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Abstract

The Schlieren method intends to reveal the elevation of a refractive fluid-fluid interface. The
method is based on a comparison of images of a single pattern placed at the bottom of
the container. Accurate measurements can be obtained with a simple and low cost optical
setup. However, it is restricted to weak interface deformations, weak slopes and weak parax-
ial angles. To overcome these limitations, we propose an enhanced optical setup that uses a
bitelecentric objective and a double pattern. Thanks to this new setup, we avoid geometri-
cal approximations and we extend the method to moderate/large deformations. Moreover, the
proposed method does not depend on the liquid depth and could be used in various applications.

1 Introduction

Measuring the topography of a fluid-fluid interface
is of great importance in physics since it allows
to observe and quantify elusive phenomena such
as waves, instabilities or the presence of particles.
For transparent fluids, this can be done with synt-
hetic Schlieren methods (Sutherland et al, 1999;
Dalziel et al, 2000; Raffel, 2015). Among them,
the so-called Moisy-Rabaud-Salsac (MRS) met-
hod (Moisy et al, 2009) is an elegant method that
gives accurate measurements with a simple and
low cost optical setup. It can be reproduced in any
laboratory and easily adapted for various appli-
cations. Despite its simplicity, Moisy et al (2009)
reported a precision of 1µm for a view field of
10 cm. This method has been successfully used
in the case of Faraday waves (Eddi et al, 2011;
Lau et al, 2020), wave-droplet interactions (Eddi
et al, 2009; Damiano et al, 2016) and floating
objects (Poty et al, 2014; Metzmacher et al, 2017;
Vandewalle et al, 2020).

In the MRS method, a random points pat-
tern is placed below (above) a container filled
with a liquid and a camera, from above (below),
takes pictures of the refracted pattern through
the liquid. A comparison between pictures of
the disturbed and undisturbed surface is done
with a Digital Image Correlation (DIC) algo-
rithm to compute the displacement field caused
by the deformation of the interface. Then, geo-
metric rules with some approximations are used
to rely this displacement field to the surface gra-
dient of the disturbed surface. Finally, the surface
is reconstructed by integrating the gradient with
a least-square method.

A key step is the computation of the dis-
placement field between the pictures. DIC algo-
rithms are well known and intensively used in
lots of applications like Particle Image Veloci-
metry (Utami and Blackwelder, 1991; Meinhart
et al, 1999; Adrian, 2005). However, they have
some drawbacks (Meunier and Leweke, 2003; Bor-
nert et al, 2009). They are rather slow and the
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displacement is implicitly supposed constant at
the window scale. To overcome some limitations
of DIC algorithms, one can use algorithms based
on recursive methods with multi-scale windows
(Meinhardt-Llopis et al, 2013; Weinzaepfel et al,
2013) but these are complex and extremely time
consuming.

Some alternatives and improvements have
been proposed. Kolaas et al (2018) developed
the Bichromatic Synthetic Schlieren method that
computes the displacement field with two simul-
taneous images of a refracted pattern, taken with
two different light wavelengths. Rajendran et al
(2019) implemented a dot tracking algorithm.
Spectral methods with checkerboard has also been
proposed to replace DIC algorithms (Wildeman,
2018b; Grédiac et al, 2020). Among them, Wilde-
man (2018b) proposed a method based on Fourier
demodulation, called Fast Checkerboard Demo-
dulation (FCD) method. Instead of a random
pattern, he uses a 2D checkered pattern with
a high spatial frequency. In the spatial Fourier
domain, the disturbed interface results in a defor-
mation signal that modulates the high frequency
signal of the pattern and classic Fourier demo-
dulation techniques can be used to extract this
deformation signal. This method is much faster
than DIC algorithms and offers some other bene-
fits: the displacement field is computed at each
pixel of the image and the level of noise is lower
(Wildeman, 2018b).

However, even if the displacement field is per-
fectly known, the MRS method suffers from the
following main limitations (Moisy et al, 2009):

1. As the interface is reconstructed by integrating
the surface gradient, uniform changes in the
interface height are not detected.

2. For strong curvatures or large surface-pattern
distances, caustics appear and it is no longer
possible to compute properly the displacement
field.

