SVF on 56 

the streets, retaining more heat in the region and escalating the UHI effect [14,15].  57 

Urban morphological parameters, such as the size of the building façades, also impact wind velocity, 58 

thus intercepting solar radiation and contributing to solar trapping, which primarily causes the UHI 59 

effect [16]. Sometimes, urban morphological factors can also help in regulating the UHI effect. For 60 

example, arrangements of buildings in a block, such as U-shaped blocks, blocks with courtyards, or 61 

multiple courtyards, have improved microclimates compared to detached, attached and linear blocks 62 

[17]. Additionally, a block’s variation in the height of buildings is also observed to reduce outdoor 63 

temperatures better than the blocks with uniform building heights [12]. In winters, mid-rise blocks are 64 

more suitable than high-rise blocks with open spaces to block the cold winds (Xu et al., 2019). These 65 

studies demonstrate that urban morphological patterns largely influence microclimate.   66 

The morphological patterns within the city vary based on building properties, street-related properties, 67 

and properties of urban blocks. Due to such variations in the city, many researchers suggest analysing 68 

individual urban units, such as urban blocks, to study the UHI effect at the microscale [18,19]. 69 

Evaluating microclimate in urban blocks also allows the urban planners and designers to play a pivotal 70 

role in providing balanced strategies and techniques related to its local context [20]. However, analysing 71 

the microclimate of all the blocks in the city can be computationally challenging and time-consuming. 72 

In this scenario, identifying typical urban morphological archetypes representing a homogenous group 73 

of blocks [21,22] in a city can simplify microclimatic studies and aid in generalising the results at a city 74 

scale. Therefore, we propose a systematic approach to identifying urban morphological archetypes 75 

suited for microclimatic studies. 76 

Typically, the first step in identifying urban morphological archetypes involves classifying the entire 77 

city into different types. There have been previous attempts to classify the urban areas into homogenous 78 

units for UHI-related studies. Stewart and Oke [23] introduced the local climate zones (LCZs) as 79 

homogenous regions in terms of surface cover, structure, material and human activity that stretch over 80 

hundreds of meters to several kilometres horizontally. Based on LCZ, several researchers have 81 

generated LCZs specific to their areas, substituting or adding a few parameters in the process [24–26]. 82 

Although generating LCZs is the widely used approach, Stewart and Oke [23] highlight that the LCZ 83 

system is generic and cannot capture the peculiarities of every urban area and is adapted to catch the 84 

microclimate effect at the scale of a few hundred meters. Thus, they suggest that users can create new 85 

sub-classes in the city if needed. Apart from this, the LCZ parameters often remain insufficient while 86 

describing the urban canopy in detail, especially when the end goal is to analyse the UHI effect at the 87 

microscale [7]. Therefore, additional morphological parameters that describe the urban canopy in detail 88 
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are necessary for classifying the urban area into morphological archetypes. Apart from this, as the basic 89 

unit of design for urban planners and designers is an urban block, rasterised output like LCZs does not 90 

provide precise typologies at the block level [27,28].  91 

Other approaches have been employed previously, such as rule-based classification,  machine learning 92 

based classification algorithms, and classification using spatial multi-criteria analysis to identify urban 93 

morphological archetypes [29–31]. While these methods are systematic and replicable, they are only 94 

applicable in the case of predefined urban morphological archetypes. In the absence of predefined 95 

archetypes, the clustering approach can be helpful as it is data-driven [19,32–35]. Furthermore, 96 

clustering allows simultaneous assessment of various variables by grouping the elements based on 97 

similarities [35]. Thus, the clustering approach is more logical and effective in identifying urban 98 

morphological typologies. However, prior studies have not employed the clustering approach with 99 

external validation to form urban archetypes to identify local climate zones for microclimate analysis. 100 

Therefore, in this study, we propose a clustering approach to identify the urban morphological 101 

archetypes based on important urban morphological parameters. 102 

Once the clusters are generated, we need to check whether the clustering has delivered unique and 103 

distinct archetypes. One way to check if the clusters are significantly different is with the help of 104 

predefined or pre-existing rules for archetypes. But, in many cases, there is a lack of predefined rules 105 

wherein the validation requires some logical basis. An approach popular in the statistical community 106 

but not widely used in clustering urban blocks is the external validation criterion using ANOVA 107 

analysis. However, such a validation requires an external parameter not used in clustering [36], which, 108 

in this case, is a non-morphological parameter (i.e. a parameter not related to building geometry) to 109 

prove that significant differences exist between the clusters. Therefore, in this study, we propose a 110 

validation using an external parameter to confirm the adequacy of the clusters’ diversity. 111 

Summing up, in this paper, we propose a systematic approach to identifying the urban morphological 112 

archetypes particularly suited for UHI-related microclimatic analysis. The approach involves:   113 

1. Clustering: classifying city blocks based on urban morphological parameters.  114 

2. Validation of the clustering-based classification using an external criterion. 115 

3. Determining the unique urban morphological archetypes that represent the different clusters in 116 

the city.  117 

We also compare the clustering-based classification results with the LCZ data created for Europe by 118 

the world urban database and access portal tools (WUDAPT) [37,38].  119 

The present approach provides realistic urban blocks for microclimate analysis, including CFD 120 

simulations instead of a simplistic representation of urban blocks. Furthermore, it reduces the 121 

computational time for analysing the microclimate at a higher resolution as it alleviates the need for 122 

simulating the microclimate of an entire city. Instead, the simulations can be carried out on the identified 123 

archetypes to arrive at a general overview of the microclimatic situation in the city. Moreover, the 124 

properties of these archetypes can be helpful to further generate modelled blocks in the city that will be 125 

a better representation of reality.  126 

2 Methodology 127 

2.1 Study area and dataset 128 

In this study, we examine the city of Liege in the Wallonia region of Belgium. It is the third most 129 

populous city in the country, with 196,296 inhabitants [39] and an area of 69 km2. The city is densely 130 

occupied by buildings in the centre, leaving few open green spaces. The surface temperatures in the city 131 

are observed to be high during the summer, indicating a significant surface UHI effect [40].  132 
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The dataset includes the building footprints from the PICC (Projet Informatique de Cartographie 133 

Continue) dataset, which has an accuracy of less than 25 cm. This data is retrieved from the geoportal 134 

of Wallonia (https://geoportail.wallonie.be). We also use the parcels from cadastre data (2018) for block 135 

generation. For the height of the buildings, we use the LiDAR point cloud data from 2014 with a point 136 

density of 0.8 points/m2, retrieved from the geoportal of Wallonia.  137 

2.2 Selection of blocks  138 

Urban blocks are an area with one building or a group of buildings surrounded by streets [29,34]. Thus, 139 

firstly, the city is divided into several blocks using the parcels in the cadastre data. The border of the 140 

enclosing streets delineates a block, and cadastral information on streets or parcels can help in 141 

demarcating the blocks. Blocks can also be derived if the street width information is available in a city 142 

