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Abstract

Chronic obstructive pulmonary disease (COPD) and asthma are complex, multi-

dimensional, and heterogeneous diseases, that represent an important burden for

the public health expenditure in western world. In literature, patients are divided

into several different groups according to the combination of clinical, biological, and

physiological characteristics, and these groups are called phenotypes. Understand-

ing the phenotype of each patient is the first step toward effective personalized man-

agement and treatment. The common statistical approach to determine the phe-

notypes is cluster analysis. Cluster analysis is a well-known unsupervised learning

methodology that considers multiple variables in order to create coherent subsets

among a large group of patients.

In this thesis, one of the most competitive and complex statistical analysis frame-

works for applying cluster analysis in incomplete large datasets was introduced. In

this framework, in addition to handling the missing values by multiple imputation,

the dimensions of variables were reduced, and after performing the clustering method,

the final result of clustering was achieved using a novel and efficient mixture multi-

variate multinomial model (4M) method. The efficiency of the proposed framework

was evaluated and compared using several scenarios on simulated datasets with dif-

ferent competitive methods for each step.

The new framework was applied to three novel specific populations of COPD and

asthma. The first study was conducted on 178 stable COPD patients with the ratio

of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) post
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bronchodilation less than 70%, age above 40 years, and smoking history of at least 20

pack years and no clinical history of asthma before the age of 40 years. As a result,

three different clusters were found, which shared similar smoking history. Includ-

ing markers of systemic and airway inflammation and atopy and applying a compre-

hensive cluster analysis, we provide here evidence for 3 clusters markedly shaped by

sex, airway obstruction, and neutrophilic inflammation but not by symptoms and T2

biomarkers.

In the next study, 426 eosinophilic patients which were defined by a sputum eosinophil

count ≥ 3% were considered. On the whole cohort, cluster analysis revealed two

groups identified as cluster 1 (n=276) and cluster 2 (n=150) with cluster 1 being highly

atopic with achievable control of the disease with ICS in most of the cases whereas

cluster 2 featured a more aggressive disease, largely non-atopic with mixed granulo-

cytic inflammation often resisting to ICS or oral Corticosteroids (OCS).

Finally, the framework was applied to a large group of asthmatics (n=588) who

were non-eosinophilic (sputum eosinophils <3%). The analysis of the whole cohort

revealed two groups identified as cluster 1 (n=417) and cluster 2 (n=171) with clus-

ter 1 displaying a low treatment burden and proportion of atopy, a neutrophilic air-

way inflammation, a frequent smoking history with preserved lung function but poor

asthma control and quality of life while the cluster 2 essentially featured atopic pa-

tients with paucigranulocytic and partly controlled asthma.

In conclusion, our proposed framework has an effective performance compared to

competing methods based on the designed scenarios on these simulated datasets. By

including airway inflammatory parameters among the variables, we have provided

original data on cohorts of COPD and eosinophilic and non-eosinophilic asthmatics,

which indicate substantial heterogeneity between clusters and, in asthma, in par-

ticular, great differences inside each airway inflammatory phenotype. Our findings

should be confirmed in multicentric studies and their clinical value assessed on lon-

gitudinal studies looking at mortality and hospitalization in COPD and exacerbation

rate and lung function decline in asthmatics.
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General introduction

In heterogeneous diseases, like asthma and chronic obstructive pulmonary dis-

ease (COPD), it is crucial to describe and classify patients according to their clinical

features. The sub-homogenous clusters are known as phenotypes. Cluster analysis

is a statistical method that allows to classify data objects according to the informa-

tion available and variables that describe those objects and their relationships. As a

general rule, it is desired that objects within a cluster are similar (or related) to one

another, and objects are distinct from (or unrelated to) those within other clusters.

In cluster analysis, the most efficient results can be found when the highest degree

of similarity (or homogeneity) is detected within the clusters and the greatest dis-

similarity between them. Application of cluster analysis depends on the objects,

variables, and methodology. Therefore, in contrast to other methods of defining

phenotypes, cluster analysis is more data-driven; consequently, the results derived

with cluster analysis may be less exposed to a priori assumptions and documented

bias. When objects are assigned to clusters, these clusters must have a meaning-

ful interpretation, and an appropriate name should be attributed according to clus-

ters'characteristics. Within the medical field, the names of the clusters should be

assigned to reflect the underlying cause of the disease as well as the clinical, physio-

logical, and immunological features and response to treatment.

The application of cluster analysis for the classification of a population involves

several major considerations. The first consideration deals with the selection of the

type of population that will be studied by the cluster analysis. It is imperative to care-

fully select the population and individuals to analyze. In a homogeneous population

1



2 General introduction

with individuals who are too similar, deriving clusters may lead to misleading results.

For example, if individuals with airflow obstruction are selected as the study popula-

tion and that those individuals are resistant to treatments, cluster analysis may sim-

ply reveal phenotypes related to referral patterns; in this case, insufficient response to

inhaled corticosteroids. On the other hand, when the population is too disparate and

individuals have a wide range of disease conditions, it may result in unexpected and

ambiguous clusters or very small clusters that will not be representative of a mean-

ingful underlying disease. Although random sampling can overcome part of these

effects, this thesis stands out primarily because of its comprehensive, accurate, and

innovative population selection of COPD and asthma, which leads to reliable clus-

tering results.

The second consideration deals with the problem of missing values. In clinical re-

search and when working with real-world datasets, missing values are pervasive and

unavoidable. This issue is a significant challenge in statistical analysis. There may

be several reasons for missing values, such as failure to record a specific test, miss

of some questions on self-assessment questionnaires on purpose or by accident, or

particularly, patients who are not able to pass some of the tests or samples, such as

low-quality sputum. In terms of statistics, as there is no unique solution to deal with

missing values, working on incomplete datasets is particularly troublesome. Further-

more, missing values creates serious problems when researchers are faced with insuf-

ficient statistical methods not designed to handle incomplete datasets. Most statis-

tical softwares are usually designed with default settings that exclude missing values

from the analysis and just notify a warning for the incomplete dataset. However, ex-

cluding missing values from a dataset may result in decreased power, high standard

error values, wide confidence intervals, decreased precision, more bias, and reduced

efficiency. Several alternative methods are available for imputation of missing val-

ues. The two main categories include simple and advanced imputation techniques.

The simple approaches consist of listwise deletion, available case analysis, single im-

putation, the indicator method, and weighting while, advanced analysis approaches

include likelihood-based methods, posterior-based approaches, and multiple impu-

tation. Despite no discussion of the validity of these methods, cluster analysis can

be applied directly to most of them. Multiple imputation has become a popular and

very flexible method that takes into account the uncertainty of missing data. How-

ever, due to its complexity in combining the results to gain final clustering output and

many analytical decisions, it has only been considered in a limited number of studies.
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In the third consideration, researchers need to think about the variables involved

in cluster analysis. The presence of mechanisms and clinical characteristics in dif-

ferent phenotypes will be reflected through these variables. Variable selection tech-

niques, such as selecting variables based on researchers'opinions or selecting vari-

ables using criteria indices, are popular in clinical research. With this kind of tech-

nics, variables that measure the same thing should be avoided, since the extra noise

may lead to unclear clusters. During variable selection, researchers should consider

that the values of selected variables may be influenced by treatments (e.g. inhaled

corticosteroids modify those associated with variable airflow obstruction) or when a

disease process changes the values of variables defining the disease (e.g. variable air-

flow obstruction caused by inflammation may lead to irreversible obstruction due to

remodeling). It is obvious, however, that different researchers would select different

variables. However, there is no need for the researchers to select part of the recorded

variables. Indeed, variable reduction methods exist that allow considering the whole

available variables. Among those methods, the principal component analysis (PCA)

reduces the number of available variables by creating new components without ex-

cluding part of the original variables set. These new components could then be ana-

lyzed more easily via cluster analysis. However, the key point in clustering is to assign

all of the objects to clusters and investigate the classifications, and attribute names

to clusters. Therefore, it would be necessary at this stage to refer back to the original

variables.

Once the population has been defined and the methods for addressing missing

values and variable reduction have been established, the dataset is ready for classifi-

cation. A fourth consideration deals with methods of cluster analysis. Indeed, cluster

analysis is not similar to common statistical methods in which statistical hypothe-

ses are investigated. Cluster analysis searches for the presence of a structure in the

dataset. In practice, there are numerous ways to carry out cluster analysis. Meth-

ods are simply composed of two broad categories: hierarchical and nonhierarchi-

cal. Hierarchical methods repeatedly merge (agglomeration) or divide (distributive)

clusters, using distance criteria, until each object is classified. Depending on the

type of variables, different approaches can be used to measure this distance. Non-

hierarchical cluster analysis, like K-means, aims to find a classification of the objects

which maximizes (or minimizes) criterion. In another clustering method, a mixture

of multivariate normal distributions is assumed with some assumptions about the

shape of clusters using a variance-covariance matrix. Based on information criteria,

the optimal number of clusters can be determined, and then the objects are classi-
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fied. In all of these methods, determining the optimal number of clusters is a huge

challenge, and there are many different approaches to determine it. Consequently,

the clustering results are highly sensitive and dependent on the method applied.

In spite of all the explained challenges, within the medical framework, cluster anal-

yses may help clinicians understand the true patterns of COPD and asthmatic pa-

tients. This knowledge may be used to develop different pharmacological treatments

and other interventions for specific phenotypic groups. In other words, when using

patients'classification into several homogeneous clusters and naming them based

on similar characteristics and different phenotypes, clinicians can implement more

personalized treatment. Therefore, the aim of this thesis will be to apply appropriate

clustering methods to specific populations.

In terms of the statistical population, we selected two datasets of the most het-

erogeneous diseases. The first dataset was COPD patients. Many studies have been

carried out on this population via cluster analysis. However, having explained the

importance of the statistical population, in this thesis, we looked out on specific pop-

ulation, COPD patients with FEV1/FVC ratio post bronchodilation less than 70%, age

above 40 years, and smoking history of at least 20 pack-years and comprehensive pa-

rameters such as T2 biomarkers and treatments, which was an innovation. While sev-

eral kinds of research have been performed on clustering in asthmatic patients, the

heterogeneities inside the two the well-known asthma phenotypes, i.e., eosinophilic,

and non-eosinophilic phenotypes had not been investigated so far. Therefore, an

objective of this thesis will be to perform cluster analysis in patients previously seg-

regated based on sputum eosinophilia. In addition, due to the significant effect of

treatment by ICS on sputum eosinophils and other functional and clinical indices,

steroid naïve and high dose ICS treated groups will also be examined separately in

both eosinophilic and non-eosinophilic patients.

Since cluster analysis is a data-driven methodology, it is extremely important to

carefully examine all available recorded variables. However, recent publications have

concentrated cluster analysis on specific, selected sets of features and variables and

then generalized it to whole parameters that have a substantial impact on the results.

Therefore, in this thesis, a wide variety of new features and variables have been in-

cluded, and cluster analysis has been applied to remarkable variables that, despite

their influence, have not been previously investigated.
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As explained, cluster analysis and handling missing values are two well-known

methods. However, the combination of these two methods is a new challenge with a

lot of analytical decisions. The first statistical contribution of this thesis is related to

the treatment of missing values with the application of multiple imputation within

the framework of cluster analysis on a large number of variables. According to the

process of multiple imputation, a consensus clustering method is required in the last

step to combine results derived from cluster analysis on each imputed dataset. In

this thesis, a new method based on mixture multivariate multinomial distribution is

proposed to solve the problem of obtaining the final clustering result.

The next statistical contribution of this thesis is to present a thorough review of the

various and common methods for dealing with missing values, cluster analysis, the

techniques for determining the number of clusters, dimension reduction, and finally

consensus clustering. In this thesis, the efficient methods of these concepts are com-

bined and a new framework is proposed. The efficiency of the proposed framework

was assessed and compared with alternative existing methods through large compre-

hensive simulations.

Therefore, this thesis will explain all of these processes in seven chapters. In Chap-

ter 1, a general definition of both COPD and asthma is presented. The phenotypes

of each disease are then discussed with a comprehensive review of published clus-

ter analysis literature on both subjects. Three different datasets used in this thesis

are then presented with their related difficulties in applying cluster analysis. These

datasets contain patients who suffer from COPD; both eosinophilic and non-eosinophilic

asthmatic patients, and their naïve and high dose ICS treated subgroups. During this

chapter, we describe the populations and considered variables, exclude and include

conditions, and then the number and percentage of missing values for variables.

In Chapter 2, the different clustering methods are discussed. Three commonly

applied clustering techniques are explained, partition clustering, hierarchical clus-

tering, and model-based clustering. Finally, different criteria for cluster validation

are presented.

The challenge of applying cluster analysis to a large incomplete dataset is out-

lined in Chapter 3. The following sections summarize the common issues of han-

dling missing data after a presentation of the missingness pattern and mechanism.

Then, the problem of dimension reduction is outlined with the review of methods
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related to variable selection and variable reduction. This chapter concludes with the

proposal of a consensus clustering method based on mixture multivariate multino-

mial distributions to solve the problem of obtaining the final clustering result.

The original statistical part of our research is presented in Chapter 4. The chap-

ter attempts to present a new statistical framework that combines the best methods

to deal with the challenges presented in Chapter 3 when applying cluster analysis to

incomplete large datasets. Two commonly used frameworks that address the same

issues are presented in this chapter. The performance of the proposed framework is

evaluated and compared using several scenarios on simulated datasets with different

competitive methods for each step. For that purpose, the percentage of the correct

number of clusters, as well as the Kappa coefficient with a corresponding 95% confi-

dence interval, is taken into account. This chapter concludes with some recommen-

dations.

The COPD dataset and variables that make up the dataset, as well as the percent of

missing values, are described in Chapter 5. In this chapter, a combination of appro-

priate methods is applied to classify the multidimensional incomplete COPD dataset.

As a result, three distinct clusters are identified in COPD dataset.

The proposed framework is applied to eosinophilic (sputum eosinophils ≥ 3%)

and non-eosinophilic (sputum eosinophils < 3%) asthmatics patients, in Chapter 6

and Chapter 7, respectively. Since ICS treatment could be a confounding factor and

that high doses of ICS may serve to define severe asthma, cluster analysis will be re-

done in steroid naïve and high dose ICS treated patients for both eosinophilic and

non-eosinophilic asthmatics.

Figure 1 summarizes the steps of this thesis in the order in which they generally oc-

cur in cluster analysis of incomplete datasets with a large number of variables, along

with related chapters. In summary, this thesis focused on the application within the

medical field of cluster methods in the presence of incomplete large datasets. There

is a strong emphasis on integrating methods for handling missing values and variable

reduction in the clustering process. In addition to the statistical field, the findings of

this thesis have an impact on the medical field as well. From a statistical point of

view, based on the results of the simulation study, we provided some recommenda-

tions on the best way to apply the cluster method to incomplete large datasets. While

from a medical point of view, appropriate clustering methods were applied to iden-
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tify unknown dimensions of asthma and COPD diseases.

Figure 1: Schematic of the thesis (Inspired by Figure 1 of Horne et al. (2020)).





CHAPTER 1

Phenotype in COPD and asthmatic patients

COPD and asthma are widely accepted as complex and heterogeneous disorders

that may have different underlying causes, and treatment response patterns, and eti-

ologies. These two diseases can be classified into recognizable clusters, referred to as

phenotypes in clinical terminology. These clusters are defined according to demo-

graphic information, clinical characteristics, lung function, and inflammation pa-

rameters measured in the patients. These phenotypes could be derived using statis-

tical approaches such as cluster analysis. The first chapter of this thesis will focus on

a literature review of the use of cluster analysis for defining COPD and asthma phe-

notypes in different patient populations in section 1.1. The main medical purpose

of this thesis is to identify and interpret phenotypes on three datasets described in

section 1.2. The first dataset will consist of data collected among patients suffering

from COPD, the second dataset will focus on eosinophilic asthmatic patients, and

finally, the third dataset will investigate the characteristics of non-eosinophilic asth-

matic patients. The statistical challenges associated with performing cluster analysis

on these datasets will then be briefly exposed in section 1.3.

1.1 Asthma and COPD phenotype

In recent years, cluster analysis has been applied as a popular method to examine

the heterogeneity of patients with COPD or asthma. There are many studies of clus-

tering on COPD or asthmatic patients which differ in their study population, sam-

9
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ple definition, collected parameters as well as applied statistical methods. As clus-

ter analysis includes several steps such as variable selection, method of clustering,

and determination of the number of clusters, different results can emerge from these

studies. In this first section, we will review the literature on clustering in both COPD

and asthmatic patients.

1.1.1 COPD phenotypes

COPD is a major chronic airway and pulmonary disease affecting more than 10%

of the population above 40 years. It represents a major burden for public health as it

results in a high morbidity and mortality together with high costs incurred by drugs

and repeated hospitalizations (Vos and et al., 2020). COPD refers to a group of lung

conditions including emphysema, chronic bronchitis, asthma, and other lung dis-

eases that can lead to breathing difficulties due to lung inflammatory conditions,

irreversible narrowing of the airways, that results in decreased airflow. COPD is fre-

quently characterized by breathlessness, coughing with phlegm, chest infections, as

well as wheezing. Functionally COPD is defined by a FEV1/FVC ratio < 70% after

bronchodilation by inhaled β2 agonist and/or anticholinergic.

A major cause of COPD is smoking, which accounts for almost 90% of cases, other

causes are exposure to dust or fumes at work, and air pollution. In COPD, phenotype

refers to a combination of disease attributes that distinguish patients according to

their clinically important characteristics, such as gender, exacerbation, symptoms,

response to treatment, and rate of disease progression (Han et al., 2010).

These phenotypes divide patients into several clusters with common features and

clinically meaningful outcomes that help patients to receive effective care and achieve

better clinical results. The exploration of COPD using their phenotypes has a poten-

tial impact on pharmacological and non-pharmacological management of COPD.

Identifying the phenotypic approaches is the first step toward more personalized

management and treatment of COPD patients.

The phenotypes of COPD can be investigated in several aspects. Snider (1989) was

the first to introduce and define the different types of phenotypes with a specific

statistical method, known as non-proportional Venn diagram. Chronic bronchitis,

emphysema, and asthma were the three subgroups described by the authors, with

subgroups overlapping with each other.
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Among all phenotypes introduced and described in the literature, we considered

studies utilizing cluster analysis on multidimensional COPD datasets, and the results

were clear and understandable. Miravitlles et al. (2013) found three different pheno-

types when considering the different responses to available treatments. These three

distinguished phenotypes were the exacerbator, the overlap COPD-asthma, and the

emphysema-hyperinflation. Patients with the exacerbator phenotype presented at

least two exacerbations in the previous year, and in addition to long-acting bron-

chodilators, anti-inflammatory medications may be necessary.

The overlap COPD-asthma phenotype was characterized by an increase in air-

flow variability and incompletely reversible obstruction of airflow. This phenotype

presented a good therapeutic response to inhaled corticosteroids, as well as bron-

chodilators, which may be related to the underlying inflammation profile. More-

over, the emphysema phenotype did not respond well to the currently available anti-

inflammatory drugs, and long-acting bronchodilators in conjunction with respira-

tory rehabilitation were the treatment of choice.

The same year, Spain's COPD guidelines (GesEPOC (2012); Miravitlles et al. (2013))

were the first to introduce the phenotype into clinical practice (Miravitlles et al.,

2013). Then, detailed analysis of national guidelines (across Europe and Russia; Mi-

ravitlles et al. (2016)) showed a high variability in detecting COPD phenotypes, in-

cluding classic COPD phenotypes of chronic bronchitis and emphysema (Miravitlles

et al., 2016).

In 2019, a new definition of phenotype was introduced in the GOLD guidelines

management of stable COPD. According to these guidelines, the initial treatment was

based solely on phenotypes of four groups (A, B, C, D). Dyspnoea and exacerbations

were proposed as two main groups with individualized treatment algorithms. In ad-

dition, the blood eosinophil count has been proposed as a biomarker for predicting

the response to treatment with inhaled corticosteroids (Global Strategy for the Diag-

nosis, Management and Prevention of COPD, Global Initiative for Chronic Obstruc-

tive Lung Disease (Gold et al., 2019)).

The GOLD guidelines were published to help clinicians diagnose and treat COPD.

There is widespread agreement in all guidelines that COPD is an extremely complex

disease with a high mortality rate. It is still a challenge to identify accurate subgroups
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or phenotypes, and introduced phenotypes have progressed through time. Using

the latest technology and medical knowledge, current research highlights additional

clinical parameters such as biomarkers, which are becoming the basis for clinical

phenotypes.

Besides the current GOLD criteria, unsupervised COPD clustering studies have

brought insights into the importance of co-morbidities and systemic inflammation

as components accounting for disease variability (Burgel et al., 2017). Indeed, over

the last decade, cluster analysis has become a popular method to examine hetero-

geneity of patients with COPD (Pistolesi et al., 2008; Paoletti et al., 2009; Burgel et al.,

2010; Garcia-Aymerich et al., 2011; Fens et al., 2013; Burgel et al., 2017).

There are studies that used demographic variables, symptoms, spirometry, imag-

ing, and comorbidities to derive the clusters (Burgel et al., 2012). An overview of clus-

ter analysis to identify phenotypes in COPD can be found in Table 1.1, which contains

population, the considered variables, the clustering method, and the main results of

cluster analysis.

However, there are not many studies using clustering that investigated the airway

inflammatory component and the atopic status in a large cohort of COPD. Since it has

been recognized that some COPD patients may express T2 biomarkers (Miravitlles

et al., 2013; Cataldo et al., 2017), a section of our thesis aims to determine whether the

T2 trait is common and strong enough to identify a cluster in COPD patients denying

any history of asthma that could have started before the age of 40 years.
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1.1.2 Asthma phenotypes

Asthma is a chronic airway disease affecting more than 300 million people world-

wide and 5−10% of the population in the western world (Vos and et al., 2020). The

disease represents a major cost for public health authorities largely due to drug costs

(Nunes et al., 2017). However, the number of patients with poorly controlled asthma

remains substantial in spite of improved asthma pharmacological treatment (Pavord

et al., 2018).

The Global Initiative for Asthma (GINA) describes asthma as a heterogeneous dis-

ease, usually characterized by chronic airway inflammation, defined by a history

of respiratory symptoms such as wheeze, shortness of breath, chest tightness, and

cough that vary over time and intensity, together with variable expiratory airflow lim-

itation (GINA, Reddel, et al., 2021). There are many factors involved in this, one of

them being asthma heterogeneity (Gold et al., 2012; Wenzel, 2016).

Asthma is characterized by heterogeneity evident in varying exacerbation risks

and treatment responses. The classification of asthma into phenotypes was made in

order to maximize management for different patient severity levels (Wenzel, 2012).

Since the classification of asthma is a complex process based on the multidimen-

sional nature of the disease; such as symptoms, lung function, systemic and airway

inflammation and treatment. Therefore, cluster analysis can provide an effective way

of identifying asthma clusters.

The first study that generated interest in clustering methodology within asthma

field was conducted by Haldar et al. (2008) in Leicester, UK. As this article presents a

cluster analysis study in the field of asthma with clear and understandable results, the

findings of this study will be explained in more detail. A two-step Ward's hierarchi-

cal and subsequent K-means cluster analysis were performed in three independent

asthma populations (refractory asthma population managed in secondary care, pri-

mary care with predominantly mild to moderate disease, and refractory asthmatics

from clinical trials).

After a subjective selection of 16 clinically relevant variables (PEF Variability, SPT

Cat fur, SPT Dog dander, SPT D. Pteronyssinus, SPT Grass Pollen, Nocturnal Symp-

toms, Daytime Symptoms, Activity Symptoms, Dyspnoea, Wheeze, Anxiety Score,

Depression Score, Exhaled NO 50ml/sec, Sputum Eosinophils, Blood Eosinophils,
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FEV1 response to BD), Principal Component Analysis (PCA) was conducted to reduce

the 16 variables into five components. According to the results of cluster analysis,

primary care patients were divided into three clusters, while secondary care patients

contained four clusters. In these two populations, two common clusters were iden-

tified: the first cluster was composed of early-onset atopic asthmatics whereas the

second featured obese, often female, non-eosinophilic asthmatics.

Figure 1.1: Summary of asthma phenotypes identified by cluster analysis in the primary- and
secondary-care populations (Haldar et al., 2008).

In the primary care, there was a third ’benign asthma’ cluster, while two additional

cluster were found in the secondary care. One featured early onset symptom pre-

dominant non-eosinophilic asthmatics whereas the other featured late onset, often

male, eosinophilic asthmatics with few symptoms (Haldar et al., 2008). Figure 1.1

summarizes the asthma phenotypes identified using cluster analysis in primary and

secondary care populations, which was first proposed by Haldar et al. (2008).

Consequently, cluster analysis identifies phenotypes that respond differently to

treatment and may require different treatment strategy. Indeed, the SMART (single

maintenance and reliever therapy) strategy grading the dose of ICS based on symp-

tom expression (Rabe, 2004) might not be suitable in those showing symptoms with-
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out airway eosinophilic inflammation and those with intense eosinophilic inflam-

mation and few symptoms alike.

The evaluation of sputum inflammatory cells plays a key role in phenotyping and

clustering asthmatic patients. In Simpson et al. (2006), sputum cells were evalu-

ated in order to differentiate between inflammatory subtypes of asthma, and then

clinical features were compared across the subtypes of asthmatic patients. Sputum

eosinophil and neutrophil proportions were used to cluster patients based on the

95th percentile of a healthy control group.

The authors identified the following four clusters of asthma: (1) eosinophilic (spu-

tum eosinophil cutoff, > 1.01%), (2) neutrophilic (sputum neutrophil cutoff, > 61%),

(3) mixed granulocytic (high eosinophil and neutrophil counts), and (4) paucigranu-

locytic (low eosinophil and neutrophil counts). Subsequently, Hastie et al. (2010),

and Schleich et al. (2013) have extended analyses based on this classification. In

terms of clinical characteristics, they found that the mixed granulocytic phenotype

showed the most impaired lung function while the eosinophilic phenotype was more

prone to exacerbation.

The neutrophil-predominant subtype had a significantly later age of asthma onset

(Kaur and Chupp, 2019). A recent longitudinal study from the SARP (severe asthma

research program) has shown that mixed granulocytic phenotype was associated with

accelerated lung function decline (Hastie et al., 2021), which supports the association

between poor lung function and the mixed granulocytic phenotype found in cross-

sectional studies. All these observations highlight the value of sputum analysis in the

interpretation of clinical asthma outcomes and therefore the importance of includ-

ing sputum variables in a comprehensive cluster analysis of asthmatics (Louis and

Schleich, 2021).

There are many other asthma studies where researchers separated patients into

several phenotypes based on symptoms, triggers, age at onset of disease, underly-

ing inflammation and other routine parameters (Moore et al., 2010; Kuhlen et al.,

2014; Newby et al., 2014; Denton et al., 2021). An overview of cluster analysis to iden-

tify phenotypes in asthma can be found in Table 1.2, which contains population, the

considered variables, the clustering method, and the main results of cluster analysis.

To the best of our knowledge there has been no cluster analysis specifically focus-
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ing on eosinophilic asthma on the one hand and non-eosinophilic asthma on the

other hand. The clustering of eosinophilic asthma might be of particular interest as a

study has suggested that there might be heterogeneity in the function of eosinophils

in human (Mesnil et al., 2016).

When evaluating inflammatory asthma phenotypes, use of inhaled corticosteroids

(ICS), which is the mainstay of asthma treatment, may be a confounding factor. Nu-

merous studies in adults have shown that initiating or increasing ICS treatment is

associated with a significant decrease in sputum eosinophil. In contrast, discontinu-

ing ICS results in an increase in eosinophils (Hancox et al., 2012).

Use of ICS also improves several asthma outcomes like lung function and asthma

control while reducing exacerbation. Therefore, in this thesis, we not only performed

cluster analysis on the whole cohort of selected asthma population but also on sub-

groups divided into ICS naïve patients and those receiving high dose ICS. A sup-

plementary reason for isolating the high dose ICS treated patients is that the pa-

tients from this group may be considered as severe asthmatics, a group of patients

which deserves further research (Chung et al., 2014). In Section 1.2.2, the dataset for

eosinophilic asthmatic patients will be presented, and in Section 1.2.3, it will be dis-

cussed for non-eosinophilic asthmatic patients.



