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Abstract

First-mile logistics tackles the movement of products from retailers to a warehouse or distribution centre.

This first step towards the end customer has been pushed by large e-commerce platforms forming extensive

networks of partners and is critical for fast deliveries. First-mile pickup requires efficient methods different

from those developed for last-mile delivery, among other reasons due to the complexity of cargo features and

volume – increasing the relevance of advanced packing methods. More importantly, the problem is essentially

dynamic and the pickup process, in which the vehicle is initially empty, is much more flexible to react to

disruptions arising when the vehicles are en route.

We model the static first-mile pickup problem as a vehicle routing problem for a heterogeneous fleet,

with time windows and three-dimensional packing constraints. Moreover, we propose an approach to tackle

the dynamic problem, in which the routes can be modified to accommodate disruptions – new customers’

demands and modified requests of known customers that are arriving while the initially established routes are

being covered. We propose three reactive strategies for addressing the disruptions depending on the number

of vehicles available, and study their results on a newly generated benchmark for dynamic problems.

The results allow quantifying the impact of disruptions depending on the strategy used and can help

the logistics companies to define their own strategy, considering the characteristics of their customers and

products and the available fleet.

Keywords: first-mile logistics, disruption, vehicle routing, packing

1. Introduction

First-mile logistics refers to the first stage of the journey that products will make in the supply chain

process. In recent years, much attention has been paid to the last-mile delivery, the final transfer of the

products to customers. Customers like to shop online and receive their products quickly, and companies and

researchers have devoted enormous efforts to developing ever faster and more efficient delivery procedures,

taking into account the characteristics and regulations imposed on residential areas and inner cities. However,
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it is becoming increasingly clear that, by comparison, first-mile pickup, the movement of goods from retailers

to a warehouse or distribution centre, remains inefficient.

The first-mile echelon of retailing supply chains may operate under different modes. First-mile refers to

packing and shipping the products by individual retailers from a factory or retail warehouse to a distribution

or a fulfilment centre. Unlike last-mile, where a logistics provider centrally plans and controls outbound

transportation for multiple retailers, first-mile operations are run either by a logistics provider or by the

seller. Consequently, it may be more difficult to group and centralize multiple retailers’ first-mile operations.

In the Amazon FBM (Fulfilment By Merchant) system, for example, retailers are fully responsible for the

logistics operation, and therefore first-mile operations are not consolidated. These systems do take a toll on

the liveability of cities. A recent survey about the citizens’ perceptions of urban freight logistics concluded

that as the citizens’ awareness increases, their expectations of efficient and effective freight operations also

increase (Amaya et al., 2021). A step in this direction is to have a single logistics provider who manages the

first-mile logistics of multiple retailers, with retailers having no direct control over transportation decisions.

The logistics provider may just be a transport company that serves multiple retailers who wish to send their

shipments to order fulfilment facilities.

Another setting where first-mile logistics has the characteristics of the problem under study in this paper

is the B2B context of couriers acting as 3PL operators, assuming total control over the logistic flow from

first-mile pickup in the origin locations until the last-mile delivery in the destination. These carriers have

consolidation centres where packages are brought together and then sorted to be sent to the delivery locations,

often involving several transportation modes. Under such a centralized first-mile operation scenario, service

levels need special attention, and the management of uncertainties such as disruptions (e.g., transportation

delays) must be considered since the planning phase.

In this paper, we provide a tool that allows planning the first-mile collection of parcels by a courier or

other type of logistics provider, taking into account the uncertainty caused by disruptions and changes while

considering different service level contracts, as request cancellation recourse actions can be parameterized at

the customer level.

First-mile logistics does not simply mirror the characteristics and strategies of last-mile delivery. On the

one hand, retailers are often more geographically disperse than end-customers and delivery strategies and

modes developed in last-mile delivery city logistics cannot be applied. On the other hand, retailers may

send simultaneously many boxes of different sizes for different customers, and packing constraints, going far

beyond simple capacity constraints, must be taken into account. Even more importantly, the pickup process

is subject to different disruptions than those arising in last-mile delivery and can react in a very different

way. As vehicles are initially empty and progressively filled up, they are more prepared to accommodate

new requests or changes to previous requests. It often happens that the exact number and dimensions of the

boxes are only known when the vehicle arrives at the customer.

In its basic static version, the first-mile pickup problem can be viewed as a vehicle routing problem with
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packing constraints. Goods produced by a set of retailers must be picked up by a fleet of vehicles of different

types and transported to a depot. As these retailers are, in fact, the customers of the logistics company they

will be referred to as customers throughout the paper. The location of customers, their time windows, and

the distances between them define a routing problem. The dimensions and weights of the boxes to be picked

up and the characteristics of the vehicles define a three-dimensional packing problem, including capacity,

stability, and axle weight constraints.

However, this basic version falls very short of the complexity of the situations that logistics companies face

in their daily operations. The continuous flow of information and changing roads and even vehicle conditions

produce disruptions, changes in the initial data of the problem being solved. According to Pillac et al. (2013)

(Table 1), the problem can fall into one of four categories: static and deterministic, when the decisions are

made a priori and cannot be changed, and the parameters and data are known with certainty; static and

stochastic, when decisions initially made do not change but some data are unknown or uncertain; dynamic

and deterministic, when decisions can be changed due to new revealed information, which is known with

certainty; and dynamic and stochastic, when decisions can be changed with some new data that may be

uncertain. In this paper, we consider the dynamic and deterministic case. The company can take advantage

of the new information arriving when the vehicles are already traveling along the initially established routes

and modify them, considering the new information as clear and certain. As in Psaraftis et al. (2016) and

Eglese and Zambirinis (2018), we assume that there is a fast and reliable communication system between the

dispatch office and the drivers so that timely information about the actual status of the vehicles is available,

and the drivers can be quickly informed regarding the revised plans. As this is a pickup process, changes and

new customer requests can be accommodated if vehicles have empty space left, if the routes can be rearranged

to obtain the space required by the new requests, or if additional vehicles are used.

Table 1: Taxonomy of vehicle routing problems by information evolution and quality(adapted from Pillac et al. (2013))

Information is known with certainty?
Yes No

Decisions can be modified in
response to new information
revealed after time 0?

No Static and deterministic Static and stochastic

Yes Dynamic and deterministic Dynamic and stochastic

There are several types of disruptions. Concerning customers, the main disruption is that new requests

arise and it has to be decided on the fly whether they can be met within the current schedule or not. In what

follows, we will distinguish the known customers whose requests have been received before the realisation

of the routing process, and the new customers whose requests are revealed over time. Other disruptions

may correspond to known customers, who can modify their requests, increasing, decreasing, or changing the

number and dimensions of the boxes to be picked up, or change their time windows, due to last minute

production problems, or even change their pick-up point. In that case, we will talk about modified requests of

known customers. The service provided by the logistics company can also be disrupted. The most common
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situation is that a vehicle breaks down, before or even during the route, and the customers who have not yet

been served have to be rearranged on other existing routes. Disruptions can also be due to drivers calling

in sick or problems with the depot. A third type of disruption, external to customers and service providers,

is due to changes in the road network, when a road segment is blocked, or, more often, the speed at which

a segment is traversed is reduced due to congestion or other causes. In this work, we consider the two

main important disruptions concerning customers: new customers to be included and, in the case of known

customers, modified requests with respect to the number of boxes to be picked up.

A final aspect of the problem is the strategy adopted by the logistics company to deal with disruptions.

The strategies to manage disruption risks and improve resiliency are often classified in proactive (mitigation

or preventive) and reactive (contingency or responsive) strategies. The former can be handled with a robust

approach that compute solutions able to accommodate as much as possible unforeseen disruptions without

the need of new computations, the latter aims at providing optimized recovering techniques, that minimizes

the changes regarding the initial solutions when disruptions arise. For example, within a supply chain, a

mitigation strategy could be to select some facilities to be fortified against disruptions in a planning phase,

whereas a contingency strategy would be the re-allocation of customers to facilities after the disruption occurs

(Fattahi et al., 2017). In practice, many companies already have a software providing an initial solution, but

they seldom have a tool to manage real-time disruptions. In fact, Ivanov et al. (2016) state that a common

shortcoming of works tackling disruptions in the supply chain is that they overlook the implementation

dynamics. Overall, it is usual to consider disruptions as static events without considering their recovery

policies. For this reason, we intend to focus on the reactive approach in this research. Especially focusing

on the transportation context, it is critical to focus on the reactive processes to improve the execution and

(dynamic) implementation. Mitigating the impact of disruptions is often not dependent on complex and

time-consuming methods but can be tackled by simple and efficient responses to uncertain disruptions, such

as Kanban-based heuristics (Cui et al., 2016).

When building recovery algorithms, a conservative approach is to stick to the initial plan and only accom-

modate disruptions if they do not change the order of service to existing customers. At the opposite extreme,

a versatile strategy consists of reoptimizing, that is, solving the problem again every time a new piece of

information is revealed, obviously considering fixed the part of the route that has already been carried out.

In our work, we favour a balanced approach in which the benefits of accepting new or modified requests and

the costs of modifying the initial routes are considered. Alternatives concerning the number of vehicles are

studied, as it is the common practice of logistics operators who consider the disruptions and balance the cost

of changes to the solution and the benefits of accommodating new or modified requests. Balanced strategies

can be more conservative, if the number of vehicles cannot be changed, or more flexible, if the possibility of

adding a new vehicle is open, and its cost is taken into account.

Tackling first-mile logistics brings new challenges to the literature, compared to last-mile delivery, namely

regarding the impact of packing issues and the ability and strategies to accommodate disruptions. In this
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context, the main contributions of our work are:

� An algorithm for the capacitated VRP with time windows and packing constraints, combining BRKGA

with local search, able to efficiently solve the static version of the problem, producing competitive

results compared to existing procedures for closely related problems.