[34].  143 

For Liege city, the cadastral information is readily available; therefore, we use parcels to define the 144 

blocks for this study. The parcels are the plot boundaries for each building in the city, as depicted in 145 

Figure 1(a). We merge all the parcels and transform them into blocks using ArcGIS Pro (Version 2.9.1) 146 

(Figure 1(b)).  147 

 148 

Figure 1 (a) Parcels based on cadastral data (b) Defined blocks with the help of parcels 149 

Blocks with fewer buildings and larger open spaces are not relevant for this study. Thus, the first 150 

selection criteria for the blocks in this analysis is the ground space index (GSI). GSI refers to the area 151 

occupied by buildings (𝐴𝑏𝑢) in the block per area of the block (𝐴𝑏𝑙) as illustrated in the following 152 

equation [41]:     153 

𝐺𝑆𝐼 =
∑ 𝐴𝑏𝑢(𝑖)

𝑛
𝑖=1

𝐴𝑏𝑙
 ( 1 ) 

 154 

We only consider the blocks with GSI greater than 0.2 as we focus on urban climate zones [23]. In 155 

addition, we choose the blocks with at least three buildings within their perimeter to filter smaller blocks 156 

with just one or two buildings.  157 

Another criterion for selecting the blocks is their shape. Sometimes, the block shapes in a city can be 158 

irregular, as shown in figure 2. Such blocks usually have very few or no buildings or contain large 159 

landscapes. However, some blocks might have a significant number of buildings that are widely spaced.    160 

We use the shape factor (𝑆𝐹) as defined in Ma et al. [19]. To calculate 𝑆𝐹, we first construct the 161 

minimum bounding circles around the blocks using ArcGIS’s minimum bounding geometry tool. 162 

Thereafter, we compute 𝑆𝐹 using the following equation:  163 
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𝑆𝐹 =
𝐴𝑏𝑙

𝜋𝑟𝑐𝑖𝑟𝑐𝑙𝑒
2  

 

(2) 

where 𝐴𝑏𝑙 is the area of the block and 𝑟𝑐𝑖𝑟𝑐𝑙𝑒 is the radius of minimum bounding circle around the block. 164 

Preliminary statistical analysis of the blocks in the city indicated that 95% of the blocks have a shape 165 

factor greater than 0.15. Further observation of blocks with SF less than 0.15 indicates that these blocks 166 

are irregular and non-repeating. Therefore, we consider blocks with SF greater than 0.15 in this study. 167 

 168 

Figure 2 Blocks with irregular shapes 169 

2.3 Parameters affecting microclimate 170 

In this paper, we consider 17 morphological parameters that can potentially affect the microclimate 171 

(Table 1). Along with the parameters proposed for classifying LCZs by [23], we identify the parameters 172 

based on the categories that broadly define the morphology of a block, namely, form, shape, 173 

arrangement, and variations within the block. We also utilise the parameters that influence the wind 174 

flow in the urban area. These parameters are observed to influence urban microclimate in the literature, 175 

as mentioned in Table 1.  176 

Table 1 Urban morphological parameters 177 

Categories Parameter References 

Parameters used for 

LCZ 

SVF Sky view factor  [23] 

AR Aspect ratio [23] 

GSI 
Ground space index/Building 

surface factor 

[16] 

[19] 

[42] 

ISF  Impervious surface fraction  [23] 

PSF Pervious surface fraction  [23] 

HRE  Height of roughness elements  

[17] 

[43] 

[44] 

Arrangement 

(Density and 

arrangement of the 

buildings within the 

block) 

OSR Open Space Ratio [45] 

MA Mean building areas 
[19] 

[46] 

NB 
Number of buildings per unit area 

of the block 

[47] 

[26] 
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Variation 

(Variations between 

the buildings within a 

block) 

SH 
Standard deviation of building 

heights 

[12] 

[48] 

SA 
Standard deviation of building 

areas 

[19] 

[46] 

Form 

(Compactness/sprawl 

of buildings within a 

block) 

DB 
Average distance between the 

nearby buildings 

[17] 

[19] 

 

DCR 

Ratio of distance from the centroid 

to buildings to the radius of 

minimum bounding circle to block 

ratio 

[19] 

 

Shape 

(Shape factor of the 

block) 

SF Block shape factor 

[19] 

[49] 

 

Wind flow 

FAI Frontal area index [50] 

AH Average height of the buildings [51] 

Po Porosity [52] 

 178 

2.3.1 LCZ parameters 179 

The parameters used for classifying LCZs are the sky view factor (SVF), aspect ratio (AR), building 180 

surface fraction (BSF), impervious surface fraction (ISF), and pervious surface fraction (PSF), the 181 

height of roughness elements (HRE) and terrain roughness class. We do not consider the terrain 182 

roughness class (TRC) parameter of LCZ classification as the blocks fall into the ‘very rough’ class of 183 

Davenport classification of effective terrain roughness, where the roughness length is 0.5 m [23].  184 

Sky view factor: 185 

SVF indicates the amount of sky visible from the ground at a given position, referring to the proportion 186 

of sky not obstructed by the surrounding built-up [6,53–55]. We calculate the SVF using the Relief 187 

Visualisation Toolbox of QGIS 3 [56,57].  188 

We use the digital surface model (DSM) and the building footprint dataset to generate the raster with 189 

building height information. We consider the open spaces and roads along with the bottom of the 190 

buildings at 0 m. Moreover, for better accuracy in urban areas, we only consider the building heights 191 

and the obstructions like trees are non-existent in this analysis. We consider a search radius of 100 m 192 

and the number of directions as 16 based on [54] for SVF calculation.  193 

Based on the output from the relief visualisation toolbox, we aggregate the SVF values in the output 194 

raster for every block. Therefore, it is crucial that we consider SVF values in streets and open spaces. 195 

However, as the blocks do not consist of streets surrounding them, we create a buffer zone to include 196 

the SVF values at street level on the streets surrounding the block. To create the buffer zone, firstly, we 197 

calculate the distance of each block from the nearest four blocks located within 33 meters of the block. 198 

Thirty three meters is the maximum street width of major streets in the Walloon region [58]. We 199 

consider the buffer as follows:  200 

𝐷buffer = 𝑚𝑎𝑥(𝑑𝑖) (3) 

 201 

where, 𝑑𝑖 is the block’s distance from the adjacent block, and n is the number of adjacent blocks within 202 

33 meters of the block Figure 3(a). 203 
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 204 

Figure 3 (a) Street width between the block (b) Buffers creates for selecting the buildings on both sides of roads 205 