18 1.1. Asthma and COPD phenotype

Ta
b

le
1.

2:
O

ve
rv

ie
w

o
fp

ap
er

s
u

si
n

g
cl

u
st

er
an

al
ys

is
to

id
en

ti
fy

A
st

h
m

a
p

h
en

o
ty

p
es

R
ef

er
en

ce
n

Se
tt

in
g

Po
p

u
la

ti
o

n
D

at
a

u
se

d
to

b
u

il
d

cl
u

st
er

s
Ty

p
es

o
fa

n
al

ys
es

M
ai

n
re

su
lt

s

H
al

d
ar

et
al

.(
20

08
)

1.
18

4

2.
18

7

3.
68

Si
n

gl
e

ce
n

te
r,

te
rt

ia
ry

ca
re

(L
ei

ce
st

er
,U

K
)

1.
P

ri
m

ar
y

ca
re

w
it

h
p

re
d

o
m

in
an

tl
y

m
ild

to
m

o
d

er
at

e
d

is
ea

se

2.
R

ef
ra

ct
o

ry
as

th
m

a
p

o
p

u
la

ti
o

n
m

an
ag

ed
in

se
co

n
d

ar
y

ca
re

3.
R

ef
ra

ct
o

ry
as

th
m

at
ic

s
fr

o
m

cl
in

ic
al

tr
ia

ls
(l

o
n

gi
tu

d
in

al
st

u
d

y)

16
cl

in
ic

al
ly

va
ri

ab
le

s
P

C
A

,H
C

A
(W

ar
d

's
),

K
-m

ea
n

s

1.
3

p
h

en
o

ty
p

es
(i

)
E

ar
ly

-O
n

se
tA

to
p

ic
A

st
h

m
a

(i
i)

O
b

es
e

N
o

n
-e

o
si

n
o

p
h

ili
c

(i
ii

)
B

en
ig

n
A

st
h

m
a

2.
4

p
h

en
o

ty
p

es
(i

)
E

ar
ly

O
n

se
t,

A
to

p
ic

(i
i)

O
b

es
e,

N
o

n
-e

o
si

n
o

p
h

il
ic

(i
ii

)
E

ar
ly

Sy
m

p
to

m
P

re
d

o
m

in
an

t
(i

v)
In

fl
am

m
at

io
n

P
re

d
o

m
in

an
t

3.
3

p
h

en
o

ty
p

es
(i

)
O

b
es

e
fe

m
al

e
(i

i)
In

fl
am

m
at

io
n

p
re

d
o

m
in

an
t

(i
ii

)
E

ar
ly

sy
m

p
to

m
p

re
d

o
m

in
an

t

M
o

o
re

et
al

.(
20

10
)

72
6

M
u

lt
ic

en
te

r
(S

A
R

P
),

(U
S)

P
er

si
st

en
ta

st
h

m
a

w
h

o
h

av
e

u
n

d
er

go
n

e
d

et
ai

le
d

p
h

en
o

ty
p

ic
ch

ar
ac

te
ri

za
ti

o
n

34
co

re
va

ri
ab

le
s

Se
le

ct
ed

va
ri

ab
le

s,
H

C
A

(W
ar

d
's

)

5
p

h
en

o
ty

p
es

(i
)

E
ar

ly
o

n
se

t
at

o
p

ic
as

th
m

a
w

it
h

n
o

rm
al

lu
n

g
fu

n
ct

io
n

tr
ea

te
d

w
it

h
tw

o
o

r
fe

w
er

co
n

-
tr

o
lle

r
m

ed
ic

at
io

n
s

an
d

m
in

im
al

h
ea

lt
h

ca
re

u
ti

li
za

ti
o

n
(i

i)
E

ar
ly

-o
n

se
ta

to
p

ic
as

th
m

a
an

d
p

re
se

rv
ed

lu
n

g
fu

n
ct

io
n

(i
ii

)
M

o
st

ly
o

ld
er

o
b

es
e

w
o

m
en

w
it

h
la

te
-o

n
se

tn
o

n
-a

to
p

ic
as

th
m

a
(i

v,
v)

C
lu

st
er

s
4

an
d

5
h

av
e

se
ve

re
ai

rfl
ow

o
b

st
ru

ct
io

n
w

it
h

b
ro

n
ch

o
d

ila
to

r
re

sp
o

n
si

ve
-

n
es

s
b

u
t

d
if

fe
r

in
to

th
ei

r
ab

il
it

y
to

at
ta

in
n

o
rm

al
lu

n
g

fu
n

ct
io

n
,

ag
e

o
f

as
th

m
a

o
n

se
t,

at
o

p
ic

st
at

u
s,

an
d

u
se

o
fo

ra
lc

o
rt

ic
o

st
er

o
id

s

K
u

h
le

n
et

al
.(

20
14

)
13

9
Si

n
gl

e
ce

n
te

r,
te

rt
ia

ry
ca

re
(S

o
u

th
C

ar
o

li
n

a,
U

S)
M

il
d

,m
o

d
er

at
e,

an
d

se
ve

re
p

er
si

st
en

ta
st

h
m

a
17

d
em

o
gr

ap
h

ic
,

cl
in

ic
al

va
ri

ab
le

s
K

-m
ea

n
s

5
p

h
en

o
ty

p
es

(i
ii

)
E

ar
ly

-o
n

se
t

at
o

p
ic

as
th

m
a

an
d

re
d

u
ce

d
lu

n
g

fu
n

ct
io

n
b

u
t

d
if

fe
re

d
in

m
ed

ic
at

io
n

re
q

u
ir

em
en

ta
n

d
h

ea
lt

h
ca

re
u

ti
liz

at
io

n
(i

ii
)

O
ld

er
o

b
es

e
w

o
m

en
w

it
h

la
te

-o
n

se
t

as
th

m
a,

le
ss

at
o

p
y,

an
d

m
il

d
ly

re
d

u
ce

d
fo

rc
ed

ex
p

ir
at

o
ry

vo
lu

m
e

ov
er

fi
rs

ts
ec

o
n

d
(i

v,
v)

A
to

p
ic

as
th

m
a

w
it

h
se

ve
re

o
b

st
ru

ct
io

n
b

u
td

if
fe

re
d

in
b

ro
n

ch
o

d
il

at
o

r
re

sp
o

n
se

,a
ge

o
fo

n
se

t,
an

d
o

ra
lc

o
rt

ic
o

st
er

o
id

u
se

N
ew

b
y

et
al

.(
20

14
)

34
9

M
u

lt
ic

en
te

rs
,t

er
ti

ar
y

ca
re

(B
el

fa
st

,L
ei

ce
st

er
,

Lo
n

d
o

n
,M

an
ch

es
te

r,
U

K
)

Se
ve

re
re

fr
ac

to
ry

as
th

m
a

23
va

ri
ab

le
s

M
u

lt
ip

le
im

p
u

ta
ti

o
n

,P
C

A
,

cl
u

st
er

m
ix

tu
re

an
al

ys
is

m
o

d
el

5
p

h
en

o
ty

p
es

(i
)

A
to

p
ic

w
it

h
ea

rl
y

o
n

se
td

is
ea

se
(i

i)
O

b
es

e
w

it
h

la
te

o
n

se
td

is
ea

se
(i

ii
)

T
h

e
le

as
ts

ev
er

e
d

is
ea

se
(i

v)
T

h
e

eo
si

n
o

p
h

il
ic

w
it

h
la

te
o

n
se

td
is

ea
se

(v
)

Si
gn

ifi
ca

n
tfi

xe
d

ai
rfl

ow
o

b
st

ru
ct

io
n

D
en

to
n

et
al

.(
20

21
)

11
75

M
u

lt
ic

en
te

rs
,

te
rt

ia
ry

ca
re

(w
o

rl
d

w
id

e)

A
d

u
lt

s
w

it
h

se
ve

re
as

th
m

a

Im
m

u
n

o
gl

o
b

u
lin

E
,

b
lo

o
d

eo
si

n
o

p
h

ils
,a

n
d

fr
ac

ti
o

n
al

ex
h

al
ed

n
it

ri
c

ox
id

e

H
C

A
(W

ar
d

âs
),

K
-m

ea
n

s

5
p

h
en

o
ty

p
es

(i
)

H
ig

h
ly

sy
m

p
to

m
at

ic
,o

ld
er

fe
m

al
es

w
it

h
el

ev
at

ed
B

M
I

an
d

fr
eq

u
en

te
xa

ce
rb

at
io

n
s

(i
i)

O
ld

er
fe

m
al

es
w

it
h

lo
w

er
B

M
I

an
d

fr
eq

u
en

te
xa

ce
rb

at
io

n
s

(i
ii

)
O

ld
er

,h
ig

h
ly

sy
m

p
to

m
at

ic
,l

ow
er

B
M

I,
an

d
p

re
se

rv
ed

lu
n

g
fu

n
ct

io
n

(i
v)

Yo
u

n
ge

r,
lo

n
g

d
u

ra
ti

o
n

o
fa

st
h

m
a,

el
ev

at
ed

B
M

I,
an

d
p

o
o

r
lu

n
g

fu
n

ct
io

n
(v

)
Yo

u
n

ge
r

m
al

es
w

it
h

lo
w

B
M

I,
p

o
o

r
lu

n
g

fu
n

ct
io

n
,a

n
d

h
ig

h
b

u
rd

en
o

f
si

n
o

n
as

al
d

is
-

ea
se

an
d

p
o

ly
p

o
si

s



1. Phenotype in COPD and asthmatic patients 19

1.2 Illustrative datasets

This section describes the three datasets used in this thesis. The primary medical

focus of this thesis is to perform cluster analysis on several populations not previ-

ously investigated. Therefore, it is essential to select the individuals who compose

the population precisely. Since cluster analysis is a data-driven methodology, it is

extremely important to carefully select the patients and then examine them using

all available recorded variables in the datasets before determining the appropriate

clustering method.

1.2.1 Chronic obstructive pulmonary disease (COPD) dataset

The first dataset included 178 stable COPD patients recruited from ambulatory

care in the COPD clinic in the Pneumology Department of the University hospital of

Liege. The study had a general agreement from the ethics committee to use clini-

cal data collected from routine practice to make retrospective reports. The protocol

was approved by the Hospitalo-Facultaire Universitaire ethics committee, Liege (in-

stitutional review board 2005/181). Every patient attending ambulatory clinic care

signs an informed consent stating that they accept this principle. As explained in the

previous section, cluster analysis is crucial in COPD patients given the heterogeneity

within patients satisfying the current definition. In this dataset, cluster analysis was

applied on a specific population with an emphasis on novelty.

Selection criteria to be referred to the COPD clinic were symptomatic patients (in-

cluding at least one of the three following symptoms: dyspnea, cough and sputum

production) with FEV1/FVC ratio post bronchodilation less than 70%, age above 40

years and smoking history of at least 20 pack years. Care was taken to exclude asthma

history starting before the age of 40. At the COPD clinic, the patients had systematic

pre and post bronchodilation spirometry, sputum induction, blood sampling, and

completed the self-administered CAT questionnaire. From the clinical data, a com-

prehensive list of 84 variables was derived and categorized into six categories i.e. (1)

demographics, (2) pulmonary function tests, (3) treatment features, (4) blood cell

counts and systemic inflammatory markers, (5) atopic status, and (6) sputum cell

counts and microbiology.

In this dataset, more than half of the patients were male (54.49%) with age rang-

ing from 40 to 84 years and median age was 64.5. Overall the population displayed a
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normal weight (median body mass index was 23.62kg /m2). Patients had a consistent

tobacco consumption history with a median pack/year of 37 and a median of smok-

ing duration was 43 years. As a result of repeated exacerbations, 39% of patients had

been treated with course of oral corticosteroids (OCS) the year prior to the investi-

gations and 15% had experienced at least one course of OCS. Sixty-three percent of

patients had at least one course of antibiotics and 12% had at least one course the

year prior to the investigation. The percentage of missing values ranged from 0% to

23% and 75% of patients presented at least one missing value. Descriptive analysis is

provided in Chapter 5 with additional explanations.

Atopic status was defined based on positive skin prick tests or specific IgE (> 0.35

kU/l; Phadia; Groot-Bijgaarden, Belgium) towards common aeroallergens including

mites, cat and dog dander, grass and birch pollens and molds mixture. As part of the

lung function test, spirometry was used (Spiro bank; MIR, Rome, Italy). Regardless

of FEV1 and FEV1/FVC baseline ratio, all patients underwent a post-bronchodilator

(reversibility) test.

The patients were premedicated with 400 µg of salbutamol one puff at a time into

the spacer (pMDI+spacer), and sputum was obtained by inhaling hypertonic sodium

chloride solution (NaCl 4.5%) in combination with salbutamol (Delvaux, 2004) using

an ultrasonic nebulizer (Ultra-Neb 2000, De Vilbiss, Somerset, PA, USA) at a flow rate

of 0.9mL/minute. Induction was performed when post-bronchodilation FEV1 was

less than 65% of the predicted value with physiologic fluid (NaCl 0.9%) given in com-

bination with salbutamol. For a total of 15 minutes, each patient inhaled the aerosol

for three consecutive periods of 5 minutes. The safety limit was maintained by mon-

itoring FEV1 every 5 minutes and stopping the induction after FEV1 delineated by

> 20% from the post-bronchodilation value.

Sputum was collected in a plastic container, weighed, and homogenized by adding

three volumes of PBS, vortexed for 30 seconds, then centrifuged at 800g for 10 min-

utes at 4◦C. The supernatant of a cell pellet was separated and resuspended in a solu-

tion containing 5 mM DTT without Ca2+ and Mg2+, filtered, and used for a squamous

and total cell count using a manual hemocytometer. Trypan blue exclusion was used

to check cell viability. The differential was performed on cytospins stained with Diff-

Quick after counting 500 cells (Quaedvlieg et al., 2009).

Fractional exhaled nitric oxide (FeNO), sputum cell counts, blood cell counts, and
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systemic markers were used as indicators of inflammation parameters. FeNO was

measured using NIOX (Aerocrine, Solna, Sweden) at a flow rate of 50ml/s before

spirometry (Demarche et al., 2016). C-reactive protein (CRP), fibrinogen, blood leu-

cocyte counts and total and specific (RAST) serum IgE were determined by routine

laboratory analysis at Liege University Hospital.

1.2.2 Eosinophilic Asthmatic Patient Dataset

The second dataset included 426 eosinophilic patients, defined by a sputum eosinophil

count ≥ 3% and recruited from the asthma clinic of Liege University between 2011

and 2020. The current study included comprehensive categories of parameters, such

as demographics, standard routine investigations of asthma, pulmonary function

tests, blood tests, atopic status, sputum, microbiology. Comorbidities such as gas-

troesophageal reflux disease (GERD), allergic rhinitis and nasal polyposis were iden-

tified by history taking and demonstration of objective investigation collected in the

electronic medical record. Although most of the parameters were similar to what we

described for COPD dataset, additional factors such as asthma quality of life ques-

tionnaire (AQLQ) and Juniper's asthma control questionnaire (ACQ) (Juniper et al.,

1999), and asthma control test (ACT) (Nathan et al., 2004) were used to estimate qual-

ity of life and asthma control, respectively. AQLQ was measured over the last 14 days,

ACQ over the last 7 days and ACT over the last 28 days.

There were more than half of the patients who were female (55%). Median age

was 53 years and and the median age at diagnosis was 30 years. The patients dis-

played a slight overweight (median body mass index was 26kg /m2). More than half

of the patients were atopic (56%). Smoking status was categorized into three groups:

never-smokers, ex-smokers (who had quit smoking at least 6 months ago), and cur-

rent smokers. Forty-five percent of patients had a smoking history. The percentage

of missing values ranged from 0% to 77% and 91% of patients presented at least one

missing value.

The definition of an exacerbation in the year prior to the visit was a three-day

course of OCS for non-OCS treated patients and a quadrupling of the dose for OSC

maintenance patients. As asthma maintenance therapy relies heavily on ICS, which

are well established to be effective, but can also influence the phenotype, we per-

formed additional analyses on a steroid naïve group (n = 114) and a group a patients

treated with high dose ICS (> 1000 µg/d equivalent beclomethasone) (n = 239) se-



22 1.3. Problem Statement and Challenges

lected from the whole cohort. As part of Chapter 6, we present a comprehensive

description of eosinophilic cohort as well as the two subgroups based on ICS.

1.2.3 Non-eosinophilic Asthmatic Patient Dataset

The third dataset included 588 non-eosinophilic patients, defined by a sputum

eosinophil count< 3% and recruited from the asthma clinic of Liege University be-

tween 2011 and 2020. Except, comorbidities variables such as GERD and nasal poly-

posis which were not available, the parameters used in this section are exactly the

same as those presented for eosinophilic patients. The median age was 50 years and

the median age at diagnosis of 33 years. The female gender was dominant (63%),

almost half reported a smoking history (48%), while less than half were atopic pa-

tients (46%). The median body mass index (BMI) was 26kg /m2 indicating a slight

overweight. The percentage of missing values ranged from 0% to 66% and 89% of pa-

tients presented at least one missing value. For the same reason as mentioned above,

further analyses were conducted on a group of steroid naïve patients (n = 279) and

a group receiving high doses maintenance ICS (n = 135). The comprehensive de-

scriptive analysis as well as classification results for these three cohorts based on the

proposed clustering framework for incomplete datasets will present in Chapter 7.

1.3 Problem Statement and Challenges

The purpose of this section is to introduce the statistical challenges involved with

cluster analysis on the three previously introduced datasets. As already mentioned,

one unavoidable problem in datasets that contain many variables, is the presence

of missing values. Dealing with missing values is a general challenge in real-world

data analysis in epidemiological and clinical research, specifically in cluster analysis

where the objective is to assign patients to clusters based on similarity.

Cluster analysis can be directly applied on majority of method of handling miss-

ing values. Among all methods of handling missing values, multiple imputation is a

well-designed that accounted for the uncertainty in missing data. However, apply-

ing cluster analysis using multiple imputation is complicated. The combination of

cluster analysis and multiple imputation requires an integrated framework that in-

corporates several steps and involves a considerable number of analytical decisions.

In multiple imputation, several complete imputed datasets are generated, each of

which must be analyzed separately. The principle of this method is for estimating the
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parameters and the results can easily be combined to obtain the final result. How-

ever, this method is not easy to apply on cluster analysis and this makes the challenge

associated with using multiple imputation in cluster analysis that we addressed this

issue by using a mixture multivariate model in this thesis.

Missing values as well as dimension reduction are two important factors that are

rarely considered simultaneously in cluster analysis studies. Both of these statisti-

cal challenges appear during the descriptive analysis of the datasets, and so before

applying the clustering process. Therefore, decisions must be taken, and each con-

sidered decision at any step of the process will have a significant impact on the final

clustering output. Each step involves several competitive methods. First, there are

different ways to handle missing values, and in particular, the number of multiple

imputations to consider, and how to predict missing values for each variable based

on its type. Second, the number of variables that should be considered for clustering

is still an open question as there is still no priority between selecting the appropri-

ate variables or applying the principal components for variables reduction. Third,

there are multiple methods to determine the number of clusters and classification

methods, which will yield different results. Finally, if multiple imputations are ap-

plied, a consensus clustering method is required to merge all the clustering results

and report the final and unique result. In the literature, consensus clustering and in-

tegrated framework have not been investigated in detail for clustering on incomplete

datasets. As a result, the complexity of the study requires a systematic approach.

An integrated framework has been proposed in this thesis. Furthermore, there are

no literature references for comparing methods in the cluster analysis field. There-

fore, huge comprehensive simulation scenarios are required to compare and evaluate

each and combination of the methods in the framework.

1.4 Conclusion

In the literature, asthma and COPD are known as heterogeneous and complex dis-

eases with a variety of dimensions which results in the identification of different phe-

notypes. The phenotypes of each disease depended on the way the population is se-

lected and the variables that were taken into consideration. This chapter attempted

to provide a general review of published literature dealing with cluster analysis to

determine the phenotypes in both diseases. Three different target populations were

defined in the framework of this thesis. The first studied population is composed
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of adults who suffer from COPD without any previous history of asthma, the sec-

ond includes patients with eosinophilic asthma and the third includes patients non-

eosinophilic asthma. In order to further investigate and evaluate heterogeneity in

the eosinophilic and non-eosinophilic asthmatic patients, patients were also divided

into two distinct groups according to ICS treatment, that are a steroid naïve and high

dose ICS treated groups. There were several criteria for including and excluding sam-

ples in this study, which are described in detail. In the general description of three

datasets, the number and percentage of missing values were reported. For apply-

ing cluster analysis using multiple imputation to all datasets defined in this chapter,

several statistical challenges were encountered, therefore, a detailed explanation of

the difficulties of applying cluster analysis to these incomplete datasets with multi-

dimensional variables was provided to close this chapter.



CHAPTER 2

Cluster Analysis

This chapter introduces the concept of cluster analysis as well as the different steps

and options that underlie the application of these statistical methods. In Section

2.1, the basic concepts of clustering are introduced. First, a mathematical defini-

tion of data clustering is presented, with methodology, and types of clustering. As

the process of most clustering methods involves grouping objects according to their

similarity or dissimilarity using distance measures, this section also proceeds with

diverse measures of two objects'distance. Three well-known clustering methods are

presented in section 2.2, including partition clustering methods, hierarchical clus-

tering, and model-based clustering. The basic issue of cluster analysis is determin-

ing the proper number of clusters. Throughout section 2.2, we attempt to describe

how to determine the appropriate number of clusters for each clustering method.

This chapter concludes by reviewing the validity criteria which assess the quality of

clustering results. In Section 2.3, three validity statistical methods are illustrated: in-

ternal, external, and cluster stability.

2.1 Basic concepts

In the early stages of data analysis, when little knowledge of the data is available,

cluster analysis is often used to gain an understanding of the similarity or dissimi-

larity between objects. Using this approach, objects are grouped into clusters with

respect to variables, characteristics, or attributes of interest such that objects within

25
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the same cluster are more like each other than those in other clusters. The objective

that discriminates objects into homogeneous and distinct groups generally seems to

be obvious, however, its formulation is not so clear in theory. First, a formal struc-

ture for clustering must be defined, and this is explained in Section 2.1.1. Further-

more, the first definition of clustering refers to objects that are near or far from one

another and describes it as similarity or dissimilarity between objects. Therefore,

Section 2.1.2 provides different options of measuring similarity in data and presents

some special properties of these measures.

2.1.1 Notation

Let's consider a set of N objects, X = [x1,x2, · · · ,xN ]T , where each object is recorded

for p-dimensional variables. The observed value of the j th variable of the object i

is denoted by, xi j , i = 1, · · · , N ; j = 1, · · · , p. Therefore, the p-dimensional vector of

xi = [xi 1, · · · , xi p ] presents the recorded data for i th object over p variables. The aim

of cluster analysis is to partition the object X = [x1,x2, · · · ,xN ]T into k ∈ {2,3, · · · ,n−1}

clusters denoted {C1,C2, ...,Ck } where Ck is the result of the partitioning of N objects

into k clusters. Hard or crisp clustering is a method that involves objects belonging

to only one cluster and follows the following requirements:

1. C1 ∪ ...∪Ck = X, each object must belong to one of the clusters,

2. Ci ̸=∅, all clusters must contain at least one object,

3. Ci ∩C j =∅ for i ̸= j , a single object cannot be part of more than one cluster at

the same time.

In addition, there are two special clustering cases, when k = 1 where all objects are

gathered into one single cluster and when each object makes its own cluster, k = n.

Those situations should be avoided, because not of interest.

When clustering is complete, each object is assigned to one cluster, xi ∈Ck . In this

case, a vector of clustering labels can be defined for all objects. Hence, this clustering

labels'vector is an integer vector (c1,c2, ...,cN ) with values between 1 and k, where ci

is the clustering label for i th object.

As an example, let's consider two variables, such as blood monocytes(%), and

blood eosinophils(%), so p = 2, and ten patients, N = 10. In the following matrix, each

row corresponds to one patient, and the first column presents the recorded values for
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blood monocytes(%), while the second column contains the blood eosinophils(%)

values. Thus, for example, the observed value of blood eosinophils(%) variable for

the fifth patient is x52 = 5.1.

X =



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10



=



4.1 4

6.9 0.6

14.5 4.3

5.2 6.6

10.4 5.1

13 5.7

5.6 4.6

7.1 0.4

9.5 6.6

7.7 0.7



p = 2; N = 10.

On a two-dimensional graph, it will be easy to identify the number of appropriate

clusters and also how to classify this data. Figure 2.1 depicts the data values for the

10 patients. Based on this figure, the data can be categorized into three groups where

each group is composed of patients with the closest distance to each other.

Figure 2.1: An example of clustering
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Thus, in previous example, object X = [x1,x2, ...,x10]T is partitioned into k = 3 clus-

ters and the result of the clustering can be defined as

C1 =


x1

x4

x7

 ,C2 =


x2

x8

x10

 ,C3 =


x3

x5

x6

x9

 .

This clustering result follows the three natural conditions listed above. Finally, the

corresponding clustering is equal to

c = (1,2,3,1,3,3,1,2,3,2),

where for example c5 is a clustering label for the fifth patient, with c5 = 3 meaning

that the fifth patient is classified in the third cluster. In order to enable the reader to

visually realize the clustering and to get the clustering results, the concept was ex-

plained in terms of the easiest 2D-dataset. However, effective visualization would

be impossible for large multidimensional datasets (e.g., more than three variables).

Moreover, the classification of clusters using available visualization tools is a difficult

task and is not identified straightforward even for lower-dimensional spaces.

In addition, there are other types of clustering methods, which permit objects to

belong to more than one cluster simultaneously. Algorithms of this type are com-

monly referred to as soft algorithms which are not studied in this study.

The process of clustering involves grouping objects according to their similarity or

dissimilarity. Therefore, the distance measure plays a crucial role in clustering meth-

ods. The majority of clustering methods are directly or indirectly based on distance

measures. Accordingly, in order to get the clustering for X, proper distance functions

are defined in the next section.

2.1.2 Distance measurements

The most well-known methods of clustering are based on the similarity between

two objects (x1,x2). The distance measure is a function that takes two input ob-

jects and returns a real positive number which indicates similarity or dissimilarity

between the two objects. The distance measures are the initial step and have a sub-

stantial impact on clustering results. Choosing the distance measure depends on the
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type of variable and how would be the shape of clustering and, therefore, have an

effect on the result of the clustering. In the following, several common distance mea-

sures are discussed.

Euclidean distance

The most popular measure of dissimilarity in quantitative data is the Euclidean dis-

tance. The Euclidean distance between two p-dimensional data objects, xi = [xi 1, ..., xi p ]

and xl = [xl1, ..., xl p ] is defined as the square root of the sum of squared differences

that apply to quantitative variables and is denoted as dEuc (xi ,xl ). Based on notations

introduced previously, this distance is given by the following equation:

dEuc (xi ,xl ) =
√√√√ p∑

j=1

(
xi j −xl j

)2,

the Euclidean value gets higher when the two objects are farther apart and then

shows the data objects are dissimilar. The lower Euclidean value indicates how simi-

lar and close two objects are. Two objects are completely similar and identical when

the corresponding Euclidean distance is equal to zero.

Manhattan distance

Manhattan distance, also called rectilinear distance or L1 distance, measures dissim-

ilarity in quantitative variables and is defined mathematically as:

dM an (xi ,xl ) =
p∑

j=1

∣∣xi j −xl j
∣∣ .

When Manhattan distance is used, the clusters tend to form rectangle shapes.

The advantage of Manhattan distance is that it takes less time to compute (Jain and

Dubes, 1988). Manhattan distance values can also be interpreted like Euclidean dis-

tance values.