3. Slight vibrations of the setup can add noise
components to the displacement field.

4. Since calculations are linearized, the method is
limited to weak deformations, weak slopes and
weak paraxial angles.

The two first limitations are intrinsic to the
background Schlieren method and the third one
can be prevented with a stable optical setup. The
last and most restrictive one is mainly caused by

the geometrical approximations used to rely the
displacement field to the surface gradient. In the
calculations, only first order terms are conside-
red and the local liquid depth of the deformed
interface is supposed equal to the liquid depth
of the undisturbed interface. Moreover, errors on
the measurement of the liquid depth can impact
drastically the surface gradient estimation.

In this paper, we propose to improve the Sch-
lieren method in order to reach moderate and
large deformations/slopes. Moreover, this impro-
ved method does not depend on the liquid depth
and can be used in various applications in which
the liquid depth varies or is difficult to mea-
sure like spreading drops. However, rays crossings
and caustics still prevent proper measurements of
strong curvatures.

2 Method

In this section, let us consider the original met-
hod and a step-by-step description of additional
improvements.

2.1 Moisy-Rabaud-Salsac method

The MRS method is based on the standard synt-
hetic Schlieren method used for density varying
fluids (Moisy et al, 2009). As illustrated on Fig. 1,
a light source illuminates a pattern placed below a
container filled with a liquid. Above the container,
a camera takes pictures of the refracted pattern
trough the interface. A DIC algorithm is used to
compare the pictures of both disturbed and undis-
turbed surfaces and to compute the displacement
field.

The next step is to establish a relationship
between the displacement field and the surface
gradient. As illustrated on Fig. 2, the geometry
of the light rays is quite complex. The incidence
plane, which is defined as the plane CPP

′
con-

taining the camera C, the point P and its image
P

′
, is inclined and does not contain the optical

axis. So, the displacement PP
′

does not take place
along the radial direction with respect to the opti-
cal axis but in a direction ŝ, which corresponds
to the intersection of the horizontal plane and
the incidence plane CPP

′
. Because of that, Moisy

et al (2009) used three approximations to com-
pute the surface gradient from the displacement
field. These approximations limit the method to



Springer Nature 2021 LATEX template

3

Camera

Container
Pattern

Lightning

Fig. 1 Illustration of an MRS experimental setup. A light
source illuminates from below a random points pattern.
Above it, a container filled with a transparent liquid is
placed on a glass plate. A camera takes pictures of the
surface of the liquid from above

weak slopes, weak deformations and weak paraxial
angles, and are the following:

1. Paraxial approximation. To be satisfied, the
distance between the pattern and the camera
must be much larger than the distance hp
between the pattern and the interface.

2. Weak slope. This implies that the surface slope
θ and the incident angle i are weak (sin(i) ≈
tan(i) ≈ i and cos(i) ≈ 1). So, only first
order terms in i and θ are considered in the
computations.

3. Weak amplitude. This implies that the local
height of the liquid hl is supposed to be equal
to the mean height of the undisturbed surface
h0.

Considering theses approximations, it can be
shown that the gradient field can be computed

from the displacement field with a linear relations-
hip

~∇h = − δ~r
h∗
, with

1

h∗ =
1

αhs
− 1

H
(1)

where α = 1 − na
nl

, hs = h0 + hc
nl
nc

+ ha
nl
na

is

an effective distance between the pattern and the
surface of the liquid and H is the distance from the
camera to the pattern. The last step is to integrate
the surface gradient to reconstruct the interface.
This is done with a least-square algorithm.

2.2 Fast Checkerboard
Demodulation

The FCD method proposed by Wildeman (2018b)
is a variation of the MRS method. Both met-
hods share the same optical setup and geometrical
approximations. They differ only on the computa-
tion of the displacement field. The FCD method
uses a 2D checkered pattern and fast Fourier
demodulation, instead of a random points pattern
and a DIC algorithm.

In the FCD method, the spatial signal of the
checkered pattern behaves like a carrier, as in
frequency modulation of airwaves. This carrier
is extracted from the picture of the undisturbed
(flat) interface. On the picture of the disturbed
interface, a deformation signal phase modulates
the carrier signal. Usual Fourier demodulation
techniques are used to recover the deformation
signal from the phase modulated signal. Then
the displacement field is obtained by transforming
back the deformation signal in the spatial domain.