Next, we remove the buildings from the obtained SVF raster by setting the raster values corresponding 206 

to the building footprint as null. Thereafter, we consider the average SVF values on open spaces and 207 

streets in the buffer block as the SVF of that particular block. We aggregate the SVF values to the blocks 208 

using the zonal statistics as table tool in ArcGIS Pro 2.9.1.  209 

Aspect Ratio: 210 

Aspect ratio (AR) is the building height to street width ratio (H/W). As streets surround blocks on all 211 

sides, we consider the average value of AR of all streets surrounding the block. We compute the street 212 

width based on the distance of blocks from the adjacent blocks (𝑑𝑖) as shown in figure 3(a). For AR, 213 

we consider the average street width calculated as follows:  214 

𝑤avg =
1

𝑛
∑ 𝑑𝑖

𝑛

𝑖=1

 

 

(4) 

where, n is the number of adjacent blocks within 33 meters of the block.  215 

To estimate the building height, we first identify the buildings on both sides of the road. To do this, we 216 

create a buffer of 5 m inside the block and 3 m outside the street buffer, as shown in figure 3(b). Then, 217 

we select the buildings that are crossed by the outline of these buffers using ArcGIS Pro 2.9.1. After 218 

that, we calculate the average height of the selected buildings as follows:  219 

ℎavg =
1

𝑛
∑ ℎ𝑖

𝑛

𝑖=1

 

 

(5) 

where, ℎ𝑖 is the height of the building on either side of the road, and n is the number of buildings that 220 

are on both sides of the road surrounding the block. Subsequently, we calculate the AR of a block as 221 

follows: 222 

𝐴𝑅 =
ℎavg

𝑤avg
 

 

(6) 

Impervious surface fraction (ISF): 223 

ISF indicates the area occupied by impervious surfaces such as pavements, rocks, and buildings. Zha et 224 

al. [59] defined the normalised difference built-up index (NDBI) to determine urban and built-up areas. 225 

It is used to express the intensity of urbanisation [60] and can be used as a substitute to indicate urban 226 
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impervious surfaces [61]. Thus, in this paper, we use NDBI as a proxy for ISF. We calculate NDBI 227 

using the Sentinel-2A satellite imagery captured on 21st July 2021 from the United States geological 228 

survey (USGS). We choose the image on this date as July and August experience higher temperatures. 229 

Moreover, among the images available for this time frame, the selected image had the lowest and most 230 

acceptable cloud coverage of less than one per cent. The NDBI was calculated as follows: 231 

NDBI =
𝑆𝑊𝐼𝑅1 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅1 + 𝑁𝐼𝑅
 (7) 

 232 

where SWIR1 is the shortwave infrared band (Band 11) with a resolution of 20 m, and NIR is the near-233 

infrared band (Band 8) with a resolution of 10 m. For calculating the NDBI, we resample the SWIR1 234 

band to 10m and compute the NDBI at 10 m resolution. To estimate the NDBI of a block, we calculate 235 

the average NDBI of a block as ISF using the zonal statistics as table tool in ArcGIS Pro 2.9.1.  236 

Pervious surface fraction (PSF): 237 

PSF refers to the area occupied by pervious surfaces like bare soil, vegetation or water. Normalised 238 

difference vegetation index (NDVI) is used to detect bare soil and vegetation [62,63]. Thus, in this 239 

study, we consider NDVI to inform the perviousness in the block. We calculate the NDVI using the 240 

Sentinel-2A image used for calculating NDBI. It is computed as follows: 241 

NDVI =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 (8) 

 242 

where NIR and R are the near-infrared (band 8) and red (band 4) bands with a resolution of 10 m. Similar 243 

to NDBI, we calculate the average NDVI of a block as the PSF using the zonal statistics as table tool 244 

in ArcGIS Pro 2.9.1.  245 

Height of roughness elements (HRE): 246 

As the roughness of the neighbourhood can influence the aerodynamic properties, we compute the HRE 247 

for the buffer around the block as used in the SVF calculation [50,64]. HRE is the average of building 248 

heights in the urban canopy. Here, we calculate it as follows : 249 

𝐻𝑅𝐸 =
∑ 𝐴𝑏𝑢(𝑖) × ℎ𝑏𝑢(𝑖)

𝑛
𝑖=1

𝐴𝑏𝑢𝑓𝑓𝑒𝑟
 (9) 

 250 

where 𝐴𝑏𝑢 is the area of building and ℎ𝑏𝑢 is the height of the buildings within the outer buffer of the 251 

block as shown in figure 3 (b), Abuffer is the area of the outer buffer and n is the number of buildings 252 

within the block. We calculate the height of buildings using digital surface model (DSM) data provided 253 

by the geoportal of Wallonia.  254 

2.3.2 Parameters informing arrangement 255 

The parameters in the arrangement category represent the parameters that inform the open spaces and 256 

area and the number of buildings. Open space ratio (OSR) is defined as the ratio of open areas to the 257 

built area, and it describes the intensity of use of non-built ground [45]. We compute it as follows: 258 

𝑂𝑆𝑅 =
1 − 𝐺𝑆𝐼

𝐺𝑆𝐼
 (10) 

 259 
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MA is the average area of buildings within the block. 𝑁𝐵 is the number of buildings per unit area in a 260 

block. We compute it as follows: 261 

𝑁𝐵 =
𝑛

𝐴𝑏𝑙
 

 
(11) 

where n is the number of buildings within the block.  262 

2.3.3 Parameters informing variation  263 

The variation category consists mainly of two parameters. Studies have indicated that variation in 264 

heights can influence the microclimate [12,48]. In computational fluid dynamics (CFD) studies, the 265 

area of the object also affects the wind direction [46]. Thus, we also consider variation in building area 266 

in this study as there is a potential effect on the UHI. SH is the standard deviation in building heights, 267 

and SA is the standard deviation in building areas within the block. Since height informs the roughness 268 

of the block and its neighbourhood, we consider SH to be the standard deviation of building heights 269 

within the outer buffer of the block as considered for SVF calculations.  270 

2.3.4 Parameters informing the form 271 

The form represents the compactness or sprawl of buildings within the block. GSI can also demonstrate 272 

the form, but there can be variations in the patterns. Therefore, we consider parameters like DB and 273 

DCR. DB is the average distance between the adjacent buildings in a block. We calculate as follows:   274 

𝐷𝑚𝑖𝑛 =
1

𝑛
∑ 𝑚𝑖𝑛

1≤𝑗≤𝑛−1
(𝐷𝑖𝑗)

𝑛

𝑖=1

 

 

(12) 

where 𝐷𝑖𝑗 is the distance between one building to the rest of the buildings, n is the number of buildings 275 

in the block (Figure 4 (a)). 276 

 277 

Figure 4 (a) Distance between the buildings (b) Distance from the centre of the block to the building 278 