Mahalanobis Distance

According to Mahalanobis, different patterns can be identified by considering the

correlations between quantitative variables. The squared Mahalanobis is defined as

follows:

dM ah (xi ,xl ) =
√

(xi −xl )Σ−1 (xi −xl )T ,

whereΣ is covariance matrix calculated inΣ= 1
m

n∑
i=1

(
xi −µ

)(
xi −µ

)T withµ= 1
m

n∑
i=1

xi

being the vector of average values. Σ−1 is inverse of the covariance matrix and presents
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how tightly clustered the objects are around the mean. Unlike Euclidean distance, it

considers the correlations between the datasets. In general, a lower Mahalanobis

value indicates more similarity. Clusters based on the Mahalanobis distance tend to

be ellipsoidal and are useful in the identification of the outliers (Mahalanbois, Maha-

lanbois).

Cosine similarity

Cosine similarity is a metric used to determine the similarity between two non-zero

objects. It is calculated as

dcos (xi ,xl ) = 1− xi xl

∥xi∥∥xl∥
= 1−

p∑
j=1

xi j ∗xl j∥∥∥∥∥ p∑
j=1

x2
i j

∥∥∥∥∥
∥∥∥∥∥ p∑

j=1
x2

l j

∥∥∥∥∥
.

Cosine similarity ranges between 0, and 1. Objects with cosine values of 1 have the

most similarity, while those with zero have the least similarity (Hamerly, 2003).

Gower's Distance

The values of objects can be expressed in different scales (numerical, nominal, or

ordinal). However most practical and theoretical results have been presented under

the assumption that object components are numerical. A general and useful method

for measuring the distance between two objects that may include logical, categorical,

numerical, or text data is Gower's Distance. The distance is always a number between

0 and 1, where 1 represents maximum similarity and 0 is being exactly dissimilar. The

Gower's distance can be defined as

dGow (xi ,xl ) =

p∑
j=1

δi l j ∗ si l j

p∑
j=1

δi l j

,

where δi l j provides the ability to make comparisons, if xi and xl can be compared

for the j th variable δi l j = 1, if xi and xl cannot be compared, for example because of

missing values, δi l j is set to be zero. The value for si l j depends on the type of vari-

ables, for continuous variables, si l j = 1− |xi−xl |
Rk

where Rk is the range of j th variable.

For categorical variable, si l j = I {xi = xl } which is equal to 1 if two objects xi and xl

have the same value in j th variable and si l j = 0 if they are different (Gower, 1971).
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Distances between objects can be computed using several R functions, including

dist() in stats package, get–dist() which is implemented in factoextra() package, and

daisy() in cluster package.

2.2 Clustering Techniques

Various clustering methodologies have been presented in the literature, each based

on a different induction principle. It is due to the fact that the clustering notion is

not clearly defined and leads to many introduced clustering methods (Estivill-Castro,

2002). However, throughout this thesis, we have considered three common clustering

methods, which are detailed in following sub-sections. A summary of the advantages

and disadvantages of these techniques is summarized in Table 2.1.

Table 2.1: Summary of Clustering Techniques

Techniques Advantage Disadvantage

Partition clustering
Straightforward to implement;

Guarantees convergence

Don’t handle missing values;
Predetermine number of clusters;

Sensitive to outliers;
Dependent on initial values

Hierarchical clustering
Handling missing values by using the distance matrix;

No need to predetermine the number of clusters.
Don’t handle outliers well;

Mistakes made during clustering cannot be reversed

Model-based clustering
Take into account the distribution of datasets;

Take into account variance in clustering
Don’t handle missing values;

Time-consuming; Hard to estimate the parameters

2.2.1 Partition clustering

By definition, the partitioning methods attempt to separate and homogenize ob-

jects to perform clustering by optimizing a predefined objective function. These

methods relocate objects between clusters until an optimal local partition is achieved

by minimizing or maximizing a numerical objective function. Therefore, when ob-

jects are grouped together, they are as close as they can be to each other (intra-cluster

compactness), and they are well separated from other objects in other clusters (inter-

cluster separation). Throughout this section, common methods and algorithms in

the partition clustering field are discussed.

K-Means method

K-means method is one of the oldest and simplest cluster analysis (MacQueen, 1967).

In this method, the number of clusters, K, and their centroids are defined in advance.

Cluster centroid refers to the object that symbolizes the cluster's center. Each object

is assigned to one cluster based on the nearest point to the cluster centroid and no
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clusters are left empty. The number of clusters, K, is a priori unknown and has to be

determined either by the user or by using several different methods for selecting the

best number of clusters.

K-means method is an iterative process which begins by randomly assigning K

points as cluster centroids. In the next step, objects are assigned to the nearest cen-

troid. The nearest is defined, according to the type of variable, by one of the metric

distances described in Section 2.1.2. Once the clusters have been created, the cen-

troid of the updated clustering is computed by the mean of the updated objects in the

cluster, µ= 1
nk

∑
i∈Ck

xi ,k = 1, ...K . In the final step, the previous two steps are repeated

until a local minimum of the following within-cluster sum of squares is reached.

LK−Mean = min
{C1,...,Ck }

min
{µ1,...,µk }

K∑
k=1

∑
i∈Ck

d(xi ,µK ).

A description of this iterative algorithm is presented in Table 2.2.

Table 2.2: Algorithm of K-means method

Input: Matrix X representing a set of objects, number of clusters k.
Step 1. Determine K points into the data space for objects. These points

define the starting cluster of centroids,
Step 2. The distance between each object and centroids is calculated based

on their type and objects are assigned to the closest centroid,
Step 3. Recalculate the locations of the K centroids. The new location is

calculated by taking the mean of all objects that are assigned to that centroid's
cluster,

Step 4. Steps 2 and 3 should be repeated until the centroids are no longer
changing locations and the distance between objects and new centroids is as
small as possible.
Output: Partition of clustering labels C = {C1, . . . ,Ck }

The stats R package can be used to compute and visualize partitioning clustering

by K-means. The kmeans() function is the standard R function to perform K-means

clustering. The function can only be applied to the raw datasets. In this function,

possible values for the number of clusters should be defined. There were iterations

on assigning objects to clusters until no more change occurred. However, the maxi-

mum number of iterations can be selected in the function, and the default is 10.
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Partition around medoids (PAM) method

The PAM method performs similarly to K-mean method. In K-means, the initial val-

ues for centroids are determined randomly, so, results may differ according to the

initial values. In the PAM method, objects are assigned to clusters centroids and dis-

similarities between a point in the cluster and the point labeled as the cluster's center

are minimized. So, the aim of PAM method is to minimize the following function

LPAM = min
{C1,...,Ck }

min
{µ1,...,µk }

K∑
k=1

∑
i∈Ck

d(xi , x(k)),

where x(k) represents an object considered as a medoid for kth cluster, Ck . A medoid

is a centroid chosen from objects in a dataset. In the first step, the object, x(k), with

presents the smallest sum of similarities to other objects is selected as centroids of

each cluster. The process is iterated until k objects are selected. All of the selected x(k)

are considered as the initial k medoids for each of the k clusters. After this step, ac-

cording to their proximity to a medoid, remaining objects are grouped into clusters.

Next, the algorithm attempts to find new medoids in each cluster based on objects

from that cluster whose distance (LPAM ) makes a minimum of the sum of distances.

The process is repeated until the k medoids are no longer changed (Kaufman and

Rousseeuw, 1990). A description of the algorithm is summarized in Table 2.3.

Table 2.3: Algorithm of PAM method

Input: Matrix X representing a set of objects or dissimilarity matrix, number of
clusters k.

Step 1. Determine randomly K objects for an initial set of medoids,
Step 2. The distance between each object and the medoids are calculated

based on their type and objects are assigned to the closest medoids,
Step 3. Improve the quality of clustering by exchanging selected and unse-

lected objects,
Step 4. Steps 2 and 3 should be repeated until the distance between objects

and medoids is as small as possible
Output: Partition of clustering labels C = {C1, . . . ,Ck }.

Since the medoid vector was chosen from the objects, this method is, unlike K-

means, capable of analyzing both dissimilarity matrices and raw data. Therefore, be-

sides numeric datasets, the function can be applied to a dissimilarity matrix derived

using one of the distance methods. The pam() function in stats R package is used to

compute and visualize partitioning clustering by PAM method.
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Define number of clusters in partition clustering methods

When partition clustering methods are used, the number of clusters should be deter-

mined before the clustering process begins. Several methods exist for determining

the number of clusters in partition clustering methods. The two most well-known

silhouette and elbow methods are illustrated here below.

Silhouette Method

The Silhouette method was proposed by Kaufman and Rousseeuw (1990) to estimate

the appropriate number of clusters to consider. The silhouette value indicates how

similar an object is to its own cluster in comparison to other clusters. The silhouette

value ranges between -1 and +1. In general, a higher silhouette value means a better

match between the cluster and the object. The silhouette value can be determined

as follows using any distance metric. Let's defined

a (i ) = 1

ni −1

∑
i ̸= j , j∈Ci

d(xi , x( j )),

the average of dissimilarity between object xi and all other objects in the cluster Ci

in which xi is part of and,

b (i ) = min
i ̸= j

1

n j

∑
j∈C j

d(xi , x( j )),

the minimum average distance of object xi from all the objects in another clusters,

C j , except other member of cluster xi . The silhouette value for an object is defined

as

s (i ) = b (i )−a (i )

max{a (i ) ,b (i )}
.

It should be noted that a (i ) is not defined for a cluster of a single object, and in

order to calculate b (i ), at least two clusters are required. By measuring the silhou-

ette values for all the objects, if the mean silhouette value is at the highest value, the

clustering structure is appropriate. In contrast, if the mean silhouette value became

lower or negative, then the cluster structure is not optimal, meaning that either too

many clusters or too few clusters are considered.

In order to determine the optimal number of clusters, the mean of silhouette value

is plotted against the potential number of clusters (usually 10 clusters). The y-axis of

the plot represents the average of Silhouette value, and the x-axis indicates the po-

tential number of clusters. The higher silhouette value indicates a proper number
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for clustering. As an example, if we consider just three continuous variables, blood

eosinophils(%), monocytes(%), and neutrophils(%) in our dataset on 41 patients. The

corresponding plot for silhouette value is presented in Figure 2.2. The plot shows that

it is more appropriate to classify patients into two clusters.

Figure 2.2: Optimal number of clusters using the Silhouette value

Elbow Method

In the elbow method, the sum of squared errors within each cluster is defined

SSW =
K∑

k=1

∑
i∈Ck

(
xi k −µk

)2 ,

which calculates the sum of distances between the objects and the corresponding

centroids for each cluster, µk , and plotted it against the number of clusters. For the

first few clusters, there will be a lot of variance and information to explain, but after

a certain number of potential clusters, the information will be decreased intangible,

which will give the graph an elbow. The plot may seem ambiguous sometimes, and

identifying the elbow, we are looking for is quite blind and up to individual discretion.

However, this point can be selected as the proper number of clusters. Considering
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the same example as above, the plot for sum of squared errors measured within each

cluster versus potential number of clusters (usually 10 clusters) is shown in Figure

2.3. The plot suggested that patients could be classified into two clusters.

Figure 2.3: Optimal number of clusters using the Elbow method

2.2.2 Hierarchical Clustering

Hierarchical clustering is a well-famous clustering method. The algorithms of hi-

erarchical clustering are quite popular in the literature for their attractive visual out-

puts. The algorithm consists of two main types, agglomerative and divisive. The ag-

glomerative clustering method creates a single cluster from each object, then a com-

bination of close clusters merges iteratively to create a new cluster, and so on until

a single cluster is formed. In contrast, the divisive method involves grouping all the

objects into one large cluster and dividing them iteratively into groups that are geo-

graphically far apart, until each object was alone in their own cluster. A description

of the algorithm for agglomerative hierarchical clustering is presented in Table 2.4.

For example, the first five observations of FEV1 predicted(% predicted) were con-

sidered in Figure 2.4 and their corresponding values are shown in the square. A num-
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Table 2.4: Algorithm of agglomerative hierarchical clustering method

Input: Matrix X representing a set of objects or dissimilarity matrix
Step 1. Objects are clustered into single elements and distances are deter-

mined for each pair of clusters.
Step 2. Find the pairs Ci and C j of clusters that are closest to each other, in

purpose of generating dendrogram, this corresponds to inserting a new node
and connecting it with the other nodes.

Step 3. Recalculate the distance between Ck and the remaining clusters
Step 4. Steps 2 to 3 should be repeated until only one, single cluster is cre-

ated
Output: Dendrogram and partition of clustering labels C = {C1, . . . ,Ck }

ber from 1 to 5 was assigned to each object, respectively. In agglomerative clustering,

each participant is initially viewed as a single cluster in Step 0. A new cluster is cre-

ated at each step of the algorithm by combining two clusters that are most similar

and here, have a lower Euclidean distance from one another. In step 1, we deter-

mined that the values 2520 and 2570 had the closest distance and were combined.

This process is repeated until all objects belong to a single big cluster. The divisive

method works in a right to left manner. It begins with all objects being included in a

single cluster. In each iteration, the most heterogeneous cluster is divided into two.

The process is repeated until all objects are in their own cluster. The graphic repre-

sentation of these two methods is called dendrograms (Everitt, 2011).

For these two types of hierarchical methods, after step 0, we need to calculate the

similarity or homogeneity between two clusters. Several methods are presented for

calculating the homogenous between two clusters, such as the single, complete, av-

erage, centroid methods and Ward criterion. Based on one of the following criteria,

two clusters are merged in agglomerative method or dispersed in divisive method.

The Single Linkage criterion

In the single linkage method, the dissimilarity between two clusters, Ci ,C j , is defined

as the nearest distance between a pair of objects, one object from Ci and one from

cluster C j . According to this method, the smallest distance between two objects of

clusters is defined as the degree of dissimilarity between the two clusters.

daver−Si ng le
(
Ci ,C j

)= min
i ′∈Ci , j ′∈C j

d(xi ′ ,x j ′).
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Figure 2.4: Dendrograms of agglomerative and divisive hierarchical clustering

By using this method, the derived clusters are often separated according to their

dissimilarity. d(xi ′ ,x j ′) is one of the distance measures that were introduced in Sec-

tion 2.1.2. The exhibit of this criterion is shown in Figure 2.5(a).

The Complete Linkage criterion

Complete Linkage is typically referred to as the furthest neighbour rule, which re-

sults from the largest distance between an object in one cluster, Ci , and an object in

another cluster, C j . In this way, a cluster's dissimilarity is defined as

daver−Complete
(
Ci ,C j

)= max
i ′∈Ci , j ′∈C j

d(xi ′ ,x j ′).

This method prevents clusters from merging together if there are objects within a

cluster that are far apart. These results have compact clusters with similar diameters,

which is a benefit of this method. The clusters results, however, may not be well sep-

arated (Figure 2.5(b)).

The Average Linkage criterion

In this method, the distance between two clusters is measured by the average of dis-

tances between all pairs of objects from two clusters, Ci and C j . One object in the

pair of the distance is from Ci and another object is in C j . The average linkage is

calculated as
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daver−Li nkag e
(
Ci ,C j

)= 1

ni n j

∑
i ′∈Ci , j ′∈C j

d(xi ′ ,x j ′),

where ni and n j are the numbers of objects in the two clusters. The average linkage

method is considered to be a compromise between the complete linkage method and

the single linkage method. Dissimilarities between clusters are not determined by the

behavior of two objects, but rather by the collective behavior of the clusters(Figure

2.5(c)).

The Centroid Linkage Criterion

To calculate the distance between clusters, it is also possible to take into account the

difference between their centroids:

daver−Centr oi d
(
Ci ,C j

)= d

 1

ni

∑
i ′∈Ci

xi ′ −
1

ni

∑
j ′∈C j

x j ′

 ,

Centroid linkage calculates the centroid of each group and then determines the

distance between them. Obviously, this criterion only makes sense if an average of

objects is reasonable (Figure 2.5(d)).

Ward Linkage Criterion

The general idea of Ward criterion was to evaluate and optimize the objective func-

tion when two clusters are combined. A well-known objective function is the vari-

ance method or the sum of squares error within clusters that should be minimized

when two clusters are merged. As explained in the elbow method, sum of squares

error within clusters is defined as follow

SSW =
K∑

k=1

∑
i∈Ck

(
xi k −µk

)2 ,

where µk is the mean of object in kth cluster. The Euclidean distance method is

used here, however, other distances can be applied. It is not necessary to compare all

objects to a mean, centroid, medoids, mode, or other commonly used averages can

be used instead.

Cluster final outputs are strongly influenced by the linkage criteria considered.

Each linkage criterion has its own properties. Each of these criteria performs well

under certain circumstances. For instance, single linkage may be used to handle
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complex shapes with outliers and is not concerned about compactness. Complete

linkage usually results in clusters that are almost identical in size. Ward's method al-

lows to derive clusters with equal sizes and spherical shapes.

Figure 2.5: Four different types of linkage criteria for hierarchical clustering (Inspired by Fig-
ure 17.3 of Introduction to Information Retrieval (Manning et al., 2008))

In contrast to partition clustering, hierarchical clustering creates a hierarchy of

clusters and does not require pre-defining the number of clusters. In Figure 2.6,

dendrogram for the first 15 observations of FEV1 predicted(% predicted) were con-

sidered. Distance (or similarity) based on Ward linkage criterion between the two

merged clusters is shown on the Y -axis. It is possible to quickly determine the num-

ber of clusters by dendrogram in hierarchical method. On the dendrogram plot, one

value can be defined on the Y -axis, a horizontal line should be drawn at that value,

this line intersects the horizontal lines in the dendrogram which can be counted as

the number of clusters. In Figure 2.6, we can consider two horizontal lines, which

define two or four clusters. In the final analysis, the researcher is responsible for de-

termining the number of clusters, however, the highest distance could be considered

to determine the final number of clusters. So, in the example, based on the hierarchi-

cal cluster, the objects can be classified into two clusters.



2. Cluster Analysis 41

Figure 2.6: Dendrograms in determining cluster size

hclust() in stats package and agnes() in cluster package can be used for hierarchical

clustering and for drawing dendrograms in agglomerative method, and diana() in

cluster package can be used for divisive clustering.

2.2.3 Model-based clustering

One of the most effective clustering approaches is model-based clustering which

involves the use of a mixture model (McLachlan and Peel, 2000; Zhong and Ghosh,

2003). Model-based clustering enables to make statistical inferences and estimate

uncertainty for parameters or clustering assignments. In the model-based clustering

approach, objects belonging to the same distribution are grouped together. In this

method, data is assumed to follow a certain probability distribution model. The like-

lihood of the potential model is maximized by estimating mixture model parameters.

If the complexity of the model is not constrained, this approach over-fits the dataset.

However, model-based approaches are stronger than hierarchical clustering and par-

tition clustering since they provide not only clusters, but also a mixture model, which

we can use to better understand the distribution of the data.

Generally, in model-based clustering, clusters are formed based on multivariate

Gaussian distributions, then all clusters are combined with corresponding probabil-

ities such that they add up to one. This distribution is called the mixture Gaussian

distribution and is known as
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f (x,θ) =
K∑

k=1
ηkφ

(
x|µk ,Σk

)
,

where x is an independent sample which issued from K-component mixture dis-

tribution with p-dimensional outcome, k indicates a specific cluster and ηk is the

mixing proportion of kth cluster with ηk > 0 and
K∑

k=1
ηk = 1. The parameters θ in this

model are the mixing proportions of the mixture, ηk , as well as the cluster specifics

parameters of Gaussian distribution which are the cluster means µk and the cluster

covariance matrices Σk for k = 1, · · · ,K .

φ (.|.) is the probability density function of the multivariate Gaussian distribution

with mean µk and variance-covariance matrix Σk for each determined clusters,

φk
(
x|µk ,Σk

)= 1

(2π)
d
2 |Σk |1/2

exp

(
−1

2

(
x−µk

)T
Σ−1

k

(
x−µk

))
,

corresponding to the kth cluster.

Figure 2.7: Density of a one-dimensional Gaussian mixture distribution with two compo-
nents

Suppose that the purpose of the study was to classify patients according to just

one variable. In the plot for this variable, the black solid line in Figure 2.7, it is obvi-

ous that the sample will consist of two clusters, each with a normal distribution. In

model-based clustering, we determined the number of clusters, and then estimated

the probability of these mixed clusters as well as the parameters of these two normal

distributions (Dashed lines in red and blue).
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Whenever the number of variables increases and there are multiple types of vari-

ables in the dataset, advanced methods are required to estimate the parameters and

determine the number of clusters. The variance-covariance matrix, Σk , will be pa-

rameterized in order to make the model more adaptable to these types of datasets:

Σk =λk Dk Ak DT
k .

where λk = |Σk |1/d measures the volume of the kth cluster. Dk is the matrix of

eigenvectors of Σk which determines its orientation, and Ak determines the shape of

model. Ak is a diagonal matrix containing the normalized eigenvalues of Σk in de-

creasing order along the diagonal, and |Ak | = 1.

If we could impose more restrictions on parameters in the model, the diagonal

family and spherical family may be suggested. In addition, eight general models were

proposed based on this variance matrix decomposition, which is shown in Table 2.5.

Table 2.5: Different types, names, and structures for variance-covariance matrix

Model Volume Shape Orientation Σk

Spherical
EII Equal Spherical λI
VII Variable Spherical λk I

Diagonal

EEI Equal Equal Axis-Aligned λ∆

VEI Variable Equal Axis-Aligned λk∆

EVI Equal Variable Axis-Aligned λ∆k

VVI Variable Variable Axis-Aligned λk∆k

General

EEE Equal Equal Equal λD∆DT

VEE Variable Equal Equal λk D∆DT

EVE Equal Variable Equal λD∆k DT

EEV Equal Equal Variable λDk∆DT
k

VVE Variable Variable Equal λk D∆k DT

VEV Variable Equal Variable λk Dk∆DT
k

EVV Equal Variable Variable λDk∆k DT
k

VVV Variable Variable Variable λk Dk Ak DT
k

Once the model has been defined, the next step is to estimate the mixture model

parameters by maximizing the likelihood, and determining the data partition from

the estimated parameters. Expectation-Maximization (EM) algorithm can accom-

plish this step. In model-based clustering, the clustering results are considered as

missing values, so EM algorithm is an efficient method for computing the Maximum

Likelihood (ML) estimate by maximizing the expectation of complete log-likelihood.
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Therefore, the cluster of each object is unknown and is indicated by z, z = (z1, z2, · · · , zn),

where zi = k when i th object, xi , belongs to the kth clusters. The complete log-

likelihood can be presented as follows:

C L (z,θ|x) =
n∑

i=1

K∑
k=1

zi k log
(
ηkφ (z,θ|x)

)
.

The EM algorithm begins with a set of initial parameters θ(0), then iterates between

the expected step (E step) and the maximization step (M step).

E step calculates the expectation value of the complete log-likelihood function

with respect to the conditional distribution of z given x under the current estimate

of the parameters θ;

Q
(
θ|θq)= E

[
logC L (z,θ|x)

]
,

then calculating the posterior probabilities π(q)
i k of xi belonging to the kth clusters;

π
(q)
i k =

π
(q)
k φk

(
x;θ(q)

k

)
∑
l
π

(q)
l φl

(
x;θ(q)

l

) .

In M step, the parameter θ(q+1) that maximize the expectation in the previous E step

will be found by

θ(q+1) = argmax
θ

Q
(
θ|θq)

.

Depending on the quantity of data and the dimensionality of variables, conver-

gence might require many iterations and a long computation time.

In fitting the model and estimating the parameters, the number of clusters is a cru-

cial factor in cluster analysis. It is also important to consider the type of fitted model

and the kind of variance-covariance decomposition in this method. Although, we

might deduce the potential model and number of clusters from a simple distribu-

tion with one or two-dimensional variables, however, if the variables in the dataset

are multidimensional and of various types, or if they are well-mixed, we need to in-

troduce the necessary criteria. Due to the fact that this method must identify the

number of clusters and type of the model simultaneously, the model criteria will be

quite sensitive.

Experimentally, the model that best represents the data distribution and could
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adapt better to the characteristics of the data, produce the best results of the mix-

ture models in clustering and increases the maximum likelihood. However, if the

number of clusters is so close to the number of objects, the clustering concept is

lost. Therefore, maximum likelihood alone is not a good criterion for choosing the

number of clusters. It is important to establish a balance between data information

and model parameters in the criteria. The information criteria, Akaike information

criterion (AIC), and Bayesian Information Criterion (BIC), are commonly applied in

fitting models that are based on maximum likelihood and penalized by the number

of model parameters.

As a first criterion for model selection, AIC is generally regarded as the appropriate

option:

AIC =−2Lmax
(
θ̂
)+2ν (θ) ,

where θ̂ is the maximum likelihood estimate of θ, Lmax
(
θ̂
)

is the maximum of log-

likelihood for the estimated model:

Lmax
(
θ̂
)= max

n∑
i=1

ln

(
K∑

k=1
ηkφ

(
x|µk ,Σk

))
,

and ν (θ) is the number of the free parameters in the model. Another penalized

criterion that is highly related to AIC is the BIC.

B IC =−2Lmax
(
θ̂
)+ν (θ) ln(n),

where n is a number of sample size. Comparing competing models can be car-

ried out using both criteria, however the BIC criterion is preferred when the models

have different parameters or different numbers of clusters. Among competitive mod-

els, the model with the highest AIC or BIC illustrates the best model for the number

of clusters and also clustering results. The general rule in clustering in contrast to

modeling is that a large BIC or AIC value indicates strong evidence for the model and

defined number of clusters.

For example, if we consider three continuous variables, blood eosinophils(%), mono-

cytes(%), and neutrophils(%) in our dataset. All missing values and outliers were re-

moved, then variables were normalized. On 41 selected patients, model-based clus-

tering was performed and a search of all 14 types of models and 1− 9 clusters was

conducted. Figure 2.8 illustrates the BIC scores and shows that the best clustering



46 2.3. Clustering Validation

result comes from VVV type of model with three clusters.

Figure 2.8: Identifying the optimal model-based clustering and number of clusters based on
BIC

In some models, results are not generated for all cluster sizes (e.g., the VVV model

produces results for clusters 1−6). Models that are applied to these settings do not

converge to optimal results. This becomes increasingly problematic as datasets be-

come larger. It is often beneficial to perform dimension reduction before performing

a model-based clustering.

In this section, we explained model-based clustering for normal distributions. This

method was able to extend to all types of variables and their distributions and could

also be applied to mixed datasets. Fitting the model, estimating the parameters, and

comparing and choosing the models are all handled using mclust package and func-

tion in R.

2.3 Clustering Validation

Cluster analysis is a powerful tool for finding structure in a dataset. However, it is

also an unsupervised method which means the number of clusters, K, is unknown

and there is no prior knowledge of it. In addition, there is also no information of true
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cluster or obvious grouping in the dataset. Therefore, one of the major challenges

in this unsupervised method is evaluating the accuracy, quality, and goodness of the

clustering framework for classification. The main objective of cluster validation is to

determine which partitioning of the data best matches the underlying data. The val-

idation issue of cluster analysis is more challenging than evaluating the quality of re-

gression, predictions, or other supervised models. Indeed, true cluster and grouping

information is typically not available. For validation of the clustering, three statistical

methods, internal, external, and cluster stability, can be considered.

Validating clustering results aims to determine which results are most meaningful

and to compare multiple clustering methods. Therefore, the object of cluster vali-

dating and estimating the number of clusters comes the closely same task. Cluster

validation can be done by using several of the clustering quality indices that are re-

ported for estimation of the number of clusters. Similarly, the number of clusters can

be selected by optimizing one or several indexes in cluster validation.

2.3.1 Internal Validation

Internal indices evaluate the quality of a cluster based on the clustering and the

underlying dataset. The interval validation tools are designed to evaluate the clus-

tering concept that groups similar objects within the same cluster and clusters dis-

similar objects together. Therefore, the two concepts of intra-cluster similarity and

inter-cluster similarity are applied here. In terms of similarity between objects, intra-

cluster similarity (compactness, connectedness, and homogeneity) measures how

similar the objects within a cluster are, and the distance between clusters is mea-

sured by inter-cluster similarity or separation. An effective clustering of a dataset is

the clustering that provides maximum separation in the dataset. There are different

ways to determine separation. Methods include calculating the distance between the

closest objects, the most distant objects, and the centers of two clusters. The majority

of these indices are also introduced to determine the number of clusters which has

the best fit the data.

