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Abstract—The art of controlling the shape of deformable
objects autonomously, a.k.a. shape servoing, remains a challeng-
ing task for robots today. While some current works devoted
attention to improving controllers, we propose to reconsider the
formulation of the problem itself, under the theory of Lie groups.
This results in a new representation of the state of the object
and leads to a new definition of the shape error. In return,
results obtained from simulations demonstrate that the approach
can achieve better performance for large deformations tasks. In
addition, mobile frame definitions reduce the non-linearity of the
problem. Importantly, this approach is not tied to the algorithm
developed here and can therefore be easily extended to other
types of controllers.

I. INTRODUCTION

The robotic manipulation of deformable objects (DO) ques-
tions many assumptions that are taken for granted when
manipulating rigid ones. In particular, DOs have in theory an
infinite number of degrees of freedom (DOF), while the robotic
manipulator controls a few ones only; the problem is therefore
highly underactuated [1, 2]. This makes the shape servoing
task, i.e. deforming the soft object as desired, considerably
hard. In order to solve these challenges, one can distinguish [3]
between model-based techniques, whether precomputed [4, 5]
or learned [6, 7], and model-free ones [8, 9].

Among model-free techniques, many works rely on 3D
points as feedback feature [10, 11, 12]. Instead, the approach
presented thereafter distinguishes itself by relying on Lie
groups theory. It has found widespread applications in the
study of rigid bodies in robotics [13, 14]. It has also been
extended to the context of flexible multibody dynamics [15],
but to the best of our knowledge, has not yet been employed
for the robotic manipulation of DOs. In this line, we refor-
mulate the core of the control algorithm, from which several
interesting properties are obtained.

In particular, a new way of representing the shape is
provided. Instead of using contours [16] or points, we use
mobile frames that are defined directly from the mesh of the
DO. As a result, the shape error is also redefined such that it
couples position and rotation components. This representation
contains rich information, in the sense that for a given number
of dimensions, the range of achievable tasks is increased.

In addition, the movement of the feature frame(s) and the
gripper(s) are defined in mobile frames. Consequently, non-

linearities induced by rigid body motions are filtered out. Thus,
the shape Jacobian remains constant under finite rotations,
which is not the case of classical approaches. The obtained
solution is also independent upon the choice of any global
coordinate system. In the next section, we describe a classical
approach to the shape servoing problem, in one of its most
simple form (i.e. without all the specificities and improvements
made by previous research), and we show its adaptation in
section III.

II. BACKGROUND

A common approach [10, 11, 12] is to approximate the
configuration of the DO by the position of a subset of N
”feature points” that compose it. The problem is then generally
posed as follows: let y =

[
yT
1 . . . yT

N

]T ∈ R3N be the
vector gathering the current position of each of these points, yi

being the ith one. Let yd be their desired position. It is also
assumed that M independent grippers, each having 6 DOF,
grasp the deformable object rigidly. The pose of gripper j is
noted zj ∈ R6 and gathers the three position and the three
rotation parameters. All the zj’s are stacked in the vector
z =

[
zT1 . . . zTM

]T ∈ R6M

Then, if the grippers move slowly enough such that the
system can be considered to be quasi-static at each instant t,
there should exist a nonlinear function F(t) : R6M → R3N

that maps a configuration of the grippers to the configuration
of the feature points, i.e. y(t) = F(z(t)). Since F(z(t)) is a
priori unknown, one solution is to linearize around the current
configuration: ∂y

∂t = ∂F(z)
∂z

∂z
∂t , which leads to

δy = J(z) δz (1)

where J = ∂F(z)
∂z = ∂y

∂z is the so-called shape Jacobian, that
relates the motion of the grippers to that of the feature points,
and δ indicates an infinitesimal variation. Estimating correctly
J is a key ingredient in this approach. One way, employed by
[10, 17], is to observe the evolution of y and z and iteratively
update J using the Broyden update rule:

Jt = Jt−1 + α
∆yt − Jt−1∆zt

(∆zt)T (∆zt)
(∆zt)T (2)



where 0 < α ≤ 1 is a parameter controlling the responsiveness
of the estimation of J. The infinitesimal variations in (1) are
approximated by small but finite variations, i.e. ∆yt = yt −
yt−1, ∆zt = zt − zt−1, the superscript t indicating the time
instant. Defining the error between the current and the desired
configuration of the feature points as e = yd − y, a simple
controller can be designed:

∆z = KJ†e (3)

with K a small positive diagonal gain matrix and J† the
pseudoinverse of J.