DC is the average distance between the block’s centre and the building’s centre (Eq. 13). As the value 279 

of DC depends upon the block’s size, we normalise the parameter using the radius of the minimum 280 

bounding circle (Eq. 14). Thus, DCR is the parameter indicating the average distance of buildings from 281 

the block’s centre.  282 

𝐷𝐶 =
∑ 𝐷𝑐(𝑖)

𝑛
𝑖=1

𝑛
 (13) 

 283 

𝐷𝐶𝑅 =
𝐷𝐶

𝑟𝑐𝑖𝑟𝑐𝑙𝑒
 

 

(14) 

𝑤here, 𝐷𝑐_𝑖 is the distance from the block’s centre to the building’s centre, and n is the number of 284 

buildings in a block.  285 
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2.3.5 Parameters for block shape 286 

As mentioned in section 2.2, SF informs the shape of the block. Moreover, there might be differences 287 

in the blocks based on the shape of the block. Thus, we use this parameter as well in our analysis.   288 

We calculate the parameter values for blocks using the Geopandas package in python 289 

(https://geopandas.org/en/stable/). We convert each shapefile to a geodata frame to proceed with further 290 

analysis.  291 

2.3.6 Parameters influencing the wind flow 292 

Urban morphology influences the urban air ventilation environment [50,51]. Several indicators such as 293 

GSI, SH, HRE,  average height (AH), frontal area index (FAI) and porosity (Po) are considered in 294 

analysing the urban wind environment as they indicate surface roughness [51,65,66]. In this paper, GSI, 295 

SH and HRE parameters are already considered in other categories of urban morphology. Therefore, in 296 

this section, we explain the remaining parameters such as AH, FAI and Po. As AH, FAI and Po indicate 297 

roughness in the urban block, we consider the buildings in the buffer area (Figure 3(a)) for calculating 298 

the indicators.  299 

AH is the average height of buildings within the buffer of the block.  300 

FAI measures building walls facing the wind flow in a particular direction [52]. We compute FAI using 301 

the methodology from [65] in this paper. The method involves rasterisation of the building height and 302 

area and computing the FAI at 100m resolution. The FAI is only calculated for northerly/easterly winds. 303 

We computed the FAI for the blocks using zonal statistics as table tool in ArcGIS Pro 2.9.1 and 304 

considered the mean of FAI pixels overlapping the buffer block as FAI of the block.  305 

Po is the ratio of the empty volume in an urban canopy to the volume of the urban canopy. In this paper, 306 

we consider the volume of the urban canopy of a block (UCLV) as follows [67]:  307 

𝑈𝐶𝐿𝑉 = 𝑚𝑎𝑥(ℎ𝑖) × 𝐴𝑏𝑢𝑓𝑓𝑒𝑟 

 

(15) 

where hi is the height of the buildings in the buffer block. The building volume (BV) in the buffer block 308 

is computed as follows: 309 

𝐵𝑉 =  ∑ 𝐴𝑖 × ℎ𝑖

𝑛

𝑖=1

 

 

(16) 

 310 

where Ai is the area of buildings located in the buffer block. Therefore, Po is defined as:  311 

𝑃𝑜 =
𝑈𝐶𝐿𝑉 − 𝐵𝑉

𝑈𝐶𝐿𝑉
 

 

(17) 

2.4 Clustering approach 312 

We use k-means clustering in this paper for the reasons explained below: 313 

• Firstly, Liege city does not have any pre-existing classification of urban built form. 314 

• Secondly, the k-means clustering algorithm is a hard clustering method that provides distinct 315 

clusters.  316 

• Lastly, it is very efficient for large and high-dimensional datasets.  317 

• Moreover, several studies [32–34] have demonstrated that k-means have provided logical 318 

results for identifying urban typologies.  319 
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2.4.1 Pre-processing of data 320 

It is crucial to scale and normalise the data before performing the k-means clustering [35,68], as the 321 

presence of outliers or skewed distributions can influence the optimal number of clusters generated by 322 

algorithms. Therefore, first, we scale the data to guarantee that no particular weight is given to any 323 

specific variable or feature.  324 

Researchers often couple principal component analysis (PCA) with k-means in order to reduce 325 

dimensionality and ensure non-collinearity among the variables [33,69]. Moreover, PCA-based k-326 

means are observed to generate a better clustering result [70]. A PCA is a linear transformation of 327 

variables into reduced dimensional space while retaining the maximum variance [33,35].  328 

In this paper, we are not confronted with a large number of dimensions. However, there may be 329 

collinearity between the variables. As collinearity may influence the results, we do a PCA analysis to 330 

obtain principal components (PCs) that are non-collinear and explain maximum variance in the data. 331 

We transform the data into PCs using classical PCA and decide on the number of PCs based on Kaiser 332 

criteria [71]. Thus, we select the PCs based on the cumulative variance explained by each component 333 

that has an eigenvalue greater than one. We further discuss the loading of each parameter on the chosen 334 

PCs using varimax rotation to estimate their influence on the clustering outcome. We consider the 335 

rotated principal component (RC) scores as input for the k-means clustering. We use the R stats package 336 

version 4.0.3. for PCA analysis.  337 

2.4.2 K-means clustering 338 

K-means clustering algorithm is an unsupervised clustering technique that attempts to determine k non-339 

overlapping clusters to maximise the distance between the clusters and minimise the distance within 340 

the cluster. Given the set of n data points and a predefined number of clusters (k), the algorithm 341 

randomly selects k cluster centres initially. It classifies the data points to the nearest cluster centre. Then, 342 

it calculates the within-cluster sum of squares and reassigns the cluster centres to result in a final 343 

partition that optimises the clustering quality by minimising the intracluster sum of squares distances 344 

of any data point to its nearest cluster centre as defined by the following equation  [72]: 345 

𝐽(𝐶) = ∑ ∑ ∥ 𝑥𝑗 − 𝑐𝑖

𝑛

𝑗=1

𝑘

𝑖=1

∥2 

 

(18) 

K-means algorithm generally picks up the centroids randomly. Thus, the result depends upon how the 346 

initial centroids were selected. Therefore, to avoid this problem, we use the k-means ++ initialisation 347 

which is a smart centroid initialisation technique. With this technique, the best possible initial centroid 348 

is selected and the replicability of results is ensured with significant iterations [73]. We use the clusterR 349 

package of R version 4.0.3 for clustering the data using the k-means algorithm.   350 

2.4.3 Determining the number of clusters 351 

There are numerous varieties of methods available to identify the number of clusters. However, 352 

identifying the optimal number of clusters is always challenging for clustering analyses. Thus, many 353 

studies use more than one method to determine an optimal number of clusters [74,75]. In this paper, we 354 

use the cubic clustering criterion (CCC) and pseudo F statistic to select the optimal number of clusters.  355 

CCC is a test statistic developed by the SAS programming package [76] for identifying an optimal 356 

number of clusters. This index is the measure of within-cluster homogeneity compared to between-357 

cluster heterogeneity. For identifying the optimal number of clusters, the values of CCC are plotted 358 

against the number of clusters and the peak value is chosen as appropriate. However, the peak value of 359 