Sum of squares within clusters (SSW)

The SSW metric measures cluster compactness and is based on the centroid of clus-

ters. It is particularly suitable in cases where hyper-spherical clusters are desired.

Due to its dependency on cluster centroids, ck , this index is only applicable to nu-

merical data. As the number of clusters increases, the value of SSW decreases.
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SSWk =
N∑

i=1
(xi k − cki )2 .

In general, a classification that has a lower calculated SSW is preferable. However,

if there are many clusters, this value will automatically decrease, which is undesir-

able.

Sum of square between clusters (SSB)

Sum of squares between clusters (SSB) is a measure of separation between clusters

based on the variance between clusters. In order to separate clusters, the distances

from the centroids to the mean vector of all objects are calculated. Based on the

calculation, a larger cluster has a greater effect on the index. The SSB value usually

increases as the number of clusters increases.

SSBk =
K∑

k=1
nk ∥ck − x̄∥2 .

Calinski-Harabasz index (CH)

To provide the best separation and compactness simultaneously, the Calinski-Harabasz

(CH) index takes into account the ratio of separation and compactness (Calinski and

Harabasz, 1974). When the index value is the maximum, the clustering has a high

separation and is compact. If a dataset contains more clusters, the SSB will be higher

and the SSW lower. However, the decrease in SSW is greater than in SSB. Thus, by

imposing a penalty factor of (K − 1), it prevents the conclusion of a higher number

of clusters than the one correct. N −K is a term used in cases where the number of

clusters is comparable to the number of objects. A good value for K is much lower

than N , so the term tends to N .

C H =
SSB

K −1
SSW

N −K

.

Silhouette Coefficient (SC)

This index is the same Silhouette index that defines the number of clusters. Silhou-

ettes coefficients (SC) assess how well each object fits in its cluster and is separated

from objects in other clusters.

SC = 1

N

N∑
i−1

b(xi )−a(xi )

max(a(xi ),b(xi ))
.
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According to this formula, the average dissimilarity between one object, xi , with

all objects in the same cluster is calculated as a(xi ), which illustrates how well xi is

placed within correct group. Also, b(xi ) is calculated as the lowest average dissimi-

larity of xi to other clusters. When calculating the index, the similarity between two

objects is the only factor considered. In other words, SC can be used to evaluate the

cluster in a wide range of data and to handle any clustering structure. The silhouette

width indicates the average degree of confidence in the clustering. Silhouette width

falls in the interval [−1,1] and values close to 1 present well clustered.

Dunn family of Indices

Dunn Index divides the smallest distance between two objects in the different clus-

ters to the largest intra-cluster distance

D I =
minK i=1 minK j=i+1 d(ci ,c j )

maxk=1 di am(ck )
.

where d(ci ,c j ) present the dissimilarity between two clusters,

d(ci ,c j ) = min
x∈ci ,x́∈c j

N∑
i=1

(
xi ci − x́i c j

)2
,

and di am(ck ) is determined by maximum dissimilarity between two objects in one

cluster,

di am(ck ) = max
x,x́∈ck

nk∑
i=1

(xi − x́i )2 , xi , x j ∈ ck .

Dunn Index is in the interval [0,∞] and the maximum values are preferable with bet-

ter cluster separation and compact clusters. Dunn index has a high time complexity,

and is sensitive to noise and outliers. Three related indices, Dunn-like indices, have

been added to Dunn index as a solution to these limitations (Dunn, 1974).

2.3.2 External Validation

External validation can be used to determine whether a clustering result is valid

based on a predefined clustering's result. A true clustering normally is not available.

However, the predefined clustering result could be a clustering that was produced

using another method, or an external result that researchers verified as a final result

of the clustering process. This strategy will provide insight into the performance of

clustering by evaluating how well different clustering methods agree about a given

dataset.
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Rand Index (RI)

The purpose of Rand's Index is to compare a classification scheme with a correct clas-

sification. Typically, the measure is the percentage of correctly classified elements

compared to the total number of elements. Thus, the Rand Index is defined by

RI
(
Ci ,C j

)= 2(a +b)

N (N −1)
,

where a indicates the number of pairs of objects in both partitions Ci and partition

C j that are in the same cluster, b indicates the number of pairs of objects that are in

the same cluster in partitions Ci but in different clusters in partition C j . When RI is

0, two clusters were classified differently and 1 means identical classification (Rand,

1971).

Adjusted Rand Index (ARI)

Inspired by the Rand Index, which incorporates chance agreements, ARI was devel-

oped and is a common method of external validation in clustering literature.

ARI =
a − (a + c)(c +d)

(a +b + c +d)
(a + c)(a +b)

2
− (a + c(a +b)

(a +b + c +d)

,

where c indicates the number of pairs of objects that are in the different clusters in

partitions Ci but in the same cluster in partition C j ; finally d indicates the number of

pairs of objects that are in the different clusters in both partitions Ci and in partition

C j . ARI range from 0 to 1, and a higher value indicates greater similarity (Hubert and

Arabie, 1985).

2.3.3 Clustering Stability Validation

Finally, in stability measure, the consistency of a clustering result is evaluated by

comparing it to the data obtained after removing each variable one at a time. Follow-

ing are some important criteria for clustering stability validation.

Average proportion of non-overlap (APN)

APN measure is defined as;
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AP N (C ) = 1

N P

N∑
i=1

P∑
l=1

(
1− n

(
C i ,l ∩C i ,0

)
n(C i ,0)

)
,

where C i ,0 is the cluster for i th object, xi based on all data, C i ,l , the result of cluster-

ing when the l th column is removed from the data. The APN is between [0,1], values

close to zero indicate a highly consistent clustering.

Average distance (AD)

AD calculates the average distance between objects placed in the same cluster by

clustering on the full data and clustering after removing one column. AD is defined

as:

AD(C ) = 1

N P

N∑
i=1

P∑
l=1

1

n(C i ,0)n(C i ,l )

 ∑
i∈C i ,0 j∈C i ,l

di st
(
xi , x j

) .

The AD has a value between zero and∞, and it is preferable to have a smaller value.

Average distance between means (ADM)

Using clustering both for the full dataset and clustering when omitting a single col-

umn, this measure calculates the mean distance between centers of objects within

the same group, it is defined as

ADM(C ) = 1

N P

N∑
i=1

P∑
l=1

di st
(
x̄C i ,l , x̄C i ,0

)
.

The ADM also has a value between zero and ∞, and a smaller value is preferred

here as well.

Figure of merit (FOM)

The FOM measures the average intra-cluster variance of the objects in the removed

column and the clustering of the objects in the remaining columns. FOM for the l th

deleted column is calculated as follows

FOM(l ,C ) =
√√√√ 1

N

K∑
k=1

∑
∈Ck (l )

di st
(
xi ,l , x̄Ck (l )

)
,

where x̄Ck (l ) is the average of the kth cluster when l th column is removed. The final

score is calculated as an average of all the omitted columns.
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FOM(C ) =
P∑

l=1
FOM(l ,C ).

FOM represents the average compactness of the clustering result. This value ranges

from 0 to 1. A low value indicates better discrimination in clustering. Additionally,

FOM decreases when the number of clusters increases (Yeung et al., 2001).

2.4 Conclusion

Three commonly applied clustering techniques are described in this chapter, as

well as, the method for determining the number of clusters. Different criteria were

also presented for cluster validation. In the clustering methods presented so far, there

has been no consideration of the potential presence of missing data or the impact of

a large number of variables in the dataset. In fact, until now, the problem of missing

values was handled by either discarding objects with at least one missing observa-

tion or considering zero in distance measurements. There is no evidence to support

the number of variables that should be considered for cluster analysis. Despite the

fact that the introduced methods may be applied to numerous variables, it is highly

recommended not to include too many variables. It is evident that both of these ap-

proaches can lead to biased results. Missing data can be classified in several ways,

and appropriate methods for dealing with missing data, as well as how to take into

consideration a large number of variables, will be discussed in the next chapter.
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Challenging of cluster analysis

In order to perform efficient cluster analysis, it is important beforehand to care-

fully explore the datasets. The presence of missing values is one of the most critical

aspects that could have a great impact on cluster analysis. In presence of missing-

ness, it is crucial to understand what kinds of missing values occur and what is the

most effective method to deal with them. This issue will be covered in Section 3.1.

The multiple imputation process, which is one of the most effective methods to han-

dle missing values, will be detailed. As introduced in Chapter 2, cluster analysis can

be heavily influenced by the recorded variables and its application may fail if the vari-

ables are noisy or collinear. The purpose of Section 3.2 is then to address this issue.

To conclude this Chapter, since multiple imputation was considered in this thesis,

consensus clustering should be used to combine the clustering results. In Section

3.3, two common consensus methods are discussed, and then, the proposed method

of this thesis for consensus clustering, 4M, is presented.

3.1 Missing Value

Unobserved values in a dataset are typically referred to as missing values. As values

can be missing for a variety of reasons, there exist different types of missingness. In

the huge datasets considered in this thesis, missing value is a common and pervasive

problem. A common reason for occurring missing is that objects do not respond to

one or more questions either because they refuse to answer, do not understand the

53
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questions, do not know the answers, or accidentally skip the questions in a survey, or

case report form. In the experimental part of studies, missing values can occur when

a researcher is unable to collect an observation. In some other cases, poor environ-

mental conditions or patient circumstances may render observation impossible, for

example, when patients are not able to pass some of the tests or samples, such as

low-quality sputum which cannot be analyzed, or when a physician fails to record

FEV1 of the particular patient after getting some medicine. Researchers'situations or

equipment failures might then play a role in missing values.

As a result of the presence of missing values, bias and inefficiency are likely to re-

sult from the statistical analysis of datasets. More precisely, from a statistical point of

view, working on an incomplete dataset is very unpleasable and there is not a unique

answer to deal with this issue. Loss of power, large value of standard error, wide con-

fidence interval, and less efficiency can be the consequences of missing values. From

a statistical point of view, it is always challenging to analyze incomplete data, espe-

cially when the number of missing values is substantially increased. In order to ana-

lyze a dataset that contains missing values, the first step is to explore the reason for

missingness in order to determine the strategy to handle missing values. A method

for handling missing values will be chosen in accordance with the number and pat-

tern of missing values, their reasons, and possible implications. Consequently, the

first challenge in this study was the investigation of missing values and how to han-

dle them within the framework of cluster analysis.

This section presents the various pattern and mechanisms of missingness, and the

corresponding methods to deal with missing values. Finally, since the principal part

of this thesis is based on multiple imputation, the well-known multiple imputation

process based on chained equations is addressed.

3.1.1 Pattern and Mechanism of Missingness

In general, when analyzing incomplete data, it is necessary to consider the na-

ture of missingness. Two concepts frequently used in missing values are pattern and

mechanism. How values are missing in a dataset is called the pattern of missingness

while the probabilistic definition of the missing value is called mechanism. The pat-

terns of missingness can generally be divided into monotonous and non-monotone

patterns.
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When missing values happen in the i th position of an object and all of the subse-

quent values are also missing, this drop-out pattern is called the monotone pattern.

When missing values occur in any of the variables in any position, this pattern is

named non-monotone pattern. In this thesis, as presented in subsequent chapters,

the considered datasets contain a mix of both monotone and non-monotone miss-

ingness patterns.

The mechanism of missingness is defined as the probability of missing values given

the other values of variables in the dataset. Missing values mechanisms can be clas-

sified into three groups: Missing completely at random (MCAR), missing at random

(MAR), and missing not at random (MNAR) (Molenberghs and Kenward, 2007)

Let X be the incomplete dataset which can be partitioned as (Xmi s ,Xobs) where

Xmi s is the missing part and Xobs is the observed part. Let L be defined as a random

indicator variable for univariate case and random indicator matrix for multivariate

case which distinguish missing and observed values for X. If the value is observed for

i th object in the j th variable, Li j = 1 otherwise, Li j = 0. The dependence of L on the

variables in the dataset defines the mechanism of missingness. Let define p(L|X,φ)

as a statistical probability for missing value, andφ is the parameter for missing value.

In the following, the different mechanisms of missingness are introduced.

Missing completely at random (MCAR)

MCAR is the most common group of missing values. Missing values are involved in

this group when the probability of each entry to be missing is independent of the

other values in the complete case, X.

p(L|X,φ) = p(L,φ).

As an example, it is possible that some participants had missing laboratory values

due to improper processing of laboratory samples. As a result, under MCAR, missing

data depends neither on the observed nor unobserved value.

Missing at random (MAR)

MAR is the second mechanism for expressing missingness that is a special case of

MCAR. If the probability of a value to be missing possibly depends on observed data,

Xobs , but is independent of unobserved data, Xmi s , this kind of the missing value is
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called missing at random. Therefore,

p(L|X,φ) = p(L|Xobs ,φ).

It is what we commonly refer to as "random". This means that the probability of

missingness depends only on observed values in X, not on any unobserved values in

X. A simple example of MAR would be when patients over a particular age refuse to

respond to a survey question, and age is an observed covariate.

Missing not at random (MNAR)

MNAR is the third mechanism of missingness. This mechanism of missingness ap-

pears if the probability of a value to be missing depends on unobserved data. There-

fore, the probability of a value to be missing is dependent on Xmi s or some unob-

served covariates. As an example of MNAR, objects with incomes above a certain

point in the survey might refuse to report such incomes. The missingness depends

on the unobserved response, and income (Molenberghs and Kenward, 2007).

3.1.2 Dealing with missing values

In literature, there are several methods for handling missing values. We divide

these methods into two simple and advanced groups. Listwise deletion, available

case analysis, single imputation, the indicator method, and weighting are contained

in the simple approach. While the advanced approaches are likelihood-based meth-

ods, posterior-based approaches, and multiple imputation.

Complete Case

One of the methods for overcoming missing values is the complete case method also

known as listwise deletion. In this method, objects who contain at least one missing

value for one variable are removed, and the remaining complete objects are consid-

ered for the statistical analysis. The complete case approach presents several disad-

vantages such as waste of data, biased and inefficient results. Complete case study

was recommended when only a few values are missing completely at random. How-

ever, all of the statistical software used this approach as a standard method in the

presence of missingness.

Single Imputation

In this approach, each missing value is replaced by a plausible value and then the
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imputed dataset is analyzed. Depending on the type of the variables, the simplest

and fastest solution is replacing missing values with mean, median, or mode of the

observed data for each variable. Another more appropriate method which avoids

underestimation of the underlying variance is known as the conditional mean im-

putation. In this single imputation method, each missing value is imputed by the

expected value conditional on observed values. While simple, the single imputation

approaches consider the replaced value as the true value and then ignores the fact

that imputation method can not provide the exact value. In other word, single impu-

tation approaches do not reflect the uncertainty about the missing values.

Multiple Imputation

Multiple imputation is an approach for filling in missing values with more than one

plausible value to account for uncertainty about the prediction of the missing values.

In medical research, when our aim is regression estimation, multiple imputation is

a popular and very flexible technique for handling missing values. In multiple im-

putation, each missing value is replaced with a set of m(> 1) independent values to

generate m separate complete datasets. This approach incorporates uncertainty of

the missing data that cannot be achieved with single imputation (m = 1). After gen-

erating m separate complete imputed datasets, based on Rubin's rules, each of the

imputed datasets has to be analyzed individually and in the final step, results must

be combined (Rubin, 2004).

In this method, missing value is imputed by drawing from the posterior predictive

distribution of Bayesian model. Let X denote an incomplete data matrix and M the

total number of imputed datasets by multiple imputation method. Missing values

for mth (m = 1,2, · · · , M) imputed dataset is drawn as:

Xm
mi s ∼ p(Xmi s |Xobs), (3.1)

with

p(Xmi s |Xobs) =
∫

p(Xmi s |Xobs ,θ)p(θ|Xobs)dθ, (3.2)

where Xmi s and Xobs are missing and observed parts of X, respectively. The im-

puted values are drawn from the joint posterior distribution of missing data given

observed data, equation 3.1. In equation 3.2, it is difficult to figure out predictive

distribution as long as the requirement of integration over the model parameters θ.

This problem is solved in the univariate case by iteratively drawing a sequence of val-

ues of the missing data and parameters until convergence. The data is drawn inde-
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pendently m times from m approximate posterior distribution involving m estimates

for θ∗(1),θ∗(2), · · · ,θ∗(M) from p(θ|Xobs) which are used in the conditional distribution

p(Xmi s |Xobs ,θ∗(m)) to draw M imputation. However, in nonlinear multivariate data,

building one model for the joint distribution of the variable is difficult. In this sit-

uation, one of the solutions is multivariate imputation by chained equation (MICE)

which is introduced in the following.

3.1.3 Multivariate Imputation by chained equations (MICE)

In a dataset with more than one variable containing missing values, a conditional

model is defined for the missing value for each incomplete variable given a set of

other variables. MICE divides the p-dimensional problems into p one-dimensional

problems. Then, it draws values for the parameters of each incomplete variable and

imputes it from the corresponding conditional model. This process iterates through

the other incomplete variables. By using this procedure, complex problems like vari-

ables with different types, nonlinear models, or interaction between variables and

circular dependence can be easily addressed when considering iteratively sampling

from conditional distribution instead the algorithm assumes multivariate joint mod-

eling. Conditional models are utilized in MICE without the need for a multivariate

model for the whole dataset.

As a reminder, let X be the incomplete data N×P matrix with N objects and p vari-

ables. X can be divided into missing and observed parts, Xmi s and Xobs , respectively.

Then, p(Xmi s |Xobs) denotes the joint multivariate posterior which is completely spec-

ified by θ, a p-dimensional vector of unknown parameters. One of the main aims of

MICE is to obtain the posterior distribution of θ through chained equations which

take sampling iteratively from conditional distributions. However, if all p variables

contain missing values, MICE starts with a simple draw from observed marginal dis-

tributions. Iteration of the chained equation is summarized as follows;

1. Draw θ∗(t )
j from the posterior probability of θ j ; θ∗(t )

j ∼ p
(
θ j |xobs

1 , x t−1
2 , · · · , x t−1

p

)
j = 1,2, · · · , p;

2. Draw x∗(t )
j from the conditional probability of missing values given observed

data and estimated parameters θ∗j ; x∗(t )
j ∼ p

(
xmi s

j |xobs
1 , x t−1

2 , · · · , x t−1
p ,θ∗(t )

1

)
j =

1,2, · · · , p.

where x(t )
j =

(
xobs

j , x∗(t )
j

)
is the j th imputed variable at iteration t and θ1,θ2, · · · ,θp

are the components of θ. When the algorithm converged, the above two steps provide
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a draw of θ∗ from its posterior which can be used to draw values X∗ to impute Xmi s .

The algorithm has been shown to converge quickly (10 iterations might be enough

and throughout this thesis, 10 iterations have been considered) since x∗(t )
j is entered

by previous imputations x∗(t−1)
j through their iteration with other variables. This pro-

cedure is repeated M times to generate M imputed datasets.

There are many different techniques for performing multiple imputation, how-

ever, the application of predictive mean matching after regression switching (MICE-

PMM) appears to be the best method when >10% of data are missing (van Buuren,

2018).

Rubin's Combining rules

Let Q be the parameter of interest, for example, mean or regression coefficients.

When analyzing the M imputed datasets, the M estimates Q̂ are obtained and need

to be combined. The estimate for multiple imputation is simply calculated as the

average of the M imputed data estimates,

Q̄ = 1

M

M∑
m=1

Q̂(m),

where Q̂(m) is the estimate derived from the mth imputation. In order to calculate

the associated standard error, between imputation variance and within imputation

variance must be combined. In this case, the variance between imputations is pre-

sented by B ;

B = 1

M −1

M∑
m=1

(
Q̂(m) −Q̄

)2

while the within imputation variance is denoted by Ū

Ū = 1

M

M∑
m=1

U (m),

where U (m) is the estimated variance of Q̂(m). Finally, the total variance is equal to

T = Ū +
(
1+ 1

m

)
B ,

where,
(
1+ 1

m

)
B estimates the increase in variance because of the presence of

missing data and Ū calculates the variance if the data were complete.

This process of inference is very straightforward when it is applied to a popula-

tion parameter. However, in the context of cluster analysis, the situation is differ-
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ent. Indeed, within cluster framework, the objective is to classify each object into

homogenous clusters according to the values of the variables, which implies that all

inferences are directed at the objects level rather than a population measure. Fur-

thermore, a measure of uncertainty related to cluster assignment is not defined dur-

ing the clustering process, which makes it unclear how to account for the uncertainty

due to imputations in the final results (Rubin, 2004). A major challenge was missing

values, which was handled using multiple imputation. Multidimensional datasets

and extensive variables in clustering are next on the list of challenges. A detailed look

at this challenge will follow in the next section.

3.2 Dimension reduction

In most practical classification studies, a large number of variables are usually con-

sidered. Dimension reduction and cluster analysis are two of the most widely used

methods which are often come together and have a past history in data analysis. In

cluster analysis, when users consider a large number of variables that may contain

redundant information with noisy variables, the true structure of classification may

be covered up. Datasets with a high number of variables make also interpreting and

visualizing the data a challenging task. These challenges are even greater when some

of these variables are considered irrelevant or appear to have a small impact on the

data structure. In addition, the multidimensional space makes clustering the data

more complex and dimension reduction is the only way to proceed with cluster anal-

ysis.

There are various methodologies in the literature that aim to reduce the dimension

of variables. The methods of dimension reduction generally reduce the number of

variables through either selecting important and key variables or the construction of

new components using combinations of the original variables. A key aspect of clus-

ter analysis is identifying clusters for all objects, and providing a proper name to each

cluster; therefore, regardless of dimension reduction, the original variables must be

reviewed when the analysis is finished. As a result, this combination of reducing and

clustering data has practical applications in many scenarios and is inevitable.

It has been suggested for cluster analyses that considering variables containing

identical information should be avoided. However, there is no unifying statement
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between the two methods of dimension reduction, namely selecting variables by ex-

pert opinion, or reducing variables by creating new components. Different criteria

for variable selection have been developed in cluster analysis. A popular variable

selection method is described in the following section that has been suggested by

Basagaña et al. (2013), in the study of cluster analysis on incomplete datasets. A com-

mon method for variable reduction, known as PCA, is also detailed hereafter.

3.2.1 Variable selection

Selection of variables involves simply excluding some variables and including oth-

ers without any modification in them. Cluster identification is directly and signifi-

cantly affected by the outcomes of variable selection. The variables should then be

selected in a way that will result in a better cluster output with a high classification

rate. It is essential that only relevant variables are kept when performing the vari-

able selection. One of the most simplistic and naive methods of selecting variables

is based on the opinion of the researcher and the purpose of the study which defines

the relevant variables. The alternative method is to use some criteria to determine

key variables. The general concept of this kind of method is to perform an optimiza-

tion task with regard to a particular objective function, which is then solved using

global optimization heuristics. In cluster analysis, several different variable selection

methods are available. Some of those methods are described in the following.

Unsupervised variable selection

This method identifies the most important variables and the number of clusters at

the same time. In this method, cluster analysis is conducted using different numbers

of clusters and different numbers of variables. Final results are then ranked using the

CritCF criterion to determine which combination of clusters and variables has the

highest CritCF which reflects high classification. The CritCF is defined as

Cr i tC F =
[(

2p

2p +1

)(
1

1+ SSW
SSB

)] log(k+1)+1
log(p+1)+1

,

where p is the number of considered variables, k is the number of clusters, SSW

and SSB are the sum of square within and between clusters, respectively (Section

2.3.1). It is recommended that CritCF value be as high as possible and a higher CritCF

value is preferred to select key variables as well as the number of clusters.
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Figure 3.1: Box plots of CritCF by the number of clusters (k), PAC-COPD Study, Spain, 2004−
2008 [Figure from Basagaña et al. (2013)].

In order to find the key variables and the number of clusters, backward sequential

selection could be employed. In this strategy, the number of clusters is fixed a priori

as, k = 2,3, · · · ,kmax, where kmax is the maximum number of clusters and definitely

lower than the number of objects. The algorithm starts with two groups of variables,

a selected group, and a removed group. In the first step, the selected group contains

all variables, while the removed group is empty. As part of each step, the K-means

(Section 2.2.1) method is applied by excluding one variable from the selected group.

The variable that provides a lower value of CritCF when excluded from the selected

group is moved to the removed group. Iteration continues until no improvement in

CritCF is observed. The final selection is chosen based on a combination of cluster

numbers and variables that give a higher CritCF.

As an illustration, consider Figure 3.1 issued from (Basagaña et al., 2013) which

reports CritCF calculated for four different numbers of clusters. Since the highest

CritCF value was obtained for k = 2, two clusters were determined for the best ho-

mogenous group in the study, and those variables that provided the highest CritCF

value in the selected group were identified as important and influenced variables for

clustering.
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Basagaña et al. (2013) have noted that it is possible to design a search strategy

based on this criterion to identify both the optimal number of clusters and the fi-

nal variables to include in the analysis simultaneously. However, there is no evidence

to show that this search strategy will be exhaustive, and it is not certain if the number

of clusters and variables will reach the global optimum.

3.2.2 Variable reduction

In a multidimensional dataset, variable reduction is a crucial step for accelerat-

ing cluster analysis without sacrificing the power of the original variables. Through

variable reduction, variables are transformed into fewer dimensions. In general, this

method considers all linear combinations of the variables and then constructs new

uncorrelated variables (commonly known as principal components, or PCs), and

eventually, a reduced number of the components are chosen that still effectively re-

flected a majority of the information from the original dataset. The number of the

selected principal components is usually much smaller than the number of original

variables. The number of the components is determined by considering how much

information can be preserved while combining the variables of the original dataset.

In addition, dimension reduction methods are also effective when the variables of

the dataset present collinearity, i.e. some or all of the variables are correlated. The

principal components are uncorrelated, so the redundant information is eliminated.

In order to conduct a comprehensive cluster analysis, the datasets in this thesis

included all available recorded variables and are composed of both quantitative and

qualitative variables. In recent years, the variable reduction technique focused only

on quantitative variables, principal component analysis (PCA), or only on qualitative,

corresponding analysis (CA). To deal with mixed types of variables, factor analysis of

mixed data (FAMD) is used for datasets containing both quantitative and qualitative

variables. Using FAMD, quantitative variables are analyzed using PCA, and qualita-

tive variables are analyzed using CA.

For simplicity, only PCA is explained here but this method can be easily gener-

alized to CA and FAMD. The first mathematical step of the PCA is to determine the

eigenvalues, and their corresponding eigenvectors, from the covariance matrix of the

dataset. The eigenvalues are derived by solving the following equation (Poole, 2006).

det(Σ−λI) = 0,
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Figure 3.2: An example of a scree plot.

where det is the abbreviation of determinant, Σ is the variance-covariance matrix

of the dataset and Ip is a p ×p identity matrix. Once the eigenvalues are calculated,

the corresponding eigenvectors can be derived(Aldrich, 2006). The principal com-

ponents, i.e. linear combinations of the variables from the original dataset are the

results of the application of the eigenvectors to the original dataset.

The derived eigenvalues are used to calculate how much variability of the original

dataset can be explained by each component. To do this, each eigenvalue divides by

the total sum of the components'eigenvalues. In order to calculate the cumulative

sum of the explained variance, it needs to add the prior percentages and the per-

centage of the component that is being calculated. This cumulative percentage of

variance explained is an important criterion used to determine the number of com-

ponents to consider. The scree plot is a line plot of the eigenvalues of principal com-

ponents, and it is a widely used method to determine the number of components to

consider.

In scree plot, eigenvalues are indicated on the y-axis and number of components

are demonstrated on the x-axis. Figure 3.2 illustrates an example of this scree plot.

Scree plots typically follow a similar pattern, beginning with a high point on the left,

declining relatively rapidly, and then flattening out at the endpoints. In general, the
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first component explains most of the variability, the next few components explain a

small fraction of the overall variability, and the last few components explain a small

fraction of the overall variance. Scree plots operate in the same way as elbow plots

(Section 2.2.1), they look like curves and select all components just before the elbow.

In this thesis, we select the number of components that explain at least 90% of the

variance. In other words, the first component which its cumulative sum of explained

variance is greater than 90% is assumed as an index and this component and all the

previous ones are considered for the cluster analysis. It should be noted that PCA

does not apply when missing values are present. Therefore, as multiple imputation

will be used in this thesis to handle missing values, the components to consider will

be determined after PCA is performed on the imputed datasets.

