



# Impact of Active Distribution Networks on voltage stability: A case study using dynamic equivalents

Thierry Van Cutsem Gilles Chaspierre

Dept. Electrical Eng. & Comp. Sc. University of Liège, Belgium



Guillaume Denis Patrick Panciatici

R & D dept. RTE, France

Rte

Opportunities and challenges for voltage stability with power-electronics-interfaced components Panel session of the 2022 IEEE PES General Meeting, Denver (CO), USA

# Introduction



- Distribution grids host more and more *Distributed Energy Resources* (DERs) using *Inverter-Based Generators* (IBGs)
- they become *Active Distribution Networks* (ADNs)
- they have a growing impact on the whole system dynamics
  - in particular voltage dynamics and stability, which they can worsen as well as improve.
- This presentation illustrates impacts of DERs through a case study involving:
  - a large population of ADN equivalents attached to a transmission system model
  - short- and long-term dynamics
  - stable, unstable and stabilized voltage responses to a large disturbance (fault) in transmission grid.
- More details can be found in:
- G. Chaspierre, G. Denis, P. Panciatici, and T. Van Cutsem, "A dynamic equivalent of Active Distribution Network: Derivation, Update, Validation and Use Cases," *IEEE Open Access Journal in Power and Energy*, Aug. 2021



### 1. Description of the T+Eq model





19.8 MW

Initial

consumption :

 $P_o^{mot} = mP_o$ 

 $Q_o^{mot} = mP_o \tan \phi_m$ 

0 < m < 1



1175

## The reference ADN model

•

•





- low-Voltage Ride-Through (LVRT)
  - reactive current injection in low voltage conditions



limit on current with priority to reactive current

$$i_P^{MAX} = \sqrt{I_{nom}^2 - i_Q^2}$$

- limit on active current recovery rate  $(di_P/dt)_{max}$
- Generic model of Phase-Locked Loop (PLL)



### The transmission system





IEEE Nordic test system for Voltage Stability and Security Analysis

- fully documented in Tech. Rep. PES-TR19, Aug. 2015
- overview in IEEE Trans. on PWRS, 2020
- 11 loads of the Central area replaced by 627 instances of the ADN equivalent



• operating point of transmission grid preserved

# **Randomization of the ADN equivalents** Variation of parameters

| Static part of | exponent $\alpha$ in Fig. 2             | $[1.35 \ 1.83]$ |
|----------------|-----------------------------------------|-----------------|
| aggregate load | exponent $\beta$ in Fig. 2              | $[1.92 \ 2.60]$ |
| Motor part of  | loading factor                          | $[0.48 \ 0.64]$ |
| aggregate load | fraction $m$ of initial power           | $[0.1 \ 0.3]$   |
| Aggregate      | nominal apparent power $S_{ibq}$        | [5 10]          |
| IBG            | ("small" and "large" capacity) (MVA)    | $[10\ 15]$      |
|                | maximum rate of                         | $[0.3 \ 0.4]$   |
|                | active power recovery (pu/s)            |                 |
|                | slope $k_{RCI}$ in Fig. 3 b             | $[2.93 \ 3.96]$ |
|                | fraction disconnected under low voltage | $[0.10 \ 0.15]$ |
| Impedances     | $R_1, X_1, R_2$ and $X_2$               | $\pm 15 \%$     |
| Distribution   | nominal apparent power $S_{tfo}$ (MVA)  | [18 22]         |
| transformer    | delay before first tap change (s)       | [28 32]         |
|                | time between further tap changes (s)    | [8 12]          |



Variation of operating point

Capacity ratio :  $CR = S_{ibg}/S_{tfo}$ 

Penetration level :  $PL = P_2/(P_1 - P_2)$ 





#### Scenario



#### Disturbance

- 3-ph short-circuit on line 4032-4044
- cleared in 100 ms by opening the line

#### Operating point "A"

• insecure

#### System response

- stable in the short term
- unstable in the long term



## 2. Short-term dynamics

### **Short-term dynamics**





IBG disconnections due to low voltage are not considered

Time (s)



IBG disconnections due to low voltage are not considered

### **Short-term dynamics**



Time (s)



IBG disconnections due to low voltage are not considered

## **Short-term dynamics**



Time (s)



Disconnection of some IBGs due to low voltage

#### **Short-term dynamics**



t (s)



## 3. Long-term dynamics



#### **Long-term dynamics**







### **Emergency control of long-term instability**



IEEE

## **Corrective control of long-term instability**





# Conclusion



- Important to account for ADNs in dynamic simulations at transmission level
- individual control of DERs as specified in grid codes impact voltage dynamics
  - reactive current injection
  - disconnection of some IBGs due to low voltage
- *additional* emergency control of DERs may improve long-term voltage stability
- "grey-box" dynamic equivalents of ADNs
  - offer a compromise between simplicity and accuracy
  - must account for the above controls.

#### Thank you for your attention !