CCC should be positive and preferably greater than two or three [77].  360 

Caliñski and Harabasz [78] developed the pseudo F statistic and defined it as the ratio of between-361 

cluster variance to within-cluster variance. Similar to CCC, the pseudo F values are plotted against the 362 
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number of clusters and the peak value is chosen as the optimal number of clusters. The large peaks in 363 

the pseudo F statistic are indicators of greater cluster separation.  364 

Milligan and Cooper [77] examined 30 indexes developed to identify the number of clusters. According 365 

to the study, CCC performed at a competitive rate; however, it may suggest too many clusters in some 366 

cases. Additionally, pseudo F statistic has performed well and is less prone to errors, according to 367 

Milligan and Cooper [77]. Thus, we compare these two indices and decide the optimal number of 368 

clusters. To compute these indices, we use the NbClust package of R.  369 

2.4.4 Validating the clusters 370 

For external criterion analysis, standard parametric analyses such as analysis of variance (ANOVA) or 371 

multivariate analysis of variance (MANOVA) are used to validate the clustering result using a variable 372 

excluded from clustering analysis [36].  373 

Differences in surface temperature are related to different microclimates. So, the average surface 374 

temperature of the blocks can be one of the proxies for measuring microclimate conditions [79,80]. In 375 

this study, the external variable cannot be a parameter that influences or informs urban morphology. 376 

Thus, we choose the block’s average land surface temperature (LST) as a dependent variable for 377 

external criterion analysis. We compute it using zonal statistics as table tool in ArcGIS Pro 2.9.1. We 378 

consider using a one-way ANOVA analysis to validate the clustering result as we have one parameter. 379 

Moreover, several studies have effectively used one-way ANOVA for validating the clustering analysis 380 

results [81–83]. Therefore, we validate the clustering result with the help of a one-way ANOVA to see 381 

whether the mean land surface temperature (LST) of the blocks varies across the clusters.  382 

We calculate the land surface temperature (LST) using the LANDSAT-8 level 1 image captured on 18th 383 

July 2022. We choose the image on this date as July and August experience higher temperatures. Among 384 

the images available for July and August, the image on this date had the lowest and most acceptable 385 

cloud coverage of less than one per cent. In addition, we procured the image from the USGS at a 386 

resolution of 30 m. We use the thermal band 10 to compute the LST (in Kelvin (K)) using the following 387 

equations [84]:  388 

𝐿λ = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 

 

 (19) 

                                                                                                                                                                       389 

where 𝐿λ = TOA (Top of Atmosphere) spectral radiance (Watts/(m2 * srad * µm)), 𝑀𝐿 = Band-Specific 390 

multiplicative rescaling factor from the metadata, 𝐴𝐿 = Band-specific additive rescaling factor from the 391 

metadata, 𝑄𝑐𝑎𝑙  = Quantized and calibrated standard product pixel values (DN) 392 

𝑇 =
𝐾2

𝑙𝑛 (
𝐾1
𝐿λ

+ 1)
 

(20) 

 393 

where 𝑇 = TOA brightness temperature (K), 𝐾1 = Band-specific thermal conversion constant from the 394 

metadata, 𝐾2 = Band-specific thermal conversion constant from the metadata 395 

We further convert the LST values to degrees Celsius (oC).  396 

ANOVA analysis enables comparing variances of more than two populations to determine equality of 397 

means. The F-test is performed against the null hypothesis, where the means of LST of each cluster are 398 

equal. The alternate hypothesis would be that not all the means of LST are equal. If the p-value of the 399 

F-statistic (Pr (>F)) is less than 0.05, then the null hypothesis will be rejected, and the alternate 400 

hypothesis will be accepted. 401 
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2.5 Determining predefined LCZ for blocks 402 

To compare the clustering results with LCZ, we first determine the LCZ of the blocks using the LCZ 403 

map by WUDAPT [38] for entire Europe. The LCZ map [37] is at a resolution of 100 m, with each 404 

pixel indicating the type of LCZ. We use zonal statistics as a table tool of ArcGIS Pro 2.9.1 and identify 405 

the value of the majority of pixels in the block as LCZ.   406 

3 Results and discussion 407 

3.1 Selected blocks 408 

Figure 5(a) depicts the total blocks in the city of Liege. There are a total of 1,441 blocks in the city. Out 409 

of these blocks, we select 1007 blocks in total for the analysis based on the selection criteria explained 410 

in section 2.1. Figure5(b) illustrates the selected blocks in the city. From figure 5(b), we observe that 411 

the larger blocks with fewer buildings are effectively filtered along with irregularly shaped blocks.  412 

 413 

 414 

Figure 5 (a) Blocks in the city of Liege (b)Selected blocks for this study 415 

3.2 Principal component analysis 416 

Pairwise correlation of the 17 parameters indicates a high (>50%) and significant correlation between 417 

some variables, as shown in figure 6. The correlated variables may influence the clustering results, 418 

given the higher magnitude. Therefore, PCA analysis is relevant in this case. 419 
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 420 

Figure 6 Correlation Matrix 421 

We observe from figure 7 that first four principal components have eigenvalue greater than one. 422 

Moreover, these four PCs explain around 75% of the variance in the dataset. Therefore, we select these 423 

four PCs as variables for clustering.  424 

 425 

Figure 7 Principal Components Analysis 426 

Table 2 Loadings of parameters on PCs and RCs 427 

MA SA DCR SF NB ISF PSF DB SVF AR OSR SH AH Po HRE FAI

GSI -0.3 0.58 0.81 -0.9 -0.4 -0.8 0.29 -0.9 0.37 0.66 -0.6 0.68 0.73

MA 0.87 -0.3 -0.2 0.34 0.24 0.13 0.01 0.09 0.19

SA -0.1 -0.3 -0.2 0.29 0.12 0.16

DCR 0.13 -0.3 -0.2 0.21 0.09 0.19 -0.1 0.21 -0.2 -0.1

SF -0.1 -0.1 0.08

NB 0.51 -0.4 -0.4 -0.3 0.11 -0.6 -0.1 0.1 -0.4 0.21 0.15

PSF -0.9 -0.2 -0.6 0.19 -0.8 0.26 0.47 -0.5 0.54 0.56

ISF 0.19 0.68 -0.2 0.82 -0.4 -0.6 0.55 -0.6 -0.7

Low DB 0.31 -0.1 0.45 -0.1 -0.3 0.23 -0.2 -0.2

High SVF -0.5 0.67 -0.5 -0.9 0.6 -0.8 -0.9

AR -0.2 0.23 0.43 -0.3 0.42 0.48

Low OSR -0.4 -0.6 0.55 -0.6 -0.6

High SH 0.7 -0.1 0.52 0.65

AH -0.4 0.74 0.9

Po -0.8 -0.5

HRE 0.81

FAI

Positive 

correlation

Negative 

correlation

PC loadings 

Parameters PC1 PC2 PC3 PC4 

LCZ 

GSI 0.338 -0.099 0.162 -0.068 

PSF -0.318 -0.022 -0.242 0.164 

ISF 0.293 -0.092 0.288 -0.195 
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 428 