2.3 Bitelecentric objective

A first step to improve the original setup of the
MRS method is to place a bitelecentric objective
with a high aperture on the camera. With this
objective, only vertical rays (rays parallel to the
optical axis) coming from the pattern reach the
camera. This allows to avoid parallax effects and
to greatly simplify the optical ray tracing and
calculations.

As only vertical rays reach the camera, the
incident plan, defined as the plane containing the
camera C, the point P and its image P

′
, contains
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Fig. 2 In the original MRS method, an inclined optical ray
coming from the pattern point P appears to come from the

image P
′
. The incidence plane CPP

′
does not contain the

optical axis and so, is inclined. (a) Inclined incidence plane

CPP
′
. (b) Positions of the point P and its image P

′
on

the xy plane (pattern plane). The direction ŝ corresponds
to the intersection of the xy plane and the incidence plane

the optical axis and is vertical (Fig. 3). So, the gra-
dient is equal to the slope of the curve in direction
r̂ and we get the following relationship

~∇h = tan(i)r̂ (2)

between the gradient field and the incident angle
i without any approximation.
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Fig. 3 Incidence plane obtained with a bitelecentric
objective. As only vertical refracted rays reach the camera,

the image P
′

of point P is located at the intersection of
the optical axis and the pattern. Therefore, the incidence

plane CPP
′

is vertical

2.4 Double pattern

A second improvement is the use of a double pat-
tern. Each pattern is placed at a specific height,
as illustrated in Fig. 4. The distance hp between
the patterns can be fixed and accurately known.
In this setup, the camera has to take four ima-
ges instead of two: (i) pattern 1 through the
undisturbed interface, (ii) pattern 2 through the
undisturbed interface, (iii) pattern 1 through the
disturbed interface and (iv) pattern 2 through the
disturbed interface.

By comparing both images of pattern 1, the
displacement PP

′
between a point P of the pat-

tern 1 and its image P
′

trough the deformed
surface can be computed by a DIC algorithm or
by Fourier demodulation (if a checkered pattern is
used). The displacement QQ

′
between a point Q

of the pattern 2 and its image Q
′

trough the defor-
med surface can be computed exactly the same
way. The distance hp between the patterns being
known, the angle ia can be computed from these
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two displacements by

ia = arctan

(
δr

hp

)
(3)

where ~δr = ~PP ′ − ~QQ′ . Applying the Snell-
Descartes law at each interface, we get a relations-
hip between the incidence angle i and the angle
ia:

ia = arcsin

{
nl
na

sin

[
i− arcsin

(
na
nl

sin(i)

)]}
(4)

This relationship cannot be inverted but, nume-
rically, we can use ia obtained from Eq. (3) to
interpolate the function and evaluate i. Once we
get the incidence angle i, the gradient can be
computed with Eq. (2). However, this gives only
the magnitude of the gradient. Its orientation φ
can be determined with the components of the
displacement field by

φ = arctan

(
δry
δrx

)
(5)

Knowing the magnitude and the orientation of
the gradient, one can compute its x and y com-
ponents and integrate them to reconstruct the
surface slope.

With the double pattern, one avoids any geo-
metrical approximations and calculations become
independent of the liquid depth. The only height
implied in the calculations is the distance between
the patterns. All the intermediate layers between
the top screen and the interface, as the contai-
ner wall, do not appear in Eq. (4). Thanks to
these improvements, moderate to large deformati-
ons can be measured. The method can be used in
new applications in which the depth of the undis-
turbed liquid is not constant. Nevertheless, it is
still limited to moderate slopes because strong slo-
pes may cause ray crossings, resulting in multiple
images of the same point. The main drawback is
that the imaged area is limited by the bitelecentric
objective. This method is also more time consu-
ming as four images and two displacement fields
should be taken into account. However, it is pos-
sible to take pictures of two color patterns at the
same time as we explain in sect. 3 and the Fast
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Fig. 4 Optical rays geometry when a second pattern at a
different height under the container is used. A second dis-

placement QQ
′

can be computed. Knowing the difference
of height hp between the patterns, the angle ia can be com-

puted from δr, the difference of both displacements PP
′

and QQ
′
. A relationship can be established between ia and

the incidence angle i by applying the Snell-Descartes law
at each interface. This relationship does not depend on the
liquid height

Checkeredboard Demodulation technique allows
fast computations of the displacement fields.