� A reactive procedure, based on local search, to deal with disruptions arising in real time, starting from

the solution of the static problem and considering the costs and benefits of accommodating new or

modified requests in existing routes or even adding new routes.

� Three strategies for addressing the dynamic problem, depending on the number of vehicles available,

ranging from the case in which no new vehicles can be added to the extreme case in which an unlimited

number of vehicles are available. These strategies are extensively tested and their effects are discussed,

to help logistic companies to define their strategies, according to the specificity of the their customers,

the type of products being picked, and the characteristics of their vehicle fleet.

� A benchmark of dynamic problems, with a thorough description of the way it has been generated, which

can be used to test other procedures for solving dynamic problems.

The paper is structured as follows: Section 2 reviews the related work. The static pickup problem is

described in Section 3 and solved in Section 4. In Section 5, the dynamic problem as well as the procedures

developed to cope with disruptions are explained. Section 6 contains an extensive computational study,

including the description of the instances used and the new instances generated, the results obtained for the

static problem, the comparison and discussion of the three strategies developed for the dynamic problem,

and the managerial insights drawn from the study. Section 7 presents the conclusions and future work.

2. Related work

Over the very last years, the concept of first-mile logistics has been studied from various perspectives.

In passenger transportation, the first-mile ridesharing problem aims at improving the connectivity between

passenger’s home and the closest public transportation hub bus terminal, metro station, ...), and thus reduce

the number of people using their private for commuting (K̊aresdotter et al. (2022); Zhang et al. (2020)).

Compared to standard VRP, here the passenger satisfaction is key to make the solution applicable. Ning

et al. (2021) studied the first-mile ridesharing with uncertain requests and Chen et al. (2020) proposed

solutions using autonomous vehicles to transport passengers from their home to metro stations.

The first mile problem is also studied in the context of circular economy supply chains, that needs to

organize the collection of used materials from individual consumers. In reverse logistics, the last mile problem

is indeed viewed as a first mile problem which relates to managing the flow of reusable and recyclable materials

from their users. For instance, Jäämaa and Kaipia (2022) introduce the first mile problem in the context

of end-of-life textile collection, study the current end-of-life textile collection system in place, and propose a

prediction model for the textile volumes to be collected to improve the collection system.
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The first mile problem is also studied from the collaboration perspective. In Wang and Huang (2021), the

authors suggest a business model for the first-mile collection of the parcel shipping business. They investigate

the possibility of having a common service provider who can help several courier logistics companies to perform

collection activities. They use a game theoretical approach to determine the market conditions that would

make this collaboration profitable for the courier logistics companies.

Although there are very few papers explicitly addressing the first-mile collection or pickup problem it

is very close to the well-known pickup-and-delivery problem. The most comprehensive and relevant survey

on the general pickup-and-delivery problem was published in two parts, Parragh et al. (2008a) and Parragh

et al. (2008b). Under the designation of general pickup-and-delivery problem, in the first part of the survey,

the authors discuss the problem in which goods are transported from the depot to linehaul customers and

from backhaul customers to the depot, i.e., what is usually called vehicle routing problem with backhauls,

and four subtypes of this problem. The sub-problem closer to the first-mile pickup is the vehicle routing

problem with clustered backhauls, in which all linehauls are served before backhauls. In the second part

of the survey, pickup and delivery problems are approached, i.e., problems where goods are transported

between pickup and delivery locations. This second category of problems encompasses problems as the

pickup and delivery vehicle routing problem, where pickup and delivery points are unpaired; the pickup and

delivery problem, where pickup and delivery points are paired; and the dial-a-ride problem, which deals

with passenger transportation between paired pickup and delivery points while taking into account user

inconvenience. For all problems, formulations are given, and solution approaches are discussed. From the

same year, it is worthwhile of mentioning the review on one-to-one pickup and delivery problems Cordeau

et al. (2008). This topic is still a current challenge for the scientific community. A more recent survey on

the dial-a-ride problem can be found in Ho et al. (2018) and a recent application with electric vehicles was

proposed in Masmoudi et al. (2018). Vehicle routing problems with simultaneous pickup and delivery are

surveyed in Koç et al. (2020), while a very recent survey on dynamic pick-up-and-delivery problems can be

found in Wang and Zhao (2021). The integrated pick-up and delivery problem has also been tackled recently

in an online setting and incorporating learning effects (Zhang et al., 2019).

The VRP is another strongly related problem widely studied, including when uncertainty is considered.

Most of the recent survey papers on the VRP look at the electric vehicle routing problem (Kucukoglu et al.,

2021), the vehicle routing problem with side-kick unmanned aerial vehicles (Li et al., 2021), including under

a two-echelon perspective, and green vehicle routing (Moghdani et al., 2021). However, much closer to the

problem under study are the stochastic VRP and the dynamic VRP. For a general overview over the dynamic

VRP, the reader may consult Berbeglia et al. (2010), Pillac et al. (2013), Toth and Vigo (2014), or Eglese

and Zambirinis (2018). Nevertheless, the most recent survey on the dynamic VRP (DVRP) is Ojeda Rios

et al. (2021). In this survey a taxonomy for the DVRP is proposed and both the dynamic and stochastic

and the dynamic and deterministic problems (building on Pillac et al. (2013) classification and subsequent

survey and taxonomy of Psaraftis et al. (2016)) are reviewed. According to Ojeda Rios et al. (2021), the main
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disruption sources in dynamic VRPs are: customer requests, travel time, service time, vehicle availability and

customer demand, which may be treated either under a stochastic or deterministic framework. According to

these authors, around half of the papers dealing of the dynamic VRP consider that the source of dynamism

is at customer requests or at customer demand.

The goal of disruption management is to cope with real-time and unpredictable events while minimizing

the deviations w.r.t. initial plans (Clausen et al., 2001). This topic was first studied to help airlines to face

schedule issues due to unpredictable weather conditions, but has been rapidly extended to other fields such

as production scheduling, supply chain management and transportation planning (Yu and Qi, 2004). More

recently, innovative demand-responsive transport systems are leading to the development of approaches that

aim to incorporate the uncertainty of disruptions, such as deviations to the planned route to accept late

requests (Bruni et al., 2014). A literature review of disruption management in VRP can be found in Eglese

and Zambirinis (2018). Wang and Cao (2008) propose a recovery model based on local search operators to

handle disruptions for a VRPTW with backhauls. Hu and Sun (2012) present a knowledge-based modeling

approach, where the knowledge of experienced schedulers is combined to operations research algorithms, to

deal with the modification of a customer request. Wang et al. (2012) consider the VRPTW for identical cargo

delivery. They deal with several types of disruptions and assess their solutions by computing the deviations

related to customers (service during soft time windows), drivers (change in the route), and logistic provider

(change in cost based on number of vehicles and total distance). They use the nested partitions method to

solve their recovery model. Spliet et al. (2014) study the vehicle rescheduling problem in retail industry: they

assume to have a master schedule for the vehicles on a long-term basis (6 months) and that the demand of the

customers is revealed later in time. They aim at minimizing the deviation cost based on the observation that

changes are cheaper if performed on a later stage of the routes. They propose a mixed integer programming

formulation for moderate-size instances and a two-phase heuristic that removes the last locations of routes

and reschedules them.

In this work, we deal with disruption management in the context of a VRP with packing constraints. More

precisely, we consider here unpredictable events related to the arrival of new customers during the day and a

change related to the number of boxes to be picked up at a customer’s location. This type of unpredictable

events has been studied in the context of disruption management. Previous works have defined both major

disruptions (such as natural hazards) and minor disruptions (such as machine failures) as critical situations

to tackle in this context (Parajuli et al., 2021). Transportation delays have also been listed as potential causes

of disruption in supply chains (Zhen et al., 2016). The term disruption has also been used to designate events

that cause sudden changes in supply levels from specific suppliers (Cui et al., 2016). Therefore, we use the

term disruption in the context of first-mile logistics to designate unpredictable events related to the arrival

of requests and changes in the demand level to which companies need proper tools to react and adapt. To

the best of our knowledge, no previous work has proposed a method to tackle disruption with respect to the

packing problem alone. The closest problem is the online packing and dynamic packing problem where the
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items to be packed arrived online with no previous information available (Coffman et al., 1983; Seiden, 2001).

Moreover, the papers studying those two problems remain rather theoretical (approximation algorithms, d-

dimensional bin packing). Moreover, even if VRP with packing constraints received more attention during

the previous years (Moura and Oliveira, 2009; Ceschia et al., 2013; Pollaris et al., 2015), there is no mention

of disruption management in the literature yet.

3. The static pick-up problem

In this problem, there is a set of customers to be served, each one with a location represented as a node

in a network. The depot is also a node, with given opening hours. The time to move between two nodes of

the network is known and given. Customers have a demand, i.e. a set of boxes, with known dimensions and

weight, to be picked up. The boxes must be picked up within a time window associated with each customer,

and each demand has an assigned service or picking time, which is the time needed for the driver to pick up

and load all the boxes into the vehicle.

The logistics company has a fleet with different types of vehicles, with a given number of vehicles of each

type. Each vehicle type has a load volume defined by its three-dimensional dimensions, a weight capacity,

and a daily cost. The driver of each vehicle has a defined shift during which he/she must make customer

visits.

The objective is to minimize both the number of vehicles used and the total distance to be travelled on

all routes. We consider that saving on the number of vehicles used is preferable to reducing the distance

travelled, so we will choose the solution with the least number of vehicles, and, in case of a tie, the one with

the least distance travelled.

This problem is known as the capacitated vehicle routing problem with pickups, time windows, and

packing constraints. A solution to this problem is called a plan and consists of a collection of routes, each

with an associated schedule and packing. A route is defined as a sequence of nodes to be visited by a vehicle.

The schedule associated with a route is the time information for each node, i.e., the vehicle arrival time at the

node, the start time of the load at the node, and the vehicle departure time from the node, depot included.