Table 2 shows principal component loadings and rotated component loadings obtained with varimax 429 

rotation. We observe that it is difficult to interpret the loadings from the PCs as some parameters have 430 

significant loadings on more than one PC (for example, GSI, DCR and OSR). The Varimax rotated 431 

solution (RCs) results in large loadings on a single component and small cross-loadings on the other 432 

components, facilitating the interpretation. 433 

The RC1 and RC3 account for the higher variance in the data, which is about 28% and 26%, 434 

respectively. Thus, the following parameters, such as GSI, PSF, ISF, SVF, AR, HRE, OSR, NB, SH, AH, 435 

and FAI, influence the clustering the most. These parameters mainly correspond to the LCZ parameters, 436 

the parameters informing the arrangement and the parameters related to the wind environment. 437 

Parameters related to variation in the block, form and shape account for 21% of the variance (combined 438 

variance of RC2 and RC4), indicating their significance as well.  439 

SVF -0.332 -0.047 0.216 -0.019 

AR 0.164 0.051 -0.278 0.394 

HRE 0.314 0.080 -0.138 0.135 

Arrangement 

OSR -0.315 0.119 -0.190 0.200 

MA 0.031 0.536 0.312 -0.058 

NB 0.163 -0.409 0.282 0.040 

Variations 
SH 0.200 0.277 -0.277 -0.009 

SA 0.017 0.498 0.344 -0.104 

Form 
DCR -0.087 0.111 -0.309 -0.518 

DB -0.135 0.318 0.162 0.169 

Shape SF 0.027 -0.031 -0.246 -0.615 

Wind environment 

AH 0.305 0.153 -0.252 0.081 

Po -0.262 0.087 -0.060 -0.129 

FAI 0.328 0.176 -0.180 0.049 

Eigen Values 2.717 1.577 1.288 1.050 

Explained variance 43% 15% 10% 6% 

Cumulative variance 43% 58% 68% 74% 

RC loadings 

Parameters RC1 RC2 RC3 RC4 

LCZ 

GSI 0.851 0.000 -0.433 0.000 

PSF 0.885 0.000 -0.223 0.000 

ISF -0.838 -0.176 0.374 0.000 

SVF -0.481 0.000 0.808 0.000 

AR 0.000 -0.147 -0.656 0.227 

HRE 0.446 0.000 -0.771 0.000 

Arrangement 

OSR -0.875 0.000 0.319 0.000 

MA 0.000 0.935 -0.107 0.000 

NB 0.698 -0.413 0.12 0.275 

Variations 
SH 0.000 0.211 -0.725 -0.19 

SA 0.000 0.906 0.000 0.000 

Form 
DCR -0.269 0.000 0.000 -0.683 

DB -0.362 0.526 0.144 0.18 

Shape SF 0.000 -0.123 0.000 -0.707 

Wind environment 

AH 0.332 0.000 -0.86 0.000 

Po -0.56 0.113 0.432 -0.191 

FAI 0.428 0.114 -0.854 0.000 

Eigen Values 4.723 2.297 4.386 1.222 

Explained variance 28% 14% 26% 7% 

Cumulative variance 28% 41% 67% 74% 
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3.3 Number of clusters (k) 440 

Figure 8 demonstrates the CCC and pseudo F statistic values for the number of clusters (k = 1 to 30). 441 

The value of CCC peaks first at k= 11, then at k=13, followed by k=23 and lastly, k= 27. As per Sarle 442 

[76], the highest value of CCC corresponds to the optimal number of clusters. However, in the case of 443 

distinct non-hierarchical elliptical clusters, the graph often shows a sharp rise to the correct number of 444 

clusters, followed by a gradual increase and eventually a gradual decline. In the plot of CCC (figure 8), 445 

a sharp rise is observed at k=9.  446 

 447 

Figure 8 CCC and pseudo F statistic values for different numbers of clusters (k) 448 

The pseudo F statistic value, on the other hand, peaks at k=5, then at k= 9, followed by k=9, k=11, k=13, 449 

k=23 and k=27. As the suitable value matches at k=9, we choose the number of optimal clusters as 9.  450 

3.4 Validation – ANOVA analysis 451 

Figure 9 demonstrates the mean LSTs of blocks within each cluster, whereas figure 10 depicts the spatial 452 

variation of the mean LST of blocks. We observe from figure 9 that there is a variation in the average 453 

mean LST across the clusters. Moreover, the variation can also be observed in figure 10 as the blocks 454 

in the city centre have higher LST as compared to the blocks in the outskirts of the city.  455 

 456 

Figure 9 Cluster-wise mean LSTs of blocks  457 
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 458 

Figure 10 Spatial variation of mean LST of clusters 459 

Table 3 provides the details of the ANOVA test. The p-value of the F-statistic is less than 0.01, implying 460 

that the means of LST in clusters A to I are not equal, indicating that the clusters are different from each 461 

other. Therefore, the ANOVA analysis validates the result of clustering. Altogether, the clustering result 462 

is acceptable, and the clusters are different from each other.  463 

Table 3 Model summary of ANOVA 464 

 

Df (degrees 

of freedom) 

Sum of 

squares 

Mean sum of 

squares F-statistic   Pr(>F) 

Clusters 8 1117 139.59 79.36.95 0.000 

 465 

3.5 Features of morphological clusters  466 

After applying k-means to the four RCs, we obtain 9 clusters in the city of Liege. Clusters D, E, F and 467 

G have the largest number of blocks in Liege city, followed by the clusters C, B and A. The clusters H 468 

and I have the lowest number of blocks (Figure 11). Therefore, we consider blocks closest to the cluster 469 

centres and identify them as morphological archetypes. Given the intra-cluster homogeneity, these 470 

blocks can effectively represent the clusters. Figure 12 provides a two-dimensional view of the 471 

morphological archetypes in Liege obtained based on the clustering. Table A.1 (Appendix) provides 472 

the values of parameters of the archetypes. Figure 13 (a) demonstrates the spatial distribution of clusters 473 

in the city. 474 
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The clusters in the city centre consist of compact blocks with low-rise to high-rise buildings (Clusters 475 

