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Error-rate in Viterbi decoding of a duobinary

signal in presence of noise and distortions:

theory and simulation
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Abstract. The Viterbi algorithm, presented in 1967, allows a maximum likelihood de-
coding of partial response codes. This study focuses on the duobinary code which is the
first member of this family and has been specified for the digital part of television systems
recommended by International Organizations. Up to now the error-rate, which is the main
criterion of the performance, has been evaluated by simulation. Although there exist the-
oretical bounds, these bounds are not satisfactory for a channel such as broadcasting (by
terrestrial transmitters, cable networks or satellite) which is strongly impaired by noise, and
linear and non-linear distortions. Analytical methods, verified by simulation, are presented
here in order to evaluate the theoretical and exact values of the error-rate, in the form of
series of numerical integrations, for a transmission in baseband or in radio-frequency with
quadriphase modulation (or AM/VSB for cable networks) and coherent demodulation, in
presence of noise and several distortions. This methodology can be later extended to other
partial response codes, to convolutional codes and their concatenations.
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Notations

Main notations

The following main notations are used in this paper:

ai input binary bits -1 or +1
bi precoded bits -1 or +1
D delay operator of one bit
di duobinary transmitted symbols -1, 0 or +1
ri duobinary symbols recognized (correctly or not) by the decoder
ni noise samples

S1, S2 survivors corresponding to the states -1 and +1
L length of a duobinary sequence

fb, T bit frequency and bit period
xi or yi input level at the decoder
x(t) input signal at the decoder
y(t) interference at input of decoder
ϕ phase error
τ synchronization error or echo delay
β echo relative amplitude
ψ echo phase

Some special notations

≶ symbol for the following test: “<” OR “>”
a1(t), a2(t) data signals modulating the two carriers in quadrature
r1(t), r2(t) data signals after demodulation, at the decoder input

x(t) = xr(t) + j xi(t) modulated signal before distortion
z(t) = zr(t) + j zi(t) modulated signal after distortion

ρ(t) and ρd(t) envelopes of x(t) and z(t)
θ(t) and θ(t) + ϕ(t) phases of x(t) and z(t)

Ac amplitude of the carrier
ωc carrier angular frequency
As saturation level of the TWT
Boff backoff (see the conventional definition)
C carrier power in absence of non-linear distortion
N0 one-sided power spectral density of the noise in RF
σ2 noise variance at the decoder
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1 Introduction

While already proposed in 1967, the rules of the Viterbi algorithm [24] are still used in a
number of digital communication and broadcasting systems. Applications in these fields,
as well as other applications such as magnetic recording, and even the more recent “turbo-
codes” [2] include rules of the Viterbi algorithm for several forms of RF multiplexing, such
as Orthogonal Frequency Division Multiplexing (OFDM) and several forms of modulation
(QPSK, QPRS, 16 or 64-QAM, ...).

In communication systems, the Viterbi algorithm is commonly used for decoding partial
response codes and convolutional codes and provides a large improvement over classical
threshold decoding. The final error-rate for these systems are often obtained only by
simulations.

The purpose of this paper is to present and to corroborate, by comparison with simulation,
a methodology to derive the theoretical and exact value of the error-rate in the form of
an analytical expression, in the case of a channel with strong impairments due to additive
Gaussian noise but also due to important forms of linear and non-linear distortions. Such
a channel is typically a broadcasting channel with data transmission by terrestrial trans-
mitters, by cable networks or by satellite. For example severe causes of impairments are
echoes with long delay and multipath propagation, echoes with short delay, and non-linear
distortions in the power stage amplifier, respectively in terrestrial broadcasting, in cable
networks, and in satellite transmission.

The paper is deliberately restricted to the study of the duobinary code which is the first
member of the family of partial response codes and mainly because it has been already
specified for the digital part of television systems recommended for satellite broadcasting
by the EBU, CCIR and ITU (Mac/packet systems) [4, 5, 6, 8, 11, 12, 18]. However the pre-
sented methodology can be later extended to other partial response codes, to convolutional
codes, and even to their concatenations.

This paper focuses on the evaluation of the final bit error-rate (BER) which, in data
transmission, is the main criterion for the system performance. In the type of channel
considered, it is generally assumed that the final quality should still be satisfactory with a
BER of the order of 10−3 or even more, account being taken that, for example in teletext,
the most sensitive bytes are again protected by an appropriate error-correcting code. This
level of BER is unacceptable in applications such as magnetic recording where the BER
should be of the order of 10−6 or even less.

Theoretical upper bounds of the BER with Viterbi decoding have already been given in the
literature. In the case of decoding convolutional codes such bounds are given for example
in [24] and [20, pp. 462-470]. For the case of decoding partial-response codes, similar
bounds are described in [9, 13, 23], and by a different approach in [1]. The upper bound
given in these two last references for the duobinary code will be examined in more details
in Section 4.10. The same kind of bound for another system was developed by Tjhung et

al. [21]; the system studied was narrow band FM where the binary input is first coded in
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duobinary, then FM modulated, detected by discriminator and finally duobinary decoded
by the Viterbi algorithm (note that for this system, the FM noise, including the “click”
noise is no longer Gaussian and the Viterbi algorithm is no more optimum).

But, while all these bounds give a good approximation of the actual BER at high values of
the signal to noise ratio (i.e. for very low BER), they depart from the exact values when
the BER is low, or in other words in presence of strong noise or interference which is our
main concern.

The paper is organized as follows. Section 2 briefly describes the key elements and ter-
minology of the Viterbi algorithm. Then, we present the duobinary coding and propose a
theoretical framework capable to provide performance figures of a baseband transmission
system that combines a duobinary coding and the Viterbi decoding algorithm, respectively
in Section 3 and Section 4. Finally we analyze the impact of several types of interferences or
distortions with quadriphase modulation and coherent demodulation in Section 5, namely
a phase error in coherent demodulation, a synchronization error, an echo in radio-frequency
(with CQPRS or AM/SSB modulation taken as an approximation of AM/VSB), and the
non-linear distortion in a model of a traveling-wave tube frequently used as the satellite
power amplifier.

2 Brief review of Viterbi’s decoding algorithm

The algorithm proposed by Viterbi in 1967 [24] is a rather general algorithm permitting
to solve, with a limited number of calculations, a number of problems for searching the
shortest path in a graph called a trellis.

Consider a linear system which can takem different states at successive instants 1, 2, . . . , p−
1, p. These states are the nodes of the trellis. The evolution of the system is represented
by a trellis with m nodes. An example of the path followed in a trellis for the simple case
m = 2, which corresponds to the duobinary code, is shown in Figure 1; the two possible
states are noted s1 and s2.

s2

s1

Fig. 1: Example of a path followed, from left to right, in a two nodes trellis. The dotted
lines correspond to other possible state transitions.

The transition from a node of order p− 1 to a node of order p is a branch of the trellis. In
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order to evaluate the length of the path followed in the trellis, it is necessary to define a
metric, i.e. a rule giving the length of any branch.

Let us consider the m possible states at instant p− 1. To each of these states, there is one
and only one path having the shortest metric from the origin. These m shortest paths are
called the survivors of order p− 1. After this step, there are m2 possible state-transitions
from order p−1 to order p, since from each node of order p−1 there are m branches going
to the m nodes of order p.

When the algorithm is applicable, the two essential following results have been demon-
strated:

1. The shortest path from the origin to a node of order p completely contains the
survivor of order p − 1 of this path, the metrics being additive, which is the case
when the noise samples added to the signal are statistically independent. Note that
this assumption is true for additive white Gaussian noise (AWGN).

2. All the survivors are converging to each other in the sense that the probability of
non-convergence has the limit zero after an infinite number of steps; in practice
however the convergence is obtained after a finite number of state-transitions called
the decoding constraint length LC which for most systems is typically 20 to 30 bits.
In addition, in absence of impairment, the survivors converge to the system states.

Therefore, the calculation of the shortest path from the origin up to any node is made
by recurrence. At order p − 1, the decoder keeps in memory the m survivors arriving at
the nodes p − 1. It then computes the lengths of the m2 transitions from order p − 1 to
order p and adds the length of the m transitions starting from a node of order p− 1 to the
corresponding survivor of order p − 1. The result is the lengths of the m possible paths
from the origin to the nodes of order p but passing by a given node of order p− 1. Among
these m paths only the shortest one is retained. This calculation is repeated for all nodes
of order p− 1, thus forming the survivors of order p.

When applied to communication systems, the Viterbi algorithm no longer gives hard deci-

sions (taken bit by bit) but soft decisions based on the whole followed path. In presence of
white Gaussian noise it is then optimum in the sense of maximum a posteriori likelihood.

In the next section, we develop the duobinary signaling (with a brief presentation of other
partial response codes). Then we present analytical methods for evaluating the theoretical
BER in presence of noise and distortions with duobinary and Viterbi decoding.
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3 Duobinary code and partial response codes

3.1 General presentation

A partial response code is a weighted addition of n successive input data bits such as the
coded symbol di is given by

di = k(h0ai + h1ai−1 + h2ai−2 + . . .+ hnai−n) , (1)

where k is a scale factor and the coefficients h define the code. If we introduce the delay

operator of one bit, denoted D, the code may equivalently be represented by the polynomial
P (D) defined as

di = kP (D) = k(h0 + h1D + h2D
2 + . . .+ hnD

n) . (2)

3.2 Duobinary code

Duobinary coding (also referred to as Class 1) was proposed as a mean to introduce some
controlled amount of Inter-symbol Interference (ISI) from the adjacent bit rather than
trying to eliminate it completely. If ai are the binary input bits (0 or 1) and di the
duobinary symbols (with the symmetrical values −1, 0, or +1) at time ti, the duobinary
symbols are defined by the transverse filter [14, 19]

di =
ai + ai−1

2
=

1

2
(1 +D) . (3)

If the binary signal has the form of short pulses δ(t), the duobinary signal can also be
obtained by convolution with the impulse response of the duobinary filter which is

G(f) = cos

(
πf

fb

)
, (4)

fb being the bit frequency. The spectrum of the duobinary signal is then cascaded with an
ideal filter and strictly limited to the Nyquist band fb/2.