Associated with each node of the route, the packing of the loaded boxes must be provided. For this

purpose, the loading space inside the vehicle is described as a parallelepiped. The packing solution is described

by the positions of the front bottom left corner and of the upper right rear corner (to account for different

box orientations) of each box inside the vehicle loading space.

The feasibility of a solution depends on the feasibility of the routes, and associated schedule and packing.

Route feasibility. A feasible route must satisfy:

� All boxes must be collected.

� Customers are visited exactly once.

� Each route starts and ends at the depot.
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Schedule feasibility. The feasibility of every route depends on the schedule and on the packing. A schedule

is feasible if the following constraints are met:

� Time windows for each vehicle: the driver of each vehicle has a time window regarding departure and

arrival to the depot.

� Time windows for each customer: at each node, the load start time must be in the time window of the

customer, and the process must finish also within this time window.

� The loading starts after arrival at node, and ends at the time the last box is loaded.

� Time consistency: the arrival time at a node is defined as the time the previous node of the route is

left plus the time required to traverse the network arc connecting the two nodes.

Packing feasibility. A packing is feasible if it satisfies the following conditions:

� The set of boxes of a customer is assigned to exactly one vehicle.

� Each box lies within the boundaries of the vehicle.

� Boxes cannot overlap each other.

� The total weight of the boxes inside a vehicle cannot exceed the maximum capacity of the vehicle.

� Orthogonality: every box must be loaded with its edges parallel to the vehicle boundaries.

� Vertical stability: boxes must be completely supported by other boxes or the vehicle floor.

� Rotation: each box has six possible rotations, but in some cases only some of them are allowed.

The most common packing policy is to pack the boxes of one customer without moving the boxes of those

previously visited, satisfying the sequence-loading constraints (Pollaris et al., 2015) or LIFO constraints (Iori

and Martello, 2010). This will be our first packing policy. Nevertheless, in our study we include two more

policies, to see if more complex packing procedures can produce significant benefits in the number of trucks

needed or in the total distance traveled. In the second policy, the prepacked reachable boxes are allowed to

be moved. A box is considered reachable if it can be picked up without moving any other boxes. In the

third policy, a new packing is determined at each node, starting from scratch and considering all boxes of

the current customer and all other customers previously included in the vehicle. Although this is unlikely to

occur in practice, it may be a good point of comparison for the other two policies. A formal description of

the static pick-up problem can be found in Appendix A.
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4. Solving the static problem

To solve the static problem described in Section 3, we have developed a two-phase algorithm. In the first

phase, we resort to a genetic algorithm, based on the Multi-Parent Biased Random-Key Genetic Algorithm

with Implicit Path-Relinking (MP-BRKGA-IPR) proposed in Andrade et al. (2021), which uses as decoder

a packing algorithm adapted from Alvarez et al. (2015). This first phase focuses on minimizing the number

of vehicles required. In a second phase, a local search algorithm improves the solution of the first phase in

terms of the total distance traveled.

The MP-BRKGA-IPR is selected as the solution method framework since it is a state-of-the-art develop-

ment of a genetic algorithm, which has been recurrently used in the literature with good results in several

application areas, including the ones tackled in this problem: routing and packing. Genetic algorithms have

been developed for routing problems in different contexts, such as containership routing with deliveries and

pick-ups (Karlaftis et al., 2009), routing problems under uncertainty (Allahviranloo et al., 2014), or con-

tainer transportation in intelligent logistics (Fan et al., 2020). More specifically, biased random-key genetic

algorithms have been successfully applied to routing problems (Ruiz et al., 2019; Pinto et al., 2020). In

previous works, the good performance of biased random-key genetic algorithms has also been demonstrated

for packing problems in different settings, such as container loading (Ramos et al., 2018) and closely related

berth allocation problems (Correcher and Alvarez-Valdes, 2017). Additionally, Alvarez-Valdes et al. (2013)

study the value of integrating path-relinking strategies in other metaheuristic frameworks, as Andrade et al.

(2021) propose for genetic algorithms. The successful development of such algorithms for the contexts most

related to this problem, as well as the potential demonstrated by the state-of-the-art development of the MP-

BRKGA-IPR, make this a suitable and relevant approach for the first-mile logistics problem here tackled,

which combines routing and packing problems.

4.1. First phase: the genetic algorithm

The BRKGA is a genetic algorithm that consists of evolving a population of solutions (chromosomes)

represented as n-dimensional vectors of values between 0 and 1. These values are called random keys.

Bean (1994) proposed this representation, which requires a fitness function and a decoder, to transform the

chromosomes into solutions to the problem. In the original BRKGA, there is an initial population P which

includes an elite population Pe composed of solutions with the best fitness. At each iteration, the elite

set is copied to the next generation, the crossover operator produces new solutions by combining elite and

non-elite individuals and the remainder of the new generation is filled with new random solutions. In the

Multi-Parent crossover, the combination to obtain new individuals is done among several individuals, πt,

of which πe belong to the elite. Path-Relinking is a search intensification strategy presented in Glover and

Laguna (1997), in which the path that links two good solutions is explored. Combined with the Multi-Parent

BRKGA (BRKGA-MP), the Implicit Path-Relinking is called after a fixed number of iterations occurs, trying

to introduce new and better solutions to the population and speed up the convergence.
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In our algorithm, the chromosome is divided into two sections of length C, where C is the number of

customers to be served. The first section represents the sequence in which the customers will be loaded into

vehicles, and the second the order in which the types of vehicles will be used. In the second section, C works

as an upper bound on the number of vehicles required to serve all customers. In the worst case each vehicle

may have only one customer assigned. The fitness function is the original objective function of the problem

(see equation (A.1)).

3 5 1 2 4 1 2 2 1 1

Figure 1: Representation of a chromosome, with five customers and two types of vehicles

An example chromosome is shown in Figure 1, for an instance with five customers and two types of

vehicles. To obtain a solution, the first vehicle, of type 1, is taken and the customers are packed into it in

order, first customer 3, then customer 5 and so on. When a customer does not fit completely in the vehicle,

the vehicle is closed. For example, if customer 1 does not fit in the first vehicle, it will only include customers

3 and 5, a second vehicle, now of type 2, is taken, and customers are packed into it starting from customer 1.

To decode the chromosomes, the types of vehicles are taken in the order given in the second part of the

chromosome, and the customers are packed into them in the order given by the first part of the chromosome.

While the routing sub-problem is implicitly solved when knowing the customer sequence, to load the cus-

tomers’ boxes into a vehicle, a packing algorithm is needed to work as a decoder of the genetic algorithm, i.e.,

to transform the solution representation into an actual packing solution. As there are three different packing

policies described in Section 3, three decoders were built: the “no movement”, “some movements”, and “all

movements” decoders.

In all decoders, to pack the boxes of the current customer, we use a constructive algorithm based on

maximal spaces, adapted from Alvarez et al. (2015). Given a vehicle and a set of boxes, boxes are placed

one by one in a free space of the vehicle. The distinctive aspect of this approach is that a list of non-disjoint

parallelepiped spaces represents the overall free space. Each space is limited by a box or by the vehicle (wall,

floor or ceiling) and never by another space. Therefore, spaces are as big as possible (maximal) but may,

and will, overlap each other. On the one hand, this complicates the update of the free space list, as placing

one box will impact several spaces, but on the other hand, it provides very efficient usage of the container’s

overall space. Therefore, two main decisions are involved in the constructive algorithm: which space to select

to be the next one to fill and which box will be packed in that space. Several rules may be used, and a

detailed description of the constructive algorithm can be found in Appendix B.

The difference among the three decoders is on the set of boxes that, in each customer, is considered for

the packing process. While in the “no movement” only the boxes of the current customer are at stake, in the

“some movements” decoder, some boxes from previous customers (the reachable boxes) are removed from the

solution and considered for the packing process together with the boxes of the current customer, and, finally,
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in the “all movements” decoder, the vehicle is virtually emptied, and all boxes of previous customers and the

boxes of the current customer are at stake for the packing process. Therefore, in the two last decoders, the

already packed boxes may stay in the same place or be moved to a different location in the vehicle if a better

solution is generated in this way.

Improving the decoders

It can be expected that the more box movements are allowed, the better the solutions should be. However,

as no exact method is used, there may be some cases where better results are obtained with less flexible

methods. In an attempt to improve the results, we add two more procedures:

� Combine different methods: in the last two packing policies, where movements of boxes are allowed

(reachable boxes or all boxes), whenever the boxes of a set of customers cannot fit in one vehicle, the

method that does not allow movements is tried.

� Randomized constructive algorithm: the constructive algorithm is randomized. Every time a maximal

space is to be chosen, it is chosen randomly between the one with the largest z-coordinate and the

one with the smallest x-coordinate. When a set of customers cannot fit together in the vehicle, the

randomized constructive algorithm is run up to 10 times.

The decoder is going to be used a large number of times, so it has to be as efficient and fast as possible.

Each time a set of customers is checked for feasibility, a quick check of the volume and time windows is done

first, and then it is checked to see if it is a set that has already been studied. Each time a set of customers

is checked, the information about whether or not they fit is saved to avoid unnecessary decoder runs.

4.2. Second phase: Local search

The first phase algorithm is designed to fit as many customers as possible in each vehicle, thus minimising

the number of vehicles. However, at no point is the total distance travelled explicitly taken into account, so

sometimes the solution can be improved in terms of distance. Therefore, in a second phase a local search is

introduced to improve the solutions. This local search is based on two different moves:

� Insertion: an attempt is made to insert each customer in all positions of all other routes. If there are

some positions where it could be inserted, maintaining the route feasible and decreasing the objective

function, the move that produces the largest decrease in the objective function is performed.

� Swapping: each pair of customers is taken, their routes are swapped and all the positions of each

customer on their new route are studied. If the two customers are on the same route, the routes are

not exchanged, but all the positions for both customers on this route are explored.