A, B, C and D). The clusters on the fringe of the city are open and sparsely built compared to the clusters 476 

in the inner city (Clusters E, F, and G). Other clusters (clusters H and I) are spread across the city, and 477 

the blocks in these clusters have large-sized and a few buildings, with mostly homogenous mid-rise to 478 

low-rise buildings. Significant variation between the clusters in terms of morphological parameters can 479 

be observed in figure 14. Based on these characteristics and the LCZ nomenclature provided by Stewart 480 

and Oke [23], we name the clusters as given in figure 12.  481 

 482 

Figure 11 Number of blocks per cluster 483 

 484 

Figure 12 Two-dimensional view of morphological archetypes based on clustering 485 
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 486 

Figure 13 (a) Spatial distribution of clusters (b)Spatial distribution of LCZs 487 

 488 

Figure 14 Variations in the values of parameters for different clusters 489 
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3.6 Comparing clusters with LCZ 490 

As per figure 13 (b), Liege city is classified mainly into four LCZs: Open low-rise, compact low-rise, 491 

compact mid-rise, and large low-rise. A few blocks in the city are classified into open, mid-rise and 492 

sparsely built. According to LCZ classification, clusters A and B blocks are predominantly compact 493 

mid-rise (Table 4). As cluster A has the largest GSI and a significantly higher HRE, it fits the description 494 

of the corresponding LCZ. However, cluster B has a moderate GSI value but a comparable HRE. 495 

Therefore, an almost equal share of blocks in this cluster corresponds to the compact low-rise 496 

classification of LCZ. Moreover, around 39% of the blocks in cluster A are classified as compact low-497 

rise.  498 

Clusters C and D are the clusters with blocks mostly on the city’s outskirts. The GSI range of these 499 

clusters largely falls within the specified range of LCZ class of compact low-rise (table 5). However, 500 

there are variations between the clusters in terms of the arrangement (NB) and the shape of the blocks 501 

(SF). There are also slight differences in terms of building heights. For example, blocks in cluster D 502 

have taller buildings than the blocks in cluster C. Consequently, the AR values are higher for blocks in 503 

cluster D as compared to blocks in cluster C. Additionally, an almost equal share of blocks of cluster C 504 

corresponds to open low-rise as per LCZ classification (table 4). Thus, clusters C and D represent 505 

distinct sub-classes within the LCZ of open low-rise.  506 

Blocks in clusters E, F, and G are predominantly open low-rise as per LCZ classification. Around 80% 507 

of these blocks in the cluster fall into the open low-rise LCZ category (Table 4). However, they are 508 

different in terms of the shape of the block (SF) and open space in the block (OSR). Therefore, these 509 

clusters form essential sub-classes within the LCZ type of open low-rise.  510 

The blocks in clusters H and I mainly belong to the large low-rise type of LCZ. These clusters have 511 

blocks with a large building area. However, cluster I has a GSI of 0.65, whereas the blocks in cluster H 512 

have a lower GSI. Thus, cluster I is more compact as compared to cluster H. The main characteristic of 513 

the blocks in these clusters are the large-sized buildings, so they are the essential sub-classes of the 514 

large low-rise LCZ classification. Figure 15 shows the proportion of clusters (sub-classes) in the 515 

existing LCZ classification. The distribution of sub-classes in compact mid-rise, compact open low-rise 516 

and large low-rise types of LCZ is almost equal. However, the dominant sub-class in the compact low-517 

rise type of LCZ is the semi-compact low-rise cluster.  518 

Table 4 Percentage of blocks in a cluster classified as an LCZ 519 

Morphological clusters 
Compact 

mid-rise 

Compact 

low-rise 

Open mid-

rise 

Open low-

rise 

Large low-

rise 

Sparsely 

built 

A: Semi-compact mid-rise 44% 41% 5% 6% 1%  

B: Compact mid-rise + high-

rise 
57% 39%  2% 2% 1% 

C: Compact low-rise 18% 39%  38% 3%  

D: Compact mid-rise + low-rise 23% 40% 1% 29% 5%  

E: Elongated open low-rise 2% 1%  96% 1%  

F: Open low-rise 4% 20%  73% 3%  

G: Open low-rise + Sparsely 

built 
2% 8% 1% 86% 1%  

H: Compact large mid-rise    33% 67% 1% 

I: Open large low-rise 18% 14%  23% 45% 1% 

 520 

Table 5 Comparing parameter values of LCZs and archetypes 521 

LCZs Clusters GSI 
BSF 

(LCZ) 
HRE 

HRE 

(LCZ) 
AR  

AR 

(LCZ) 
SVF  

SVF 

(LCZ) 
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Compact 

mid-rise 

Compact mid-

rise + high-rise 
0.89 

0.4 - 0.7 

13.29 

10 -- 25 

2.85 

0.75 - 2 

0.69 

0.3 - 0.6 
Semi-compact 

mid-rise 
0.57 9.69 0.88 0.78 

Compact 

low-rise 

Compact low-

rise 
0.72 

0.4 - 0.7 

6.52 

3 -- 10 

1.08 
0.3 - 

0.75 

0.808 

0.2 - 0.6 
Compact mid-

rise + low-rise 
0.63 4.29 1.54 0.812 

Open low-

rise 

Elongated open 

low-rise 
0.29 

0.2 - 0.4 

1.94 

3 -- 10 

1.47 

0.3 - 

0.75 

0.876 

0.6 - 0.9 Open low-rise 0.43 2.9 0.72 0.864 

Open low-rise 

+ sparsely built 
0.32 2.45 0.97 0.869 

Large low-

rise 

Compact large 

mid-rise 
0.65 

0.3 - 0.5 

5.81 

3 -- 10 

2.09 
0.1 - 

0.3 

0.9 

> 0.7 
Open large 

low-rise 
0.49 3.07 0.74 0.92 

 522 

 523 

Figure 15 Proportion of clusters (sub-classes) in the existing LCZ classification 524 

Altogether, we observe that the classification in this paper broadly corresponds to the LCZ 525 

classification. However, our approach provides more detailed sub-classes, which are necessary to 526 

capture the microclimatic variations in the city (figure 14). We also observe that there are a few of the 527 

blocks misclassified as open low-rise when they are supposed to be in the compact mid-rise or low-rise 528 

category and vice versa. Furthermore, the differences in terms of morphological parameters within the 529 

sub-classes of each LCZ are noteworthy and can affect the microclimate and UHI. Thus, the clustering 530 

approach has produced more meaningful homogenous clusters which deliver logical LCZs and sub-531 

classes of LCZs suited to the region. 532 

4 Discussion and Conclusions 533 

Urban morphological archetypes are the urban blocks that represent a homogenous group of blocks in 534 

terms of urban morphology, identification of which is vital for microclimatic analyses. In this paper, 535 

we propose a well-defined PCA-based k-means clustering approach supported by an external criterion 536 

validation using ANOVA analysis to identify urban archetypes. We choose the k-means clustering 537 

approach as it is an unsupervised data-driven algorithm that is robust in the absence of an existing 538 

classification of built-form in the city. We use seventeen urban morphological parameters based on 539 