The duobinary filter can either be matched (i.e. split in equal parts between the transmitter
and the receiver) or unmatched (i.e. entirely done at the transmitter). Note that matched
filtering introduces a correlation between the successive noise samples. If desired the binary
input bits can be precoded into the bits bi according to the modulo-2 addition

bi = âi ⊕ bi−1 , (5)

where âi is the complement of ai. But neither matched filtering nor precoding have a
significant advantage for Viterbi decoding.
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Transition arriving Possible sequences of bits ai Duobinary symbol

−1 −1 − 1 −1
+1 − 1 0

+1 −1 + 1 0
+1 + 1 +1

Tab. 1: Possible state-transitions.

The states of the system s1 and s2 are (in symmetrical form) the bits −1 and +1 of
the binary sequence to be coded. The state-transitions are given by the corresponding
duobinary symbol (see Table 1).

If x is the decoder input level without noise and y the same level with noise, the metric
adopted (which is optimal) is the quadratic difference between x and y, expressed as

δ = (x− y)2 = x2 − 2xy + y2 . (6)

Let us note γ1, p−1 and γ2, p−1 the lengths of the survivors of order p− 1 and λ1, p and λ2, p
the lengths of the possible paths arriving at nodes −1 and +1 at order p. These paths are
formed by adding the length of the last branch to the survivors of order p − 1. This is
illustrated in Table 2.

Transition Duobinary symbol Metric of the last branch Length of the paths

−1 − 1 −1 1 + 2y + y2 λ1, p = γ1, p−1 + 1 + 2y + y2

+1 − 1 0 y2 λ1, p = γ2, p−1 + y2

−1 + 1 0 y2 λ2, p = γ1, p−1 + y2

+1 + 1 +1 1− 2y + y2 λ2, p = γ2, p−1 + 1− 2y + y2

Tab. 2: Length of the possible paths at order p.

The first test is to search which of the two values of λ1, p and λ2, p is the smallest one. For
a transition arriving at state −1, this test can be written as

γ1, p−1 − γ2, p−1 ≶ −1− 2y . (7)

Note that, in this expression, the symbol ≶ denotes the test “< OR >”. If the response
to this test is “<” the shortest path corresponds to the transition −1 − 1 and the survivor
S1 of order p prolongs the survivor S1 of order p − 1. On the other hand if the response
is “>” the survivor S1 of order p prolongs the survivor S2 of order p− 1. A similar test is
made on the transitions arriving at state +1, and so on.

3.3 Other partial response codes

Apart from the duobinary or Class 1 code, there are four other non-extended partial
response codes defined as follows by their polynomial P (D) [20]:
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• Class 2: P (D) = 1 + 2D +D2,

• Class 3: P (D) = 2 +D −D2,

• Class 4: P (D) = 1−D,

• Class 5: P (D) = 1 + 2D2 −D4.

Note that the Class 3 code may be of some interest for our application because of its good
resistance to echoes in AM/VSB modulation [17].

Extended partial response codes have a polynomial of the form P (D) = (1−D)m(1+D)n,
duobinary coding being a sub-case for which m = 0 and n = 1. These codes have been
extensively studied in particular for application like data magnetic recording and disk
storage, where as already mentioned, the error-rate should be very low (i.e. a high signal
to noise ratio).

For example reference [22] describes techniques for the construction of “good” codes (with
n = 1) by matching the trellis to the channel and using a “pre-coder” which can be a
punctured convolutional code. Reference [16] is an attempt to simplify the Viterbi decoder
by deleting the less probable branches in the trellis. Reference [1] is a systematic search
of state-sequences for which the squared Euclidean distance from the decoded sequence
has a given value. This paper will be analyzed later (see Section 4.10) where we give a
theoretical upper bound for the final error-rate with duobinary coding.

The paper of Vityaev and Siegel [26] gives, by solving a series of problems in linear pro-
gramming, upper and lower bounds of the metric difference between two paths of same
length in the trellis but arriving at two different states. This consideration is essential for
the practical implementation of the Viterbi decoder (see Section 3.4). Despite of its practi-
cal importance this aspect is not dealt with in this paper where we are not considering any
implementation of a duobinary Viterbi decoder in the form of integrated circuits, some of
them having already been developed by the industry.

3.4 Implementation of the Viterbi decoder

The results given in this paper were always obtained by software (i.e. a number of computer
programs specially written). In hardware implementations, the received signal as well as
the metrics and the survivors path should be, in discrete form, represented by binary
numbers with a sufficient number of bits and a small enough quantizing interval, while
assuring a sufficiently high speed and hardware simplicity.

Reference [23] gives an example of a CMOS implementation developed at the CCETT
(France) of a Viterbi decoder for duobinary signals, with a discussion of the choices made
for quantization. Risks of overflow also need to be addressed carefully. Bounds of metrics,
as derived by Vityaev and Siegel [26], are useful to avoid overflows in the registers which
could otherwise produce long error bursts.
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The paper of Chang [7] presents another design of Viterbi decoder based on in-place state
metric update and hybrid survivor path management. It describes the three main func-
tional blocks of the decoder: a Branch Metric Unit which receives the noisy symbols and
computes the corresponding branch metric, the Add-Compare-Select (ACS) unit which
updates the metrics for all states by proper comparison (i.e. what in this paper we call the
tests made by the decoder) and Trace-Back Unit which searches the best survivor path on
the basis of accumulated decisions. The design of these units result in an efficient archi-
tecture for a Viterbi decoder specially in the cases of trellis with a large number of states
and a large value of the constraint length, for example for decoding convolutional codes or
concatenations of two codes.

The paper of Zand and Johns [27] describes an analog CMOS Viterbi detector for use on
a 4-PAM duobinary signaling. The chip is an implementation of a reduced state sequence
with pipelining and parallel processing and the application studied is optical links.

It is also known that implementations of Viterbi decoders have been developed by industry,
even if the results have not been published as generally available papers.

3.5 Some properties of the duobinary code

3.5.1 Duobinary eye diagram

In order to compute the error-rate in presence of a synchronization error or of an echo,
it is necessary to know the decoder input level at any time and not only at the nominal
sampling instants. This can be given by the eye diagram. A typical duobinary eye diagram,
obtained by simulation with a random sequence, is given in Figure 2. It is seen that there
is no inter-symbol interference at the nominal sampling instants kT , where T denotes the
duration of one bit.

A first approximation of the level of the diagram at any time t is obtained by superposing a
large number of impulse responses of the duobinary filter, shifted by n bit periods, including
all possible binary sequences of +1 and −1 up to length 4, and by developing the result
in Fourier series. It is found that the level can take twenty analytical values with equal
probabilities. For illustration, only the first four values are given hereafter, with a ± sign:

x1(t) = ±1 , (8)

x2(t) = ±
(
1

3
+

2

3
cos

(
2πt

3T

))
. (9)

The eye diagram reconstructed by superposing these twenty forms is shown in Figure 3.

A second (and better) approximation is obtained by extending this procedure to sequences
of −1 and +1 up to length 9. Development in Fourier series was not made for this case
because the number of possible analytical forms becomes too large. Instead, all the possible
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Fig. 2: Duobinary eye diagram (by simulation).

Fig. 3: Reconstructed duobinary eye diagram (first approximation).
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Fig. 4: Reconstructed duobinary eye diagram (second approximation).

levels of the eye diagram were stored in a computer file with a sampling frequency of 16
times the bit frequency. This second approximation is given in Figure 4.

For the case of AM/SSB modulation, the same method was used to obtain the eye diagram
of the duobinary signal in quadrature by filtering all duobinary sequences obtained after
the duobinary filter by the quadrature filter of transfer function

Gq(f) = e−j π

2 sign(f) . (10)

All the levels were again stored in a computer file and the corresponding eye diagram is
given in Figure 5.

3.5.2 Correlation of the duobinary signal

The correlation coefficients between duobinary symbols separated by jT were computed
for the following cases:

• D: autocorrelation of a duobinary signal,

• DQ : autocorrelation of a duobinary signal in quadrature,

• I: intercorrelation between D and DQ,

with the same values for negative separation j, except a change of sign for the intercorre-
lation I. Results are drawn in Table 3.

These values are considered in Section 5 for the case of a correlated interference due to
another duobinary sequence.
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Fig. 5: Eye diagram of a duobinary signal in quadrature.

Separation j D DQ I

6 |< 10−2| −1.8 × 10−2 1.3× 10−2

5 |< 10−2| −8.0 × 10−2 |< 10−2|
4 |< 10−2| −0.135 −4.7× 10−2

3 |< 10−2| −0.109 −0.105
2 |< 10−2| −6.9 × 10−2 −0.211
1 0.25 0.189 −0.312
0 0.5 0.440 |< 10−2|

Tab. 3: Duobinary correlation coefficients.
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3.5.3 Probability of the duobinary symbols

If the binary input data −1 and 1 have the same probability, the probabilities of the
duobinary symbols −1, 0, 1 are respectively 1/4, 1/2 and 1/4.

4 Theoretical framework for duobinary coding and the Viterbi
decoding

A detailed description of the Viterbi decoding is given in references [3, 10, 15, 25]. The
length of the possible paths at order p in the trellis was already given in Table 2 above.

4.1 Formulation of the tests made by the Viterbi decoder

In order to construct the survivors at order p, the decoder looks for the shortest path
between the two values of λ1, p and λ2, p. If the decoder keeps in memory the renormalized

metric µp, which is the difference in length between the two survivors, we have

µp−1 = γ1, p−1 − γ2, p−1 , (11)

µp = γ1, p − γ2, p . (12)

The tests on the path lengths are then

µp−1 + 2y ≶ −1 , (13)

µp−1 + 2y ≶ 1 . (14)

It can be shown that three different situations can occur with the following consequences:

1. If
µp−1 + 2y < −1 (15)

then
µp = 1 + 2y . (16)

The decoder recognizes the duobinary symbol −1 and the survivors S1 and S2 of
order p prolong the survivor S1 at order p − 1; in other words the survivor S1 is
copied into the new survivors S1 and S2.

2. If
−1 ≤ µp−1 + 2y ≤ 1 (17)

then
µp = −µp−1 . (18)
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The decoder recognizes the duobinary symbol 0 and the survivor S1 at order p pro-
longs the survivor S2 at order p − 1, while the survivor S2 at order p prolongs the
survivor S1, so that S1 is copied in the new survivor S2 and S2 is copied in the new
survivor S1. In other words, survivors are crossed.