The full local search consists of first trying all possible insertions and then all possible swaps. Each time

there is an improvement in the objective function, the solution is updated and the process starts from the

beginning, ending when no move produces an improvement in the solution.
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We use local search in two different moments of the BRKGA: first, once the initial population is generated,

we apply local search to some of its chromosomes trying to start with better solutions. Then, we also apply

local search to some of the solutions of the final population, depending on the available running time, trying

to improve the total distance travelled, and, sometimes, even to reduce the number of vehicles.

5. The dynamic pick-up problem: dealing with disruptions

In first-mile problems, different types of changes can arise in the original data during the course of the

routes. When these changes occur, if we allow the initial solution to change, the problem is called a Dynamic

Vehicle Routing Problem (Toth and Vigo, 2014). We will call each of the data modifications a disruption.

Disruptions can be related to parameters or features that were assumed to be known with certainty and are

revealed to be different or related to information that is revealed as time unfolds, for instance, new customer

requests (as opposed to known requests from known customers).

In the problem at hand, the data can be divided into three categories:

1. Customer related data:

� New requests: during the route, new customer pickup requests may arrive;

� Set of boxes to be picked up: the number, dimensions, and weights of the boxes may change.

They may increase if the customer receives new orders, or decrease due to last minute production

problems;

� Location: an error may occur when reporting a customer’s location. The location may also change

if the customer has multiple production facilities;

� Pickup time window: a change to a customer’s time-windows may occur, such as a delayed opening

or an early closing;

� Service duration: it may depend on the number of boxes to be picked up. If this number changes,

so will the service time.

2. Data related to the transport provider

� Vehicle type: similarly to customer boxes, the initial information on the dimensions of a vehicle,

the maximum weight it can hold, or the cost associated with its use may change;

� Driver shift: modifications as in customer time-windows disruptions.

3. Network related data

� Duration matrix: the time it takes to go from customer i to customer j is a value that usually

depends on external conditions such as traffic, weather conditions, possible accidents, etc.
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Table 2 summarizes the real-world applicability of the different parameters defining the disruptions, to-

gether with their likelihood.

Table 2: Parameters which may suffer disruptions and their likelihood in real-world problems

Parameters Likelihood
more likely likely less likely not likely
Customers

Immediate requests ×
Number of boxes ×
Dimensions or weight of boxes ×
Location ×
Time window ×
Service duration depends on boxes

Service provider
Vehicles features ×
Driver shift ×

Network
Duration matrix ×

In this paper we focus on disruptions related to new customer requests revealed throughout the day and

to modified requests from known customers. Regarding the latter type of disruption, we consider below that

a customer may ask to change the number of boxes of a type initially present in its original request.

As explained in Eglese and Zambirinis (2018), the objective to be optimized can differ from the static

problem when dealing with disruptions. In our case, we attempt to accommodate the larger number of

disruptions, without drastically changing the solution. Each disruption d arises at time td, and is treated

independently. The vehicles are already on their routes and therefore changes can only be made to the

unrouted legs. In other words, customers that are already served and that the vehicle is going to serve

cannot be modified (no rerouting). To avoid major changes in the solution, we will hierarchically apply local

operators defined in Section 4.2 , from the lowest impact to the highest. More precisely, we will manage

disruptions in the following way:

� New request: when a new customer arises, an attempt is made to insert it into each already existing

route, using the insertion move. If this is possible on several routes, the one that produces the minimum

increase in the total distance is kept. If the insertion is not possible, a new route is created to serve

this customer, and the full local search process is applied to the new solution, taking into account only

those parts of the routes that have not yet been served and can therefore be modified. The goal is to try

to keep the same number of routes, or at least to reduce the total distance travelled. The pseudocode

for this procedure can be found in Algorithm 1.

As an example, Figure 2a shows an original solution with eight customers and three routes. In Figure

2b, a new customer arises when the vehicles are already on their routes. Figure 2c shows the sections

of the routes that can be modified in dashed line. In Figure 2d the new customer is inserted into one
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of the existing routes.

� Modified request: when a known customer modifies its demand, it is first checked if the new demand

can be met by keeping the customer in the route and position in which it was originally placed. If this

is not possible, the customer is removed from the route it was on and treated as a new customer, with

the new demand, using Algorithm 1.

Figure 3a shows the same original solution, in Figure 3b an existing customer increases its demand

(marked with a red dot) when the trucks are already serving the customers. The new demand cannot

be picked up on the existing route, so it is removed from the route (Figure 3c). Finally, by applying

Algorithm 1 the customer is inserted into another existing route (Figure 3d).

Algorithm 1 New request disruption

i = new customer
R = set of routes, before the disruption
maxV = maximum number of available vehicles
insert = false
for r ∈ R do

if (Customer i can be inserted in route r) then
insert = true
dist(r) = increase in total distance of route r, putting customer i in the best position in r

end if
end for
if (insert == true) then

Insert customer i in the route r with minimum dist(r)
else

Create new route r to serve i
Insert r in R
R′ = LocalSearch(R)
if (|R′| ≤ maxV ) then
R = R′

else
The new request is dropped and R is back to the state before the disruption

end if
end if

Using these procedures we have designed three strategies to generate post-disruption plans in terms of

the maximum number of trucks that can be used once the routes are started:

Strategy 1: as many trucks as we need to cover all the new and modified requests.

Strategy 2: only the number of trucks initially planned.

Strategy 3: the number of trucks required by the solution of the original instance.

It is clear that in the first strategy all the disruptions will be accepted, in the worst case with a new truck

for each request. In the second and third strategies, however, some of the disruptions may be rejected

because it may be not possible to serve them without exceeding the allowed number of trucks. Note that
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the maximum number of trucks allowed in the third strategy could cover all requests if they were known in

advance. Nevertheless, the fact that part of the information is arriving after the routes are started may cause

the number of trucks needed to increase, and some of the disruptions may be rejected. In Section 6.3, the

three strategies will be compared in order to give some insights into the quality of the service that would be

provided according to the chosen strategy.

6. Computational study

In this section, we present the results of the computational study. Our algorithm was implemented in

C++ with 1 CPU, 1 Thread, 2.40 gigahertz, and 4 gigabytes of RAM.

Although the main objective of our study is to solve the dynamic version of the problem, we test first the

MP-BRKGA-IPR and the Local Search for the static pickup problem to assess whether they are adequate

for the solution process, and then we solve the dynamic problem with the three strategies. In this section,

first the test instances are presented, and then the results of the two versions of the problem.

All the instances are available at Giménez-Palacios (2021) and the source code on https://github.com/

ivangipa/FirstMile.

6.1. Test instances

First, we describe the instances for the static problem and then how they were adapted to include disrup-

tions.

6.1.1. Instances for the static problem

We use the set of instances generated by Moura and Oliveira (2009), here denoted as MO1. These

instances are based on the R1 and R2 instances of Solomon (1987) and BR2 of Bischoff and Ratcliff (1995),

with only one vehicle type. They combine the information of the time windows and the position of the nodes

of the R1 and R2 instances and the information of the BR2 boxes, obtaining two different groups, with 23

instances in each group:

� Group I: Each instance of this group has 1050 boxes, of 5 different types, distributed among 25 cus-

tomers. Each customer demands between 30 and 80 boxes, 42 on average.

� Group II: The total number of boxes in this group is 1550, of 5 different types and 25 customers. Each

customer demands between 50 to 100 boxes, 62 on average.

In addition, to increase the variability of the box types, we generated new instances, the MO2 set. They

were created by keeping the time-windows and the customer coordinates, but introducing the box types from

BR7 from Bischoff and Ratcliff (1995), BR8, and BR14 from Davies and Bischoff (1999). The total number

of boxes and the average are the same, but with increasing box heterogeneity. 46 instances from each BR

class were generated, so MO1 and MO2 total 184 instances.

We also use the 13 real-world instances in Ceschia et al. (2013), except for the SD-CSS3 instance because

it includes customers that require more than one truck (we do not consider split pickups in this work). These
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instances have a high variability in terms of number of customers (from 11 to 129), number of box types (from

9 to 97) and total number of boxes (from 254 to 8060), and in some of them 2 vehicle types. For simplicity,

we will refer to these as “Ceschia instances” from here onwards. Their characteristics appear in Table 3. The

real problem tackled by Ceschia et al. (2013) shares most of the features of our problem, but differs in some

characteristics such as including load bearing strength of the boxes, limiting the reachability of the boxes,

and the way in which vertical stability is considered. Additionally, neither the depot nor the customers have

time windows. Their objective is minimizing the total length of the routes, irrespective of the number of

trucks. They also consider a simplified version, denoted as 3L-CVRP, that is more similar to our problem,

adding fragility of boxes, relaxing the full support condition to partial support, and not considering weight

distribution. Although a direct comparison is not possible, the results obtained for the 3L-CVRP problem

can be taken as a close reference for the solution of our problem. In particular, an interesting feature of these

instances is that the packing aspect has a strong influence in the solutions. Actually, if packing conditions

are relaxed and substituted by one-dimensional weight and volume capacity constraints, the solutions they

obtain for the Capacitated Vehicle Routing Problem require less than half the number of trucks, with a 40%

reduction in the total distance.

