Comparison of representational similarity of episodic memory traces at encoding and retrieval in young and older healthy adults

Zoltán Apa^{1,2}, Florence Requier^{1,2}, Christophe Phillips¹, Lucie Angel^{1,3}, Mohamed A. Bahri¹ and Fabienne Collette^{1,2}

¹ GIGA-Cyclotron Research Center in Vivo Imaging, University of Liège, Liège, Belgium ² Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium

³ University François-Rabelais of Tours, UMR CNRS 7295 CeRCA, Tours, France

(O item - O set) - (Y item - Y set)

Behavioral results

Indicate lower performance in the older group for accuracy (t=2.72; p<0.01) and reaction time (t=-3.65; p<.001)

RESULTS

Imaging results

 $(Y_{item} - Y_{set}) - (O_{item} - O_{set})$

At the brain level, larger encoding-retrieval similarity is observed in young by comparison to older in brain regions centered on the left occipital pole and left post-central (p<0.05 corrected at voxel level; figure displayed at p<0.001 uncorrected)

DISCUSSION

- Both behavioral and brain-level results indicate an age effect
- Lower ERS values in older indicate less specific reactivation of individual memory traces for pictures between encoding and recognition
- •The localization of ERS changes were previously associated with:
- processing of visual characteristics of objects (occipital pole)
- embodied cognition (postcentral area)
- One possible explanation of the observed aging effect on recognition performance is that poor visual tnis and sensorimotor encoding processes result in less distinctive memory traces

INTRODUCTION

Healthy aging is classically associated with changes in episodic memory performance and related brain activity. Employing Multivariate Pattern Analyses (MVPA) -a voxel-by-voxel variability analysis-, we investigated here if lower performance in older is related to less similar neuronal traces between the stages of encoding and retrieval of information.

Demographics

LIÈGE université

PsvNCog

PARTICIPANTS & METHODS

	Young (N=53)	Older (N=63)	t(114)
Age	23,6 (3,07) [19-31]	66,2 (4,42) [60-75]	***(t=-58.91; p<.001)
Gender	24F	34F	
Education	15.2 (1.77) [12-18] ¹	14,7 (2,75) [10-25] ²	NS (t=-0.88; p=.38)
Mattis	-	140.98 (2,56) [135-144] ³	-

Note. 1N=46: 2N=57: 3N=54

Participants completed a recognition episodic memory task in an fMRI setting. Representational Similarity Analyses (RSA; a Multivariate Pattern Analyses approach) was employed to assess pattern similarity activity between age groups and encoding / recognition conditions. Encoding-Retrieval Similarity (ERS) maps were computed for each participant at item and set levels.

Item level: comparison of encoding and retrieval for a given item Set level: comparison of each item to the average of all remaining items

ERS effects were localized by employing a voxel-vise searchlight procedure resulting in whole-brain maps.

Item and Set maps were Fisher-Transformed and sent to SPM12 for group analyses

SPM12 full factorial ANOVA 2 X (young vs. old) X 2 (item vs. set) analyses were conducted