3. If
µp−1 + 2y > 1 (19)

then
µp = 1− 2y . (20)

The decoder recognizes the duobinary symbol 1 and the survivors S1 and S2 at order
p prolong the survivor S2 of order p − 1; in other words S2 is copied into the new
survivors S1 and S2.

After these tests −1 is added to S1 and 1 is added to S2 and the two survivors are truncated
and shifted by one position. Since the two survivors are converging, decoding of the input
bit ai can be made after a limited number of tests, the decoding constraint length being
typically 20 to 30 bits.

4.2 Alternative formulation of the tests

In the following, we consider additive noise. We may therefore rewrite yp as

yp = dp + np . (21)

Assume that, at order p,

µp + 2yp = µp + 2(dp + np) < −1 . (22)

The next value for the normalized metric is

µp+1 = 1 + 2yp = 1 + 2(dp + np) , (23)

so that the new test is made on the quantity

µp+1 + 2yp+1 = 1 + 2(dp + np) + 2(dp+1 + np+1) . (24)

If this test is again giving the answer < −1, then

µp+2 = 1 + 2yp+1 , (25)

and so on.

If the test (24) gives the answer > 1, then

µp+2 = 1− 2yp+1 = 1− 2(dp+1 + np+1) . (26)
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If finally the quantity (24) is between −1 and 1,

µp+2 = −µp+1 = −1− 2(dp + np) , (27)

and the test p+ 2 is made on the quantity

µp+2 + 2yp+2 = −1 − 2(dp + np) + 2(dp+2 + np+2) , (28)

where the duobinary symbols and the noise samples are dp and dp+2, and np and np+2,
respectively. Therefore as long as the decoder recognizes duobinary symbols 0, the test
involves the transmitted symbol dp and the noise sample np corresponding to the last test
which gave the answer < −1 or > 1.

With a slight change in the notations, the following rules can therefore be established.

1. Last test (i− k) with answer > 1
Test i is made on the quantity

2(di + di−k) + 2(ni + ni−k)− 1 with k odd (29)

2(di − di−k) + 2(ni − ni−k) + 1 with k even (30)

2. Last test (i− k) with answer < −1
Test i is made on the quantity

2(di + di−k) + 2(ni + ni−k) + 1 with k odd (31)

2(di − di−k) + 2(ni − ni−k)− 1 with k even (32)

4.3 Duobinary error probability with low noise

If there is no noise, the symbol ri recognized by the decoder is always the transmitted
symbol di.

If we consider a very low level of the noise, the duobinary error-rate is not zero. Suppose
di = 1 is the transmitted symbol. The test i, as given by (29) to (32), provides a value
close to 3 which is well separated from the limit 1 and there is no error. If di = −1, test
i gives a value close to −3 and again there is no error. If finally di = 0, test i gives a
value close to 1 or to −1 and there is therefore a probability equal to 1/2 that the decoder
recognizes 1 (or −1) instead of 0.

The mean error-rate can be found by computing the error probability on the last 0 of the
duobinary sequences:

• 10 and −10 where the probability of the symbols before the last 0 is 1/4,
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• 100 and −100 where the probability of the symbols before the last 0 is 1/8,

and so on.

It can be shown that, with the method of numerical integrations described later in Sec-
tions 4.4 and 4.5, the duobinary error-rate with low noise at length k is in fact 1/k. By
summing the terms 1/k for k = 2, 3, 4, . . ., weighted by the probabilities of the symbols
before the last 0, we see that the mean duobinary error probability is given by

Pd(low noise) =
1

2

1

4
+

1

3

1

8
+

1

4

1

16
+ . . . , (33)

Pd(low noise) =

∞∑

k=2

1

k 2k
= 0.193 . (34)

This value was confirmed by simulation. In the next section, we examine the effect for any
level of noise.

4.4 Probability of a recognized sequence r for a transmitted
sequence d

For any level of the noise, if di are the transmitted duobinary symbols and ri the symbols
decoded (correctly or not), the tests (29) to (32) where di and ri are replaced by their
values, take the form

ni < a∓ ni−k , (35)

ni > b∓ ni−k , (36)

the limits a and b depending on di, di−k, ri and ri−k.

As an example, let us consider the transmitted sequence

di = 1000 , (37)

and the recognized sequence
ri = 1(−1)00 . (38)

(Note that we will always start the sequences di and ri with 1 or −1 in order to start the
calculation with a test i− k of known value).

The tests made by the decoder can be written in this case

n1 < −1 − n2 , (39)

n3 < −n2 and n3 > −1− n2 , (40)

n4 < 1 + n2 and n4 > n2 . (41)
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The problem is to compute the probability of a system of simultaneous inequalities like (39)
to (41), where the ni are independent samples of Gaussian noise with variance σ2. However
note that the same noise samples (in this case n2) can appear in several inequalities.

Let g(n) be the Gaussian probability density distribution

g(ni) =
1

σ
√
2π

e−
n
2
i

2σ2 . (42)

The probability Pr of (39) to (41) is given by

Pr =

∫ +∞

−∞

g(n2)

∫
−1−n2

−∞

g(n1)

∫
−n2

−1−n2

g(n3)

∫ 1+n2

n2

g(n4) dn2 dn1 dn3 dn4 , (43)

which for a sequence of length L is, in general, an L-uple integral.

However, if a particular noise sample (in this case n2) is common to several successive
integrals, the calculation is simplified by introducing the Q function

Q(x) =
1√
2π

∫
∞

x

e−
u
2

2 du , (44)

and (43) reduces to the simple integral

Pr =

∫ +∞

−∞

[
1−Q

(−1 − n2

σ

)]{[
1−Q

(−n2

σ

)]
−
[
1−Q

(−1− n2

σ

)]}

{[
1−Q

(
1 + n2

σ

)]
−
[
1−Q

(n2

σ

)]}
dn2 . (45)

Such a simplification is not always possible, and there are cases of length L = 4 where Pr

is given by a double integral, of length 5 by a triple integral, and so on.

4.5 Duobinary error-rate

The duobinary error-rate due to an incorrect recognition of 0 is obtained by computing
the error probability on the last 0 of the following duobinary sequences (of which the total
probability of the symbols before the last 0 is 1/2 + 1/4 + 1/8 + . . . = 1):

• L = 2 : 10 and −10,

• L = 3 : 100 and −100,

• L = 4 : 1000 and −1000,
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and so on. Sequences such as 110 or −1 − 10 should be excluded because we always start
with a test on 1 or −1 followed by zeros.

The total error probability on 0 is then

Pd0 =
1

2
p02 +

1

4
p03 +

1

8
p04 + . . . , (46)

which is a sum weighted by the probabilities of the corresponding sequences.

Similarly, the duobinary error-rate due to a false recognition of 1 (or −1) is obtained by
computing the error probability on the last 1 (or −1) of the following duobinary sequences:

• L = 2 : 11,

• L = 3: −101,

• L = 4: 1001,

and so on.

The corresponding error-rate is

Pd1 = Pd−1 =
1

2
p12 +

1

4
p13 +

1

8
p14 + . . . (47)

The error probabilities on 0 and 1 of all these sequences, up to length L = 5, were com-
puted by the expressions of the previous Sections, using the software “Mathematica” for
integration.

For the length L = 6, 7, 8, the theoretical calculation involves quadruple, quintuple and
sextuple integrals, and the computation time at each step is multiplied by a significant
factor. A data base of all possible duobinary errors was therefore filled in by simulation,
not of the Viterbi decoding itself, but on the tests on the noise samples expressed by a
system of inequalities such as (39) to (41).

Because the terms of the series (46) and (47) are decreasing, the contribution of the lengths
larger than 8 is negligible and the dominant terms of the final results were computed
analytically.

Since the error probabilities on 1 and −1 are equal (due to the symmetry of the code), the
final mean duobinary error-rate is

Pd =
1

2
(Pd0 + Pd1) . (48)

This theoretical result and values obtained by simulation are drawn on Figure 6 as a
function of the signal-to-noise ratio S/N (in baseband with unmatched filtering). As shown
by this Figure, the present theory is well confirmed by simulation.
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Fig. 6: Duobinary error-rate as a function of S/N : theoretical curve and points of simula-
tion.

4.6 Error-rate on the survivors

Let us call a simple error an error at one position on one of the survivors and a double

error an error which affects both survivors at the same position.

The computation of the error-rate on the survivors is complex but we can use the following
rules that we have established:

• If the duobinary transmitted symbol 0 is recognized as −1, there are n+1 consecutive
simple errors on the survivor S1, n being the number of times that a symbol 0 is
recognized correctly before the duobinary error.

• If a transmitted 0 is recognized as 1, there are similarly n + 1 consecutive simple
errors on S2.

• If a transmitted −1 is recognized as 0, there are n + 1 consecutive simple errors on
S1.

• If a transmitted 1 is recognized as 0, there are n+1 consecutive simple errors on S2.

• If a transmitted 1 (or −1) is recognized as −1 (or 1), there are n + 1 consecutive
double errors on S1 and S2.
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If P0 = 1/2 is the probability of symbol 0 and Pd0 the duobinary error probability on 0,
the probability of one simple error on S1 (or S2) due to a duobinary error on 0 is given by

Ps, 1(0) = [1− P0(1− Pd0)]P0Pd0 , (49)

the term within brackets representing the probability of having anything other than a 0
correctly recognized before the duobinary error.

The probability to have k consecutive simple errors is then

Ps, k(0) = [1− P0(1− Pd0)]P
k−1
0 (1− Pd0)

k−1P0Pd0 . (50)

If P1 = 1/4 is the probability of symbol 1 and Pd10 the probability of a duobinary error on
a symbol 1 recognized as 0, the probabilities of a single simple error on S1 or S2 or of k
consecutive simple errors are

Ps, 1(1) = [1− P0(1− Pd0)]P1Pd10 , (51)

Ps, k(1) = [1− P0(1− Pd0)]P
k−1
0 P1(1− Pd0)

k−1Pd10 , (52)

and for the double errors we have

Psd, 1(1) = [1− P0(1− Pd0)]P1Pd1−1 , (53)

Psd, k(1) = [1− P0(1− Pd0)]P
k−1
0 P1(1− Pd0)

k−1Pd1−1 , (54)

where Pd1−1 is the probability that 1 (or −1) is recognized as −1 (or 1). The mean rate
of simple and double errors on the survivors were computed with these expressions and
compared to values obtained by simulation. The results are given in Figures 7 and 8.