One can notice that in the preceding, the motion of the
feature points and the grippers are defined in an inertial frame.
As a consequence, under a rigid body rotation of the DO, both
∆y and ∆z would vary in a nonlinear way, and following (2),
J would too.

III. METHOD

In this section, we modify the control scheme presented
above by incorporating concepts of Lie groups theory.

A. Notation and definition of the concepts

The transformation between a frame {O} and a frame
{A} can be represented by elements of the special euclidean
group SE(3), i.e. the group of homogeneous transformation

matrices HOA =

[
ROA xOA

01×3 1

]
∈ SE(3) where xAB ∈ R3

is a position vector that represents the origin of frame {A}
expressed in frame {O}, and ROA ∈ SO(3) (the special
orthogonoal group) is a 3 × 3 rotation matrix that represents
the orientation of {A} with respect to {O}, expressed in {O}.
An element of SE(3) can also be thought of as an operator
that applies a transformation to a frame:

HOB = HOAHr ⇔ Hr = (HOA)
−1HOB (4)

In this case, Hr is the relative transformation between
{A} and {B}, and the fact that it right multiplies HOA

implies that it is expressed in {A}. An enjoyable property of
this representation is that Hr is invariant under rigid body
motions. Indeed, if we apply an arbitrary transformation
Hc to both HOA and HOB , we obtain HOA′ = HcHOA

and HOB′ = HcHOB . The relative transformation between
{A′} and {B′} is thus (HOA′ )−1HOB′ , which is equal to
(HOA)

−1HOB = Hr.

We build on this advantage to adapt (1) to (3) as follows.
It is assumed that the DO can be represented by a mesh
composed of triangles. Among these, a subset of size N is
tied to a desired configuration; they are called ”feature faces”.
Their selection depends on the task objective. In practice,
each feature face is attributed a Darboux frame {P} defined
from the position xi, xj , xk of its three vertices : t1 = xji,
n = t1 × xki, t2 = n× t1, with xji = xj − xi/∥xj − xi∥ and
xki = xk−xi/∥xk−xi∥. The origin of the frame, xP , is taken
as the center of the triangle. The transformation is therefore

Fig. 1. Definition of the frames

defined as HP =

[
RP xP

01×3 1

]
, with RP =

[
t1 t2 n

]
.

Likewise, we build the frame transformation HD from the
same three vertices on the deformed configuration of the DO.
Finally, HG is simply the pose of the gripper (known from
the forward kinematics). The situation is illustrated in fig. 1.

Now, let us consider that the grippers and the feature faces’
frames vary with time. An infinitesimal variation of an element
of SE(3) is written δHOA = HOA δ̃π

A

A, where δπA
A ∈ R6 is

an infinitesimal motion of frame A (indicated by the subscript)
expressed in A (indicated by the superscript), i.e. the local
frame representation. δ̃π belongs to the Lie algebra of SE(3),
noted se(3), which is a linear space. It is therefore isomorphic
to R6 through the map R6 → se(3) : δπ → δ̃π. From now
on, only the local frame representation will be used, and the
superscript is therefore dropped.

B. Adaptation of the method

With these definitions in mind, (1) is reformulated as:

δπp = J δπg (5)

with δπp =
[
δπT

P1
. . . δπT

PN

]T ∈ R6N , δπg =[
δπT

G1
. . . δπT

GM

]T ∈ R6M , and J ∈ R6N×6M .

Accordingly, the method is reshaped as follows. First, an
initialisation of J is required. Several methods exist. In this
work, each DOF of the gripper is perturbed by a small amount,
one at a time, and the column of J corresponding to the
perturbed DOF is obtained using standard finite differences.

Next, we adapt the Broyden update rule to estimate J as:

Jt = Jt−1 + α
∆up − Jt∆ug

(∆ug)T (∆ug)
(∆ug)

T (6)

where we replace infinitesimal motions δ by small but finite
variations ∆, such that ∆up =

[
∆uT

P1
. . .∆uT

PN

]T ∈ R6N ,
with ∆̃uPi = log(H−1

P t−1
i

HP t
i
). The subscript i indicates the

feature frame considered, while t is the time instant. log refers
to the logarithmic map (see more details in [15]) that maps an
element of the Lie group to the Lie algebra. ∆ug ∈ R6M is
defined analogously, replacing feature frames {P} by gripper
frames {G}. Importantly, one can highlight that the argument
given to log takes a similar form as Hr in (4), and for the same
reasons, it enjoys the invariance property with respect to any
rigid body motion. Due to (6), since both ∆πp and ∆πg are



Fig. 2. (a) Start state (b) End state using method 1 and (c) using method 2

coordinate-independent and insensitive to superimposed frame
transformations, so will be J.