LCZ, the categories such as form, shape, arrangement, and variations within the block, along with the 540 

parameters influencing the wind flow, defining the morphology of the block. Moreover, we support the 541 
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choice of morphological parameters by identifying their influence on the microclimate, as mentioned 542 

in the literature.  543 

We propose the following steps to identify urban morphological archetypes for microclimate studies.  544 

1. Filter the urban blocks based on building density, regularity of block shape and the number of 545 

buildings per block to identify blocks fit for analysis.  546 

2. To reduce the dimensionality and verify non-collinearity among the variables, use varimax 547 

rotated PCA to transform the urban morphological parameters into principal components that 548 

explain the most variance present in the data. 549 

3. Cluster the RCs using the k-means clustering algorithm with k-means ++ initialisation; identify 550 

the best number of clusters using the CCC and pseudo F statistic. 551 

4. Validate the clusters using ANOVA analysis using the mean LST of blocks as a dependent 552 

variable, which is one of the proxies for measuring microclimate quality.  553 

5. Identify the blocks that are nearest to the cluster centre as an urban morphological archetype. 554 

We apply the aforementioned steps to the city of Liege in Belgium. Firstly, by filtering the city blocks 555 

using GSI and SF, we obtain 1007 blocks qualifying for the analysis. Subsequently, we obtain four 556 

principal components based on the PCA, which are rotated using varimax rotation before clustering 557 

them using the k-means algorithm. We determine the number of clusters based on the best values of 558 

indices CCC and pseudo F statistic, resulting in nine homogenous clusters different from each other. 559 

Lastly, the validation indicates that the clustering is also successful in terms of LST, making the clusters 560 

logical for analysing the microclimate. Finally, we put forward a representative block from each cluster 561 

resulting in nine urban morphological archetypes that can be used as input for microclimatic analyses. 562 

We also compare the clusters with the existing LCZ map for Europe. The clustering-based classification 563 

in this study broadly corresponds to the LCZ classification. However, LCZ fails to capture 564 

morphological variety that can influence the microclimate. The approach used in this study identifies 565 

the relevant sub-classes that fall within the broad LCZ classes. 566 

Although LCZ maps are available for Europe, the method proposed in this study is advantageous for 567 

the following reasons: the classification accuracy of LCZ maps is 70% [38] and using them directly 568 

might include misclassifications, as explained in section 3.7. Researchers also compute LCZs for 569 

specific regions for better accuracy [26,85]; however, implementing a methodology to estimate LCZs 570 

in a city is not straightforward. Due to the wide-ranged parameter values of LCZ, there are often 571 

overlaps in the LCZ categories. Thus, sub-classes or combinations of various LCZ classes are often 572 

proposed as it gets extremely challenging to assign LCZ class to a block [6]. Moreover, the LCZ dataset 573 

is insufficient as the urban canopy must be described explicitly for analysing microclimate [7]. 574 

Furthermore, integrating raster-based LCZs into urban planning can be challenging as urban blocks are 575 

the urban design unit for urban planners and architects [28]. The urban block scale is also considered 576 

appropriate to analyse the heterogeneity of microclimate within the urban fabric [86]. Therefore, urban 577 

blocks are the appropriate units for identifying homogenous climate zones in a region.  578 

The archetypes identified using this method can be used as a database to inform urban planners in 579 

optimising the urban forms to regulate the microclimate [87]. The approach used in this study is also 580 

helpful in the absence of predefined typologies or classifications. It can effectively be applied to other 581 

cities worldwide for analysing the microclimate based on urban morphology. For instance, we apply it 582 

to Liege city, but the approach can be applied to the entire Wallonia region or Belgium to identify local 583 

archetypes for microclimate analysis. Although the approach is straightforward, it is essentially 584 

dependent on the data availability. Thus, preparing the data can be challenging when the datasets are 585 

not readily available. Approaches such as the Geoclimate tool by [66] can help derive LCZ parameters. 586 

Further studies can include developing data using open-access datasets to identify urban morphological 587 

parameters.  588 
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The present approach aids the microclimatic analysis by providing realistic urban blocks for 589 

microclimate analysis, including CFD simulations instead of a simplistic representation of urban blocks. 590 

Furthermore, it reduces the computational expense of analysing the microclimate at a higher resolution 591 

as it alleviates the need for simulating the microclimate of an entire city. Instead, the simulations can 592 

be carried out on the identified archetypes to arrive at a general overview of the microclimatic situation 593 

in the city. Moreover, the properties of these archetypes can be helpful to further generate modelled 594 

blocks in the city that will be a better representation of reality.  595 

Appendix 596 

Table A.1 provides the values of parameters of the archetypes. 597 

Table A.1 Characteristics of morphological archetypes belonging to each cluster 598 

C
lu

st
er

 

SVF AR GSI ISF PSF HRE MA SA DCR DB SF NB OSR SH AH Po FAI 

A 0.69 2.85 0.90 0.05 0.09 13.30 80.63 71.37 0.43 0.00 0.35 0.01 0.11 4.55 12.57 0.51 10.24 

B 0.78 0.88 0.57 -0.01 0.20 9.70 109.77 149.22 0.41 0.00 0.55 0.01 0.75 6.76 10.69 0.76 7.68 

C 0.81 1.08 0.72 0.04 0.19 6.52 33.61 18.21 0.42 0.00 0.35 0.02 0.39 3.08 7.54 0.63 5.84 

D 0.81 1.54 0.63 0.03 0.21 4.29 46.65 61.27 0.58 0.01 0.44 0.01 0.58 2.99 7.78 0.70 5.31 

E 0.88 1.48 0.29 -0.15 0.45 1.94 41.44 24.87 0.54 0.48 0.28 0.01 2.43 2.42 6.09 0.83 3.58 

F 0.86 0.72 0.44 -0.07 0.33 2.91 45.49 27.60 0.49 0.20 0.33 0.01 1.29 2.37 6.72 0.80 4.45 

G 0.87 0.98 0.33 -0.08 0.39 2.46 54.61 45.16 0.56 0.48 0.48 0.01 2.03 3.00 7.18 0.82 3.39 

H 0.90 2.09 0.65 -0.05 0.17 5.82 4234.20 11929.14 0.30 0.00 0.22 0.00 0.53 4.50 10.35 0.74 7.35 

I 0.92 0.74 0.49 -0.02 0.17 3.08 807.40 3789.92 0.70 2.60 0.35 0.00 1.03 3.17 8.40 0.79 4.61 
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Highlights 
 

• We propose systematic PCA-based k-means clustering approach to find urban archetypes  

• Validation - ANOVA with land surface temperature in absence of existing typologies 

• Our clusters are compared with WUDAPT’s local climate zones (LCZs)  

• Our approach provides essential sub-classes to the existing LCZs  

• We identify 9 urban morphological archetypes defining the morphology of Liege city 
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