3.3 Consensus Clustering

When multiple imputation is applied for handling missing values, based on Ru-

bin's rules, each of the imputed datasets has to be analyzed individually and in the

final step, results must be combined. Therefore, after application of cluster analysis

on each imputed dataset, one clustering final result must be achieved. In this case, m

individual clustering results are obtained and create an ensemble matrix, R, with N

rows for objects, such that, each object is represented as an m-dimensional categori-

cal vector {C1,C2, · · · ,CN } and M columns as outputs of clustering,Π= {Π1,Π2, · · · ,ΠM }.

The mth element of vector {C1,C2, · · · ,CN } , ci ,m , represents the cluster assignment of

i th object (i = 1,2, · · · , N ) in the mth imputed dataset (1 ≤ m ≤ M) and the result would

be an integer value between 1 and k.

Consequently, in the last step of Rubin's process, a method is required to combine

the M different clustering results to get a final solution. In the literature, consensus

clustering refers to the situation where several clustering methods were applied to a

particular dataset to find a single clustering (Topchy et al., 2004; Li et al., 2010). How-

ever, here, consensus clustering refers to applying the same clustering method to m

different imputed datasets.

In this process, the main problem with clustering based on one specific method

on m different imputed datasets is label correspondence throughout the ensemble

matrix. For example, clustering on the first imputed dataset may classify it into two
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clusters, such that the first twenty percent of data are labeled as cluster 1, and the

rest are classified as cluster 2. Whereas in another imputed dataset, the same method

may classify into two clusters where the first twenty percent of data would be labeled

as the second cluster and the rest as the first cluster. Although the classifications of

both imputed datasets are the same, the cluster labelings are different. The cluster

labeling is determined by its label assignment process and there are no specific and

clear rules for how methods assign labels to determined clusters. Therefore, a rela-

beling method is necessary to combine the results from imputed datasets. As a gen-

eral suggestion, the first imputed dataset is taken as a reference and other imputed

datasets'clustering results should be harmonized accordingly.

In the present section, two well-known methods for consensus clustering were

summarized. Finally, our proposed method which was inspired by model-based clus-

tering on mixture multivariate multinomial distribution is introduced.

3.3.1 Majority Vote

Basagaña et al. (2013) introduced a simple method for consensus clustering. In the

beginning, the labeling issue needs to be resolved and harmonized by considering

the cluster label from the first imputed dataset as a reference. Then, all possible per-

mutations of labels are considered for other clustering results, and the permutation

with the highest agreement with the reference one is selected. Finally, for consensus

clustering, the object is assigned to the cluster that is the most frequently observed

among the M different clustering results for the object.

C1 = mod m
(
ci ,m

)
i = 1,2, · · · , N ;m = 1,2, · · · , M . (3.3)

However, Majority Vote is restricted to cluster analysis with a fixed number of clusters

and predefined important variables for all imputed datasets. This method does not

allow to handle clustering with different numbers of clusters for each imputed data.

3.3.2 Co-Membership Method

The second method is based on Co-Membership matrix (Gordon, 1999). Gordon

and Vichi (2001) extended Gordon's idea by proposing a method for obtaining a fi-

nal result from the clustering results of the same dataset derived when using several

methods or one method on different dataset. By using this method, consensus clus-

tering was driven by the minimization of a criterion function that measures how sim-
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ilar or different consensus candidates are from the ensemble (the method known as

the optimization approach to consensus clustering). Bruckers et al. (2018) applied

this method for consensus clustering in multiple imputation. Co-Membership ma-

trix is used to represent the similarity between each pair of rows in the ensemble

matrix. To determine the objects in the same clusters, cmi j = 1 if two objects i and j

are in the same cluster, and 0 otherwise. One way to calculation of Co-Membership

matrix is,

C M(F ) = F F T ,

where F is Membership matrix which fi k = 1 if the object i belong to cluster k,

(k = 1,2, · · · ,K ), and 0 otherwise. In Membership matrix, the assigned label for each

cluster is not unique. The cluster labels can be modified without changing the clus-

tering results for objects. Therefore, it is necessary to perform a suitable permutation.

In terms of the Membership matrix F, arbitrary permuting of this matrix is shown as

FΠ, whereΠ is a suitable permutation.

If we consider Φ = (Φ1,Φ2, · · · ,ΦM ) elements of the m ensemble clustering using

Co-Membership matrix and d is a dissimilarity measure, consensus solution is de-

rived from
M∑

m=1
wmd (C ,Φm)p ,

where C is the final consensus result where minimizing weighted average dissim-

ilarity power of order p. If we consider similarity measure as d, then when p = 1, is

calculated from (weighted) median or medoid clustering while p = 2, we have least-

square consensus clustering. In this thesis, the final consensus clustering result was

obtained from least-square fit of a set of Co-Membership on m different clustering

results (see, e.g., Gordon (1999); Gordon and Vichi (2001); Hornik (2005); Bruckers

et al. (2018)).

3.3.3 Mixture Multivariate Multinomial Model (4M)

Topchy et al. (2004) proposed a method to combine many individual clustering

results to provide an improved overall clustering result of the given data. They pro-

posed an expectation-maximization (EM) algorithm with a finite mixture of multi-

nomial distributions for consensus clustering. However, inspired by this idea, 4M

is proposed in this thesis, as a novel method for consensus clustering. 4M assumes

that the ensemble matrix (R) follows mixture multivariate multinomial model. Then,

maximum likelihood was solved using EM algorithm to find the best consensus clus-
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tering on ensemble matrix. While Topchy et al. (2004) assumed that the number of

clusters is predetermined, this challenge is here solved by selecting the best fitting of

mixture as the number of clusters. The number of mixtures is estimated by an ap-

proximation of the BIC (Kass and Raftery, 1995; Schwarz, 1978).

Before starting the procedure, we still have to harmonize the labelings. The method

of Basagaña was used to define clustering the first imputed dataset as a reference and

select the permutation of the other clustering result of imputed datasets that has a

high agreement with the reference. The clustering labels in ensemble matrix, R, was

assumed nominal values and matrix follows mixture multivariate multinomial distri-

bution. So, in this study, the final result for consensus clustering is found as a solution

of maximum likelihood on mixture multivariate multinomial model (4M) using EM

algorithm.

It was proposed that ensemble matrix follows mixture of multivariate multinomial

distribution

p (Ci |θ) =
G∑

g=1
Πg pg

(
Ci |θg

)
,

where g is the number of mixtures (or clusters)
(
1 ≤ g ≤G

)
and define the final

number of consensus cluster. The mixing coefficients Πg correspond to the prior

probabilities of the clusters. Since the clustering result for m imputed datasets are

independent, all the values, R are assumed to be independent and identically dis-

tributed. Since the variables Ci , takes nominal values from a set of cluster labels, it

makes sense to view them as being the outcomes of a multinomial distribution. So,

pg
(
Ci |θg

)
follows multivariate multinomial distribution for i th objects.

pg
(
Ci |θg

)= M∏
m=1

p(m)
g

(
ci m |θ(m)

g

)
,

and p(m)
g

(
ci m |θ(m)

g

)
follows multinomial distribution for i th objects in mth imputa-

tion

p(m)
g

(
ci m |θ(m)

g

)
=

K (m)∏
k=1

[
υmg (k)

]δ(x,k) ,

where υmg (k) presents the probability of the clustering labels such that sum up to
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one,
K (m)∑
k=1

υmg (k) = 1,

and K (m) shows the labels in mth imputation. For example, if mth imputed dataset

is classified to two clusters and we labeled the 0 and 1, then probability for mth clus-

tering can be simplified as

p(m)
g

(
ci m |θ(m)

g

)
= υci m

mg (1− ci m)1−ci m .

The log likelihood function for the parametersΘ= {π1, · · · ,πG ,θ1, · · · ,θG } given the

Ensemble matrix X is:

logL (Θ|R) = log
N∏

i=1
p (Ci ,zi |Θ) = log

N∏
i=1

G∏
g=1

[
Πg pg

(
Ci |θg

)]zi g

=
N∑

i=1

G∑
g=1

zi g log
[
πg pg

(
Ci |θg

)]
,

Θ∗ = argmax
Θ

logL (Θ|R) .

There is no closed-form solution to the maximum likelihood problem when all pa-

rameters Θ= {π1, · · · ,πG ,θ1, · · · ,θG } are unknown. Therefore, the likelihood function

can be optimized using the EM algorithm. we have to define an auxiliary function

Q (Θ,Θ́) = ∑
z

log
(
p (R,z|Θ)

)
p (z|R,Θ́)

= ∑
z

N∑
i=1

G∑
g=1

zi g log
[
πg pg

(
Ci |θg

)]
p (z|R,Θ́)

=
N∑

i=1

G∑
g=1

E
[
zi g

]
log

[
πg pg

(
Ci |θg

)]
.

The E-step computes the expected values of the hidden variables E
[
zi g

]

E
[
zi g

]= π́g

M∏
m=1

K (m)∏
k=1

(
υmg (k)

)δ(xi m ,k)

G∑
g=1

π́g

M∏
m=1

K (m)∏
k=1

(
υmg (k)

)δ(xi m ,k)
.

The M-step maximizes the likelihood by computing new best parameters esti-
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mates:

πg =

N∑
1=1

E
[
zi g

]
N∑

i=1

G∑
g=1

E
[
zi g

] .

υmg (k) =

N∑
1=1

δ (xi m ,k)E
[
zi g

]
N∑

1=1

K (m)∑
k=1

δ (xi m ,k)E
[
zi g

] .

A general problem in cluster analysis is determining the number of clusters. In

the current study, the number of mixtures is determined by fitting 4M under differ-

ent numbers of mixtures. Then, the best number of mixtures is selected by BIC. So,

the appropriate number of clusters is determined as the final number of mixtures in

fitting Mixture Multinomial Multivariate Model on ensemble.

3.4 Conclusion

This chapter provided the necessary methods to overcome the challenges of ap-

plying cluster analysis to a large incomplete dataset. Further, the presented meth-

ods and proposed method for consensus clustering were discussed. Although, the

challenges of cluster analysis were addressed in this chapter, however, these meth-

ods should be combined together and set up in a framework in order to achieve the

final and adequate clustering result. The proposed framework will be presented in

Chapter 4 and the effectiveness of the combination of these methods will be evalu-

ated using simulation studies under several scenarios as well as comparison to other

competing frameworks.



CHAPTER 4

Integrate cluster analysis framework using

multiple imputation

In the previous two chapters, cluster analysis and the challenges of applying it to

datasets with large number of variables and the presence of missing values were in-

troduced. In spite of the fact that the identified methods to handle those challenges

are well-known and well documented, it is imperative that they perform well together

to provide the most appropriate results when applying multiple imputation on clus-

ter analysis in multidimensional incomplete datasets. In the literature, Basagaña

presented a full package of methods to manage this process (Basagaña et al., 2013).

The methodology introduced by Bruckers et al. can also be considered as an issue

to those challenges (Bruckers, 2014). Therefore, in this chapter, Basagaña's method

and Bruckers'method are first introduced in sections 4.2 and 4.3, respectively. Fi-

nally, our proposed framework for handling missing values using multiple imputa-

tion and multidimensional data in cluster analysis is presented in Section 4.4. In the

literature, there is no comprehensive comparison between the existing frameworks

on cluster analysis. Therefore, in this section, several scenarios were investigated us-

ing simulated datasets with known clustering results under different missingness and

This Chapter is based on

Nekoee Zharaei, H. S., Louis, R., Donneau, A.F., Using multiple imputation for cluster analysis
with large incomplete data. (manuscript in under-review)
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overlapping rates. These scenarios examine the effectiveness of our proposed frame-

works using different competitive methods for each step of the proposed framework.

Figure 4.1: The structure of multiple imputation

4.1 Introduction

As explained in Section 3.1.2, when datasets contain missing values for cluster-

ing, there are different approaches to handle this challenging issue. A well-known

method of dealing with missing values is multiple imputation, which attempts to ac-

count for the uncertainty about the prediction of the missing values. When multiple

imputation is applied, every missing value is replaced with a set of m independent

plausible values and the results are m separate complete datasets. In accordance

with Rubin's rules, the imputed datasets must be analyzed separately and the results

must be combined at the end. The procedure is illustrated in Figure 4.1. Therefore,

using multiple imputation in clustering and obtaining the final result of the cluster-

ing requires an integrated framework of linked steps to integrate the treatment of

missing values and numerous multidimensional datasets. In general, Figure 4.1 and

Table 4.1 demonstrate how such a framework performs for cluster analysis in multidi-

mensional incomplete datasets. The framework algorithm, in Table 4.1, is composed

of several competing statistical methods with a lot of decisions to make. Therefore, a

summary of the full packages is demonstrated in Table 4.1, and frameworks with dif-

ferent methods and their functions on cluster analysis are provided in the following

sections when incomplete datasets are present and various variables are considered.
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Table 4.1: The general algorithm of clustering on multidimensional incomplete datasets

Input: Matrix X representing a dataset with missing values and multidimen-
sional variables

Step 1. Implement multiple imputation with a predefined number of im-
putations (m) and iterations (Section 3.1.2),

Step 2. Utilize one of the existing dimension reduction methods for each of
m imputed datasets (Section 3.2),

Step 3. Apply one method of cluster analysis (Section 2.2) on all m imputed
datasets,

Step 4. After m different clustering results have been obtained in the pre-
vious step, one of the consensus clustering methods is used to reach the final
result (Section 3.3).
Output: Partition of clustering labels C = {C1, · · · ,Ck }

4.2 Basagaña Framework

4.2.1 Definition

Principle framework for cluster analysis based on multiple imputation was intro-

duced by Basagaña et al. (2013). Basagaña et al. were the first researchers who worked

on this subject. The framework was started by applying multiple imputation to ob-

tain m imputed datasets. In this method, Basagaña et al. proposed to determine

the number of imputations (m) while considering the precision of the object clus-

ter assignment probabilities. For a given object, the corresponding 95% confidence

interval for this observed probability, p̂, can be computed as

p̂ ±1.96

√
p̂

(
1− p̂

)
m

,

where the second part refers to the precision, e. The worst-case scenario occurs

when p̂ = 0.5 and in this case the precision is approximately equal to e = 1p
ḿ

. There-

fore, if m = 100, the precision would be ±0.1. This relationship is illustrated in Figure

4.2. When working with large number of variables, the number of imputations, m,

will also depend on the computational cost. As a result, 100 imputations were cho-

sen as a common number of imputations for multiple imputation method (m = 100).

As presented in Section 3.2.1, Basagaña utilized a backward sequential selection to

define the best combinations of variables to consider and the number of clusters to

define using CritCF. Then, cluster analysis with the determined number of clusters

and selected variables were fitted on each m imputed dataset. Finally, each object
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Figure 4.2: Precision of clustering assignment probability for an object as a function of m(
p̂ = 0.5

)

was assigned to a cluster using the Majority Vote process (Section 3.3.1). Basagaña

et al. proposed a complete R package for multiple imputation in cluster analysis that

contains the above steps. Table 4.2 provides a description of the different steps in-

volved in Basagaña's framework.

Table 4.2: Basagaña framework for multiple imputation in cluster analysis

Input: Matrix X representing a dataset with missing values and multidimen-
sional variables

Step 1. Implement multiple imputation to obtain m = 100 imputed
datasets,

Step 2. K-means clustering method was applied on m imputed datasets to
determine the available number of clusters (k = 1,2, · · · ,kmax),

Step 3. Determine the variables to consider using CritCF,
(
var f i n

)
, and fix

the proper number of clusters k = k f i n ,
Step 4. Refit K-means with k = k f i n , when considering only the selected

variables var f i n on m imputed datasets,
Step 5. Relabel the clusters and harmonized them by the first result of clus-

tering,
Step 6. Assign the objects into clusters according to the Majority Vote

method.
Output: Partition of clustering labels C = {C1, · · · ,Ck }
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Basagaña et al. illustrated the effectiveness of the framework using a subset of data

from the Phenotype and Course of Chronic Obstructive Pulmonary Disease (PAC-

COPD) Study (Basagaña et al., 2013). The purpose of this Spanish study (2004-2008)

was to identify clinically and epidemiologically relevant subtypes based on clustering

methods of COPD. In this study, a comprehensive set of clinical, functional, and bi-

ological variables had been considered for a cohort of patients with COPD. A total of

342 participants were recorded by 85 variables. Variables with missing values ranged

from 0% to 47.7%, with 68.2% of variables missing less than 5% of values. Only 13.7%

of patients presented complete values for the 85 variables. Overall, 5.9% of the values

were missing.

According to Basagaña et al. framework, 48 of the original 85 variables were con-

sidered as effective in at least one imputed dataset. Indeed, as shown in Figure 4.3

the median number of selected variables was for the first 16 variables, while the third

quartile contained 18 variables. The selection of 16 variables corresponds to selecting

variables that appear in more than 50% of the imputed datasets. In their illustration,

Basagaña et al. chose to continue the framework with the 16 most frequent variables.

After the framework has been completed, two clusters were identified and the re-

sults were presented in two formats: raw data and imputed data. In the raw data

columns, Table 4.3, the final cluster assignment decided by Majority Vote has been

implemented on the raw dataset with missing values. Then, the mean of each of the

selected variables was calculated after missing values were excluded from the vari-

ables. In the imputed data columns, the final cluster assignment has been applied

on m imputed datasets, then the means of the selected variables were calculated for

all m imputed datasets. Finally, the median of all the m means was calculated for

presentation in Table 4.3.

From this Table, it appears that Cluster 2 exhibited worse symptoms in a variety of

areas, including more airflow limitation, higher hyperinflation, more dyspnea, and

worse quality of life, compared to patients in cluster 1 whose symptoms were less

severe in all domains.

4.2.2 Simulation

Basagaña designed four simple simulation scenarios to evaluate the introduced

framework. The simulated datasets were designed for four different missingness
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Figure 4.3: Variables that were determined to be important out of 85 variables. (Basagaña
et al., 2013)
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Table 4.3: Description of the selected variables (mean values) for each cluster, PAC COPD
Study, Spain, 2004−2008 (Basagaña et al., 2013).

Variable Raw Data Imputed Data
Cluster 1 Cluster 2 Cluster 1 Cluster 2
(n = 186) (n = 156) (n = 188) (n= 154)

FEV1, % predicted 62.0 41.0 61.7 40.7
FVC, % predicted 79.6 64.4 79.3 64.4
Residual volume/total lung capacity, % 50.6 61.8 50.7 61.8
Inspiratory capacity, % predicted 71.8 51.5 71.3 51.7
Congestive heart failure 4.3 8.4 4.9 8.3
SGRQ—activity (range, 0−100) 33.1 64.0 33.9 64.3
SGRQ—impacts (range, 0−100) 16.9 37.7 17.4 38.1
Prebronchodilator vital capacity, % predicted 76.9 59.8 76.6 60.0
Dyspnea in exercise (VAS) (range, 0−10) 4.1 6.4 4.1 6.5
Carbon monoxide diffusing capacity, % predicted 73.1 55.6 72.1 55.5
Dyspnea mMRC (range, 0−5) 2.0 3.3 2.0 3.3
FEV1/FVC, % 58.1 47.8 58.1 47.5
Asthma (Self-reported) 7.1 11.0 7.5 11.3
Dyspnea usually (VAS) (range, 0−10) 1.9 4.2 1.9 4.2
Myocardial infarction 8.7 12.9 9.4 12.7
Residual volume, % predicted 140.6 172.6 140.3 172.4

types. Using the original dataset for clustering, 10 variables out of 85 variables in this

study were selected containing 5 important variables and 5 variables that were never

selected as important variables in the literature. Out of the 342 patients, 298 had

complete cases. Using this complete case dataset, they conducted K-means cluster

analysis and referred to the result as the "truth" result for clustering when there are

no missing values in the dataset. Then, by designing four scenarios, missing values

were artificially generated in the complete case dataset and Basagaña's framework

was applied to the incomplete dataset to evaluate the efficiency of the framework.

Finally, the derived results were compared to the correct results on 100 repetitions.

These scenarios were outlined as:

Scenario 1: In the first scenario, missing values came from the stochastic model.

The probability of missing values in each variable was considered as a function of the

other variables in the original dataset. Finally, 24% of the objects had missing values

for at least one variable.

Scenario 2: Using the same procedure as in scenario 1, the overall percentage of

cases with missing data was increased until 70% of data has been completed.

Scenario 3: Missing values were created just for the first variable (the first variable
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plays the most important role in clustering). The remaining 9 variables had the same

structure. The percent of the complete case was set to 80%.

Scenario 4: Following the same procedure as Scenario 3, the percentage of missing

values in the first variable was increased until 66% of complete cases were obtained.

For the "truth" result, two clusters were determined, and based on the variable

selection process in CritCF, 5 variables were chosen, which were the 5 most impor-

tant variables. For scenarios 1 to 4, the average number of selected variables was 3.2,

2.0, 2.7, and 2.9 and in all clustering scenarios, the first variable that was important

was selected. Furthermore, there were two clusters in all simulations for the com-

plete case datasets across all scenarios. According to scenario 1.66% of simulations

determined two clusters and 34% proposed three clusters. For the other scenarios,

the probability of two clusters was higher than three clusters, and finally, two clusters

were considered in every simulation for four scenarios.

Then, Basagaña applied Cohen's Kappa coefficient to measure the agreement be-

tween the "truth" classification and the calculated classification. The Cohen's Kappa

coefficient (κ) is a criterion that is used to measure the degree of agreement between

the classification of independent objects. The criterion is defined as follows,

κ= p0 −pe

1−pe
,

where, p0 is the relative observed agreement among clusters, and pe is the agree-

ment between the result of the simulation and the "truth" cluster as if the result had

happened by chance. If all of the objects were classified in correct clusters, κ= 1, and

otherwise, when objects were classified in clusters that were different from correct

clusters, κ = 0. The simple definition is when two clusters are defined, assume the

following traditional 2×2 confusion matrix,

Table 4.4: 2×2 confusion table for calculated result for clustering and "truth" cluster

Result of the clustering
Cluster 1 Cluster 2

"truth" cluster Cluster 1 True positive (TP) False negative (FN)
Cluster 2 False positive (FP) True negative (TN)

where TP and TN mean the clustering result is the same as the truth cluster, and

FN indicates objects that should be in cluster 1, classified wrong in cluster 2, and in
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contrast, FP indicates objects that should be in cluster 2, classified wrong in cluster

1. In this case, Cohen's Kappa formula is as follows,

κ= 2(T P +T N +F N +F P )

(T P +F P )∗ (F P +T N )+ (T P +F N )∗ (F N +T N )
.

The highest value for Cohen's Kappa represents a high agreement between the re-

sult of clustering and the "truth" cluster and shows the high quality of the proposed

framework to assign clusters to the objects.

Comparison of the classification from the original data and that derived from sim-

ulation when applying the Basagaña framework revealed that Cohen's Kappa was

extremely high (Table 4.5). This result means that sufficient agreement was found

even when only 66% of objects were complete and the important variable had a high

percentage of missing values.

Table 4.5: Mean and 25th(P25) and 95th(P95) percentages of the Cohen's Kappa obtained over
100 repetitions in each scenario

Basagaña Framework Complete case

Scenario Mean P25 P75 Mean P25 P75

Scenario 1 0.97 0.93 0.99 0.90 0.75 0.99

Scenario 2 0.94 0.92 0.98 0.96 0.93 0.98

Scenario 3 0.95 0.98 0.98 0.84 -0.01 0.98

Scenario 4 0.91 0.88 0.93 0.77 0.78 0.79

4.2.3 Conclusion

The first proposed framework using multiple imputation in cluster analysis was

provided by Basagaña et al. This framework is very flexible and well documented. In

Basagaña's framework, and in the step of selecting important variables as well as the

number of clusters, the authors showed a lot of emphasis on considering uncertainty

in multiple imputation. However, the authors believed that no significant difference

should be observed between the m imputed datasets. Therefore, it is expected that

the majority of imputed datasets are likely to yield the same number of clusters and

also the same results for selecting important variables.

They pointed out that, for example, out of 100 imputed datasets, 99% identified

the number of clusters as two, while only one dataset identified three clusters. In
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addition, of all 85 variables in the dataset, 15 to 18 variables are considered effective

variables on 100 imputed datasets, and finally, 16 variables were selected based on

CritCF. They noted that this occurred since missing data seemed to introduce little

uncertainty into this decision and multiple imputation have handled it well. This

part of the framework has been extensively discussed, including the choice of a fixed

number of clusters and the independence in selecting important variables through-

out of imputed dataset.

Furthermore, the Majority Vote method is a simple method that is based on spe-

cific assumptions that have performed well if they are held. It is also necessary to

note that this framework is time-consuming as it takes into account all possible con-

ditions for the number of clusters as well as for identifying variables and then refitting

the cluster analysis for 100 completed datasets.

4.3 Bruckers Framework

4.3.1 Definition

Bruckers (2014) proposed a framework for clustering on high dimensional multi-

variate longitudinal data with missing values. Despite the fact that Bruckers focused

on an incomplete longitudinal dataset, this study addressed the challenges associ-

ated with cluster analysis on incomplete datasets which requires variable reduction.

Therefore, although the datasets considered in this thesis and Bruckers are different,

the overall process is similar. A part of clustering longitudinal data, that had to be ac-

complished, was dimension reduction on observed times. To achieve this, they con-

sidered principal component analysis, which required complete data without miss-

ing values. Multiple imputation strategy was chosen in this case to resolve the issue.

After applying appropriate multiple imputation and variable reduction methods for

the longitudinal data, the same challenge was encountered for clustering on the in-

complete dataset. Following that, the model-based clustering technique (2.2.3) was

executed for each of the imputed longitudinal datasets and one clustering result was

obtained for each of the imputed datasets. To summarize the clustering results for

each imputed dataset into a final cluster result, the Co-Membership method (Section

3.3.2) was applied for the consensus clustering part. The steps of their framework for

handling cluster analysis on the incomplete dataset were summarized in Table 4.6,

regardless of the type of dataset.
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Table 4.6: Framework for cluster analysis using multiple imputation on multivariate func-
tional data in Bruckers method

Input: Matrix X representing a longitudinal dataset with missing values and
multidimensional variables

Step 1. Implement multiple imputation to obtain m = 10 imputed datasets,
Step 2. Apply multivariate functional principal component analysis on m

imputed datasets,
Step 3. Model-based cluster method is applied for functional data with cri-

teria BIC,
Step 4. Assign the objects into clusters according to the Co-Membership

method.
Output: Partition of clustering labels C = {C1, . . . ,Ck }

In contrast to Basagaña framework, this study fixed the number of multiple im-

putations at 10 due to the complexity of longitudinal datasets in this procedure. The

performance of Bruckers'framework is illustrated in the following simulation section.

4.3.2 Simulation

For the purpose of demonstrating numerically the validity of the proposed frame-

work (Table 4.6), the authors designed the following model to simulate two clusters

of bivariate functional data.

Cluster 1: X1(t ) = 5+ t
2 +U2h3(t )+U3h2(t )+p

0.1ε(t )

X2(t ) =−5+ t
2 +U1h1 (t )+U2h2 (t )+U3h2 (t )+p

0.5ε(t )

Cluster 2: X1(t ) =U3h2 (t )+p
10ε(t )

X2(t ) =U1h1 (t )+U3h2 (t )+p
0.5ε(t )

with U1 ∼ N
(
0.5, 1

2

)
, U2 ∼ N

(
0, 1

12

)
, U3 ∼ N

(
0, 2

3

)
, and ε(t ) ∼ N (0,1) that are gener-

ated independently. Since this study is on longitudinal data, the functions h1, h2,

h3 are defined for time t ∈ [1,21], as h1 (t ) = (6− [t −11])+ , h2 (t ) = (6− [t −7])+,

h3 (t ) = (6− [t −15])+, where ()+ derives the positive part from parentheses. The sam-

ple size for the complete simulated datasets was considered 50 observations and the

curves were observed in 41 equidistant points for t = 1,1.5, · · · ,21. The authors con-

sidered three percentages for missing values, 10%, 20%, and 30%. For each set, 250

incomplete datasets were simulated and then 10 imputed datasets were generated

for each.
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The framework follows Table 4.6 and includes multiple imputation on multivariate

functional data, functional PCAs as a data reduction technique, model-based clus-

tering on the results of the PCA for functional data, and Co-Membership consen-

sus clustering with a Euclidean distance measure which was executed on simulated

datasets (Bruckers et al., 2017). BIC information criteria were used to determine the

optimal number of clusters in model-based clustering and scree plot was applied for

selecting the number of components in PCA. Due to these conditions, it was not pos-

sible for the author to be guaranteed that the simulated data in different models were

identical, and the same number of clusters and classifications could not be reached.