Table 3: Features of Ceschia instances

Instance Customers Box types Boxes

SD-CSS1 11 36 254

SD-CSS2 25 15 350
SD-CSS4 37 13 312
SD-CSS5 41 47 7035
SD-CSS6 43 97 8060
SD-CSS7 45 14 284
SD-CSS8 48 70 3275
SD-CSS9 56 45 1725
SD-CSS10 60 29 1840
SD-CSS11 92 34 3790
SD-CSS12 129 10 745
SD-CSS13 129 63 2880

6.1.2. Instances for the dynamic problem

The three sets of instances used in the static problem (MO1, MO2, and Ceschia) are taken as a basis

for generating instances for the dynamic problem. Consider an instance for the static problem with C

customers. The percentage of disruption, pod, determines the number of new customers, non, and the

number of customers that will modify their demand, nom, so non = nom = dpod × Ce. Then, the new

instance is divided into two parts: the part initially known and the disruptions. The part initially known

consists of C − non known customers. Among these, the information of C − non − nom customers will not

change while the demand of nom of them will experience disruption and become a modified request, as shown

in Figure 4.
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Figure 4: Representation of request types and number of disruptions

The procedure to create the disruptions (new requests and modified requests from known customers)

follows these steps:

� Times at which the disruptions will be revealed

We randomly select the times for the disruptions in (0, b0/2), where b0 is the closing time of the depot,

using an uniform distribution, to create the set TD of disruption times. All these times are different,

as we assume that it is unlikely that two disruptions appear at the exact same time, and we deal with

one disruption at a time.

� New customers

The non new customers are selected from the set of customers of the original instance. We define

TDused as the set of disruption times already used. Initially this set is empty. We randomly select

one value t from TD \ TDused, and we select randomly one customer i with a start of its time window

greater than t+t0,i, where t0,i is the time it takes to go from the depot to customer i. This ensures that

ultimately the new customer could be served by sending a new truck. If the number of trucks is fixed,

this should give at least some flexibility to serve the new customer by modifying the existing routes.

Once a value from TD is selected, it goes to TDused so that it cannot appear in another disruption.

The procedure is repeated until non customers have been selected.

Each time a new customer i is selected, its information is taken from the description of the original

instance used. When all these new customers are added to the initial static problem, we will have the

complete set of customers of the original instance.

� Modified requests

In this step, nom customers whose demand will be modified are selected. A value t is randomly selected

in the set TD \ TDused and a customer i, not selected in the previous step, such that the starting time

of its time window is greater than t. For this customer, part of the original demand will be the initially

known demand and the remaining part will be added as a disruption. For each box type j with demand

qj in the original instance, a value rj is taken at random from (0, qj). The initial demand of this box

type will be rj and the remaining qj−rj boxes will appear in the disruption. Thus, when this disruption

appears, the total customer demand will be the demand in the original instance.
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We have generated 196 instances for each percentage of disruption pod = {0.05, 0.10, 0.15, 0.20, 0.25}. The

way in which the new instances have been generated allows obtaining the value of the total information. That

is, it allows quantifying the difference between having the complete information beforehand and having only

a part of the information and receiving the remaining information during the run, in the form of disruptions.

6.2. Results for the static problem

In this part of the study, we consider the original instances of Moura and Oliveira (MO1) instances, as

well as the ones we have generated based on them (MO2), and the real Ceschia instances. We will analyse

how the MP-BRKGA-IPR solves the static problem, i.e., the one in which all the information about the

customers to be served is initially known and no modifications occur during the routes. In addition, we will

study the three packing policies defined in Section 3.

All runs on the MO1 and MO2 instances have been done with a time limit of 300 seconds, 240 seconds for

the initial local search and the MP-BRKGA-IPR, and 60 seconds for the final local search. In the case of the

Ceschia instances, as they are derived from a real case, the number of customers, box types, and total boxes

are much higher than in the other instances, and the method takes longer to obtain meaningful results. For

this reason, we set a maximum time of 8000 seconds for the initial local search and the MP-BRKGA-IPR

and 2000 seconds for the final local search, for a total time of 10 000 seconds, as in Ceschia et al. (2013). For

the MP-BRKGA-IPR, we have three independent populations of size 100, |P| = 100. 30% of the population

will be the elite, so |Pe| = 30. In each generation, we use three parents, πt = 3, to generate new individuals,

of which two (πe = 2) belong to the elite set. Regarding the objective function, a weight of 1 is associated to

the total distance travel, and a weight of 1000 is associated to the vehicle use in all instances.

In MO1 and MO2 instances, there is only one type of vehicle, so the associated cost is set to 1. In the

case of the Ceschia instances, there are some instances with two different vehicle types. For these cases, the

lower capacity vehicle has a cost of 1, whereas the higher capacity vehicle has a cost of V2

V1
, with Vv being the

volume capacity of the v type vehicle. The idea is to penalize proportionally the vehicle type with the larger

capacity.

Table 4: Results of MP-BRKGA-IPR with Local Search of MO1 instances

Decoder 1: No moves Decoder 2: Some moves Decoder 3: All moves

Class C BT NB Dist Vehic Iter Dist Vehic Iter Dist Vehic Iter

I 25 5 1050 32297 131 6584 31995 131 5956 31953 131 8775
II 25 5 1550 38885 149 6464 38646 148 4880 38614 148 8635

Total 71182 280 6524 70641 279 5418 70567 279 8705

Table 4 shows the results for MO1 instances. The first four columns indicate the instance class, number of

customers (C), box types (BT), and total number of boxes (NB). The results for each type of decoder are then

shown: Decoder 1, when no movement of the boxes already packed is allowed when loading a new customer’s

cargo; Decoder 2, when the reachable boxes can be moved; and Decoder 3, when all the movements are
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allowed at each stop of the route. For each instance group and each decoder, the table shows Dist, the total

distance of the best solutions, Vehic, the total number of vehicles of the best solutions, and Iter, the average

number of iterations per instance of the MP-BRKGA-IPR.

Comparing the performance of the decoders, the results obtained with Decoder 3 are better overall, as

expected, in terms of distance and number of vehicles. However, the results of Decoder 2 are very close,

with the same number of vehicles and only 0.1% increase in distance. Decoder 1, on the other hand, needs

0.3% more trucks and increases the distance by 0.7% over Decoder 2. These small differences do not seem

to justify the increased complexity in the packing procedures. Therefore, we will keep the Decoder 1 to solve

the dynamic version of the problem in Section 6.3.

Table 5 shows the results for the MO2 instances. The information is structured as in Table 4, yet there

are three groups of instances, depending on the BR instance class used in their generation. These classes

represent instances with increasing box heterogeneity but the same total number of boxes. It can be observed

that the distance and the number of vehicles increase with the heterogeneity of the boxes. The comparison

of the Decoders is similar to that in Table 4, although the differences are slightly larger, with an increase of

1.1% in the number of trucks and 0.2% in the total distance of Decoder 1 over Decoder 2.

Table 5: Results of MP-BRKGA-IPR with Local Search of MO2 instances

Decoder 1: No moves Decoder 2: Some moves Decoder 3: All moves

BR C BT NB Dist Vehic Iter Dist Vehic Iter Dist Vehic Iter

7 25 20 1360 62295 238 5230 62334 234 4240 62019 230 7062
8 25 30 1360 63844 240 4716 62897 238 3662 61951 232 6425
14 25 90 1360 65475 249 3243 66001 247 2277 64080 234 4224

Total 191614 727 4396 191232 719 3393 188050 696 5904

Finally, Table 6 shows the results for the Ceschia instances. The information is similar to that in previous

tables, but presented for each individual instance. The last three columns of table contain the results reported

by Ceschia et al. (2013) for three versions of the problem. The 3L-CVRP is a simplified routing and packing

problem, very similar to the problem solved when using Decoder 1, although they consider fragility of boxes

and their objective function only considers minimizing the total distance. The CLP is a pure packing problem.

As no routing is involved, there are no LIFO constraints and therefore it is very similar to the problem solved

using Decoder 3. The VRP is a pure vehicle routing version in which the packing constraints are transformed

in one-dimensional capacity constraints, so they provide a reference for the impact of the packing constraints.

Although a direct comparison is not possible, the results indicate that the algorithms developed for solving

the static problem produce competitive solutions, requiring very few vehicles. The comparison with the VRP

results shows the strong effect of the packing constraints being considered in this problem.
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Table 6: Results of MP-BRKGA-IPR with Local Search of Ceschia instances

Decoder 1 Decoder 2 Decoder 3 3L-CVRP CLP VRP

Instance Dist Vehic Dist Vehic Dist Vehic Vehic Vehic Vehic

SD-CSS1 4773 4 4773 4 4921 4 5 4 3
SD-CSS2 9152 11 9152 11 9360 10 13 13 8
SD-CSS4 10675 11 10443 10 10328 11 12 11 7
SD-CSS5 6100 2 14749 2 5869 2 12 2 2
SD-CSS6 13412 14 13104 14 13327 14 32 19 11
SD-CSS7 9452 9 9009 9 8739 8 10 10 7
SD-CSS8 16595 20 17408 19 17094 19 36 21 15
SD-CSS9 14729 16 14145 16 15177 16 23 17 12
SD-CSS10 9209 7 9198 7 9187 7 18 7 5
SD-CSS11 12008 9 11440 8 11342 8 13 9 6
SD-CSS12 35090 41 33572 38 33499 37 48 37 28
SD-CSS13 20733 19 19145 18 17494 17 31 19 13

Total 161928 163 166138 156 156337 153 253 169 117

6.3. Results for the dynamic problem

In this second part of the study, we consider 5 different values for the percentage of disruption pod (0.05,

0.1, 0.15, 0.2, 0.25), for each of the 196 instances solved in the static case. As described above, each instance

is divided into two parts: one with the initial information, that is solved as a static problem; and the other

with the disruptions, which are handled one by one as they arise. If the information from these two parts is

combined, the result is the original instance, which could be seen as the case with pod = 0 or the case with

total information at the beginning of the planning horizon. Figure 5 represents the type of dynamic problem

solved and resulting plans.

. . . timet = D0 td td′ td′′ A0

Known
requests

Disruption d:
new request

Disruption d′:
modified request

Disruption d′′:
new request

Total information: assuming all customers
and corresponding demand are known

Pre-disruption plan:
collection of routes
+ schedule and
packing

Post-disruption plan:
(additional trucks)
+ new schedule and
packing

Post-disruption plan Post-disruption plan

Figure 5: First-mile logistics dynamic problem: representation of the decisions made at the start (before the departure from the
depot at D0), the decisions made after each disruption (until the arrival at the depot at A0), and of the total information case.