4.7 Evolution of the errors on the survivors

The necessary and sufficient condition for a binary error to occur is a double error on
the survivors, because such an error will never be eliminated if S1 or S2 are recopied or
crossed (see Section 4.1). Fortunately during the process of survivors convergence, most
of the simple errors will be eliminated, while some of these simple errors are transformed
into double errors. Indeed, let us suppose that a single simple error occurs at step i on S1

and that, after the error, the decoder recognizes j − 1 symbols 0. Then the survivors are
crossed j − 1 times. At step i+ 1 the error is transported at S2, at step i+ 2 again at S1,
and so on. If now at step i + j, the decoder recognizes a symbol −1, the survivor S1 of
step i+ j− 1 is copied into S1 and S2. If j is odd, then the simple error becomes a double
error, while the error is eliminated if j is even.

Generalization of this reasoning gives the following rules for the conditions of transforma-
tion of a simple error into a double error and thus into a binary error
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Fig. 7: Simple error-rate on the survivors as a function of S/N : theoretical curve and points
of simulation.
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Fig. 8: Double error-rate on the survivors as a function of S/N : theoretical curve and
points of simulation.
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4.7.1 Normal rules

1. Simple error at step i on S1 becomes a double error if

• test i+ j gives < −1 with j odd.

• test i+ j gives > 1 with j even.

2. Simple error at step i on S2 becomes a double error if

• test i+ j gives < −1 with j even.

• test i+ j gives > 1 with j odd.

4.7.2 Additional rules

The rules given above are only valid if there are no new errors on the survivors between
test i (where there is an initial error) and test i + j (where the initial error is eliminated
or transformed into a binary error). This is, in fact, the case when the binary error-rate is
low.

If the signal is affected by a strong noise or distortion, the probability of new errors between
i and i+ j is no longer negligible and the behavior of the decoder becomes more complex.
Some additional rules for the evolution of the survivors errors must then be introduced.
The most frequent of them are given below.

1. Simple errors at i followed by simple errors at i+m with m < j.
Let IS1(i) and IS2(i) be the numbers of simple errors occurring on survivors S1 and
S2 at test i. We have:

If Then everything is as if

IS1(i) > 0, IS2(i+m) > 0, r(i) = −1, m odd < j IS1(i) = 0
IS2(i) > 0, IS1(i+m) > 0, r(i) = 1, m odd < j IS2(i) = 0
IS1(i) > 0, IS1(i+m) > 0, r(i) = −1, m even < j IS1(i) = 0
IS2(i) > 0, IS2(i+m) > 0, r(i) = 1, m even < j IS2(i) = 0

2. Simple errors at i followed by double errors at i+m with m = j.
Let in addition ID(i) be the number of double errors on the survivors at test i. We
have:
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If Then everything is as if

IS1(i) > 0, ID(i+m) > 0, IS1(i) = 0
r(i) = −1, r(i+m) = −1, m odd = j

IS2(i) > 0, ID(i+m) > 0, IS2(i) = 0
r(i) = 1, r(i+m) = 1, m odd = j

IS1(i) > 0, ID(i+m) > 0, IS1(i) = 0
r(i) = −1, r(i+m) = 1, m even = j

IS2(i) > 0, ID(i+m) > 0, IS2(i) = 0
r(i) = 1, r(i+m) = −1, m even = j

3. Non transformed errors: simple errors at i followed by simple errors at i + m with

m = j.
Let now IS1N(i) and IS2N(i) be the numbers of simple errors on survivors S1 and
S2 that would be transformed in double errors at test j according to the normal rules
but that are in fact not transformed. Then

If Then

IS1(i) > 0, IS1(i+m) > 0, IS1N(i) = IS1(i)
r(i) = −1, r(i+m) = −1, m odd = j

IS2(i) > 0, IS2(i+m) > 0, IS1N(i) = IS1(i)
r(i) = 1, r(i+m) = 1, m odd = j

IS1(i) > 0, IS2(i+m) > 0, IS1N(i) = IS1(i)
r(i) = −1, r(i+m) = 1, m even = j

IS2(i) > 0, IS1(i+m) > 0, IS1N(i) = IS1(i)
r(i) = 1, r(i+m) = −1, m even = j

4. Evolution of non transformed errors.

Let i+j+j1 be the first test after i+j where the symbol recognized by the decoder is
−1 or 1. Then if IB(i) is the number of binary errors due to duobinary errors at test i:

If Then also

IS1N(i) > 0, j even, j1 even, r(i+ j + j1) = 1 IB(i) = IS1N(i)
IS1N(i) > 0, j even, j1 odd, r(i+ j + j1) = −1 IB(i) = IS1N(i)
IS1N(i) > 0, j odd, j1 even, r(i+ j + j1) = −1 IB(i) = IS1N(i)
IS1N(i) > 0, j odd, j1 odd, r(i+ j + j1) = 1 IB(i) = IS1N(i)

IS2N(i) > 0, j even, j1 even, r(i+ j + j1) = −1 IB(i) = IS2N(i)
IS2N(i) > 0, j even, j1 odd, r(i+ j + j1) = 1 IB(i) = IS2N(i)
IS2N(i) > 0, j odd, j1 even, r(i+ j + j1) = 1 IB(i) = IS2N(i)
IS2N(i) > 0, j odd, j1 odd, r(i+ j + j1) = −1 IB(i) = IS2N(i)
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If Then also

IS1N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j even, j1 even, r(i+ j + j1) = −1
IS1N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j even, j1 odd, r(i+ j + j1) = 1
IS1N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j odd, j1 even, r(i+ j + j1) = 1
IS1N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j odd, j1 odd, r(i+ j + j1) = −1
IS2N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j even, j1 even, r(i+ j + j1) = 1
IS2N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j even, j1 odd, r(i+ j + j1) = −1
IS2N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j odd, j1 even, r(i+ j + j1) = −1
IS2N(i) > 0, ID(i+ j + j1) > 0, IB(i) = IS1N(i)
j odd, j1 odd, r(i+ j + j1) = 1

Although the normal and additional rules cover most cases, there are still a few rare cases
where the correct answer is not found. A more exact method will be described later, when
considering distortions. In practice one can use the normal rules only when the error-rate
is low, use the normal and additional rules when the error-rate is higher, but refer to a
more exact (and more lengthy) calculation described later if the noise is very high and
especially in presence of a strong and correlated interference.

4.8 Binary error-rate without precoding

With all the previous rules, the binary error-rate without precoding (or, with precoding,
the error-rate on the precoded sequence) can be computed by the following algorithm:

• Consider all the possible duobinary transmitted sequences starting and ending with
a symbol 1 or −1 of length L = 3, 4, 5, . . .

• Consider, for each transmitted sequence, all the possible recognized sequences and
compute the duobinary error probability, by writing the system of inequalities corre-
sponding to the duobinary tests and solving this system by numerical integrations.

• Count the number of simple and double errors on the survivors and then the number
of simple errors transformed into double errors, by applying the normal and the
additional rules.

The total probability of binary errors is then the sum of the computed duobinary error
probabilities multiplied by the number of final double errors and weighted by the probabil-
ities of the considered sequences. Fortunately the number of sequences introducing binary
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errors is limited, which means that the majority of duobinary errors are eliminated during
the convergence of the survivors.

The above algorithm was followed to obtain the binary error-rate. It was found that it is
not necessary to consider sequences of length greater than 6, their contribution to the final
result being negligible. The theoretical curve of the binary error-rate as a function of S/N
is given in Figure 9 together with the results of simulation.
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Fig. 9: Binary error-rate as a function of S/N without precoding: theoretical curve and
points of simulation.

4.9 Binary error-rate with precoding

In order to obtain the binary error-rate with precoding, we have to note that a single
binary error on the precoded sequence produces two binary errors on the input sequence,
but that k consecutive errors on the precoded sequence only produce two errors too on the
input sequence. The calculation procedure is then similar to the procedure described in
the previous Section with two changes.

First we assume that each final double error on the survivors gives two binary errors on
the input sequence, but this leads to an overestimated number of binary errors. Let q be
the probability of a double error on the survivors. Consecutive double errors can occur
2, 3, . . . times with probabilities q2, q3, . . . It is easy to show that we must subtract, from
q, the number of errors in excess which is

2q2 + 4q3 + 6q4 + . . . , (55)
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so that the binary error probability becomes

qp = 2
[
q − 2q2(1 + 2q + 3q2 + 4q3 + ...)

]
, (56)

which is equal to

qp = 2

[
q − 2q2

(1− q)2

]
. (57)

The mean binary error-rate is finally computed by a weighted summation of the qp terms
corresponding to the different duobinary sequences. Theoretical values of the binary error-
rate were computed as just described and compared with results obtained by simulation.
All these values have been drawn in Figure 10.

Pb

S
N
(dB)

0.001

0.01

0.1

1

-2 0 2 4 6 8 10 12

Fig. 10: Comparison of methods giving the binary error-rate as a function of S/N with
precoding: theoretical curve (full line), simulations (points), and theoretical upper
bound as established by Allard and detailed in Section 4.10 (dashed line).

This figure also shows the results of the theoretical upper bound of the BER developed by
Alard in [23] which is summarized in the next Section.

4.10 Upper bound of the binary error-rate

The EBU document [23] reproduces a study made by Alard at the CCETT (France) where
an upper bound of the BER is derived for the duobinary code. As this document is
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not generally available, a summary of the theoretical calculations of the bound is given
hereafter.

Let us denote by sk the path correctly followed in the trellis (i.e. the sequence of the
binary input states), by s′k the path recognized by the decoder, by xk and x′k the duobinary
sequences transmitted and recognized, and by yk the received sequence impaired by the
noise of variance σ2.

It is assumed that the path recognized is in general identical to the correct path but that
it can diverge from the later immediately after time t and reconverge immediately before
time t+ r (otherwise the code would be subject to “catastrophic error propagation” which
has no practical interest). Such an event of divergence followed by reconvergence of the
paths is denoted by ǫ and is called as a closed error event, by opposition to an open error

event where there is no reconvergence of the paths until infinity and therefore catastrophic
propagation.