The validation of the framework on incomplete datasets was evaluated based on

the proportion of correctly classified observations for each simulated dataset. The

simulation study results were evidence that the method performs well on longitudi-

nal datasets using the defined percentages for missing data. Most observations are

classified correctly into the correct cluster in 72−80% of cases. The results are pre-

sented in Figure 4.4. Although the methods used in the framework have a number of

sources of uncertainty, noise, errors in incomplete observations, and several uncer-

tainties in the estimated principal component scores and eigenfunctions, the results

demonstrated how well it is able to distinguish the cluster structure in the simulated

data.

Figure 4.4: Rate of correct classification in simulation study
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4.3.3 Conclusion

In this study, Bruckers et al. generated 10 imputed datasets and noted the choice

of the number of imputed datasets is still an open topic. Methods that are included

in Bruckers'framework and achieve the precision classification become complicated

when the number of variables increases. Therefore, this framework cannot be easily

implemented and the authors suggested applying the information criterion, CritCF,

instead of variable reduction so that both the number of clusters and the number of

variables are taken into consideration at once. As a result, choosing between vari-

able reduction methods and methods for selecting key variables remains challeng-

ing when the number of variables increases. In this study, instead of using K-means,

model-based clustering was applied, and there is no evidence of priority between the

two approaches.

4.4 Proposed Framework

4.4.1 Definition

In this thesis, we have identified several challenges when apply clustering technic

to large variables dataset with missing values. Many studies and numerous meth-

ods are present in the literature for each introduced challenge. However, there is no

evidence to support the claim that one method is more efficient or effective than an-

other. Therefore, after comprehensively evaluating the benefits and disadvantages of

all these methods, we proposed a new framework which combines efficient identified

methods to apply clustering technic on large variables dataset with missing values.

As a result, in the first step, multiple imputation was considering as a powerful

method in handling missing values, despite its difficulties in cluster analysis. The

next step involves reducing the dimensions, and selecting the key variables. This

step is always challenging and ambiguous, as there is no common agreement on the

most relevant variables. In this thesis, the method of variable reduction was chosen

depending on the type of dataset and the criterion for selecting the number of com-

ponents was determined by ensuring that components explain at least 90% of the

variance.

At the cluster analysis step, no evidence in the literature suggests that the methods

discussed in Chapter 2 are preferred, so both K-means and hierarchical clustering
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were considered in the framework. In the hierarchical clustering, 30 criteria are avail-

able for determining the number of clusters. When considering those 30 criteria, the

final number of clusters is based on the agreement result. So, the hierarchical cluster-

ing method was applied to determine the number of clusters. Then, the objects are

assigned to clusters using K-means method. This clustering procedure was applied

separately to each imputed dataset. Currently, each of the available methods defined

in the literature for consensus clustering is based on a particular condition that limits

the components of variable reduction and the number of clusters that can be chosen.

Therefore, in the last step of the proposed framework, 4M method (Section 3.3.3) was

applied which there are no restrictions for it. Based on the above steps, the proposed

framework was developed as shown in Table 4.7.

Table 4.7: Proposed framework for multiple imputation in cluster analysis

Input: Matrix X representing a dataset with missing values and multidimen-
sional variables

Step 1. Implement multiple imputation to obtain m = 100 imputed datasets
(Section 3.1.2),

Step 2. In each imputed dataset, reduce the number of variables by using
FAMD when ensuring that the retained components explain at least 90% of the
variance (Section 3.2.2),

Step 3. Hierarchical clustering is applied to determine the number of clus-
ters for each imputed dataset (Section 2.2.2),

Step 4. K-means clustering method is applied to each imputed dataset
based on its retained principal component (Step 2) and determined number
of clusters (Step 3),

Step 5. 4M method is applied to combine the ensemble clusters and achieve
the final best cluster result (Section 3.3.3).
Output: Partition of clustering labels C = {C1, . . . ,Ck }

This proposed framework needs to be evaluated and compared to parallel frame-

works using alternative methods and other complete frameworks (Basagaña's frame-

work, and Bruckers'framework). In the next section, the proposed framework will be

evaluated using five different scenarios on a simulated dataset that is inspired by the

real dataset. Each scenario was designed to compare competitive methods to find

out the best classifications.

4.4.2 Simulation study

The main purpose of the simulation study is to assess the accuracy and efficiency

of the new proposed framework for applying cluster analysis correctly to an incom-
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plete dataset with large number of variables. To this aim, we focus on assigning

objects to the correct cluster and determining the correct number of clusters. We

achieved these objectives using generating a dataset that contained a determined

fixed number of clusters and the known cluster assignment of object. In our simula-

tions, we attempted to simulate a dataset as similar as possible to real datasets. The

simulated datasets with 178 observations and a mixed continuous and categorical

variables were generated based on two known clusters.

Mixed data-generated model

More specifically, the main idea of the following simulations was inspired by the

Kamila package which implements methods for clustering mixed-type data, specif-

ically combinations of continuous and nominal data. In order to simulate mixed

dataset with known clustering, Foss and Markatou (2018) considered a matrix with

N independent and identically distributed observations of R = (P +Q) dimensional

vectors of random variables, first V columns present P-dimensional vectors of con-

tinuous random variables and the next W columns are Q dimensional vectors of cat-

egorical random variables.

In the original program of Kamila, q th element of W had Lq categorical levels which

define by 1,2, · · · ,Lq , however, in our simulation studies, dichotomous variables with

two levels, (0,1), were defined for all categorical variables. The vectors V and W can

be considered dependent and may assume independent within any particular clus-

ters, however, in the following simulations, two vectors are dependent.

Based on membership in the kth cluster, the first P columns, V, following mixture

of normal distribution with individual component density function ϕV ,k
(
v,µk ;Σk

)
where k is cluster membership, µk and Σk denote mean and variance-covariance

matrix for kth cluster, respectively. The second Q columns, W, follow finite mixture

of multinomial distribution with two levels and individual component probability

function

fW,k (w,θk ) =
Q∏

q=1
θw

kq

(
1−θkq

)1−w ,

where θkq is the probability vector for kth component of the q th categorical variable.

If two groups of continuous and categorical variables will be considered indepen-

dent, in accordance with membership in the kth cluster, the joint density of (V,W)
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will be,

fV ,W,k
(
v, w,µk ;Σk ,θkq

)=ϕV ,k
(
v,µk ;Σk

) Q∏
q=1

θw
kq

(
1−θkq

)1−w ).

Finally, the overall density unconditional on cluster membership is

fV ,W (v, w) =
K∑

k=1
πk fV ,W,k

(
v, w,µk ;Σk ,θkq

)
,

where πk is a prior probability for kth cluster.

Overlap generating mechanisms

One of usage of this method is that this function simulates all of the steps based on

the given membership of kth cluster and this parameter allows to control the degree

of cluster separation or overlap separately in both continuous and categorical vari-

ables when mixed-type datasets are created. In this method, the overall overlap be-

tween two clusters can be defined. This overall overlap was parameterized as the

overlap area under their densities.

In this simulation study, the number of continuous and categorical variables was

specified based on a real dataset. The simulated datasets contain 66 continuous vari-

ables and 20 binary variables. However, for one of the scenarios, the effect of the

number of variables and the criteria for dimensions reducing of variables in cluster

analysis are evaluated, so, this scenario is run twice with the above condition for 86

mixed variables and also for 56 variables that include 46 continuous variables and 10

binary variables.

For the ability to control separation in the structure of clusters, the degree of over-

lapping between the two simulated clusters, πk , was defined as an important pa-

rameter in the simulation. Two clusters with zero value, πk = 0, of overlapping de-

fine a complete separation of clusters and complete overlap happens when the value

of overlapping equals one, πk = 1. Therefore, several specific degrees of overlap-

ping were considered to evaluate the ability to detect the correct classification; i.e.,

πk = 30%,45%,65%.

Missing data generating mechanisms

Finally, for all of the scenarios, 35% of observations were allocated to the first clus-

ter, and the second cluster was contained other simulated observations. In general,
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missing values were generated completely at random from uniform distribution with

different numbers of missing values; i.e., 10%,20%,30%,45%, and 65%. However, in

one of the scenarios, the function of the framework was evaluated in three types of

missingness. In that case, missing values for all of the types were generated using

missMethods package in R studio (Santos et al., 2019).

Evaluation criteria

Two indices were defined for investigating and comparing clustering results among

all different scenarios. First of all, it is critical to obtain the correct number of clus-

ters after applying the framework to simulated datasets. Therefore, among the rep-

etitions, the percentage of repetitions that recognize two clusters for the imputed

dataset was calculated and considered as one of the criteria to evaluate the well-

functioning clustering.

The second criterion is based on the fact that objects should be assigned correctly

to the clusters. Therefore, since the reference cluster is known, so, the agreement

between the result of the clustering and the reference cluster can be determined. In

this case, like in Basagaña, Cohen's Kappa analysis was conducted to evaluate the

agreement.

4.4.3 Results

First scenario; missing data

The main purpose of the first scenario was to compare the performance among the

complete case approach, the proposed method using multiple imputation, and hier-

archical cluster analysis which has the ability to apply to incomplete datasets. There-

fore, in this scenario, the necessity of excluding, imputing, or including missing val-

ues was evaluated. For this scenario, missing values were generated as being com-

pletely at random with percentages of missing values equal to 10%,20%,30%, and

overlap was fixed at 30%,45%, and 65%.

In the complete case approach, as explained in Section 3.1.2, all of the observa-

tions with at least one missing value were excluded from the simulated datasets,

therefore, incomplete datasets were transformed into complete datasets, and there-

fore, statistical analysis using software like principal component analysis is not a

challenge. In this case, after having skipped Step 1 in Table 4.7, the other steps, Step

2 to Step 4, were performed on the completed dataset. In order to calculate the de-
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gree of agreement, since objects with at least one missing value were excluded, the

Cohen Kappa criterion was calculated on the available observation in both clusters.

The final clustering result was reported in Table 4.8 in Complete Case Study columns.

In the second structure which analyze the use of multiple imputation, the process

presented in Table 4.7 was applied to the incomplete datasets. The corresponding

Cohen's Kappa coefficients between the achieved result and the reference cluster are

presented in Table 4.8.

For the last structure, we bypassed the use of multiple imputation by applying di-

rectly hierarchical cluster analysis on the distance matrix derived from the incom-

plete datasets. The Gower's Distance (Section 2.1.2) was calculated for the incom-

plete dataset, which includes mixed continuous and categorical variables. Then, hi-

erarchical clustering was performed on the distance matrix. The result of the agree-

ment between the assigned cluster and the reference cluster was reported in Table

4.8.
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In spite of the correct number of clusters being two, Table 4.8 shows that both the

complete dataset and hierarchical method identified three clusters or more. The pro-

posed multiple imputation method distinguished the correct number of clusters and

classified observations with the high agreement.

Cluster analysis methods cannot be applied directly to incomplete datasets. In the

statistical software, the default method for handling missing values is a complete case

study. However, the main objective of cluster analysis is to classify the objects into

homogeneous clusters, while, the complete case approach excluded the incomplete

objects, so, the complete case study is not an applicable method in cluster analysis.

The hierarchical clustering method offers a solution for incomplete datasets and

can be applied to distance matrices instead of incomplete datasets. However, in cal-

culating the distance matrix for example using Gower's Distance if two objects can-

not be compared due to missing values, the distance matrix value will be zero. As

a consequence, the effect of the variable that was not observed will not be consid-

ered in the classification of the object. In addition, in presence of missing values,

the method of variable reduction could not be utilized. Therefore, Step 2 from Ta-

ble 4.7 was not applied and hierarchical clustering was here applied to the available

data. In addition, when generating simulation datasets, the continuous and categor-

ical variables were considered correlated. Therefore, it is quite possible that these

reasons contribute to the fact that, in the hierarchical method, the objects could not

be assigned to the correct clusters. Finally, the proposed framework (with multiple

imputation) could accurately determine the number of clusters and assign objects to

those clusters with greater than 90% agreement.

Second scenario; type of missing value

This scenario was designed to evaluate the performance of the proposed framework

under different types of missingness mechanism. According to this aim, after simula-

tion of mixed datasets, different rates of missing values were generated using mech-

anisms previously described. The proposed framework (Table 4.7) was then applied

to the simulated datasets. As MICE package provides several methods for multiple

imputation based on the type of missingness in the datasets, in Step 1, multiple im-

putation was applied to each incomplete dataset according to the type of missing-

ness. The results were shown in Table 4.9. It is expected that if the proper multiple

imputation method is chosen and 100 imputed datasets are imputed correctly, the

results will present high agreement across all types of missing data.
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According to Table 4.9, the proposed framework correctly distinguished the num-

ber of clusters with a high degree of agreement for all types of missing values, and

all rates of overlap. The lower agreement was observed under MNAR for 65% miss-

ingness and 65% overlap. Thus, it is concluded that our proposed framework could

handle all kinds of missingness.

Third scenario; consensus clustering

According to the literature review, two methods of consensus clustering were pre-

sented, Majority Vote and Co-Membership (Section 3.3). As part of this study, 4M

method was developed based on model-based clustering on multivariate multino-

mial distribution. Consequently, the objective of the third scenario was to compare

three consensus clustering methods. So, once incomplete mixed datasets were gen-

erated, using different rates for overlapping and missingness, Step 1 to Step 4 of the

proposed framework (Table 4.7) were applied. The results are the same at this point.

Then, in Step 5, three consensus clustering methods Majority Vote, Co-Membership,

and 4M were applied. The agreement results for these three consensus methods and

the reference cluster were shown in Table 4.10.

It is surprising that none of the analyses performed with Majority Vote detected

two clusters. After careful investigation, a single or two values in each imputed dataset

were classified into the individual cluster. Therefore, due to Basagaña assumption,

the number of clusters was not fixed for all imputed datasets, and the cluster analysis

was not repeated with the fixed number of clusters, therefore, there are few datasets

that distinguish two clusters in Majority Vote.

Consequently, since Kappa values were calculated for all of the imputed datasets

that were classified on two or more than two clusters, it was not possible to report a

high level of agreement. As a result, Majority Vote failed to identify the correct cluster

number, and this result proved Majority Vote was not a useful consensus cluster-

ing method. In Co-Membership, there are situations in which the correct number of

clusters could not be determined correctly, however, they are not as frequent as on

Majority Vote.
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When the rate of missing values increased Co-Membership method could deter-

mine the correct number of clusters more accurately. However, its agreement is not

very high in this method. Although using 4M method, the number of clusters was de-

termined exactly, in further investigation, the imputed datasets which were classified

into three clusters included few objects, and the probability of these objects to create

a separate mixture in 4M method was not significant and the final decision was made

to count 2 clusters. Therefore, using 4M method, the objects were classified into two

clusters that showed high agreement with the reference cluster.

Fourth scenario; packages comparison

The main purpose of the fourth scenario was to compare two complete clustering

frameworks, namely the proposed framework (Table 4.7) and Basagaña framework

(Table 4.2). Both frameworks started using multiple imputation and cluster analysis

was applied by K-means, however, Basagaña framework selected the key important

variables and the proposed framework is based on variable reduction. Therefore,

two different mixed datasets with different numbers of variables were examined in

this scenario. As Basagaña's package takes a long time, we only defined two values

for overlapping rates and the rates for missingness rates. Table 4.11 shows the results

of these comparisons.

Table 4.11: Kappa Cohen coefficients (95% CI) and percentage of the correct number of clus-
ters derived for Fourth Scenario

Nr. Variables Overlap (%) Missing (%) Basagaña framework Proposed framework

Clusters (%) Kappa (95 % CI) Clusters (%) Kappa (95 % CI)

56% 30% 10% 100% 0.88(0.79-0.96) 100% 0.89(0.81-0.96)

20% 100% 0.86(0.76-0.96) 100% 0.89(0.81-0.96)

65% 10% 100% 0.82(0.69-0.95) 100% 0.92(0.85-0.98)

20% 100% 0.86(0.79-0.96) 100% 0.88(0.76-0.97)

86% 30% 10% 100% 0.87(0.77-0.96) 100% 0.88(0.80-0.95)

20% 100% 0.86(0.77-0.95) 100% 0.87(0.79-0.94)

65% 10% 100% 0.87(0.77-0.96) 100% 0.88(0.80-0.95)

20% 100% 0.86(0.77-0.95) 100% 0.87(0.80-0.96)

For two considered numbers of variables, both methods recognized exactly the

correct number of clusters. According to Kappa values and the corresponding 95%

confidence interval, the proposed method assigns the clusters slightly better than

Basagaña's method with no significant differences. The first point of this scenario is

that the two introduced methods for dimension reduction have no strong effect on
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the efficiency of the framework. In contrast to Table 4.10, Majority Vote consensus

method performs properly as an integrated chain in Basagaña's package and this is a

critical aspect of this scenario. However, the weakness of Basagaña method is that it

is too time-consuming when the number of variables increases since this method is

searching for the best combination of the number of clusters and variable selection

and refits the cluster analysis on m imputed dataset. Although Basagaña's framework

keeps the number of clusters fixed and selected the specific variables, while the pro-

posed method reduces the number of variables and applies consensus clustering to

an arbitrary number of clusters for each imputed dataset, both frameworks perform

well with good classification results.

Fifth scenario; clustering methods

Among the various clustering methods, the combination of K-means and hier-

archical clustering was utilized in the proposed framework, however, model-based

clustering has been a frequently used and well-established method in the last decades.

This scenario attempts to apply model-based clustering and BIC rather than the com-

bination of hierarchical clustering and K-means to determine the number of clusters

and identify the clusters. Therefore, in Step 3 of Table 4.7, the model-based clustering

methods using different types of variance-covariance matrix structures were fitted on

each imputed dataset to determine the best-fitted model and number of clusters us-

ing BIC. Then, in Step 4 of Table 4.7, the model-based clustering was refitted on each

imputed dataset according to the best type of model and number of clusters to assign

objects to clusters. The rest of the framework was the same as presented in Table 4.7.

Table 4.12 provides the results of these two competing methods for clustering under

various rates of overlapping and missingness.

In all cases, both the model-based clustering and the combination of K-means

and hierarchical clustering correctly identified the number of clusters. However, the

agreement between the reference clustering and results of the proposed framework

was higher than the results observed with the model-based method. The simulated

datasets were generated from mixture normal and multinomial distributions, so, the

agreement between reference clustering and assigned clustering in the model-based

method was expected to be higher and closer to the results of the proposed method.

However, based on the results in Table 4.12, it appears that after variable reduction

in Step 2 of Table 4.7, the distribution of principal components was changed, and the

changes in the original variables had a significant effect on the models fitted to the
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Table 4.12: Kappa Cohen coefficients (95% CI) and percentage of the correct number of clus-
ters derived for Fifth Scenario

Model-Based clustering Proposed Method

Overlap (%) Missing (%) Clusters (%) Kappa (95 % CI) Clusters (%) Kappa (95 % CI)

30% 25% 100% 0.69(0.628-0.75) 100% 0.91(0.84-0.98)

45% 100% 0.65(0.61-0.69) 100% 0.92(0.85-0.98)

65% 100% 0.61(0.59-0.68) 100% 0.92(0.85-0.98)

45% 25% 100% 0.71(0.63-0.78) 100% 0.92(0.56-0.98)

45% 100% 0.58(0.53-0.65) 100% 0.76(0.72-0.84)

65% 100% 0.55(0.53-0.58) 100% 0.91(0.85-0.98)

65% 25% 100% 0.60(0.58-0.68) 100% 0.90(0.83-0.97)

45% 100% 0.50(0.47-0.53) 100% 0.90(0.81-0.98)

65% 100% 0.66(0.57-0.75) 100% 0.91(0.84-0.98)

new components in imputed datasets. Therefore, as a result of the variable reduc-

tion, objects are assigned to clusters in model-based clustering with the lower agree-

ment. Consequently, according to the simulated dataset, K-means and hierarchical

clustering achieved better results than model-based clustering.

4.4.4 Conclusion

There are many methods to handle missing values, variable reduction, and cluster

analysis separately. In chapter 2 and chapter 3, several of these methods required

for the current full frameworks and for the proposed framework were explained. In

this chapter, these methods were integrated using different combinations. In these

extensive simulations, by designing different scenarios in handling missing values,

dimension reduction, and employing several methods and packages for clustering,

we attempted to show the influence of the different methods on the result of the cor-

rect number of clusters and also assigning the objects into clusters, comprehensively.

Along with comprehensive comparisons, the effectiveness of the methods was eval-

uated. Based on the simulation study, it was necessary to impute missing values

when applying K-means and hierarchical methods. In addition, the proposed method

could perform efficiently on all types of missingness. If model-based clustering is re-

placed by K-means and hierarchical methods in the proposed framework, it would

have a slightly lower ability in classification. The proposed method for consensus

clustering is highly efficient as compared to existing approaches. Basagaña's ap-

proach works usefully just in its own package by using a fixed number of clusters
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and selected key variables. However, the package is too time-consuming and com-

putation time increases as the number of objects and variables increases.

In conclusion, the proposed framework is efficiently designed on cluster analy-

sis using multiple imputation in multidimensional data and has an effective perfor-

mance compared to competing methods based on the designed scenarios on these

simulated datasets.





CHAPTER 5

Clustering on COPD patients

In Chapter 1, COPD was introduced as a disease with a large number of pheno-

types and a complex and heterogeneous multifactorial background. The goal of this

chapter is to identify clinical phenotypes in adults suffering from COPD through

cluster analysis. Using a combination of the methods introduced in the previous

two chapters, this section performed cluster analysis on the multidimensional COPD

dataset which deals with missing values using multiple imputation. Detailed descrip-

tions of the COPD dataset and the variables, as well as the percent of missing values,

are presented in Section 5.1. A clustering framework for the multidimensional COPD

dataset, using multiple imputation and clustering methods, is proposed in Section

5.2. The results of clustering are presented in Section 5.3. Section 5.4 contains a

comprehensive discussion on the results of clustering and clinical interpretation.

This chapter is based on

Nekoee Zahraei, H., Guissard, F., Paulus, V., Henket, M., Donneau, A.F., & Louis, R. (2020). Comprehen-
sive Cluster Analysis for COPD Including Systemic and Airway Inflammatory Markers. COPD: Journal
of Chronic Obstructive Pulmonary Disease, 1−12. https://doi.org/10.1080/15412555.2020.1833853)
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5.1 COPD dataset

This chapter examined clustering among 178 COPD patients in a stable state re-

cruited from ambulatory care. All patients were above 40 years, had a smoking his-

tory of more than 20 pack-years, post-bronchodilator FEV1/FVC < 70%, and denied

any history of asthma before 40 years.

Figure 5.1: A general overview of COPD data; white cells are missing values (n = 178 patients)

In this study, the patients were described by a total of 84 mixed sets of variables

with missing values. Demographic variables, pulmonary function tests, treatment

features, blood cell counts and systemic inflammatory markers, atopic status, spu-

tum cell counts, and microbiology were included in the study and discussed in detail

in this section. In usual studies, the clusters were based on demographic variables,

symptoms, spirometry, imaging, and comorbidities. Clustering has not been widely

used in studies investigating the airway inflammatory component and the atopic sta-

tus in large cohort studies of COPD. In our standard routine investigation of COPD,

we included serum IgE, blood eosinophils and sputum eosinophils as well as FeNO

as markers to assess the T2 trait and sought to see whether T2 trait is common and
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strong enough to shape a cluster in a population of COPD that denies any history of

asthma before 40 years of age.

Characteristics of the patients and the percentage of missing values before imput-

ing are presented in Table 5.1. Quantitative variables were summarized using median

and interquartile range (P25 - P75); while count and percentage were used for quali-

tative variables. In addition, in Figure 5.1, a general perspective of COPD dataset was

presented. There are columns that represent variables and rows that represent COPD

patients. The white cells are representative of missing data.

More than half of the patients were males (54.49%) with age ranging from 40 to 84

years and the median age is 64 years. Patients displayed a normal weight (median

body mass index was 23.62kg /m2). They had a consistent tobacco consumption his-

tory with a median pack/year of 37 during median 43 years smoking duration.

A total of 61% of patients have not received an OCS course the year prior to the

visit, while 24% took it once, and 15% took it more than once. A third of patients have

not received antibiotics while 85% took antibiotics once; about the same percentage

have never been admitted to the emergency room for asthma or COPD and also have

never been hospitalized for asthma or COPD, too. The type of Missing values were

missing completely at randoms and the percentage of missing values ranged from

0% to 23% and 75% of patients presented at least one missing value.