3 Setup and computations

A 2448 × 2048 color camera with a bitelecen-
tric objective with a 118.06 mm × 98.47 mm
field of view is placed above a glass plate. Two
color patterns, one red and one blue, are genera-
ted numerically with the Matlab scripts written
by Wildeman (2018a) and made available on Git-
Hub. The patterns are printed on 4 mm thick glass
plates and placed at different heights below the
container. The blue pattern is on the bottom face
of the top (blue edge) glass plate and the red pat-
tern is on the top face of the bottom (red edge)
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glass plate in order to only have an air layer bet-
ween them as shown in Fig. 5. These two glass
plates are separated by spacers of accurate height.

Fig. 5 Illustration of the proposed experimental setup.
A camera with a bitelecentric objective is placed above a
container and a double pattern. Each pattern is printed
on a glass plate and placed at a specific height below the
container. The blue one is on the bottom face of the blue
edge glass plate and the red one is on the top face of the red
edge glass plate. As there is only an air layer of constant
thickness between the patterns, the surface gradient can be
computed with Eqs. (2)-(4) and then integrated. Top: view
of the entire setup. Bottom: zoom on the double pattern

Pictures of the patterns through the undistur-
bed and the disturbed surfaces are taken. The
R and B channels are extracted from these color
images and binarized by thresholding in order to
separate each pattern. The red pattern appears
black on blue channel and blue pattern appears
black on red channel.

The displacement field of each pattern and the
angle ia are then computed. A cubic spline inter-
polation is used to get the angle i from ia with
Eq. (4). The surface gradient is easily obtained
from Eq. (2) and then integrated to get the height
of the interface. The calculations of the displa-
cement fields and the integration of the surface
gradient are performed with the Matlab script
written by Wildeman (2018a).

The measurements are done with two type of
patterns, random points patterns (in sect. 4.1) and
checkerboards (in sect. 4.2). Fig. 6 shows ima-
ges of these patterns taken by the camera. The
random points pattern is used with a DIC algo-
rithm. The size of the dots is 0.2 mm and the
density is 0.26. The blue checkerboard is used with
the FCD algorithm and the side of the squares is
0.5 mm long.

4 Results

Two typical applications are presented in order to
emphasize the advantages of the present method.

4.1 Slope measurements

In order to validate our improvements, we have
applied the method to glass wedges with spe-
cific angles and compared the wedge angles to
the measured slopes, as shown in Fig. 7. The
glass wedges are circular and have a diameter of
25.4 mm. Their angle ranges from 2◦ to 25◦. In
order to avoid errors caused by the sharp borders
of the wedges, pictures taken by the camera are
cut and the measurements are only done on square
windows inscribed in the circular wedges. As all
the points of the deformed image are displaced,
random points patterns are used and the displa-
cement fields are computed by the DIC algorithm
written by Wildeman (2018a). The FCD method is
not adapted in this case because the displacement
of all points can be bigger than the checkerboard
wavelength. Five measurements are done for each
wedge with random orientations. The mean angles
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Fig. 6 Images of the blue patterns used to compute the
displacement fields. These images are taken by the camera
with a region of interest of 1024 x 1024 pixels. Top: blue
random points pattern used with DIC algorithm. The size
of the dots is 0.2 mm and the density is 0.26. Bottom: blue
checkerboard used with the FCD algorithm. The side of the
squares is 0.5 mm long

measured for each wedge are shown on Fig. 7. One
can see that the proposed method performs better
than the MRS method when the slopes increa-
ses. Indeed, we measured angles up to 25◦ with
an excellent accuracy whereas the MRS method
becomes inaccurate for the largest angles. This is

because Moisy et al (2009) consider only first order
terms in computations.
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Fig. 7 Mean angle of wedges measured by our method as
a function of the true angle value. Slopes up to 25◦ have
been measured with an excellent accuracy. The displace-
ment fields are computed by the DIC algorithm written by
Wildeman (2018a)