The squared Euclidean distance between the transmitted and recognized duobinary se-
quences is defined by

D2(ε) =

k=t+r−1∑

k=t+1

(xk − x′k)
2 , (58)

which is shown to be an even integer larger or equal to 2.

It is then assumed that the recognized sequence x′k is, among all the possible sequences xi,
the closest to the received sequence yk. In other words, x′k is at a lower distance of yk than
any other possible sequence and in particular the correct sequence xk.

Since the decision distance is D(ǫ)/2, the probability of an closed error event ǫ is bounded
by

P (ε) ≤ Q

(
D(ε)

2σ

)
. (59)

If considering only confusion between adjacent duobinary symbols, thus neglecting the less
probable confusion between −1 and +1, the squared Euclidean distance (58) reaches its
minimum value equal to 2.

It remains to count the number of duobinary sequences that are at the squared Euclidean
distance 2 from the transmitted sequence xk. If the path s′k diverges from the correct path
after instant t and reconverges just before instant t + r, the duobinary symbols x′t+1 and
x′t+r−1 are different from xt+1 and xt+r−1, which is sufficient to reach the minimum squared
distance 2. This is only possible if the state sequence sk takes alternate values 0 and 1 (or
−1 and +1), the adversary sequence s′k taking the opposite values.

Therefore there is only one path diverging from the correct path from t + 1 to t + r − 1
with the corresponding duobinary sequences xk and x′k being at the minimum squared
Euclidean distance 2. The probability of existence of this path is (1/2)r−2. It follows that,
for the whole set E of ǫ events, the probability P (E) is, when making D(ǫ) in (59) equal
to its minimum value which is

√
2,
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P (E) ≤
∞∑

r=2

(
1

2

)r−2

Q

(√
2

2σ

)
= 2Q

(
1

σ
√
2

)
. (60)

Without precoding an ǫ event produces r−1 binary errors, while with precoding it produces
2 binary errors.

Finally the upper bound of binary error-rate is:

• without precoding,

Pb ≤
∞∑

r=2

r − 1

2r−2
Q

(
1

σ
√
2

)
= 4Q

(
1

σ
√
2

)
, (61)

• and with precoding,

Pb ≤
∞∑

r=2

2

2r−2
Q

(
1

σ
√
2

)
= 4Q

(
1

σ
√
2

)
. (62)

Both (identical) expressions, developed by Allard, give a good approximation of the BER
for high values of S/N but overestimate the error probability for low S/N ; this is clearly
shown in the calculations by bounding the probability of an ǫ event in equation (59) and
by neglecting the errors produced by confusion between duobinary symbols −1 and +1.

As both equations (61) and (62) provide the same result, it has been thought that the
BER is the same with and without precoding. Although the error-rate becomes closer and
closer to the value without precoding for high S/N , our results show that the error-rate is
always higher without precoding. As seen in Figure 10, equations (61) and (62) clearly give
a good approximation for the low noise channels (S/N high) but they become insufficient
for channels impaired by strong noise.

The paper by Altekar et al. [1] presents a different approach based on the partial response
codes defined by a polynomial of the form

h(D) = (1−D)m(1 +D)n . (63)

In this paper, an input error sequence is defined as

εs(D) = s(D)− s′(D) , (64)

where s and s′ are respectively the correct states and the states recognized by the Viterbi
decoder in binary numbers 0 and 1. An output error sequence is then

εy(D) = h(D) εs(D) . (65)
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The performance of the system is largely dictated by input error sequences that result in
an output with small squared Euclidean distance

‖εy(D)‖2 =
∑

k

ε2y, k . (66)

The paper describes two algorithms, on the basis of a so-called error state diagram, used
to derive all the input error sequences corresponding to a closed error event (where the
paths s and s′ diverge after time t and reconverge at time t+ r) and to an open error event
(where the paths do not reconverge). The input error sequences corresponding to a given
squared Euclidean distance are finally listed for several codes, i.e. for different values of m
and n in (63).

For m = 0 and n = 1, the code considered in the paper is the duobinary code which is the
subject of our study. The first input error sequence listed for a closed error event and the
minimum squared Euclidean distance equal to 2 is

(0), 1, (−1, 1, −1, 1, . . .) 0 . (67)

Recalling that this is the difference s(D)−s′(D), we can obtain s and s′ separately according
to the following table

s− s′ s s′

0 0 0
−1 0 −1
1 1 0
0 1 1

Therefore the input error sequence given corresponds to the following states:

s = 1, (0, 1, 0, 1, . . .) (68)

s′ = 0, (1, 0, 1, 0, . . .) . (69)

This is similar to the conclusion of Allard since during the interval of paths divergence,
the correct state sequence s takes alternate values 0 and 1 while the adversary sequence
s′ takes the opposite values. Moreover if the input error sequence is duobinary coded in
order to obtain the output error sequence, we have

1 (0, 0, 0, 0, . . .) 1 , (70)

which shows that the total squared Euclidean distance is 2.

Altekar et al. [1] give another input error event with a squared Euclidean distance 2 which
leads to the same conclusion so that, when considering only the minimum squared Eucli-
dean distance, the bounds of the binary error-rate given by (61) and (62) are confirmed.
The same paper also gives other input error sequences with squared Euclidean distances
of 6 and 10; these sequences could avoid neglecting confusion between duobinary symbols
−1 and +1 which will make the previous bounds tighter.
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4.11 Error statistics

The duobinary errors are practically independent. On the other hand, the binary errors
are certainly not independent since we have seen that a single duobinary error produces
n+1 consecutive survivors errors, n being the number of symbols 0 correctly recognized by
the decoder before the duobinary error. One must therefore expect that a Viterbi decoder,
with and without precoding, will give errors in bursts. With precoding, one single binary
error as well as a burst of consecutive errors on the precoded sequence produces two final
binary errors. It is then expected that with precoding the bursts are somewhat less frequent
than without precoding.

To quantify this behavior we have computed by simulation the probabilities of 2, 3 and 4
consecutive binary errors. If p is the probability of binary errors and if these errors were
independent, the probability of k consecutive errors would be pk, while the actual proba-
bilities of k consecutive errors are higher. Let pk denote the probability of k consecutive
errors. Table 4 gives, in rounded figures, the ratio pk/p

k for k = 2, 3, 4.

S/N Without precoding With precoding
(dB) k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

0 1.5 2.5 4 1.5 1.5 2.5
6 10 65 5 5 5 25
9 65 4× 103 525 33 30 730

Tab. 4: Ratio pk/p
k of the actual probability of k consecutive binary errors to the same

probability for independent errors, with k = 2, 3, 4.

It is seen that binary errors occur in longer and longer bursts when S/N increases. Short
bursts are however less frequent with precoding.

5 Interferences

This section is devoted to the study of the effect of several types of interferences and
distortions on the performance of a Viterbi decoder.

In the following, we will define as an additive interference (or simply as an interference),
anything which is linearly added to the signal, except noise. In general, interference is the
result of a linear distortion in the transmission chain, but it can also come from crosstalk

between different channels.

If d(t) is the duobinary signal (i.e. the duobinary coded version of the data sequence) and
if there is an interference y(t), the input level without noise of the Viterbi decoder is

x(t) = d(t) + y(t) , (71)
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while, in presence of noise, it is

x(t) = d(t) + y(t) + n(t) . (72)

5.1 Correlated or uncorrelated interference

As shown in Section 4.11, in presence of white noise, of which the successive samples are
independent, the duobinary errors are also quasi-independent while the binary errors occur
in bursts.

If the samples of the interference are uncorrelated, error-rates can be computed as done
for the case of pure noise, simply by replacing noise by the sum of noise plus interference.
The calculation method is again to define, by application of the duobinary tests, a system
of simultaneous inequalities where ni becomes ni + yi, and to derive the corresponding
probability by numerical integrations, noting that the values of the interference will appear
in the limits of integrations.

In most cases however, the interference samples are correlated and the duobinary errors
will also occur in bursts. For example, let us consider the case where the wanted duobinary
signal d1(t) is interfered by another sequence d2(t) which is:

• a duobinary sequence, independent of d1, or

• a ternary sequence taking the same levels −1, 0, 1 as a duobinary sequence with the
same probabilities but without correlation.

In absence of noise, the probabilities of 2, 3 and 4 consecutive duobinary errors, obtained
by simulation, are given in Table 5.

Cases 2 errors 3 errors 4 errors

d2 = correlated duobinary sequence 0.194 0.0757 0.0366
d2 = uncorrelated ternary sequence 0.123 0.0409 0.0146

Tab. 5: Probabilities of 2, 3 and 4 consecutive duobinary errors for an interference y = d2.

It is seen that the probabilities of consecutive duobinary errors are significantly increased
by the correlation of the interference, with two consequences:

• the Viterbi decoding is no longer optimal because the metrics in the trellis are no
more strictly additive. However Viterbi decoding still gives a significant improvement
with reference to threshold decoding.

• the theoretical error-rates can no longer be computed by the method of numerical
integration of a system of inequalities. However this method is still valid as a first
approximation and gives good results when the interference is low and is not strongly
correlated.
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5.2 General theoretical method in absence of noise

A general algorithm which should give the exact theoretical error-rates, involves the fol-
lowing steps:

1. Consider the duobinary initial transmitted sequences of length 3, 4, 5, . . ., starting
and ending by a symbol 1 or −1.
For example

L = 3 1 0 − 1 , −1 0 1 , 1 1 1 , −1 − 1 − 1

with probability of the intermediate symbol 1/8

L = 4 1 0 0 1 , −1 0 0 − 1 , 1 0 − 1 − 1 , −1 0 1 1

with probability of the intermediate symbols 1/16

etc. The probabilities 1/8, 1/16, . . . quoted for the intermediate symbols come from
the fact that these duobinary symbols are the coded form of binary sequences with
length 4 for L = 3, of length 5 for L = 4, and so on. Since the input bits 1 and
−1 have the same probability, the probability of a binary sequence of length 4 is
1/8, of length 5 is 1/16, . . . Observe that for any length L, there are only four
duobinary sequences starting and ending by 1 or −1, so that the total probability
of intermediate symbols in all given duobinary sequences is 1. Therefore all possible
cases are considered.