5.2 Clustering Framework

Outlines of the applied framework to assign clustering for COPD patients are de-

scribed in Table 5.2. Missing values were imputed by drawing from the posterior pre-

dictive distribution of Bayesian model. Multiple imputation replaces each missing

value with a set of 100 plausible values. Then, 100 imputed datasets are analyzed by

the method that would have been appropriate if the data had been complete. Since

this study contains quantitative and qualitative variables, FAMD (Section 3.2.2) was

applied in each imputed dataset for creating new components. Then, the percentage

of contribution of variables was determined.
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Table 5.1: Characteristics of the COPD dataset (n = 178)

Variable Median (IQR) missing value

Percentage (frequency) %(n)

Demographic characteristics

Age (Year) 64.5(57 - 72) 0% (0)

Sex (Male) 54.5% (97) 0% (0)

Height (cm) 167(160 - 175) 0.56% (1)

Weight (kg) 67(58 - 78) 0.56% (1)

BMI (kg/m2) 23.6 (21.22 - 27.18) 0.56% (1)

Cigarette Packs (Year) 37.2 (22.5 - 50) 2.25% (4)

Cigarettes (day) 20 (10 - 23.5) 3.93% (7)

Smoking Duration(Year) 43 (33 - 50) 2.8% (5)

OCS Course 5.62% (10)

0 60.7% (102)

1 23.8% (40)

≥2 15.5% (26)

Antibiotic Course 4.49% (8)

0 36.5% (62)

1 51.8% (88)

≥2 11.8% (20)

Emergency Room Admission for asthma or COPD 1.12% (2)

0 84.7% (149)

1 14.8% (26)

≥2 0.6% (1)

Number of hospitalizations for asthma or COPD 2.8% (5)

0 85.5% (148)

1 12.7% (22)

≥2 1.7% (3)

Pulmonary characteristics

FeNO (ppb) 16 (10 - 25) 7.30% (13)

FEV1 (mL) 1380 (1085 - 1810) 0% (0)

FEV1 (% predicted) 53 (43 - 66) 0% (0)

FEV1 PD (mL) 1480 (1180 - 1930) 0.56% (1)

FEV1 PD (% predicted) 57 (47 - 71) 0.56% (1)

Reversibility (%) 7 (1 - 12) 0.56% (1)

FVC (mL) 2505 (2020 - 3067.5) 0% (0)

FVC (% predicted) 77 (64 - 89) 0% (0)

FVC post (mL) 2580 (2080 - 3200) 0.56% (1)

FVC post (%) 80 (68 - 92) 0.56% (1)

FEV1/ FVC pre (%) 56.4 (48.1 - 64.3) 0% (0)

FEV1/ FVC post (%) 57.9 (49.4 - 66.5) 0.56% (1)

TLC (mL) 6.5 (5.4 – 7.2) 16.29% (29)

TLC (%predicted) 109 (96 - 123) 16.29% (29)

RV (mL) 3.6 (3.1 – 4.5) 16.29% (29)

RV (% predicted) 168 (137 - 201) 16.29% (29)

RV/TLC (%) 59.6 (52.8 – 66.2) 16.29% (29)

DLCO (mmol/kPa.min) 3.9 (2.9 - 5.3) 17.41% (31)

DLCO (% predicted) 49 (37.5 - 60) 17.41% (31)

DLCO/VA(mmol/kPa.min/l) 0.9 (0.7 - 1.2) 17.41% (31)

DLCO/VA (% predicted ) 67 (50 – 81.5) 17.41% (31)

sGaw (1/kPa*sec) 0.5 (0.4 - 0.7) 23.03% (41)

FRC (L) 4.9 (4.1 - 5.9) 21.34% (38)

FRC (% predicted) 158 (138 - 183) 21.34% (38)

Treatment characteristics

Treatment (Yes) 61.8% (105) 4.49% (8)

ICS (Yes) 55.1% (97) 1.12% (2)

OCS (Yes) 5.1% (9) 1.12% (2)

LAMA (Yes) 51.1% (90) 1.12% (2)

LABA (Yes) 67% (118) 1.12% (2)

SABA (Yes) 41% (72) 1.12% (2)

LTRA (Yes) 3.4% (6) 1.12% (2)

Theophylline (Yes) 2.8% (5) 1.12% (2)

CAT score 25 (16 – 31) 0% (0)
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Table 5.1 – continued from previous page

Variable Median (IQR) missing value

Percentage (frequency) %(n)

Blood characteristics

Leucocytes (1/µl) 7.9 (6.7 - 9.7) 7.86% (14)

Neutrophils (%) 60.7 (54 - 67.7) 8.43% (15)

Lymphocytes (%) 27.8 (21.3 - 34.3) 8.43% (15)

Monocytes (%) 7.9 (6.5 - 9.4) 8.43% (15)

Eosinophils (%) 2 (1 - 3.2) 8.43% (15)

Basophils (%) 0.4 (0.3 - 0.6) 8.43% (15)

Neutrophils (1/µl) 4840.7 (3782.5 - 6027.3) 8.43% (15)

Lymphocytes (1/µl) 2213.4 (1739.1 - 2710.8) 8.43% (15)

Monocytes (1/µl) 646.9 (496.1 - 836.3) 8.43% (15)

Eosinophils (1/µl) 147.6 (77.5 - 252.0) 8.43% (15)

Basophils (1/µl) 31.2 (21.4 - 48.3) 8.43% (15)

Fibrinogen (g/l) 3.5 (3 - 4) 4.49% (8)

CRP (mg/l) 2.5 (1.1 - 5.7) 4.49% (8)

Alpha 1 antitrypsin (g/l) 1.5 (1.4 - 1.7) 12.36% (22)

Calcium (mmol/L) 2.4 (2.4 - 2.5) 6.74% (12)

25(OH) Vitamine D (ng/ml) 20 (12 - 31) 13.48% (24)

Phosphate (mmol/L) 0.9 (0.8 - 1.1) 6.74% (12)

Atopy characteristics

Total IgE (KU/L) 72.5 (22.7 - 227.7) 10.11% (18)

RAST DPT (d1) %>0.35 (KU/L) 11.4% (18) 11.24% (20)

RAST Cat (e1), %>0.35 (KU/L) 3.7% (6) 10.11% (18)

RAST Dog (e5), %>0.35 (KU/L) 3.1% (5) 10.11% (18)

RAST Grass (GX3), %>0.35 (KU/L) 7% (11) 11.24% (20)

RAST microog (MIX1), %>0.35 (KU/L) 9.4% (15) 10.11% (18)

RAST Birch (t3), %>0.35 (KU/L) 1.2% (2) 10.67% (19)

Sputum characteristics

Positive Aerobic Sputum Culture 9% (13) 18.54% (33)

Weight of sputum (g) 1.7 (1.1 - 2.9) 20.78% (37)

Total Cell Counts (106/g) 2.3 (0.9 - 5.6) 20.78% (37)

Squamous (%) 10 (3 - 33) 20.78% (37)

Viability (%) 69 (55 - 84) 20.78% (37)

Macrophages (%) 12.3 (5 - 23.6) 21.91% (39)

Lymphocytes (%) 1 (0 - 2) 21.91% (39)

Neutrophils (%) 74.8 (56.87 - 91.05) 21.91% (39)

Eosinophils (%) 1.3 (0.2 - 4.4) 21.34% (38)

Epithelial cells (%) 2.5 (0.6 - 7.7) 21.91% (39)

Macrophages (103/g) 268.3 (80 - 583.8) 23.03% (41)

Lymphocytes (103/g) 18.5 (0 - 43.8) 23.03% (41)

Neutrophils (103/g) 1307.5 (503.9 - 3831.6) 22.47% (40)

Eosinophils (103/g) 28.9 (2.8 - 232.7) 22.47% (40)

Epithelial cells (103/g) 55.4 (11.2 - 202.9) 22.47% (40)

1BMI(Body Mass Index); OCS(Oral Corticosteroids); FENO(Fractional Exhaled Nitric Oxide); FEV1(Forced Expiratory Volume in one second); FVC(Forced Vital

Capacity); TLC(Total Lung Capacity); RV(Residual Volume); DLCO(Diffusing Capacity for Carbon Monoxide); FRC(Functional residual capacity); LABA(Long Acting B2

Agonist); LAMA(Long Acting Muscarinic Antagonist); LTRA(Leukotriene Receptor Antagonist); CRP(C-Reactive Protein); CAT(COPD Assessment Test), ICS(Inhaled

Corticosteroids)

In the cluster analysis step, the number of clusters for each imputed dataset was

determined by hierarchical clustering and a package of 30 indices for determining

the relevant number of clusters, then K-means was applied for assigning clusters to

COPD patients. The derived results from the 100 analyses are then combined to pro-

duce the final quantity of interest following Rubinâs rules. In the consensus step, the

final clustering result was achieved using the co-membership (Section 3.3.2) method

by minimizing the sum of the squared distance of existing clustering results.

In this step, for each clustering output, two indices for internal clustering valida-

tion and stability validation were calculated. The output of consensus clustering was

considered as the individual final clustering result for the original incomplete COPD
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dataset and all the imputed datasets. Then, median and interquartile ranges were

calculated for all variables in the original incomplete COPD dataset and for each im-

puted dataset. Finally, an overall median with the corresponding interquartile range

was calculated over all 100 imputed datasets.

All variables were compared between the derived clusters using Kruskal-Wallis and

Chi-squared tests for quantitative and qualitative variables, respectively. Compari-

son among two clusters was applied according to Dunnâs multiple comparison test.

There are no significant differences between two clusters with the same letter. Finally,

the difference between the three clusters was displayed by boxplots. All analyses were

performed using R statistical software. P-values < 0.05 were considered statistically

significant.

Table 5.2: Framework of variable reduction and cluster analysis to determine clusters in
COPD

Input: COPD dataset with missing values and multidimensional variables
Step 1. Multiple Imputation

i) Obtain 100 complete datasets by multiple imputation (MICE)
Step 2. Factor analysis for mixed data (FAMD)

i) Determine quantitative and qualitative variable
ii) Apply FAMD for each imputed dataset
iii) Determine the number of components for each imputed dataset

Step 3. Hierarchical clustering
i) Choosing the best number of clusters for each imputed dataset

Step 4. Partitioning Clustering
i) Consider the number of clusters determined in the previous step
ii) Assign patients to each cluster in each imputed dataset by partitioning

clustering
Step 5. Co-Membership method for Consensus Clustering

i) Combine all ensemble clustering to get a final best clustering
Output: Partition of clustering labels C = {C1, . . . ,Ck }

Step 6. Assign patients to the final result of consensus clustering
i) Allocate patients in the original incomplete dataset and each imputed

dataset to calculate the final result of consensus clustering
Step 7. Description of clustering

i) Calculate median for the original dataset and overall median for imputed
datasets

ii) Comparison between cluster (Kruskal-Wallis and Chi-squared tests and
Dunn's multiple comparison test)
Output: Descriptive analysis tables for clustering

MICE, FactoExtra, FactoMineR, and clue are R packages that implement the mul-
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tiple imputation method, FAMD, cluster analysis, and Co-Membership method for

consensus clustering. This is based on all operational processes listed in Table 5.2.

5.3 Clustering Results

Following the framework explained in the previous section, the following results

were obtained., After variable reduction using FAMD, was possible to calculate the

percentage contribution of variables for the next clustering step. Table 5.3 shows the

order and the impact of each variable on clustering. The highest contribution for

variables in clustering was for FEV1 (mL), FEV1 PD (mL), FEV1 PD (% predicted),

FEV1 (% predicted), and FVC (mL). The order of the contributions of variables from

highest to lowest is shown in Figure 5.2.

Figure 5.2: The percentage contribution of COPD variables in principal components from the
highest to lowest in the whole cohort (n = 178 patients)

After applying multiple imputation, 83 imputed datasets suggested 35 new com-

ponents, and the others, 17%, were summarized into 36 components. Next, each

imputed dataset was classified based on its own selected components. A total of 97

out of 100 imputed datasets were classified into 3 clusters, and 3% into 4 clusters.
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Table 5.3: The percentage contribution of COPD variables in principal components

Order Variables
Percentage of

contribution value
Order Variables

Percentage of
contribution value

1 FEV1 (mL) 0.80 43 Sputum_Eosinophils (103/g) 0.05

2 FEV1 PD (mL) 0.79 44 SABA (Yes) 0.05

3 FEV1 PD (% predicted) 0.71 45 Antibiotic Course 0.05

4 FEV1 (% predicted) 0.70 46 Age (Year) 0.04

5 FVC (mL) 0.51 47 Weight of sputum (g) 0.04

6 FVC post (mL) 0.50 48 Sputum_Neutrophils (103/g) 0.04

7 FVC (% predicted) 0.49 49 Sex (Male) 0.04

8 FVC post (%) 0.49 50 Sputum_Lymphocytes (103/g) 0.04

9 RV/TLC (%) 0.37 51 Theophylline (Yes) 0.03

10 FEV1/ FVC post (%) 0.32 52 Smoking Duration(Year) 0.03

11 DLCO (mmol/kPa.min) 0.29 53 CRP (mg/l) 0.03

12 Emergency Room 0.29 54 FRC (L) 0.03

13 FEV1/ FVC pre (%) 028 55 Positive Aerobic Sputum Culture 0.03

14 Blood_Neutrophils (%) 0.21 56 Blood_Eosinophils (%) 0.02

15 Blood_Lymphocytes (%) 0.19 57 RAST Grass (GX3), %>0.35 (KU/L) 0.02

16 DLCO (% predicted) 0.17 58 Sputum_Neutrophils (%) 0.01

17 sGaw (1/kPa*sec) 0.17 59 Positive Aerobic Sputum Culture 0.01

18 LAMA (Yes) 0.16 60 IgE (KU/L) 0.01

19 LABA (Yes) 0.16 61 25(OH) Vitamine D (ng/ml) 0.01

20 ICS (Yes) 0.16 62 Blood_Basophils (%) 0.01

21 Blood_Neutrophils (1/µl) 0.15 63 FeNO (ppb) 0.01

22 Treatment (Yes) 0.15 64 RAST Birch (t3), %>0.35 (KU/L) 0.01

23 RV (% predicted) 0.14 65 Squamous (%) 0.01

24 Number of hospitalizations 0.13 66 Sputum_Epithelial cells (%) 0.01

25 FRC (% predicted) 0.13 67 TLC (mL) 0.01

26 Weight (kg) 0.12 68 Sputum_Eosinophils (%) 0.01

27 OCS Course 0.10 69 Cigarettes (day) 0.01

28 RV (mL) 0.09 70 Blood_Monocytes (1/µl) 0.004

29 Height (cm) 0.09 71 RAST DPT (d1) %>0.35 (KU/L) 0.003

30 Blood_Lymphocytes (1/µl) 0.08 72 Sputum_Lymphocytes (%) 0.003

31 DLCO/VA(mmol/kPa.min/l) 0.07 73 RAST moul (MIX1), %>0.35 0.002

32 BMI (kg/m2) 0.07 74 Sputum_Macrophages (103/g) 0.002

33 DLCO/VA (% predicted) 0.07 75 Phosphate (mmol/L) 0.001

34 Blood_Leucocytes (1/µl) 0.06 76 RAST Cat (e1), %>0.35 (KU/L) 0.001

35 CAT score 0.06 77 LTRA (Yes) 0.001

36 OCS (Yes) 0.06 78 Sputum_Macrophages (%) 0.001

37 Blood_Monocytes (%) 0.06 79 Blood_Basophils (1/µl) 0.001

38 Total Cell Counts (106/g) 0.06 80 RAST Dog (e5), %>0.35 (KU/L) 0.001

39 Alpha 1 antitrypsin (g/l) 0.06 81 Calcium (mmol/L) 0.001

40 Fibrinogen (g/l) 0.06 82 Blood_Eosinophils (1/µl) 0.001

41 TLC (%predicted) 0.05 83 Reversibility (%) 0.001

42 Viability (%) 0.05 84 Cigarette Packs (Year) 0.001
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Finally, after completing the framework presented in Table 5.2 using consensus

clustering, three distinct clusters with acceptable values for validation were identi-

fied. According to Table 5.4, two indices for internal clustering validation and two in-

dices for clustering stability validation are reported. Silhouette coefficient and Dunn

index values for internal measures are 0.61 and 0.54, respectively. The average pro-

portion of non-overlap and the average distance between means for stability mea-

sures are 0.02 and 0.01, respectively.

Table 5.4: Clustering validation for the COPD dataset (n=178)

Indices Value

Internal measures Silhouette Coefficient 0.61

Dunn Index 0.54

Stability measures Average Proportion of Non-overlap 0.021

Average Distance between Means 0.008

The clustering results for the original incomplete COPD dataset and overall clus-

tering result for 100 imputed datasets are displayed in Table 5.5 and Table 5.6, respec-

tively. Three different clusters, which shared similar smoking history were found.

Cluster 1 included men with moderate airway obstruction (n = 67) while cluster 2

comprised men who were exacerbation-prone, with severe airflow limitation and in-

tense granulocytic airway and neutrophilic systemic inflammation (n = 56). Cluster

3 essentially included women with moderate airway obstruction (n = 55). All clusters

had a low rate of bacterial colonization (< 5%), a low median FeNO value (< 20ppb),

and a very low sensitization rate towards common aeroallergens (0−15%). CAT score

did not differ between clusters.

There were striking sex differences between the clusters with a clear dominance of

males in clusters 1 and 2 while cluster 3 was essentially composed of women. Smok-

ing history was similar between clusters and BMI was slightly higher in cluster 1 while

still remaining in the normal range. Clusters 2 and 3 received more frequent courses

of OCS the year prior to the visit whereas there was no difference regarding the num-

ber of the antibiotic courses. Clusters 2 and 3 were those in which patients received

more maintenance treatment including ICS, LAMA, LABA, and also used more often

SABA as a reliever. Interestingly, CAT score did not differ between the three clusters

despite clear differences in lung function impairment (Figure 5.3).



108 5.3. Clustering Results

Table 5.5: Characteristics of patients with COPD before imputation, Median (IQR) / Percent-
age (frequency) in each cluster, and comparison between clusters

Result for clustering on the original COPD dataset

Variable Cluster 1 Cluster 2 Cluster 3 P-value

(n=67) (n=56) (n=55)

Demographic characteristics

Age (Year) 62(55-66)b 67(60.7-74.2)a 67(58.5-73)a <0.001

Sex (Male) 76.1%(51[67])a 75%(42[56])a 7.3%(4[55])b <0.0001

Height (cm) 174(167-178)a 169.5(162-175.2)a 161(156-165)b <0.0001

Weight (kg) 77(65-89)c 67(56.7-76)a 60(53-66)b <0.0001

BMI (kg/m2) 25.6(22.2-30.2)b 23.1(20.6-24.9)a 23.1(19.9-25.5)a <0.001

Cigarette Packs (Year) 36.9(21-50)a 42.5(23.2-52.5)a 35(22-43.9)a >0.05

Cigarettes (day) 20(10-25)a 20(10-2.25)a 20(10-20)a >0.05

Smoking Duration(Year) 40(32-46.5)c 47(34.2-52.2)a 44(37-50)ab <0.05

OCS Course <0.0001

0 81.2%(52[64]) 31.4%(16[51]) 64.1%(34[53])

1 14.1%(9[64]) 35.3%(18[51]) 24.5%(13[53])

≥ 2 4.7%(3[64]) 33.3%(17[51]) 11.3%(6[53])

Antibiotic Course >0.05

0 42.9%(27[63]) 32%(17[53]) 33.3%(18[54])

1 47.6%(30[63]) 50.9%(27[53]) 57.4%(31[54])

≥ 2 9.5%(6[63]) 16.9%(9[53]) 9.3%(5[54])

Emergency Room Admission for asthma or COPD <0.0001

0 95.4%(63[66]) 70.9%(39[55]) 85.4%(47[55])

1 4.5%(3[66]) 27.3%(15[55]) 14.5%(8[55])

≥ 2 0%(0[66]) 1.8%(1[55]) 0%(0[55])

Number of hospitalizations for asthma or COPD <0.0001

0 97%(64[66]) 67.9%(36[53]) 88.9%(48[54])

1 3%(2[66]) 26.4%(14[53]) 11.1%(6[54])

≥ 2 0%(0[66]) 1.9%(1[53]) 0%(0[54])

Pulmonary characteristics

FeNO (ppb) 15(10.5-23)a 19(10-32.25)a 15(8-24)a >0.05

FEV (mL) 1950(1700-2205)b 1085(780-1352.5)a 1240(1075-1390)a <0.0001

FEV1 (% predicted) 66(56-78)c 37(30-45.2)a 55(47.5-66)b <0.0001

FEV1 PD (mL) 2000(1820-2405)b 1190(837.5-1380)a 1310(1135-1470)a <0.0001

FEV1 PD (% predicted) 69(60.5-81.5)c 40(32.7-50)a 59(51.5-69.5)b <0.0001

Reversibility (%) 6(0.5-10.5)a 6.5(1-11.25)a 8(2-13.5)a >0.05

FVC (mL) 3200(2625-3780)c 2427.5(1705-2767.5)a 2140(1820-2390)b <0.0001

FVC (% predicted) 86(74-99.5)c 65(55.7-74.2)a 77(68.5-85.5)b <0.0001

FVC post (mL) 3320(2805-3870)c 2385(1797.5-2900)a 2130(1870-2445)b <0.0001

FVC post (%) 90(79.5-101)c 68(56.7-76.5)a 80(71.5-91.5)b <0.0001

FEV1/ FVC pre (%) 63.1(56.5-66.6)b 47(40.4-50.4)a 57.1(53.1-64.5)b <0.0001

FEV1/ FVC post (%) 63.9(58.3-68.5)b 47.5(42.8-53.2)a 59.9(54.5-67)b <0.0001

TLC (mL) 6710(5725-7385)a 6945(5832.5-8107.5)a 5430(4890-6005)b <0.0001

TLC (% predicted) 103(93-112.5)b 112.5(100-125.2)a 117(102-127)a <0.0001

RV (mL) 3450(2990-3820)b 4640(3687.5-5277.5)a 3250(2845-3690)b <0.0001

RV (% predicted) 141(128-173)c 182.5(162.5-228.5)a 168(145.5-189.5)b <0.0001

RV/TLC (%) 53.2(47.1-56.8)c 66.2(61.3-69)a 60.95(56.9-64)b <0.0001

DLCO (mmol/kPa.min) 5(3.8-5.9)b 3.5(2.7-4.5)a 3.27(2.67-4)a <0.0001

DLCO (% predicted ) 56(43-67)b 42.5(30.7-57.2)a 45(38-55)a <0.0001

DLCO/AV (mmol/kPa.min/l) 1(0.8-1.3)b 0.8(0.6-1)a 0.93(0.7-1.1)a <0.0001

DLCO/AV (% predicted) 70(56.5-88)b 66(45.7-79)a 62(50-75)a <0.001

sGaw (1/kPa*sec) 0.68(0.47-0.93)c 0.36(0.24-0.47)a 0.47(0.3-0.8)b <0.0001

FRC (L) 4.9(4.09-5.44)c 5.9(4.9-6.5)a 4.24(3.8-5.05)b <0.0001

CAT score 22(15-31)a 26(19-30)a 24(17-30)a >0.05

Treatment characteristics

Treatment (Yes) 43.75%(28[64])a 78.84%(41[52])b 66.67%(36[54])b <0.0001

ICS (Yes) 30.30%(20[66])a 70.91%(39[55])b 69.09%(38[55])b <0.0001

OCS (Yes) 1.51%(1[66])a 14.54%(8[55])b 0%(0[55])a <0.0001

LAMA (Yes) 34.85%(23[66])a 72.73%(40[55])b 49.09%(27[55])a <0.0001

LABA (Yes) 45.45%(30[66])a 83.64%(46[55])b 76.36%(42[55])a <0.0001

SABA (Yes) 25.76%(17[66])a 50.91%(28[55])b 49.09%(27[55])b <0.0001

LTRA (Yes) 3.03%(2[66])a 0%(0[55])a 7.27%(4[55])a >0.05

Theophylline (Yes) 1.51%(1[66])a 5.45%(3[55])a 1.82%(1[55])a >0.05
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Table 5.5 – continued from previous page

Result for clustering on the original COPD dataset

Variable Cluster 1 Cluster 2 Cluster 3 P-value

(n=67) (n=56) (n=55)

Blood characteristics

Leucocytes (1/µl) 7.44(6.44-9.43)a 8.58(7.02-10.75)a 7.77(6.64-9.2)a >0.05

Neutrophils (%) 58.9(52.75-63.75)b 68.6(61.27-73.22)a 57.7(53.25-64.55)b <0.0001

Lymphocytes (%) 30.1(25.65-35)b 20.7(15.7-26.85)a 29(23.85-35.15)b <0.0001

Monocytes (%) 8.7(7-9.8)b 7.8(6.37-9.82)a 7.1(6.4-8.75)a <0.05

Eosinophils (%) 2.1(1.1-3.25)a 1.8(0.85-3.12)a 2.1(0.95-3.35)a >0.05

Basophils (%) 0.4(0.3-0.6)a 0.3(0.2-0.52)a 0.4(0.3-0.7)a >0.05

Neutrophils (1/µl) 4503.6(3554.3-5501.7)b 5574.9(4116.2-7842.7)a 4840.71(3393.7-5743.1)b <0.05

Lymphocytes (1/µl) 2346.79(1853.9-3019.6)b 1885.8(1294.4-2424.2)a 2267.98(1846.6-2710.8)b <0.0001

Monocytes (1/µl) 668.82(494.15-857.91)a 707.29(534.38-864.82)a 605.82(457.16-761.76)a >0.05

Eosinophils (1/µl) 150.72(84.57-240.24)a 169.57(75.89-275.16)a 147.63(85.47-248.25)a >0.05

Basophils (1/µl) 30.84(21.37-42.16)a 27.63(18.64-47.66)a 32.04(23.95-49.36)a >0.05

Fibrinogen (g/l) 3.42(2.87-3.86)b 3.71(3.08-4.58)a 3.54(2.91-3.80)a <0.05

CRP (mg/l) 2.3(1.25-5.6)a 2.9(0.9-7.7)a 2.1(1-5.15)a >0.05

Alpha 1 antitrypsin (g/l) 1.49(1.35-1.57)b 1.63(1.39-1.76)a 1.45(1.35-1.65)b <0.05

Calcium (mmol/L) 2.42(2.37-2.47)a 2.41(2.35-2.48)a 2.44(2.38-2.48)a >0.05

25(OH) Vitamine D (ng/ml) 19(12-32)a 16.5(10-24.25)a 24(13-32.5)a >0.05

Phosphate (mmol/L) 0.89(0.79-0.95)a 0.87(0.71-1.03)a 1.01(0.93-1.12)b <0.0001

Atopy characteristics

IgE (KU/L) 52(23-233.5)a 91.5(25-300.25)a 73(19-170)a >0.05

RAST DPT (d1) %>0.35 (KU/L) 13.33%(8)a 14.28%(7)a 6.12%(3)a >0.05

RAST Cat (e1), %>0.35 (KU/L) 1.64%(1)a 8.16%(4)a 2%(1)a >0.05

RAST Dog (e5), %>0.35 (KU/L) 3.28%(2)a 6.12%(3)a 0%(0)a >0.05

RAST Grass (GX3), %>0.35 (KU/L) 6.67%(4)a 12.24%(6)a 2.04%(1)a >0.05

RAST microog (MIX1), %>0.35 (KU/L) 6.56%(4)a 12.24%(6)a 10%(5)a >0.05

RAST Birch (t3), %>0.35 (KU/L) 0%(0)a 4.08%(2)a 0%(0)a >0.05

Sputum characteristics

Positive Aerobic Sputum Culture 5.26%(3)a 13.95%(6)a 8.89%(4)a >0.05

Weight of sputum (g) 1.95(1.37-3.88)a 1.46(1.06-3.07)a 1.64(0.93-3.94)a >0.05

Total Cell Counts (106/g) 1.46(0.96-2.81)b 4.15(1.50-15.96)a 1.75(0.98-3.43)b <0.05

Squamous (%) 21(6.5-42)b 7.5(2-38.25)a 7(2-14.5)a <0.05

Viability (%) 67(50-81)a 69.5(51-86.25)a 61(41-77.5)a >0.05

Macrophages (%) 14(5.8-28.15)b 6.25(2.2-15.45)a 18(9.25-35.65)b <0.0001

Lymphocytes (%) 1(0-2.1)a 0.6(0.15-1.57)a 1(0-2.6)a >0.05

Neutrophils (%) 70.6(53.3-88.2)a 77.5(55.4-92.25)a 52(37.6-80)b <0.001

Eosinophils (%) 1.6(0.2-5.45)a 2.3(0.35-10.95)a 2.8(0.9-20.6)a >0.05

Epithelial cells (%) 1.8(0.4-7.1)a 2.6(0.57-10.97)a 2.4(1.2-8.35)a >0.05

Macrophages (103/g) 231.57(40.01-564.3)a 317.39(32.25-801.83)a 154(15.65-557.81)a >0.05

Lymphocytes (103/g) 12.84(0-40.65)a 23.75(1.12-66.3)a 14.08(0-46.22)a >0.05

Neutrophils (103/g) 1090(484.54-1788.33)b 2333.6(814.1-12390.5)a 814.05(486.85-2726.72)b <0.05

Eosinophils (103/g) 13.16(0-68.89)b 44.27(0-511.5)a 22(0-209.46)b <0.001

Epithelial cells (103/g) 44.1(5.66-142.29)a 165.44(36.15-302.1)a 67.52(13.7-252.84)a >0.05

2BMI(Body Mass Index); OCS(Oral Corticosteroids); FENO(Fractional Exhaled Nitric Oxide); FEV1(Forced Expiratory Volume in one second); FVC(Forced Vital Capacity);

TLC(Total Lung Capacity); RV(Residual Volume); DLCO(Diffusing Capacity for Carbon Monoxide); FRC(Functional residual capacity); LABA(Long Acting B2 Agonist);

LAMA(Long Acting Muscarinic Antagonist); LTRA(Leukotriene Receptor Antagonist); CRP(C-Reactive Protein); CAT(COPD Assessment Test), ICS(Inhale Corticosteroids)

Cluster 2 and 3 had also more impaired lung function with more severe airway ob-

struction, lung hyper-distension, and severely reduced diffusing capacity and trans-

fer coefficient (Figure 5.4). As far as inflammation is concerned, cluster 2 had more

severe systemic and airway neutrophilic inflammation, with slightly raised fibrino-

gen but not CRP. Circulating lymphocytes were reduced in cluster 2 (Figure 5.5). Total

Cell Counts (106/g ) and Neutrophils (%) are presented in Figure 5.6. Absolute spu-

tum eosinophil counts were higher in cluster 2 than in cluster 1 while no difference

was seen in the blood (Figure 5.7). FeNO levels were similar between clusters and

no difference was seen regarding total serum IgE (Figure 5.7) nor sensitizations to

aeroallergens, which were low in all three clusters.