Table 7 shows the results of the dynamic problem using the first strategy, in which we can add as many
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Table 7: Solving the dynamic problems adding as many new trucks as needed for the MO1 and MO2 instances

Static initial problem Dynamic problem Total information

pod Dist Vehic %Vol Dist Vehic %Vol Dist Vehic

0.05 236052 925 61.2% 318757 1128 53.6% 262795 1005
0.10 223615 882 60.1% 332768 1147 50.7% 262795 1005
0.15 218465 819 59.3% 358559 1317 43.8% 262795 1005
0.20 207298 780 59.4% 381957 1432 40.0% 262795 1005
0.25 187321 706 54.7% 418358 1582 32.8% 262795 1005

Total 1072751 4112 58.9% 1810399 6606 44.2% 1313975 5025

trucks as needed to cover all the disruptions. The table shows the results for MO1 and MO2 instances,

grouped by pod, so that each row contains the aggregated results of 184 instances. The table is divided into

three parts. The Static initial problem part contains the total distance (Dist), the total number of vehicles

(Vehic), and the average percentage vehicle volume occupancy (%Vol) for the best solutions of the initial

problem. The Dynamic problem part contains the information corresponding to the solution of the dynamic

problem at the end of the time horizon, and the Total information part the solutions obtained if all the

information is known from the beginning. Larger values of pod mean that larger parts of the information are

not previously known, so the initial instances to be solved are smaller, as reflected in the comparison of the

second and fifth and the third and sixth columns respectively. Comparing the number of vehicles (Vehic)

in the initial and dynamic problems, we can observe the effect of increased dynamicity on the number of

extra vehicles required to cover all disruptions. A pod = 0.05 for both new and modified requests, requires

on average 22% more vehicles, and the percentage increases to 30% for pod = 0.10, 62% for pod = 0.15, 84%

for pod = 0.20, or 124% for pod = 0.25. The comparison of %Vol indicates that adding new vehicles to cover

the disruptions decreases the average vehicle occupancy, since just one new request can trigger the need for

a new vehicle. Comparing Vehic in the dynamic and total information columns allows us to assess the value

of the perfect information, i.e., how much better the solution would have been if all the dynamically arising

information had been known in advance. In this case, having the total information would have reduced the

number of trucks by 12%, 14%, 31%, 42%, or 57%, depending on the pod.

Furthermore, similar to the analysis performed in Table 5 about MO2 instances, when aggregating the

instances based on the cargo heterogeneity (i.e., the BR instance class), the results suggest that cargo het-

erogeneity positively influences the ability to respond to disruptions, especially for lower percentages of

disruption. Figure 6 shows the number of instances in each BR class where no additional trucks besides

those initially planned were required to accommodate all disruption requests (total information). It can be

observed that for lower pod values, it is more frequent for instances with higher box heterogeneity (i.e., higher

BR class) to have more robust initial plans that can accommodate disruption without additional vehicles.

Consequently, this might indicate that first-mile logistic providers who frequently deal with more homoge-

neous cargo are more susceptible to disruptions and could benefit the most from efficient methods to tackle

them.
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Figure 6: Number of instances (among the 46) in each BR class where no additional trucks were required besides those initially
planned to accommodate all disruption requests (total information).

Table 8: Solving the dynamic problems without new trucks for the MO1 and MO2 instances

Static initial problem Dynamic problem

pod Dist Vehic %Vol Dist %Vol %NC %MC

0.05 235867 927 61.1% 275949 63.7% 41% 36%
0.10 224227 882 60.2% 255063 63.7% 49% 32%
0.15 218417 819 59.3% 248040 63.1% 58% 48%
0.20 207967 776 59.7% 243381 63.9% 62% 53%
0.25 187250 711 54.2% 231261 60.1% 66% 58%

Total 1073728 4115 58.9% 1253694 62.9% 55% 45%
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Table 8 shows the results of the dynamic problem using the second strategy, in which no more vehicles

can be added, so disruptions must be included in the existing routes or rejected. The table is similar to

the previous one, although the Total information part would be the same as in Table 7 and is therefore not

repeated. The Dynamic problem part does not show the number of vehicles, because in this strategy it is

constant, but adds two new columns. %NC and %MC are the percentages of new and modified requests

that are rejected. It can be seen that large percentages of the disruptions cannot be covered in this strategy,

ranging from 41% of new customers for pod = 0.05 to 66% for pod = 0.25. Covering modified requests is

somewhat easier, with rejection percentages ranging from 36% to 58%, as they sometimes do not have a large

impact on the original demands. If a first-mile logistics provider does not have access to efficient solution

methods to tackle disruptions, such as the one proposed in this paper, its alternatives range from rejecting

all disruptive requests, which significantly hinders service quality and customer relations, to employing an

additional truck for each disruptive request, which is costly and difficult to sustain in the long-term. A more

balanced, albeit naive, approach would be to accept only the requests that can obviously be accommodated

in the initial plan. This second strategy, where the vehicles are limited to those of the initial plan, can

serve as a proxy for such a balanced approach. Since efficient solution methods are applied to generate post-

disruption plans in this strategy, we can assume that the naive approach cannot reduce the percentage of

rejected requests presented in Table 8. Thus, the results suggest that the level of rejected requests following

a naive approach would be significantly high, demonstrating the value of applying methods tailored to tackle

disruptions, as will be seen with the third and final strategy.

Table 9: Solving the dynamic problems with limited number of new trucks for the MO1 and MO2 instances

Static initial problem Dynamic problem

pod Dist Vehic %Vol Dist %Vol %NC %MC

0.05 236826 923 61.5% 298972 59.8% 26% 14%
0.10 224117 880 60.3% 302877 58.2% 19% 9%
0.15 218227 818 59.4% 303951 56.8% 36% 11%
0.20 207654 779 59.5% 309151 56.3% 41% 9%
0.25 187089 709 54.4% 323725 50.9% 41% 10%

Total 1073913 4109 59.0% 1538676 56.4% 33% 11%

Table 9 shows the results of the dynamic problem using the third strategy, which can be seen as a mixed

strategy in which the number of vehicles can be increased only up to a given value (in this case, the number

of vehicles of the original problem). Therefore, it is possible that some disruptions cannot be covered. The

table has the same structure as the previous one. The number of total vehicles used always matches the

number of vehicles available, shown in the last column in Table 7. The possibility of increasing the number of

vehicles reduces the percentages of new and modified requests rejected. In fact, modified requests are nearly

always accepted with this strategy, since they are easier to accommodate as they may not require a change in

the route. Figure 7 compares the average costs of accepting disruptive requests (measured by the number of

additional trucks required and, at a second level, by the additional distance traveled) for the three strategies
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Figure 7: Average increase of the cost of accepting disruptions for the three strategies proposed, measured in terms of additional
trucks and distance traveled

proposed. Allowing a limited number of additional trucks appears to avoid a steep increase in the costs of

accepting requests in the face of higher disruption levels, while providing significant responsiveness to them,

as discussed.

Table 10: Results of dynamic problems with unlimited number of new trucks for the Ceschia instances

Static initial problem Dynamic problem Total information

pod Dist Vehic %Vol Dist Vehic %Vol Dist Vehic

0.05 153457 153 60.1% 183278 185 52.0% 161927 163
0.10 144842 143 60.5% 203596 206 46.2% 161927 163
0.15 138470 136 59.6% 221695 229 42.6% 161927 163
0.20 129906 128 59.2% 229855 231 42.5% 161927 163
0.25 124616 114 60.8% 235708 241 39.4% 161927 163

Total 691291 674 60.0% 1074132 1092 44.5% 809635 815

Tables 10, 11, and 12 contain the results for the Ceschia instances. Although these instances are quite

different from MO1 and MO2, the same trends can be observed. Concerning the first strategy, the results

in Table 10 indicate that the percentages of additional vehicles are 21% for pod = 0.05, 44% for pod = 0.10,

68% for pod = 0.15, 80% for pod = 0.20, or 111% for pod = 0.25, very similar to those obtained from Table

7. The percentages of rejected requests in the second strategy and third strategies, Tables 11 and 12, are

similar to those in Tables 8 and 9, although slightly larger, possibly due to the larger size of the instances.

As discussed before in Table 3, these instances are highly variable in terms of number of customers, box

types and total number of boxes, allowing to study the impact of these instance characteristics in the results.

Table 13 shows the percent increase in number of trucks required to accept all disruption requests compared

to the trucks resulting from total information, which is the main source of cost to tackle disruptions, for the

different values of pod. It is observed that it varies significantly across instances. The results suggest that the

main driver of this cost increase is the total number of boxes (NB), as opposed to the number of customers
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Table 11: Results of dynamic problems without new trucks for the Ceschia instances

Static initial problem Dynamic problem

pod Dist Vehic %Vol Dist %Vol %NC %MC

0.05 153457 153 60.1% 163803 61.2% 62.2% 46.5%
0.10 144842 143 60.5% 163938 62.1% 62.8% 64.0%
0.15 138470 136 59.6% 170152 61.7% 73.9% 61.6%
0.20 129906 128 59.2% 157607 61.6% 76.4% 50.8%
0.25 124616 114 60.8% 158187 63.5% 86.0% 55.5%

Total 691291 674 60.0% 813687 62.0% 72.3% 55.7%

Table 12: Results of dynamic problems with limited number of new trucks for the Ceschia instances

Static initial problem Dynamic problem

pod Dist Vehic %Vol Dist %Vol %NC %MC

0.05 153457 153 60.1% 174546 59.8% 48.3% 20.6%
0.10 144842 143 60.5% 187112 58.5% 43.7% 19.6%
0.15 138470 136 59.6% 203115 58.1% 41.8% 13.5%
0.20 129906 128 59.2% 198135 57.3% 37.1% 13.4%
0.25 124616 114 60.8% 204958 55.9% 35.8% 13.1%

Total 691291 674 60.0% 967866 57.9% 41.3% 16.0%

(C) and box types (BT), which seem to have little effect. One would expect that the number of customers

would not impact this measure, since it is relative to the initial number of trucks. However, it is interesting to

verify that cargo heterogeneity in these instances seems to have little impact on the magnitude of the results

unlike the total number of boxes. These results suggest that first-mile logistic providers handling a large

number of boxes, even if for fewer customers, could benefit the most from efficient methods of responding to

disruptions.