2. In the case of noise (or uncorrelated interference), interference is applied to all sym-
bols of these sequences but it was assumed that the first 1 (or −1) and the last 1
(or −1) are correctly recognized. Here we cannot avoid the case when there is a
duobinary error on these symbols, as well as on the foregoing and the following sym-
bols. We will then prolong the initial sequence to the left and to the right by known
symbols 1 (or −1) in order to have an interfered sequence of length Lt. We will again
prolong these sequences to the left and to the right by Lc symbols 1 (or −1) Lc being
the decoding constraint length of the decoder. The total length of the transmitted
sequence then becomes Lt +2Lc as illustrated hereafter for the first initial sequences
of length 3.

1 0 −1 −1 . . .−1−1 −1 −1 −1. . .

Interfered sequence

Initial sequence

Lc symbols Lc symbols

1 1 1 111

3. Apply successively all possible values of the interference to the Lt symbols of the
interfered sequence, but leave the first and the last Lc symbols free of interference.
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4. Apply the duobinary tests given by (29) to (32) to the whole sequence to obtain the
successive duobinary symbols ri recognized by decoder. The presence of the first Lc

non interfered symbols allows a correct initialization of this process, while the last
Lc symbols allows complete termination of the decoding which is made with a delay
of Lc symbols or bits.

5. Store and count all the cases where there is a duobinary error on the last but one
symbol of the initial sequence. If there is no error on this symbol, iterate directly to
the next value of the interference.

6. From the recognized duobinary symbols, reconstruct the survivors by using the rules
of copying or crossing the survivors given in Section 4.

7. Go to the next step of Viterbi decoding and follow the evolution of the survivors.

8. Steps 3 to 7 above should be made with the actual values of the interference and also
with no interference at all; in this second case there will be no duobinary nor binary
errors, so that it is possible to construct two matrices (for the survivors S1 and S2)
with interference and two similar matrices for S1 and S2 without interference and
thus error free.

9. Compare the survivors matrices with and without errors and detect, then count the
binary errors after Lc steps of the decoding (i.e. after convergence of the survivors).

The binary error-rate is finally the sum of all binary errors detected weighted by the prob-
abilities of the values considered for the interference and also weighted by the probabilities
of the intermediate symbols in the initial duobinary transmitted sequence.

In principle, this method should provide the exact answer if

• the length L of the initial sequences is 3, 4, . . . , ∞.

• the length Lt of the interfered sequence is infinite.

• the constraint length (assuring complete convergence of the survivors) is infinite. In
practice some truncation of this triple infinity is obviously needed and there should be
some compromise between the precision required and the available memory as well as
the time of computation. We adopted the figures L = 3, 4, . . . , 8, Lt = 11, Lc = 10,
which give a good second approximation of the error-rates (our first approximation
being the method of numerical integration).

5.3 General theoretical method in presence of interference and
noise

The computation algorithm is the same as in the preceding Section, except that, at Step 3,
it is necessary to combine each possible value of the interference with each possible value
of the noise.
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Suppose that with Lt = 11, we have 211 = 2048 values for the interfering sequences. If
we sample the Gaussian distribution of noise into 100 values and store their probabilities,
we will end up with 2048100 possible values of the total perturbation interference + noise.
Such a number of cases is unmanageable. The only practical way is to replace all values
or noise by a sufficiently high number of random sequences of Gaussian noise. We de-
cided to generate 1000 noise sequences, which, as will be shown, gives the correct order of
magnitude, but the final theoretical curves have then to be slightly smoothed.

For the same reason, when the number of values of the interference is too large, we will
limit the number of simulations to 1000 random sequences of interference.

We will now consider the cases where the interference is the result of:

1. a phase error ϕ in a coherent demodulator of CQPRS modulation,

2. a synchronization error τ in the receiver, and

3. an echo of relative amplitude β, of phase ψ and of delay τ introduced in the radio-
frequency path in CQPRS or AM/SSB modulations.

5.4 Interference resulting from a phase error ϕ in a CQPRS
demodulation

5.4.1 Phase error without noise

If d1(t) and d2(t) are the two duobinary sequences modulating the carriers in quadrature
and if there is a phase error in the first demodulator, the input level of the Viterbi decoder
is

x(t) = d1(t) cosϕ− d2(t) sinϕ . (73)

According to the definition (71), the interference is given by

y(t) = −d1(t)(1− cosϕ)− d2(t) sinϕ . (74)

There is therefore a mutual interference between the two independent duobinary sequences
d1 and d2 vanishing for ϕ = 0.

For a given length L, there are 2L possible values for the interfering sequence d2, given by
duobinary coding of 2L input bits ±1. Since the input bits are assumed to be independent
and have the same probability, all the duobinary sequence d2 have the same probability
of 1/(2L). For the case of Lt = 11, considered in our second approximation there are
211 = 2048 interfering sequences d2.

As explained above, a first approximation of the error-rates is obtained by numerical inte-
gration with the transmitted sequences d1 used in Section 4.5 and all the 2L values of d2.
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A second theoretical approximation is obtained by the general method described in Sec-
tion 5.2. Results of both approximations are given in Figure 11 for the binary error-rate,
together with the results of simulation, for ϕ varying from 0 to π/2. The case of a phase
error ϕ in CQPRS demodulation, without noise, with duobinary coding, and with Viterbi
decoding (unmatched filtering), was chosen for Figure 11.

Pb

0.5

0.4

0.3

0.2

0.1

0.2 0.4 0.6 0.8 1 ϕ/(π/2)

Fig. 11: Comparison of methods giving the binary error-rate with a phase error ϕ in
CQPRS without noise: first approximation (dashed line), second approximation
(full line), and simulations (points).

It can be seen that the first approximation is reasonably accurate for the duobinary error-
rate and the survivors error-rate, even for large ϕ. For the binary error-rate we need the
second approximation which takes account of the correlation of d1 and d2 by considering
longer interfered sequences.

All the error-rates exhibit sudden variations for specific values of ϕ and then remain con-
stant up to another threshold of variation. In particular the binary error-rate is strictly
zero for ϕ ≤ 0.27 π/2. These thresholds of variation correspond to limits in the duobinary
tests. For example, test (29) can here be written as

(d1, i + d1, i−k) cosϕ− (d2, i + d2, i−k) sinϕ > 1 or < 0 . (75)
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The limit 1 of this test is reached if

ϕ ≈ 0.27
π

2
or cosϕ− sinϕ =

1

2
, (76)

and with d1, i−k = d1, i = d2, i−k = d2, i = 1.

Similarly the other thresholds of ϕ are found to be

ϕ ≈ 0.30
π

2
or cosϕ− 2 sinϕ = 0 (77)

ϕ ≈ 0.34
π

2
or sinϕ =

1

2
(78)

ϕ ≈ 0.41
π

2
or cosϕ+ 2 sinϕ = 1 (79)

ϕ ≈ 0.5
π

2
or cosϕ− sinϕ = 0 (80)

ϕ ≈ 0.6
π

2
or − cosϕ+ sinϕ = 1 (81)

ϕ ≈ 0.71
π

2
or 2 cosϕ− sinϕ = 0 (82)

φ ≈ 0.74
π

2
or cosϕ− sinϕ =

1

2
. (83)

5.4.2 Phase error with noise

Two examples of theoretical binary error-rates, compared with simulation are given in
Figures 12 and 13, as functions of the ratio C/N0 (carrier power to RF noise spectral
density in CQPRS). Figure 12 assumes a phase error of 0.1 π/2 (i.e. 9 degrees) while
Figure 13 assumes a phase error of 0.28 π/2, which is already above the first threshold of
variation. Again, theoretical values obtained by the second approximation described in
Section 5.3 are very close to the simulation results.

5.5 Interference resulting from a synchronization error τ

5.5.1 Synchronization error without noise

If, due to an improper synchronization recovery, the duobinary signal is sampled at times
kT + τ instead of kT , the signal level at decoder input is

x(kT + τ) = d(kT + τ) , (84)

and there is an interference

y(kT + τ) = −d(kT ) + d(kT + τ) . (85)
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Fig. 12: Comparison of methods giving the binary error-rate with a phase error ϕ = 0.1 π/2
in CQPRS with noise as a function of C/N0: first approximation (dashed line),
second approximation (full line), and simulations (points).
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Fig. 13: Comparison of methods giving the binary error-rate with a phase error ϕ =
0.28 π/2 in CQPRS with noise as a function of C/N0: first approximation (dashed
line), second approximation (full line), and simulations (points).
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The calculation starts with the evaluation of the level of x(kT + τ). This problem has
been solved by constructing a file of all possible levels to obtain the second approximation
of the eye diagram (see Section 3.5.1). Depending on the transmitted sequence (including
the duobinary symbols before and after d(kT )), the level x is simply red in the file at the
appropriate address.

The error-rates can then be computed by the general algorithm of Section 5.2, but some
care must be taken here with regards to the sign of τ . On the one hand, examination of
the eye diagram shows a complete symmetry for a positive or negative value of τ . On the
other hand, in theoretical calculation, one must remember that the duobinary errors on
the critical symbol (last but one symbol of the initial transmitted sequence of length L)
depend on duobinary symbols transmitted before the critical symbol, as expressed by the
terms di−k in the duobinary tests. Therefore the theoretical calculation should be made
with τ < 0 but the result can be applied, by symmetry, for τ > 0.

In a more detailed discussion of this problem, a distinction should be made between the
duobinary errors on a symbol 0 and on a symbol 1 (or −1). It can also be shown by a
discussion of the duobinary tests similar to that explained by equation (75) for a phase
error, that the binary error-rate, without noise, is strictly zero for any value of |τ | < T/2,
i.e. half of the bit period. One can then already predict that Viterbi decoding will ensure
a good robustness against synchronization errors.

The theoretical binary error-rate compared with simulation is given in Figure 14, where a
bit period T is divided in 16 parts. It is seen that this error-rate is zero until τ = 8T/16
and then jumps to 1/2.