Then, this new framework also leads to a redefinition of
the shape error. For the ith feature, it is defined as Hei =
HPiDi

= H−1
Pi

HDi
and its Lie algebra counterpart is

∆̃uei = log(Hei) (7)

∆̃uei is thus expressed in the mobile frame {P}. It is
important to notice the introduction of the rotation in the error
(since it is contained in the transformation matrices), and its
coupling to position variables via SE(3). This modification is
precisely at the origin of the difference between the trajectory
followed by the grippers in this method, compared to the
former one that uses positions only to define the error.

Consequently, the control law (3) needs to be adapted as
follows:

∆ug = KJ†∆ue (8)

where ∆ue =
[
∆uT

e1 . . .∆uT
eN

]T
. The output is therefore

directly obtained in the coordinate system of the gripper.
Lastly, for each gripper i, we can use either position control:

HGt+1
i

= HGt
i
exp(∆̃uGi

) where exp is the exponential map
(see [15]), or velocity control by simply dividing the desired
motion increment by the time step size h: vg = 1

h (∆ug)

IV. EXPERIMENTS AND RESULTS

In what follows, position-based servoing (PBS) refers to the
method presented in section II, while SE(3)-based servoing
(SE3BS) refers to the adapted one of section III. To demon-
strate the difference between both, several experiments have
been performed in simulation (only one result is shown for
conciseness). The simulator, Pybullet [18], has been chosen
for its ability to simulate soft bodies. In particular, a beam-
like object is modelled as an hyperelastic material that follows
a Neo-Hookean law. We emphasize that the controller has no
access to the DO model. Without hurting the generality of the
method, the gripper is considered as ”floating”, i.e. it is not
attached to a robot. It is represented by the green cube (see fig.
2). The white cubes are the grasped nodes. The other side of
the beam has been clamped, and the only external force is due
to gravity. To obtain the target shape, in practice, the grippers
are manually moved and the position of all the vertices of the
deformed mesh are recorded. This ensures that the target is
reachable from the starting configuration. The gain matrix is
K = 0.02 I6 and α = 0.6. The beam starts fully extended

(fig. 2a), and the recorded shape is as represented by the red
dots. Note that they are shown only for visualization purposes.
Indeed, in SE3BS, the algorithm only knows the state of one
feature frame (fig. 2c) that it uses to calculate the shape error
(hence, P = 1). In PBS, only the position of the 3 white dots
(P = 3) is used (fig. 2b). To ensure a fair comparison between
methods, these three points are the same as those used to build
the Darboux frame in method 2.

The results of such a task show the added value of working
with frame transformations to represent the shape, and the
advantage of adding rotation components in the error. Indeed,
during the whole deformation, twists of the beam are avoided
as much as possible by SE3BS because it degrades the rota-
tional part of the error. The trajectory is consequently smoother
and more straightforward. Starting from 2.03, ∥∆ue∥ < 0.03
is reached (the current and target frame coincide in fig. 2c)
after a simulation time of 20.7s. In contrast, after the same
time, PBS does not manage to bring the points to the desired
locations, lowering ∥e∥ from 1.31 to 1.2 only. At the beginning
of the task, twisting the beam improves the reduction in
position error, but it leads the controller in a deadlock near the
end (i.e. the final state shown), from which it can not recover.
Notice also that the second method reduces a little bit the
dimension of the problem (∆ue ∈ R6 against y ∈ R9).

The methods have been tested in other setups. In general,
for simple tasks where the deformation involves translations
mostly, both achieve similar performance. However, in many
cases, it allows to succeed in high deformation tasks that PBS
can not execute properly because of deadlocks such as the
aforementioned one.

Finally, we tested the case were the beam was subjected to
a rigid body rotation while held by a gripper at both ends. It
was observed, as expected, that the components of J varied
non linearly while in the case of SE3BS, it remained constant.
Therefore, it confirms that (6) only captures changes in the
shape of the object, as it is supposed to.

V. CONCLUSION AND OUTLOOK

In this work, a Lie group approach is used to tackle the
shape servoing problem. It involves a new representation of
the DO which couples translation and rotation components.
Starting from a typical controller used in this field, we
adapt the method according to these considerations. Some
experiments have been carried out in simulation and showed
that this alternative is more appropriate to execute certain
high deformation tasks. We emphasize that the framework
developed here is not specific to the controller used in this
work, nor to the Broyden update rule. Hence, future works will
be devoted to the integration of this theory into more efficient
shape Jacobian estimators and controllers. Finally, experiments
on a real setup will be proposed to validate the method.
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