6.4. Managerial insights

Overall, the results from this work allow to derive and summarize the following key managerial insights:

� Disruptions are decisive in first-mile logistics. If all new information were available before the planning

phase, the number of trucks required could be decreased in an amount that ranges from 12% to 57%

depending on the probability of disruption, which shows the high impact of disruptions in this context.

� Factors that increase susceptibility to disruptions and need for reactive tools:

– Homogeneous cargo. Cargo heterogeneity makes it easier to accommodate and respond to disrup-

tions. First-mile logistic providers who frequently deal with more homogeneous cargo are more

susceptible to disruptions and could benefit the most from efficient methods to tackle them. This

is a counter-intuitive insight as, for the deterministic problem, problems with homogeneous cargo

are easier to deal with.

– Large number of boxes. First-mile logistic providers handling a large number of boxes, even if for

fewer customers, could benefit the most from efficient methods of responding to disruptions, as
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Table 13: Percentages of increase in number of trucks required to accept all disruption compared to the trucks resulting from
total information for the different values of pod (percentage of disruption)

pod

Instance C BT NB 0.05 0.10 0.15 0.20 0.25

SD-CSS1 11 36 254 25% 25% 25% 25% 25%
SD-CSS2 25 15 350 9% 9% 9% 9% 45%
SD-CSS4 37 13 312 9% 18% 36% 36% 36%
SD-CSS5 41 47 7035 150% 50% 200% 300% 150%
SD-CSS6 43 97 8060 7% 21% 29% 21% 50%
SD-CSS7 45 14 284 11% 33% 56% 33% 44%
SD-CSS8 48 70 3275 0% 10% 5% 10% 10%
SD-CSS9 56 45 1725 6% 25% 38% 44% 38%
SD-CSS10 60 29 1840 29% 57% 71% 43% 71%
SD-CSS11 92 34 3790 44% 78% 122% 122% 89%
SD-CSS12 129 10 745 7% 12% 24% 27% 29%
SD-CSS13 129 63 2880 21% 53% 74% 84% 111%

the number of trucks required to accept all disruptions seems to be more sensitive to the total

number of boxes to collect than to the number of customers.

� A flexible fleet capacity is key to accommodate and efficiently react to disruption. If a first-mile logistic

provider is working at the limit of its fleet capacity, it can only respond to disruptions that can be

easily accommodated in the initial plan, and there are large percentages of the disruptions that cannot

be covered (41% to 66% of new customers rejected, and 36% to 58% of modified requests). Having

a strategy to quickly access more fleet capacity (such as leasing or renting pre-accorded plans) is key.

Even if the number of vehicles can be increased only up to a given value, this strategy appears to avoid

a steep increase in the costs of accepting requests in the face of higher disruption levels while providing

a significant responsiveness level to them.

� Efficient and balanced methods tailored to cope with disruption bring significant value to the first-mile

logistics problem. The results of the proposed approach quantify the advantages of these methods,

especially considering the number of trucks required for good service quality. Immediate on-the-fly

responses, such as allowing only clearly feasible requests, lead to substantial levels of rejected requests.

Also, allowing a limited number of additional trucks and generating efficient post-disruption plans with

our proposed method avoids a sharp increase in the costs of accepting requests in the face of higher

disruption levels while providing significant positive responsiveness to requests.

� Overall, regarding strategies to recover from disruptions, a balanced approach as described above, where

the company allows for a limited increase in the number of vehicles and a fast and efficient re-planning

of the routes using the solution method proposed in this work, seems to provide a good balance between

good customer service levels and lower logistic costs.
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7. Conclusions

In this work, in the context of first-mile parcel pickup, a vehicle routing problem with packing constraints

under disruption is addressed. In particular, we consider unpredictable events related to the arrival of new

customers and modifications in the number of boxes to be picked up at a customer’s location. To tackle

this problem we develop a BRKGA plus a local search algorithm for the static version of the vehicle routing

problem with packing constraints, in which solutions are encoded in a two-segment chromosome, the first

part containing the sequence by which the customers are loaded into the vehicles, and the second part

representing the order by which the vehicles are used, as we are considering an heterogeneous fleet. The

actual packing of the cargo is obtained during the decoding phase of the algorithm, where an order-based

packing algorithm is proposed. Actually, three different decoders are presented, considering different logistics

constraints regarding the movement of previously loaded cargo, in order to accommodate the upcoming cargo

of each customer. Dealing with the dynamic counterpart of this problem requires disruption management

strategies and algorithms. Starting from the solution generated for the static problem, disruption management

algorithms are proposed for new requests (new customers to insert in the routes) and modified requests

(changes in the demand of existing customers).

Extensive computational experiments were run, aiming to:

� Ascertain the quality of the BRKGA-based algorithm developed for the static problem, including the

impact of alternative decoders;

� Assess the impact of disruptions in this problem, under different strategies to generate post-disruption

plans, different percentages of disruption and different cargo and customer characteristics.

The computational results also led to insights relevant for first-mile logistics. As discussed above, we

distinguished three strategies to generate post-disruption plans regarding the maximum number of trucks

that can be used once the routes were initiated. The alternatives were to use as many trucks as needed to

cover all the new and modified requests, use only the number of trucks initially planned, or use the number

of trucks required by the solution of the original (static) instance. The results demonstrate the relevant role

of disruptions in first-mile logistics and allow identifying cargo size and heterogeneity as determinant factors

in obtaining good post-disruption plans. Additionally, fleet flexibility is shown to play a relevant role in

responding to this kind of disruptions. Overall, this work shows that efficient and balanced methods that are

tailored to cope with disruption, such as the ones proposed, are critical in first-mile logistics.

In future work, this approach can be brought even closer to real-world needs by considering other sources

of disruption, especially those related to time. Time uncertainty can arise in several aspects of the problem,

from customer loading time to route duration, both depending on the time of the day, but also on unexpected

events. Time windows can be a major source of disruption. If a customer does not have the parcels ready to

be loaded, the courier may wait for them, delaying the route. Congestion can also disrupt the initial plan if

travel duration increases dramatically. Initial plans can be adapted to account for variations of deterministic
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information (Xiao and Konak, 2016), and then a disruption recovery algorithm should be developed to handle

traffic jams due to accidents or other unpredictable issues (Chen et al., 2006). Another improvement of this

work relies in the recourse actions undertaken to fix the disrupted solution, for instance by considering a split

pickup for customers with new boxes to be collected.
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Pillac, V., M. Gendreau, C. Guéret, and A. Medaglia (2013). A review of dynamic vehicle routing problems.

European Journal of Operational Research 225 (1), 1–11.

Pinto, B. Q., C. C. Ribeiro, I. Rosseti, and T. F. Noronha (2020). A biased random-key genetic algo-

rithm for routing and wavelength assignment under a sliding scheduled traffic model. Journal of Global

Optimization 77 (4), 949–973.

Pollaris, H., K. Braekers, A. Caris, G. K. Janssens, and S. Limbourg (2015). Vehicle routing problems with

loading constraints: state-of-the-art and future directions. OR Spectrum 37 (2), 297–330.

Psaraftis, H. N., M. Wen, and C. A. Kontovas (2016). Dynamic vehicle routing problems: Three decades and

counting. Networks 67 (1), 3–31.

Ramos, A. G., E. Silva, and J. F. Oliveira (2018). A new load balance methodology for container loading

problem in road transportation. European Journal of Operational Research 266 (3), 1140–1152.

Ruiz, E., V. Soto-Mendoza, A. E. Ruiz Barbosa, and R. Reyes (2019). Solving the open vehicle routing

problem with capacity and distance constraints with a biased random key genetic algorithm. Computers

and Industrial Engineering 133, 207–219.

Seiden, S. S. (2001). On the Online Bin Packing Problem, pp. 237–248. Berlin, Heidelberg: Springer Berlin

Heidelberg.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window

constraints. Operations Research 35 (2), 254–265.

Spliet, R., A. F. Gabor, and R. Dekker (2014). The vehicle rescheduling problem. Computers & Operations

Research 43, 129–136.

34



Toth, P. and D. Vigo (2014). Vehicle routing: problems, methods, and applications. SIAM.

Wang, X. and H. Cao (2008). A dynamic vehicle routing problem with backhaul and time window. In

2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Volume 1, pp.

1256–1261.

Wang, X. and G. Q. Huang (2021). When and how to share first-mile parcel collection service. European

Journal of Operational Research 288 (1), 153–169.

Wang, X., J. Ruan, and Y. Shi (2012). A recovery model for combinational disruptions in logistics delivery:

Considering the real-world participators. International Journal of Production Economics 140 (1), 508–520.

Wang, X. and Z. Zhao (2021). Survey of the dynamic pickup and delivery problems. Xitong Gongcheng Lilun

yu Shijian/System Engineering Theory and Practice 41 (2), 319–331.

Xiao, Y. and A. Konak (2016). The heterogeneous green vehicle routing and scheduling problem with

time-varying traffic congestion. Transportation Research Part E: Logistics and Transportation Review 88,

146–166.

Yu, G. and X. Qi (2004). Disruption management: framework, models and applications. World Scientific.

Zhang, J., F. Liu, J. Tang, and Y. Li (2019). The online integrated order picking and delivery considering

Pickers’ learning effects for an O2O community supermarket. Transportation Research Part E: Logistics

and Transportation Review 123, 180–199.