5.5.2 Synchronization error with noise

For a small value of τ (up to 2T/16), the first approximation by numerical integration
gives the correct order of magnitude of the binary error-rate. For larger τ , it is necessary
to use the general algorithm of Section 5.3. One example of theoretical binary error-rates
is given in Figure 15 for τ = 4T/16. It can also be shown that for τ = 2T/16 (i.e. T/8)
the binary error-rate is not very much increased with reference to τ = 0.

5.6 Interference resulting from an echo in CQPRS

5.6.1 Echo without noise

If d1(t) and d2(t) are again the two duobinary sequences modulating the two carriers in
CQPRS and if, on the radio-frequency path there is an echo of relative amplitude β, of
delay τ and of phase ψ, the input level at the Viterbi decoder is

x(t) = d1(t) + β [d1(t− τ) cosψ − d2(t− τ) sinψ] , (86)
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Fig. 14: Binary error-rate with a synchronization error τ in baseband and without noise:
theoretical curve and points of simulation. Variation of τ : from −15T/16 to
15T/16.
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Fig. 15: Comparison of methods giving the binary error-rate with a synchronization error
τ = 4T/16 in baseband and with noise as a function of S/N : theory without
synchronization error (dashed line), second theoretical approximation (full line),
and simulations (points).
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d1(t) being considered as the wanted signal. The interference is simply the echo signal

y(t) = β [d1(t− τ) cosψ − d2(t− τ) sinψ] . (87)

The first duobinary test (29) is written as

d1, i + d1, i−k + yi + yi−k > 0 OR < 1 , (88)

with similar expressions for the three other tests. If β is zero or very small, there should be
no binary errors at all, but as β becomes larger and larger there could be binary errors due
to interference, even without noise. In order to find the minimum value m of β which gives
binary errors, let us see when the test (75) reaches the limit 1. If τ is a multiple of T , this
condition is fulfilled with d1, i(0) = 1, d1, i−k(0) = 1, d1, i(−kT ) = −1, d1, i−k(−kT ) = −1
and becomes

2− 2β = 1 , (89)

so that

βm =
1

2
. (90)

If now τ is still a multiple of T but ψ = π/4 (or an odd multiple of π/4), we have

2− 2β
√
2 = 1 (91)

βm =
1

2
√
2
= 0.3535 . (92)

Finally, if we maximize the interference with respect to τ and ψ, we must have τ = (2k+1)T
and ψ = (2k + 1)π/4 and then, by taking the values of d1(t − τ) and d2(t − τ) in the file
of levels (described in Section 3.5.1), we obtain

βm =
1

2.414
√
2
= 0.293 ≈ −10.7 dB . (93)

Therefore, in practice, there will be no binary errors at all (in absence of noise) if the echo
is lower than −10.7 dB. This is confirmed by simulations.

5.6.2 Echo with noise

In the presence of noise, the error-rates are function of four parameters, namely the C/N0

ratio and the echo parameters β, τ , ψ. Let us analyze this multidimensional surface.

Figure 16 is a cross-section of this surface corresponding to β = 0.31 and C/N0 = 12 dB
obtained by simulation. It is seen that the binary error-rate is maximum for very short
echo delays (τ ≤ 2T ) and for phases between π and 3π/2. This could be expected because
the first term of interference (87) is then strongly correlated with the direct signal. For
longer delays (τ ≥ 3T ), the cross-sections become practically flat and the bit-error rate
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depends only slightly on τ and ψ. However if C/N0 is high, or in other words if the effect
of interference is bigger then the effect of noise, the binary error-rate tends to become
a periodical function of τ , with period T with small variations, and also a periodical
function of ψ, with period π/4 and somewhat bigger variations, the critical phases being
odd multiples of π/4. This is clearly shown in Figure 16.

15

6

4

2

0.03

0.02

0.01

0

5

10
τ

BER

0.04

8

ψ

Fig. 16: Binary error-rate with an echo in CQPRS modulation as a function of echo delay
τ and echo phase ψ: echo delay τ = 0 to 4T i.e. τ = (x−1)T/4, echo phase ψ = 0
to 7π/4 i.e. ψ = (y − 1)π/4, and echo amplitude β = 0.31, C/N0 = 12 dB.

A first approximation of the theoretical binary error-rate can again be obtained by numer-
ical integrations. The second approximation, with the general method of Section 5.3, gives
better results, but as the error-rate does not depend very much on τ and ψ (for τ large), it
is possible to define an average binary error-rate depending only on C/N0 and β. Choosing
for ψ the value π/4 makes this average slightly pessimistic. The results of the theoretical
calculation (second approximation) is given in Figure 17 for β = 0 (no echo), 0.10, 0.15,
0.20, 0.25 and 0.31. This single Figure thus immediately gives the order of magnitude of
the error-rate for a given echo amplitude, as a function of C/N0.
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Fig. 17: Average binary error-rate with an echo in CQPRS modulation as a function of
C/N0 and echo amplitude β: β = 0, 0.10, 0.15, 0.20, 0.25, 0.30 (in order of in-
creasing error-rate), echo phase ψ = π/4, and echo delay τ = long and multiple of
T .
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5.7 Interference resulting from an echo in AM/SSB

5.7.1 Echo without noise

As continuous amplitude modulation with vestigial sideband (AM/VSB) is used for distri-
bution of broadcasting signals over cable networks, we have considered AM/SSB for the
transmission of a digital duobinary signal, as an approximation to AM/VSB.

If p and q are the amplitude of the lower and upper sidebands (p and q are functions of
frequency), the input level at the decoder in presence of an echo is

x(t) = (p+ q) [d(t) + β d(t− τ) cosψ]

+(p+ q) [β dq(t− τ) sinψ] , (94)

where dq(t) is the signal in quadrature with d(t).

The extreme cases are double sideband (AM/DSB) where p = q = 1/2 at all frequencies
and single sideband (AM/SSB) where p = 1 and q = 0 (or p = 0 and q = 1). We will
examine the case of AM/SSB which is close to AM/VSB with a simpler expression since

x(t) = d(t) + β d(t− τ) cosψ + β dq(t− τ) sinψ . (95)

We have explained in Section 3.5.1 that all possible levels of the signal dq(t) in quadrature
with a duobinary signal d(t) were also stored in a computer file. The procedure (reading
the level at the appropriate address) can then be used for dq(t) as well as for d(t).

The interference is given by

y(t) = β d(t− τ) cosψ + β dq(t− τ) sinψ . (96)

The first duobinary test (29) takes the form

di(kT ) + di−k(kT ) + β cosψ [di(kT − τ) + di−k(kT − τ)]
+β sinψ [di,q(kT − τ) + di−k,q(kT − τ)] < 0 OR > 1 .

(97)

The minimum value βm of β which gives binary errors in absence of noise is found by the
same method as used for a CQPRS echo, by expressing the condition where the test (97)
reaches the limit 1.

If ψ = 0 or ψ = π, and if τ is a multiple of T , we obtain

βm =
1

2
. (98)

When ψ is still equal to 0 or π, but if we maximize the first term d(kT−τ) of the interference
with respect to the delay τ , the file of the levels of d indicates that τ = (2k + 1)T/2 with
a level of 1.207, so that

βm = 0.4142 . (99)
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If now ψ = π/2 or 3π/2, the interference is only due to dq which has a maximum amplitude
of 1.6677 for a delay τ multiple of T , so that

βm = 0.2981 . (100)

For other cases, such as ψ = (2k + 1)π/4, the values of βm are between (99) and (100).
Therefore, in rounded figures, there will never be binary errors in absence of noise if

β < 0.2981 ≈ −10.5 dB . (101)

5.7.2 Echo with noise

In the case of an echo with noise, the binary error-rate is a multidimensional surface
function of four parameters, namely the S/N ratio and the echo characteristics β, τ , ψ.

Figure 18, obtained by simulation, is a cross-section of this surface corresponding to β =
0.31 and S/N = 12 dB. It is seen that the error-rate is very high for short delays (τ ≤
6T ), where not only d(t − τ) but also the quadrature component dq(t − τ) are heavily
intercorrelated with the direct signal. The critical phases are between π and 3π/2. For
longer delays, the cut becomes approximately flat and it is again possible to define an
average binary error-rate, preferably with the most critical phase which is 3π/2.

As was done for the echo in CQPRS, a first theoretical approximation of the binary error-
rate can be obtained by numerical integrations, especially for low interference. A second
theoretical approximation is obtained by the general method of Section 5.3 and is valid
even for strong echoes.

Finally, Figure 19 gives the average binary error-rates for β = 0, 0.1, 0.15, 0.20, 0.25, and
0.31.

As far as echoes with short delays are concerned (consider for example a system with a
bit-rate of 10 Mbit/s), a delay of T corresponds to a path difference of 30 meters which
is not unlikely on a cable network. Care must therefore be taken to prevent echoes with
short delays in cable distribution.

5.8 Example of a non-linear distortion

5.8.1 General

The previous methodology can be extended to the case of a non-linear distortion of known
characteristics. For the discussion, we have selected the example of a traveling-wave tube
(TWT) having typical AM/AM and AM/PM characteristics. The TWT is considered
as the high power amplifier for QPRS modulation with coherent demodulation, but for
comparison we have also studied the case of the off-set modulation COQPRS.
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Fig. 18: Binary error-rate with an echo in AM/SSB modulation as a function of echo delay
τ and echo phase ψ: echo delay τ = 0 to 4T i.e. τ = (x−1)T/4, echo phase ψ = 0
to 7π/4 i.e. ψ = (y − 1)π/4, and echo amplitude β = 0.31, S/N = 12 dB.
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Fig. 19: Average binary error-rate with an echo in AM/SSB modulation as a function of
S/N and echo amplitude β: β = 0, 0.10, 0.15, 0.20, 0.25, 0.30 (in order of in-
creasing error-rate), echo phase ψ = 3π/2, echo delay τ = long and multiple of
T .
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5.8.2 Non-linearity model

In front of the non-linear device, the modulated signal can be written as

x(t) = ρ(t) ejθ(t) , (102)

while after passing through the non-linear device, it becomes

z(t) = ρd(t) e
j[θ(t)+ϕ(t)] . (103)

When adopting the so-called “Saleh memoryless model”, the AM/AM characteristic is

ρd(t) = A2
s

ρ(t)

ρ2(t) + A2
s

, (104)

and the AM/PM characteristic is

ϕ(t) =
π

3

ρ2(t)

ρ2(t) + A2
s

, (105)

where As is the TWT saturation level.