The other main limitation of the MRS met-
hod is the weak amplitude approximation, which
is masked when one consider only the mean angle
of a wedge. Because of this approximation, the
MRS method underestimates (overestimates) the
slope when the local height is lower (greater) than
the mean height. By computing the mean angle on
a symmetric area around the center of the wedge,
underestimations and overestimations cancel. To
illustrate the limitation of the weak amplitude
approximation, the local measured angle of a
18.15◦ degrees wedge with both methods is shown
on Figs. 8 and 9. The orientation of the wedge
is -36.13◦ degrees from the x axis. Although the
mean value of the slope is close to the true one
(as it can be seen on Fig. 7), Figs. 8 and 9 shows
that the MRS method fails to recover the correct
angle along the wedge. The value is overestimated
or underestimated, except at the center. With our
method, a constant angle is obtained as expected.
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Fig. 8 Local measured angle of a 18.15◦ wedge. The orien-
tation of the wedge is -36.13◦ from the x axis. (a) MRS
method. (b) Proposed method. The displacement fields
are computed by the DIC algorithm written by Wildeman
(2018a)

4.2 Floating object

For simple floating objects the theoretical profile
of the liquid can be computed (Chan et al, 1981;
Kralchevsky and Denkov, 2001; Vella and Maha-
devan, 2005; Poty and Vandewalle, 2021). Especi-
ally, the liquid deformation h around a spherical
particle should behave like a Bessel function of
the second kind K0 centered on the particle (Kral-
chevsky and Denkov, 2001; Vella and Mahadevan,
2005)

h = QK0(r/λ), with Q = rc sinψ (6)

where Q is the capillary charge being a constant
that characterizes the depth of the deformation
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Fig. 9 Profile of the measured angle along the wedge
orientation. The slope of the wedge is 18.15◦ and its orien-
tation is -36.13◦ from the x axis. r is the distance from the
center. The displacement fields are computed by the DIC
algorithm written by Wildeman (2018a)

around the object, r is the distance from the cen-
ter of the particle, λ is the capillary length being
λ ≈ 2.7 mm for water-air interfaces, rc is the
radius of the contact line and ψ is the slope angle
at the contact line. This expression allows for mea-
suring profiles but also capillary charges. A sketch
of the typical deformation around a heavy sphere
is shown in Fig. 10.

ψ

2rC

Fig. 10 Sketch of the surface deformation around a floa-
ting sphere. The density of the sphere is greater than the
density of the liquid. The depth of deformation around
the particle can be characterizes by a capillary charge
Q = rc sinψ where rc is the radius of the contact line and
ψ is the slope angle at the contact line

In the MRS method, the displacement field
depends on the liquid height as one can see on
Fig. 2. To reconstruct the interface, Moisy et al
(2009) established a relationship (see Eq. (1))
between the displacement field and the surface
gradient that implies the mean liquid height. If the
liquid height is not measured accurately or chan-
ges during the experiments, it will cause (large)
errors on the reconstructed interface. In the case
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of a floating sphere, it will impact the capillary
charge Q.

In the present method, the surface gradient can
be computed exactly with Eqs. (2)-(4), and these
computations do not imply the liquid height. In
order to check that the reconstructed interface is
really independent of the liquid height, we measu-
red the deformations around a 3 mm radius sphere
floating in water baths of different depths and we
fitted the experimental data with Eq. (6). Fig. 11
shows the mean profile around the sphere in water
baths of 10.84 mm and 7.04 mm deep. Our data
overlap and are in good agreement with the the-
oretical profile and the capillary charges obtained
by fitting the data are similar (see Table 4.2). So,
the presented method recovers well the same pro-
file (and thus the same capillary charge) in both
water baths without measuring the liquid height.
The displacement fields on the top pattern are
illustrated on Fig. 12 for the 7.04 mm deep bath.
Similar displacement fields are obtained on the
bottom pattern. Fig. 13 shows the reconstructed
surface.
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Fig. 11 Mean profile of the surface around a 3 mm radius
sphere floating in water as a function of the distance r from
its center. The measurements were done with water baths
of 10.84 mm and 7.04 mm deep. The data overlap and are in
good agreement with the theoretical profile (Eq. (6)). The
displacement fields were computed with the FCD algorithm
written by Wildeman (2018a)