Zhang, Z., A. Tafreshian, and N. Masoud (2020). Modular transit: Using autonomy and modularity to im-

prove performance in public transportation. Transportation Research Part E: Logistics and Transportation

Review 141, 102033.

Zhen, X., Y. Li, G. G. Cai, and D. Shi (2016). Transportation disruption risk management: Business interrup-

tion insurance and backup transportation. Transportation Research Part E: Logistics and Transportation

Review 90, 51–68.

Appendix A. Formal description of the static pick-up problem

In this problem, there is a set of customers to be served, C = {1, . . . , C}, each one with a location

represented as a node nc in a network. The depot is located at node n0, with opening hours [a0, b0]. The

matrix T holds the time tij it takes to move from node i to j, i, j ∈ C ∪ {0}. Customers have a demand,

i.e. a set of boxes Bc = {1, . . . , Bc}, c ∈ C to be picked up. The boxes b ∈ Bc are cuboids of which we know

their dimensions and weight. They must be picked up within a time window associated with each customer,

[ac, bc], and each demand has an assigned service or picking time, sc, which is the time needed for the driver

to pick up and load all the boxes into the vehicle.
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The logistics company has a fleet with different types of vehicles, V = {1, . . . , V } and each type v ∈ V has

kv vehicles, being
∑

v∈V kv = K. Each vehicle type has a load volume defined by its dimensions Lv×Wv×Hv,

a weight capacity Mv, and a daily cost cv. The driver of each vehicle k has a defined shift [αk, βk] during

which he/she must make customer visits.

The objective is to minimize both the number of vehicles used and the total distance to be travelled on

all routes. We consider that saving on the number of vehicles used is preferable to reducing the distance

travelled, so we will choose the solution with the least number of vehicles, and, in case of a tie, the one with

the least distance travelled. To achieve this goal, the function f that defines the objective is given by the

expression

f = d+ κ
∑
v∈V

cvsv, (A.1)

where d is the total distance, sv the number of v type vehicles used in the solution, cv the cost of the v type

vehicle, and κ a sufficiently large constant. In our computational experiment, κ is set 1000 in all instances.

In MO1 and MO2 instances, there is only one type of vehicle, so the associated cost is set to c1 = 1. In the

case of the Ceschia instances, for the instances with two different vehicle types, the lower capacity vehicle

has a cost of c1 = 1, whereas the higher capacity vehicle has a cost of c2 = V2

V1
.

This problem is known as the Capacitated Vehicle Routing Problem with pickups, time windows, and

packing constraints. A solution to this problem is called a plan and consists of a collection of routes, each with

an associated schedule and packing. A route k is defined as a sequence of nodes
(
n0, n

k
1 , . . . , n

k
i , . . . , n

k
Ik
, n0
)

to be visited by vehicle k.

The schedule associated with this route k is the time information for each node nki . This time information

is composed of three time instants:

� Arrival time Ak
i at node nki .

� Start time of the load at node nki , Hk
i = max{Ak

i , ai}.

� Departure time Dk
i from node nki , Dk

i = Hk
i + si.

When i = 0, we have Dk
0 , the departure time at the start of the route, and Ak

0 , the arrival time to the depot

at the end of the route. All these variables depend on the route k, but when no confusion can arise, we will

often omit the index k for the sake of simplicity. A schedule for a given route is shown in Figure A.8.
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Figure A.8: Schedule of a route

Associated with each node of the route, the packing of the loaded boxes must be provided. For this

purpose, the loading space inside the vehicle is described as a parallelepiped. Without loss of generality, the

axes of the coordinate system are assumed to be placed so that the length Lv (resp. width Wv, height Hv)

of the vehicle type v lies on the x-axis (resp. y-axis, z-axis) ∀v ∈ V. The origin of this coordinate system

is at the bottom left front corner of the vehicle’s cargo space. A representation is given in Figure A.9. The

position of a box b is described by the position of the front bottom left corner (xb, yb, zb) and the position of

the upper right rear corner (x′b, y
′
b, z

′
b) of the box inside the vehicle.

Lv

Hv

W
v•

(0, 0, 0)
•

•

(xp, yp, zp)

(x′
p, y

′
p, z

′
p)

z y

x

Figure A.9: Representation of the loading space inside a vehicle and description of the position of a box

The feasibility of a solution depends on the feasibility of the routes, and associated schedule and packing.

Route feasibility. A feasible route must satisfy:

(RF1) All boxes must be collected;

(RF2) Customers are visited exactly once;

(RF3) Each route starts and ends at the depot n0.
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Schedule feasibility. The feasibility of every route depends on the schedule and on the packing. A schedule

is feasible if the following constraints are met:

(SF1) Time windows for each vehicle: the driver of each vehicle k has a time window [αk, βk] which implies

that the departure time from the depot Dk
0 cannot be earlier than time αk and the arrival time Ak

0

cannot exceed time βk (Dk
0 ≥ αk and Ak

0 ≤ βk).

(SF2) Time windows for each customer: at each node nki , the load start time must be in the time window of

customer i, and the process must finish also within this time window (Hk
i ≥ ai and (Hk

i + si ≤ bi).

(SF3) The load starts after arrival at node nki , Ak
i ≤ Hk

i , and ends at the time the load completes, Dk
i =

Hk
i + si.

(SF4) Time consistency: the arrival time at node nki+1 is defined as the time the previous node of the route

is left plus the time required to traverse the arc (i, i+ 1): Dk
i + ti,i+1 = Ak

i+1.

Packing feasibility. A packing is feasible if it satisfies the following conditions:

(PF1) The set of boxes of a customer is assigned to exactly one vehicle.

(PF2) Each box lies within the boundaries of the vehicle.

(PF3) Boxes cannot overlap each other.

(PF4) The total weight of the boxes inside a vehicle cannot exceed the maximum capacity of the vehicle

(PF5) Orthogonality: every box must be loaded with its edges parallel to the vehicle boundaries.

(PF6) Vertical stability: boxes must be completely supported by other boxes or the vehicle floor.

(PF7) Rotation: each box has six possible rotations, but in some cases only some of them are allowed.

Appendix B. Genetic algorithm decoders description

Decoder 1: No movement

In this decoder, the boxes previously packed cannot be moved. To pack the boxes of the current customer,

we use a constructive algorithm based on maximal spaces, adapted from Alvarez et al. (2015). For a given

vehicle type v and a given customer c, the algorithm works as follows:

1. Initialization:

Two sets are defined:

S = the list of empty maximal spaces created when packing the boxes of previous customers into the

vehicle. If the vehicle is empty, S is just the empty cargo space of the vehicle.

Bc = the set of boxes to be packed, corresponding to customer c.
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2. Choosing the maximal space from S:

From the list S the maximal space with the largest coordinate z is chosen. The reason behind this

strategy is to stack boxes in piles.

3. Choosing the boxes to pack:

Once a maximal space S ∈ S has been chosen, the remaining boxes of the current customer, Bc, fitting

into S, are considered for packing. If there are several boxes of the same type, the possibility of packing

a group of boxes forming a column or layer is also taken into account and considered as another single

box. The box that best fits in the maximal space is selected. The distance from each side of the box to

each side of the maximal space is calculated and these distances are put in a vector in non-decreasing

order. The box is chosen using the lexicographic order. If there is a box filling up the space, it is

selected. If no such box exists, the box matching two dimensions of the space is selected. If it does not

exist, the box matching one dimension, and if it is does not exist, the box whose minimal difference in

dimension with respect to the dimension of the space is minimal is chosen.

The selected box is packed in the corner of the maximal space with the shortest distance to the origin

of coordinates.

The set Bc is updated by removing the box or boxes just loaded. If Bc = ∅ and S = ∅, the procedure

ends and the decoder will take the next vehicle type and the next customer in the sequence.

4. Updating the S list:

Unless the box or group of boxes fits exactly in the space S, packing it produces new empty maximal

spaces that will replace S in the list S. Moreover, since the maximal spaces are not disjoint, the

box or group of boxes that are packed can intersect with other maximal spaces that will have to be

reduced. Once the new spaces have been added and some of the existing spaces have been modified,

the list is checked and inclusions are removed. The maximal spaces that cannot accommodate any of

the remaining boxes, Bc, are also removed from S. If Bc 6= ∅ and S 6= ∅, there are still some boxes to

pack and some empty spaces, so the procedure goes back to Step 2. However, if Bc 6= ∅ but S = ∅,

the boxes of customer c do not fit into the vehicle; therefore, the state of the vehicle before starting to

load the boxes from customer c is retrieved and the algorithm goes back to the decoder with the same

customer c and the next vehicle in the sequence. Finally, if Bc = ∅ and S 6= ∅, the algorithm goes to

Step 5 to update the list S for the next customer in the sequence.

5. Updating the S list for a new customer:

The maximal spaces that are not completely visible from the back of the vehicle need to be removed

from the list, because they cannot be accessed without moving some of the already packed boxes. A

space is said to be visible if it can be completely seen from the back of the vehicle. If S 6= ∅, the
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procedure returns to the decoder with the same vehicle and the next customer in the sequence. If

S = ∅, the next vehicle in the sequence is taken.

Decoder 2: Some movements

In this decoder, the movement of some boxes is allowed: the driver loads the boxes of the current customer

and can also move the reachable boxes, that is, the boxes already loaded that are accessible without moving

any other box.

The difference between this decoder and decoder 1 is that in Step 5 we remove the reachable boxes,

forming set R, and update the maximal spaces accordingly, and in Step 1 the set of boxes to be loaded will

be Bc ∪R.

Decoder 3: All movements

In this decoder, the movement of all boxes is allowed; so all loaded boxes can be moved.

The difference between this decoder and Decoder 1 is that in Step 5 all the boxes loaded from previous

customers are removed and the list S will just be the empty space cargo, and in Step 1 the set of boxes to

be loaded will include all boxes from previous customers plus the boxes from customer c.
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