In the following, we select the value As = 3 which corresponds to a significant but not
exaggerated distortion for a carrier amplitude Ac = 1. The AM/AM and AM/PM charac-
teristics with As = 3 are reproduced in Figures 20 and 21.
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Fig. 20: AM/AM characteristics of the traveling-wave tube: saturation level As = 3.
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Fig. 21: AM/PM characteristics of the traveling-wave tube: saturation level As = 3.

5.8.3 Conventional definition of the back-off

The saturation level As is measured at the input of the TWT. According to the AM/AM
characteristic of equation (104) and Figure 20, the maximum output amplitude is As/2
and the maximum output power is A2

s/4. The usual definition of the backoff Boff is the
ratio of the maximum output power to the actual output power

Boff =
Pout max

Pout

=
A2

s

4Pout

, (106)

Pout being the mean value of z2(t).

In order to facilitate the calculations, we will adopt a slightly different definition. Since
we consider only 4-state modulations, we note that the maximum output power on one
channel, for example the channel corresponding to the real part of x(t) and z(t), is A2

s/8.
Then if C is the output power that would be obtained on one channel in the absence

of distortion (i.e. with a linear TWT of power gain equal to 1 and a carrier amplitude
Ac = 1), we define the backoff as the ratio

Boff =
Pout max (one channel)

C
=
A2

s

8C
. (107)

We will compute the error-ratio without distortion (linear operation) and with distortion
(non-linear operation) as a function of the same parameter C/N0 and assess the penalty
due to the distortion in terms of C/N0.
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In our tests, we have used the following numerical values of the parameters for CQPRS
and unmatched filtering

C =
A2

c

4
= 0.25 , (108)

Boff = 6.53 dB , (109)

and a noise variance σ2 computed by

1

σ2
= 2

C

N0
Ts . (110)

5.8.4 Note on band-pass filtering

In principle a band-pass filter must be inserted at the input and another band-pass filter at
the output of the TWT. However, for CQPRS, there are no spectral components outside
the RF band

B = fb , (111)

so that the first band-pass filter is useless.

In all cases, the non-linearity introduces a certain amount of spectrum spreading. It can
however be shown that, with the parameters used for our tests, the components outside
the band B are very small (about 1% relative to the centre of the band). We will therefore
neglect also the second band-pass filtering.

5.8.5 Method of calculation

For each particular modulation, the first step is to write the series of values taken by the
real and imaginary parts xr(t) and xi(t) of the modulated signal at the sampling instants
kT which are multiples of the symbol period T if t = 0 corresponds to the middle of one
symbol. These values are then weighted with their respective probabilities.

The second step is to compute the values of the envelope ρ(kT ) and the phase θ(kT ) at
the sampling instants, before distortion. The next step is to apply equations (104) and
(105) to obtain the envelope ρd(kT ) and the phase θ(kT ) + ϕ(kT ), after distortion.

The final step is to compute the real part zr(kT ) of the distorted signal by

zr(kT ) = ρd(kT ) cos [θ(kT ) + ϕ(kT )] . (112)

The difference
yr(kT ) = zr(kT )− xr(kT ) (113)

can then be considered as an additive interference and we can derive the binary error-rate
on the real part of the channel by using the methods given above. Since there is a symmetry
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between the real part of the channel zr(t) and the imaginary part of the channel zi(t), the
error-rate is the same on both channels. If needed, zi(kT ) can be computed by

zi(kT ) = ρd(kT ) sin [θ(kT ) + ϕ(kT )] , (114)

with an interference
yi(kT ) = zi(kT )− xi(kT ) . (115)

5.9 CQPRS modulation with Viterbi decoding, no precoding and
unmatched filtering

We have already seen that the Viterbi decoding, although no longer optimal in presence of
interference, still gives a good improvement over threshold decoding. This is also the case
in presence of a non-linear distortion.

Two general methods were presented to compute the binary error-rate. Both methods
involve:

1. the calculations of the series of transmitted duobinary sequences of length L =
3, 4, 5, . . ., starting and finishing by a duobinary symbol 1 or −1,

2. the application of the duobinary tests in order to detect duobinary errors on the last
but one symbol and,

3. computation of the consequential binary errors.

In the first method, this is done by numerical integrations to obtain the probability of a
system of simultaneous inequalities which contains the successive noise samples.

This method does not take account of the correlation of the interference and thus gives only
a first approximation of the final error-rate, if, as it is the case in CQPRS, the interference
is coming from a independent duobinary sequence. Note that the values of interference (or
distortion) here appear in the limits of the integrations.

We will only present here the results with the second method which gives a better ap-
proximation. In this second method, the transmitted sequence is prolonged by known
symbols and, after the duobinary tests, the survivors are reconstructed so that the binary
errors are detected by following their evolution. Account is taken here of the correlation
of interference.

We again consider all duobinary transmitted sequences of length L = 3, . . . , 8 starting and
finishing by 1 or −1, but these sequences are prolonged on each side by known symbols
1 or −1 up to length Lt = 11. For each transmitted sequence, we apply all possible
interfering sequences (i.e. 211 = 2048) to the 11 symbols Lt as well as a sufficient number
or random noise sequences. In addition, on each side of the Lt = 11 symbols, the sequence
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is prolonged by Lc known symbols 1 or −1, but without adding noise or interference. This
will allow the correct initialization and termination of the series of duobinary tests. All the
duobinary symbols are then correctly recognized and the survivors can be reconstructed
by the recopying rule at each step of the decoding.

The evolution of the survivors is then followed, once with noise and distortion and once
without noise or distortion. The comparison of the two series of survivors gives the correct
number of binary errors in the sense that we count the number of binary errors due to
duobinary errors on the last but one symbol of the initial transmitted sequence. In each
case, the interference y(i, j) is computed according to a relation similar to (113) in which
zr is written zr(i, j) where i is the iteration on the wanted sequence and j the iteration on
all possible duobinary interfering sequences.

As explained previously, this method is exact, provided that the lengths L, Lt and Lc are
infinite and that an infinite number of noise sequences is used. In practice truncation is
necessary to limit the computation time, so that the method gives what we call a second
approximation.

Our results are drawn in Figure 22 (the saturation level As was chosen equal to 3). This
figure shows a good agreement between theory and simulation.
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Fig. 22: Comparison of methods giving the binary error-rate for CQPRS with a non-linear
distortion in a traveling-wave tube, as a function of C/N0: theory without dis-
tortion (dashed line), second theoretical approximation by recalculation of the
survivors (full line), and simulations (points).
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5.10 COQPRS modulation with Viterbi decoding, no precoding
and unmatched filtering

For this modulation, where one of the two duobinary streams is off-set by Ts/2, we will only
use the method described as the second approximation by reconstruction of the survivors.
The calculation is similar to that of the previous section, except that xi(kTs) can now
take a number of values corresponding to the possible level of the duobinary eye diagram
at half of a symbol period from the sampling instant. These values depend on the whole
duobinary sequence, which is here the interfering sequence.

We have used the reconstructed eye diagram where all the levels were computed (by sum-
mation of a large number of impulse responses) and stored in a computer file, for all
duobinary sequences of length 9.

To obtain the value of xi(kTs) for a given interfering sequence, one has to search the
sequence of length 9 identical on 9 symbols to the interfering sequence, the symbol of order
i of this sequence corresponding to the middle symbol (of order 5) of the sequence of length
9. The level of the eye diagram at Ts/2 is then read in the file, at the appropriate address,
and divided by

√
2 to obtain xi(kTs). The values of the duobinary symbols recognized by

the decoder zr(kTs), of the interferences y(i, j), the survivors with and without distortion
and finally the binary errors are then obtained as for CQPRS, but with a larger number
of calculations and a longer computation time.

The results are given in Figure 23 where it is seen that there is, again, good agreement
between theory and simulation.

In terms of C/N0, COQPRS seems to be slightly better than CQPRS since the degradation
due to the non-linear distortion is 1.7 dB for the first, and 2.1 dB for the second one at
a BER of 10−4. Moreover for these two modulations, Viterbi decoding still provides an
improvement of about 1.5 to 2 dB over threshold decoding.

6 Conclusions

The duobinary code, which is the subject of the present study, is used in a number of com-
munications and broadcasting systems. The binary error-rate (BER) is normally evaluated
by simulation with pseudo-random binary sequences as input data. In all cases, decoding
of the duobinary code with the Viterbi algorithm provides a significant improvement with
respect to the simple threshold decoding.

With Viterbi decoding, the theoretical value of the BER is often not known, specially for
channels strongly impaired by noise and linear or non-linear distortions. In the previous
Sections, several numerical methods usable on a simple computer were presented for the
calculation of the theoretical BER, in presence of noise and typical linear or non-linear
distortions. In all cases, the results obtained were in good agreement with those of simu-
lation.
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Fig. 23: Comparison of methods giving the binary error-rate for COQPRS with a non-
linear distortion in a traveling-wave tube, as a function of C/N0: theory without
distortion (dashed line), second theoretical approximation by recalculation of the
survivors (full line), and simulations (points).

Special note

This paper is published in memory of Professor Henri Mertens. Henri Mertens was As-
sociate Professor Emeritus at the University of Liège (Liège), Belgium, and also former
Deputy Director of the Technical Center of the European Broadcasting Union (EBU),
Brussels, Belgium.

List of acronyms

ACS Add-Compare-Select

AWGN Additive White Gaussian Noise

BER Bit Error Rate

CCIR Comité consultatif international pour la radio (now ITU-R)

CMOS Complementary Metal-Oxide Semiconductor

CQPRS Continuous Quadrature Partial Response Signaling modulation

EBU European Broadcasting Union
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FM Frquency Modulation

ISI Inter-Symbol Interference

ITU International Telecommunication Union

OFDM Orthogonal Frequency Division Multiplexing

PAM Phase-Amplitde modulation

QAM Quadrature Amplitude Modulation

QPRS Quadrature Partial-Response Signaling

QPSK Quadrature Phase Shift Keying

RF Radio Frequency

SSB Single-Sideband modulation

TWT Traveling-Wave Tube

VSB Vestigial Sideband modulation
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