We also compare our measurements with the
MRS method. Fig. 14 shows the mean recon-
structed profile of the surface around the 3 mm
radius sphere floating in a water bath of 7.04
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Fig. 12 Measured displacement fields on the top pattern
for 3 mm radius sphere floating in water. Similar displace-
ment fields are obtained for the bottom pattern. The water
bath is 7.04 mm deep. Top: displacement field u along
the x direction. Bottom: displacement field v along the y
direction. The displacement fields were computed with the
FCD algorithm written by Wildeman (2018a)

mm depth with both methods. The profile reco-
vers with the MRS method is similar to the one
obtained with the proposed method. However, the
capillary charges computed by fitting the data are
a bit larger (in absolute value) as we can see in
Table 4.2. If the mean liquid height is not perfectly
measured, the reconstructed profile obtained by
the MRS method will be affected. Table 4.2 shows
the impact on the measured capillary charge if the
mean liquid height is underestimated by 5% and
10% when the water bath is 7.04 mm deep. As
expected given Eq. (1), the charge is overestima-
ted (in absolute value). The error on the capillary
charge is not so important in this case because a 4
mm thick glass plate is placed between the pattern



Springer Nature 2021 LATEX template

10

0 500 1000
x [px]

0

250

500

750

1000

y 
[p
x]

−0.2

−0.1

0.0

0.1

0.2

z [
m
m
]

Fig. 13 Reconstructed surface around a 3 mm radius
sphere floating in water bath of 7.04 mm deep with the
proposed method. The displacement fields were computed
with the FCD algorithm written by Wildeman (2018a)

and the container. This attenuates the change in
the effective distance hs that appears in Eq. (1).
The displacement fields were computed with the
FCD algorithm written by Wildeman (2018a).
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Fig. 14 Mean profile of the surface around a 3 mm radius
sphere floating in water as a function of the distance r
from its center. The measurements were done in a water
bath of 7.04 mm deep with MRS method and the proposed
method. The displacement fields were computed with the
FCD algorithm written by Wildeman (2018a)

5 Conclusion

The Moisy-Rabaud-Salsac (MRS) method is a
synthetic Schlieren method widely used to mea-
sure the topography of refractive interfaces. It

Water height Capillary charge Method
[mm] [mm]
10.84 -0.631 2 patterns
7.04 -0.623 2 patterns
10.84 -0.683 MRS
7.04 -0.679 MRS

7.04 - 5% -0.719 MRS
7.04 - 10% -0.743 MRS

Table 1 Capillary charges measured by fitting the surface
profile around a 3 mm radius sphere floating in water.
Both methods are used with water baths of different
depth. In the case of the MRS method, the impact on the
measured capillary charge is shown when the mean liquid
height is underestimated by 5% and 10% for a water bath
of 7.04 mm deep. The displacement fields were computed
with the FCD algorithm written by Wildeman (2018a)

requires only a simple and low cost optical setup,
and can be easily reproduced in any laboratory.
However, it is limited to weak amplitudes, weak
slopes and weak paraxial angles. Based on the
MRS method, this paper presents a new method
that uses a bitelecentric objective and a double
pattern. Thanks to this enhanced but still sim-
ple optical setup, geometrical approximations are
avoided and moderate slopes and deformations
can be measured. However, (very) strong curva-
tures still cannot be measured because of ray
crossings.

The use of a bitelecentric objective simplifies
greatly the geometry of the light rays. A relati-
onship between the gradient field and the inci-
dent angle can be immediately obtained without
approximations.

A double pattern, composed of two patterns at
specific heights, allows to compute the incidence
angle without approximations and without mea-
suring the height of the transparent medium. This
improvement opens the way to new applications in
which the liquid height varies or cannot be easily
measured. We demonstrated in two different expe-
rimental situations the advantages of the proposed
method.
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