110 5.4. Discussion

Table 5.6: Characteristics of patients with COPD after imputation, Median (IQR) / Percentage
(frequency) in each cluster, and comparison between clusters

Result for clustering after multiple imputation

Variable Cluster 1 Cluster 2 Cluster 3 P-value

(n=67) (n=56) (n=55)

Demographic characteristics

Age (Year) 62(55-66)a 67(60.75-74.25)b 67(58.5-73)b <0.001

Sex (Male) 76.12%(51)a 75%(42)a 7.27%(4)b <0.0001

Height (cm) 173(166.5-178)a 169.5(162-17.25)a 161(156-165)b <0.0001

Weight (kg) 77(65-89)a 67(56.75-76)b 60(53-66)c <0.0001

BMI (kg/m2) 25.59(22.34-30.21)a 23.08(20.55-24.89)b 23.15(19.89-25.55)b <0.001

Cigarette Packs (Year) 36.9(21.52-50)a 42.5(24.62-52.5)a 34.5(21.42-43.87)a >0.05

Cigarettes (day) 20(10-25)a 20(10-21.25)a 20(10-20)a >0.05

Smoking Duration(Year) 40(31-46)a 46.5(34.25-52.25)b 44(37-50)b <0.05

OCS Course <0.0001

0 80.59%(54) 30.35%(17) 61.82%(34)

1 13.43%(9) 32.14%(18) 23.64%(13)

≥ 2 4.48%(3) 35.71%(20) 10.91%(6)

Antibiotic Course >0.05

0 43.28%(29) 32.14%(18) 32.73%(18)

1 46.27%(31) 50%(28) 58.18%(32)

≥ 2 8.95%(6) 16.07%(9) 10.91%(6)

Emergency Room Admission for asthma or COPD <0.0001

0 95.52%(64) 71.43%(40) 85.45%(47)

1 4.48%(3) 26.78%(15) 14.54%(8)

≥ 2 0%(0) 1.78%(1) 0%(0)

Number of hospitalizations for asthma or COPD <0.0001

0 97.01%(65) 67.86%(38) 89.09%(49)

1 2.98%(2) 26.78%(15) 10.91%(6)

≥ 2 0%(0) 5.36%(3) 0%(0)

Pulmonary characteristics

FeNO (ppb) 15(10.5-23)a 18.5(10-30.5)a 14(8-25.5)a >0.05

FEV (mL) 1950(1700-2205)a 1085(780-1352.5)b 1240(1075-1390)b <0.0001

FEV1 (% predicted) 66(56-78)a 37(30-45.25)b 55(47.5-66)c <0.0001

FEV1 PD (mL) 2000(1820-2405)a 1190(837.5-1380)b 1310(1135-1470)b <0.0001

FEV1 PD (% predicted) 69(60.5-81.5)a 40(32.75-50)b 59(51.5-69.5)c <0.0001

Reversibility (%) 7(1-10.5)a 6.5(1-11.25)a 8(2-13.5)a >0.05

FVC (mL) 3200(2625-3780)a 2427.5(1705-2767.5)b 2140(1820-2390)c <0.0001

FVC (% predicted) 86(74-99.5)a 65(55.75-74.25)b 77(68.5-85.5)c <0.0001

FVC post (mL) 3320(2805-3870)a 2385(1797.5-2900)b 2130(1870-2445)c <0.0001

FVC post (%) 90(79.5-101)a 68(56.75-76.5)b 80(71.5-91.5)c <0.0001

FEV1/ FVC pre (%) 63.1(56.45-66.65)a 47(40.37-50.42)b 57.1(53.15-64.5)a <0.0001

FEV1/ FVC post (%) 64(58.3-68.55)a 47.5(42.8-53.2)b 59.9(54.5-67.05)a <0.0001

TLC (mL) 6725(5725-7385)a 6830(5847.5-8107.5)a 5440(4975-6005)b <0.0001

TLC (% predicted) 103(93-112)a 113(100.75-125.25)b 115(102-127.5)b <0.0001

RV (mL) 3320(2970-3820)a 4515(3690-5277.5)b 3270(2920-3725)a <0.0001

RV (% predicted) 141(128-171.5)a 183.5(163.87-228.5)b 172(148.5-193.25)c <0.0001

RV/TLC (%) 52.99(46.71-57.18)a 66.37(61.28-69.14)b 60.84(57.03-64.06)c <0.0001

DLCO (mmol/kPa.min) 5.2(4.06-5.88)a 3.47(2.67-4.44)b 3.27(2.69-4.03)b <0.0001

DLCO (% predicted) 57(46.5-67)a 41.5(30.75-58)b 45(37.5-53.5)b <0.0001

DLCO/AV (mmol/kPa.min/l) 1.03(0.79-1.28)a 0.80(0.63-0.99)b 0.93(0.71-1.15)b <0.0001

DLCO/AV (% predicted) 70(57-88)a 59.5(45.75-79)b 60(50-77.5)b <0.0001

sGaw (1/kPa*sec) 0.65(0.44-0.88)a 0.35(0.24-0.45)b 0.47(0.34-0.73)c <0.0001

FRC (L) 4.83(4.08-5.43)a 5.87(4.82-6.49)b 4.24(3.77-4.95)c <0.0001

FRC (% predicted) 143(122-161)a 174(154.75-192)b 160.5(141.5-180.5)c <0.0001

CAT score 22(15-31)a 26(19-30)a 24(17-30)a >0.05

Treatment characteristics

Treatment (Yes) 44.78%(30)a 78.57%(44)b 67.27%(37)b <0.0001

ICS (Yes) 29.85%(20)a 71.43%(40)b 69.10%(38)b <0.0001

OCS (Yes) 1.49%(1)a 16.07%(9)b 0%(0)a <0.0001

LAMA (Yes) 34.33%(23)a 73.21%(41)b 49.09%(27)a <0.0001

LABA (Yes) 44.78%(30)a 82.14%(46)b 76.36%(42)a <0.0001

SABA (Yes) 25.37%(17)a 50%(28)b 49.09%(27)b <0.001

LTRA (Yes) 2.98%(2)a 0%(0)a 7.27%(4)a >0.05

Theophylline (Yes) 1.49%(1)a 5.36%(3)a 1.82%(1)a >0.05
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Table 5.6 – continued from previous page

Result for clustering after multiple imputation

Variable Cluster 1 Cluster 2 Cluster 3 P-value

(n=67) (n=56) (n=55)

Blood characteristics

Leucocytes (1/µl) 7.71(6.52-9.43)a 8.56(6.87-11.10)a 7.81(6.64-9.2)a >0.05

Neutrophils (%) 58.2(52.75-63.55)a 67.6(60.1-73.22)b 58.3(53.25-64.85)a <0.0001

Lymphocytes (%) 30.3(25.65-35)a 20.95(15.7-27.27)b 29(23.82-35.12)a <0.0001

Monocytes (%) 8.7(7.1-9.8)a 7.8(6.34-9.82)b 7.1(6.4-8.67)b <0.05

Eosinophils (%) 2(1.1-3.25)a 1.9(0.9-3.22)a 2.1(0.95-3.35)a >0.05

Basophils (%) 0.4(0.3-0.6)a 0.3(0.2-0.5)a 0.4(0.3-0.7)a >0.05

Neutrophils (1/µl) 4529.13(3723.5-5501.7)a 5574.91(4097.7-7842.7)b 4840.71(3393.7-5743.1)a <0.05

Lymphocytes (1/µl) 2346.8(1844.6-2968.1)a 1847.22(1340.4-2382.2)b 2253.3(1846.6-2710.8)a <0.0001

Monocytes (1/µl) 668.82(507.24-831.28)a 652.58(511.72-864.82)a 605.82(485.32-748.05)a >0.05

Eosinophils (1/µl) 138(75.12-240.24)a 168.78(69.23-258.42)a 147.63(88.26-255.97)a >0.05

Basophils (1/µl) 30.84(21.48-42.58)a 27.63(18.88-46.25)a 32.04(23.95-48.97)a >0.05

Fibrinogen (g/l) 3.43(2.88-3.86)a 3.65(3.08-4.50)b 3.54(2.98-3.80)b <0.05

CRP (mg/l) 2.3(1.25-4.95)a 2.9(0.87-7.7)a 1.8(1-4.75)a >0.05

Alpha 1 antitrypsin (g/l) 1.49(1.34-1.57)a 1.61(1.39-1.76)b 1.49(1.35-1.64)a <0.05

Calcium (mmol/L) 2.42(2.37-2.47)a 2.41(2.35-2.48)a 2.44(2.38-2.47)a >0.05

25(OH) Vitamine D (ng/ml) 18(12-30.9)a 17.5(10-26.75)a 24(15.5-33)a >0.05

Phosphate (mmol/L) 0.89(0.77-0.95)a 0.88(0.72-1.06)a 1.01(0.93-1.11)b <0.0001

Atopy characteristics

IgE (KU/L) 52(23-184.5)a 91.5(28.75-304.75)a 73(21-170)a >0.05

RAST DPT (d1) %>0.35 (KU/L) 13.43%(9)a 16.07%(9)a 7.27%(4)a >0.05

RAST Cat (e1), %>0.35 (KU/L) 1.49%(1)a 7.14%(4)a 1.82%(1)a >0.05

RAST Dog (e5), %>0.35 (KU/L) 2.98%(2)a 5.36%(3)a 0%(0)a >0.05

RAST Grass (GX3), %>0.35 (KU/L) 5.97%(4)a 14.28%(8)a 1.82%(1)a >0.05

RAST microog (MIX1), %>0.35 (KU/L) 7.46%(5)a 12.5%(7)a 10.91%(6)a >0.05

RAST Birch (t3), %>0.35 (KU/L) 0%(0)a 3.57%(2)a 0%(0)a >0.05

Sputum characteristics

Positive Aerobic Sputum Culture 8.95%(6)a 16.07%(9)a 12.73%(7)a >0.05

Weight of sputum (g) 1.77(1.28-3.01)a 1.45(0.97-3.05)a 1.65(0.93-3.28)a >0.05

Total Cell Counts (106/g) 1.70(0.90-4.41)a 4.90(1.58-15.96)b 2.65(1.08-5.43)a <0.05

Squamous (%) 19(6-42)a 7(2-31.12)b 9.5(2-23.5)b <0.05

Viability (%) 68(53.5-85.5)a 69(51-86)a 67(48.5-79.5)a >0.05

Macrophages (%) 14(6.7-26.1)a 6.5(2.54-15.15)b 17(7-29.95)a <0.0001

Lymphocytes (%) 1.2(0-2.3)a 0.6(0.15-1.5)a 1.2(0-3)a >0.05

Neutrophils (%) 71.4(56.35-88.2)a 78.9(58.8-92.19)a 60.4(39.3-81.05)b <0.001

Eosinophils (%) 1.4(0.2-4.92)a 2.3(0.2-9.12)a 2(0.7-9.15)a >0.05

Epithelial cells (%) 2.4(0.4-8.1)a 3.25(0.57-11.05)a 4.7(1.3-15.2)a >0.05

Macrophages (103/g) 233.55(53.28-691.65)a 301.29(31.37-755.45)a 330.48(58.13-816.67)a >0.05

Lymphocytes (103/g) 14.2(0-43.07)a 23.75(4.39-63.9)a 25.2(3.42-72.5)a >0.05

Neutrophils (103/g) 1090(490.86-2339.64)a 2482(884-117218)b 1110(493.04-3483.82)a <0.05

Eosinophils (103/g) 19.92(0-166.96)a 71.67(0-638.26)b 33.04(5.65-293.7)a <0.001

Epithelial cells (103/g) 38.45(5.66-142.29)a 94(18.07-292.65)a 81.36(16.4-301.24)a >0.05

3BMI(Body Mass Index); OCS(Oral Corticosteroids); FENO(Fractional Exhaled Nitric Oxide); FEV1(Forced Expiratory Volume in one second); FVC(Forced Vital

Capacity); TLC(Total Lung Capacity); RV(Residual Volume); DLCO(Diffusing Capacity for Carbon Monoxide); FRC(Functional residual capacity); LABA(Long Acting B2

Agonist); LAMA(Long Acting Muscarinic Antagonist); LTRA(Leukotriene Receptor Antagonist); CRP(C-Reactive Protein); CAT(COPD Assessment Test), ICS(Inhaled

Corticosteroids)

5.4 Discussion

In this chapter, we characterized COPD patients into three distinctly different clus-

ters by applying general and flexible statistical computation in the dataset with miss-

ing values. In the present chapter, clustering was applied to a large number of vari-

ables instead of selecting a limited number of variables. Although missing values are

a pervasive problem in diverse datasets such as COPD with large number of variables,

missing values have not been considered properly in the clustering literature. Based

on these restrictions, the classification of COPD datasets has not been comprehen-

sively investigated. Therefore, in this exhaustive study, phenotypes in COPD dataset

were described by imputing missing values, principal components, and cluster anal-
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ysis with many analytical decisions, which overcome limitations, often reported in

previous clustering studies.

The concept of treatable trait has become very popular over the last years and it

has been suggested to avoid the label of asthma or COPD among patients with severe

chronic airway diseases (Agusti et al., 2016). Adopting this taxonomic view COPD

population could be seen as a population featuring the trait of fixed airway obstruc-

tion after a significant smoking history and denying any previous diagnosis of asthma

before the age of 40. One strength of this study, compared to previous clustering

analysis in COPD, is that it included airway inflammatory features, FeNO, and atopic

status in the parameters subjected to analysis.

We actually found 3 clusters of COPD, strikingly linked to sex with two clusters

showing male dominance while the third was essentially a female cluster. There were

clear differences between lung function impairment between the clusters whereas

quantitative smoking history was quite similar, pointing to different susceptibility to

tobacco among patients. The percentage of contribution of the different variables

to the clustering. It appears that functional criteria including airway flow and the

degree of airway obstruction and lung hyper-distension and the % of blood lympho-

cytes are amongst the most important criteria to structure the cluster while variables

like smoking history, FeNO, and Vitamin D level were rather homogeneous between

the patients.

Cluster 2 is conspicuously the most severe group of patients with marked airway

obstruction, lung hyper-distension capacity together with intense neutrophilic in-

flammation both at the systemic and the airway level, in keeping with the previ-

ously reported relationship between the severity of airway obstruction and the neu-

trophilic inflammation (Moermans et al., 2011). Cluster 2 and 3 had also impaired

diffusing capacity and transfer coefficient pointing to emphysema. Despite severe

emphysema the level of α1-antitrypsin was higher in cluster 2, perhaps indicating a

response of the body trying to counteract the lung destruction favoured by the in-

tense neutrophilic inflammation.

Associated with neutrophilic inflammation, cluster 2, displays a small rise in fib-

rinogen level even through the median value remained within the normal range and

below the threshold of 5.1 g/l, shown to be predictive of an excess of mortality (Celli

et al., 2012). Of note is the fact that the intensity in neutrophilic airway inflammation
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is not associated with bacterial colonization identified by classical bacterial culture,

which was rather low come close to 10% for the whole cohort. Of course, it does not

imply that the microbiome may be profoundly disturbed in COPD and more sophisti-

cated microbiological analyses might have revealed differences between the clusters.

The altered microbiome may be the consequence of frequent antibiotic courses re-

ceived by the patients as shown in the cohort since almost two-thirds of the patients

had received antibiotics for bronchitis the year prior to the visit. It is worth noting

that there was no difference between clusters in the number of antibiotic courses.

As opposed to exacerbation defined by OCS course, exacerbation defined by the an-

tibiotic course was not related to the severity of lung function impairment nor to the

severity of airway inflammation.

We also looked at phosphocalcic metabolism and found, as expected in western

Europe, reduced levels of 25 OH Vit D (< 30 ng/ml) in all clusters without any dif-

ference between them. While Calcium levels, a tightly regulated ion, were normal

and similar between the three clusters, there were striking differences in the levels of

phosphates, which were clearly lower in cluster 1 and also cluster 2. The literature

about phosphate level in COPD is virtually absent and the clinical meaning of our

finding remains obscure though there might be a sex effect as this demographic trait

best differentiates cluster 1 and 2 from cluster 3.

The eosinophilic trait is a marker of response to corticoids in asthma but also in

COPD. In this study, blood eosinophilic inflammation does not appear to be a dis-

criminant feature between the clusters but cluster 2 shows a greater absolute, but not

relative, sputum eosinophil cell count. However, the three clusters had median value

of sputum eosinophil counts greater than that we found in a healthy population (De-

marche et al., 2016) and, actually, rather similar to what is found in large population

of unselected asthmatics (Schleich et al., 2014). Furthermore, the greater amount

of eosinophils present in the sputum of COPD was noted despite heavier treatment

with ICS in this cluster, which points to some corticoresistance in this cluster. Atopic

status based on positive RAST towards aeroallergens was low in the three clusters but

total serum IgE was measured at a higher level than those usually found in a gen-

eral population of this age, maybe pointing to a role of IgE mediated processes in

the pathophysiology of the disease. It has also been suggested that smoking may

stimulate IgE production (O’Connor et al., 1989). However, it is a production clearly

directed towards something different from the classical aeroallergens encountered

in asthma. The reason why atopic status is so low in COPD, clearly lower than in a
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general population, is likely to be related to the age of the COPD patients. Indeed, it

was demonstrated in population studies that specific IgE levels decreased with age

(Amaral et al., 2016) and we have shown in a large asthmatic population that the rate

of sensitization to aeroallergens was sharply declining with age after 60 years (Man-

ise et al., 2016).

Of interest, and also perhaps surprising, is the fact the CAT score does not differ be-

tween the clusters despite clear differences in lung function impairment and extent

in airway inflammation. This shows that CAT score cannot capture the airflow limita-

tion nor airway inflammation, indicating that symptoms, lung function, and airway

inflammation are different domains accounting for the disease variability (Lapperre

et al., 2004).

This study has obviously limitations as we have not taken into account comorbidi-

ties, exercise capacity, and lung imaging in our parameters, which are key variables in

phenotyping the COPD patients in clinical practice. Our purpose here was rather to

explore variables traditionally linked to asthma such as FeNO, IgE, and eosinophilic

inflammation, and to see whether they can play a significant contribution in defining

the variability of the disease in patients > 40 years with smoking history and persis-

tent airway obstruction. Our data indicate that FeNO, blood eosinophils, and serum

IgE, though being significantly different from what is found in a healthy population

for total serum IgE, are not able to single out a particular cluster. Therefore, most of

the T2 biomarkers had not enough variability among the patients to shape a cluster.

However, eosinophilic (together with neutrophilic) airway inflammation is raised in

the cluster that shows the most severe lung function impairment. These data may

have importance as it has been shown by retrospective post hoc analysis that ICS

treatment in eosinophilic COPD might actually slow down the lung function decline

(Pavord et al., 2016). The impact of targeting eosinophilic inflammation in COPD

should be given careful consideration in long-term clinical trials using not only ICS

but also anti-interleukine-5.

Another important limitation of this study is the lack of a validation cohort whereas

Castaldi et al. (2017) has shown that the reproducibility of COPD clustering across

studies was rather modest. The size of our cohort was however too small to split our

population and perform meaningful clustering with our extensive set of variables.

However, we presented validation with two statistical indices.
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In conclusion, in a cohort of COPD, we found 3 clusters of patients with similar

age and smoking history but very different sex distribution and lung function, and

inflammatory parameters. In particular, we identified a cluster of male patients with

intense granulocytic airway inflammation combined with severe airway flow limita-

tion and lung hyperdistention, who are prone to exacerbate and undergo recurrent

hospitalizations. These clusters need to be confirmed in a new cohort of patients,

ideally from other centers.
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5.5 Appendix

Figure 5.3: CAT Score in three clusters

Figure 5.4: Lung function in three clusters
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Figure 5.5: Blood in three clusters

Figure 5.6: Sputum in three clusters
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Figure 5.7: T2 biomarkers in three clusters



CHAPTER 6

Clustering on the eosinophilic asthmatic

patients

As explained in Chapter 1, eosinophilic asthma is a phenotype that, despite being

overall associated with disease severity, may sometimes be present in milder disease.

Although eosinophilic asthma is known as a main phenotype of asthma classifica-

tion, in this thesis, we recognized heterogeneity in this phenotype and attempt to

identify groups of patients presenting similar characteristics. Therefore, the main

purpose of this chapter is to perform a cluster analysis on a large group (n = 426) of

eosinophilic (sputum eosinophils ≥ 3%) asthmatics. There is a possibility that ICS

treatment at various doses could be a confounding factor. As a result, classification is

reapplied to steroid naïve and high dose ICS treated patients. Section 6.1 presents the

characteristics of eosinophilic asthmatic patients as well as those of the two subsets

of ICS with the same variables, along with a comprehensive description of missing

values. The proposed clustering framework is presented in Section 6.2. The results

of clustering for the whole eosinophilic asthmatic cohort, steroid naïve cohort, and

high dose ICS treated cohort are presented in Section 6.3. In Section 6.4, clinical in-

terpretations and explanations of the results of clustering are provided.

This Chapter is based on

Nekoee Zahraei, H., Guissard, F., Paulus, V., Henket, M., Donneau, A.F., & Louis, R., Clustering
on the eosinophilic asthmatic patients. (manuscript in under-review)
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6.1 Eosinophilic asthmatic dataset

Eosinophilic airway inflammation is a major trait of asthma (Agusti et al., 2016). It

is accepted that a sputum eosinophil count reaching 2−3% is considered as a sign of a

significant eosinophilic inflammation (Brightling, 2006). Large cross-sectional stud-

ies have shown that a sputum eosinophil count of at least 3% is found in almost 50%

of asthmatics seen in a secondary care center (Schleich et al., 2013) and this propor-

tion can further increase to more than 60% when severe patients are selected (Graff

et al., 2020). Overall, patients with sputum eosinophils above 2−3% display a more

severe disease with poorer asthma control and greater health care utilization as com-

pared to their non-eosinophilic counterparts (Demarche et al., 2017; Hastie et al.,

2021). In patients with steroid naïve asthma, the eosinophilic trait generally predicts

good clinical response to ICS (Brightling, 2006) whereas some patients treated with

high dose ICS, and possibly OCS, may still show severe eosinophilic inflammation

associated with poor clinical outcomes (Louis and Schleich, 2021; Graff et al., 2020;

van Bragt et al., 2020) pointing out a disease in which the eosinophilic inflammation

is relatively resistant to corticoids.

Figure 6.1: A general overview of eosinophilic asthmatic cohorts (white cells are missing val-
ues)

While eosinophils are usually thought to be potent inflammatory cells and an ac-

tive contributor to asthma severity some authors have suggested that lung tissue may

actually harbor a population of regulatory eosinophils the function of which might be
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to dampen airway inflammation (Mesnil et al., 2016). A recent study has highlighted

the existence of a group of patients with mild asthma and high sputum eosinophil

count (Xu et al., 2021) questioning the detrimental action of eosinophils in shaping

disease severity and perhaps suggesting heterogeneity in their functional roles. This

chapter examined a large dataset of asthma clinic patients with a sputum eosinophil

≥ 3% which was recruited from the asthma clinic of Liege University Hospital be-

tween 2011 and 2020.

As part of this chapter, the whole eosinophilic asthmatic cohort was divided into

two subgroups: patients without ICS (steroid naïve cohort), and patients with ICS

>1000g/d equivalent beclomethasone (high dose ICS treated cohort). Qualitative

variables were summarized as count and percentage, while median and interquartile

range (P25 - P75) were calculated as quantitative variables, in Tables 6.1. In addition,

the count and percentage of missing values were included in these tables. In Figure

6.1, a general perspective of the whole eosinophilic asthmatic cohort, and two sub-

groups were presented. Variables are represented by columns, and patients by rows.

Missing data is represented by white cells.

According to Table 6.1, patients were mostly females (55%) with a median age of

53, and 56% were atopic. Patients displayed a mild overweight (median body mass

index was 26). The median asthma duration was 15 years. There are 56% of patients

who have not experienced an exacerbation the year prior to the visit, 15% have had

it once, and 18% have had it more than once. The missing values were MCARs. The

percentage of missing values ranged from 0% to 76% for DHEA sulfate (µmol/L) and

96% of patients presented at least one missing value.

There were 114 steroid naïve eosinophilic asthmatic patients with an equal num-

ber of males and females, a majority of non-smokers (78%), and atopic (60%) with

a median age of 50 and age at diagnosis of 30 years. The median BMI was 26. 65%

of patients had not experienced an exacerbation the year prior to the visit, 14% had

experienced it once, and 14% had experienced it more than once.
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Table 6.1: Descriptive statistics of characteristics of eosinophilic asthmatic cohort

Variable Whole cohort (n = 426) Steroid naïve (n = 114) High dose ICS (n = 239)

Median (IQR) Missing Value Median (IQR) Missing Value Median (IQR) Missing Value

%(n) %(n) %(n) %(n) %(n) %(n)

Demographic characteristics

Age (Year) 53(40–64) 0%(0) 50(36–64) 0%(0) 53(40–64) 0%(0)

Sex (Male) 45% (190) 0% (0) 50%(57) 0%(0) 41%(97) 0%(0)

BMI (kg/m2) 26 (23 - 29) 0.2% (1) 26(23–28) 0%(0) 26(23–30) 0.4%(1)

Smoking 0.7% (3) 0%(0) 1%(3)

Ex-smoker 30% (126) 3%(26) 33%(79)

Smoker 15% (62) 19%(22) 13%(31)

Duration of smoking(Year) 0 (0 - 14) 8.2% (35) 0(0–10) 7%(8) 0(0–14) 8%(20)

Age at diagnosis (Year) 30 (10 - 51) 21% (88) 30(10–57) 24%(27) 29(10–50) 18%(45)

Duration of asthma(Year) 15 (3 - 30) 21% (88) 6(0–24) 24%(27) 18(8–32) 19%(45)

Atopy (Yes) 56%(238) 7% (30) 60%(69) 5%(6) 56%(133) 7%(18)

Comorbidities

Nasal polyposis (Yes) 11% (45) 1% (4) 6%(7) 1%(1) 12%(29) 1%(2)

Allergic rhinitis (Yes) 30% (124) 2% (7) 32%(36) 2%(2) 29%(70) 2%(4)

GERD (Yes) 13% (55) 4% (16) 12%(14) 2%(2) 13%(32) 4%(9)

Treatment

ICS (Yes) 69%(294) 4%(18)

ICS (µg/d) 1000 (0 - 2000) 4%(18)

LABA (Yes) 65% (277) 7% (32) 95%(3) 5%(6) 90%(215) 8%(20)

LTRA (Yes) 25% (107) 0.5% (2) 7%(8) 0%(0) 38%(90) 1%(2)

LAMA (Yes) 6% (26) 7% (32) 2%(2) 5%(6) 9%(22) 8%(20)

Theophylline (Yes) 1.2% (5) 0.5% (2) 0%(0) 0%(0) 2%(4) 1%(2)

H1 antagonists (Yes) 20% (86) 0.5% (2) 13%(15) 0%(0) 24%(57) 1%(2)

SABA.SAMA (Yes) 65% (279) 7% (32) 62%(71) 5%(6) 69%(164) 8%(20)

OCS (Yes) 11% (49) 0.5% (2) 3%(4) 3%(4) 18%(42) 1%(2)

Asthma control, exacerbation, and quality of life

ACT 16 (11 - 21) 1% (5) 18(15–22) 2%(2) 13(9–19) 0.8%(2)

ACQ 1.8 (1 – 2.9) 2% (7) 1(0.7–2) 1%(1) 2.6(1.4–3.4) 2%(5)

Number of exacerbation 9% (39) 7%(8) 11%(28)

0 56% (239) 65%(74) 50%(119)

1 18% (78) 14%(16) 20%(48)

≥ 2 16% (70) 14%(16) 18%(44)

AQLQ Global 4.6 (3.4 - 5.8) 2% (10) 5(4–6) 2%(2) 4(2.9–5.3) 2.5%(6)

Pulmonary function

FEV1 pre (% predicted) 85(69 - 98) 0.2% (1) 93(82–102) 1%(1) 75(62–92) 0%(0)

FEV1 post (%predicted) 90(77 - 103) 0.2% (1) 100(91–110) 1%(1) 69(83–97) 0%(0)

FVC pre (% predicted) 96(85 - 107.25) 0.5% (2) 105(93–113) 1%(1) 88(77–100) 0.4%(1)

FVC post (% predicted) 93(81 - 106) 0.5% (2) 102(91–112) 1%(1) 92(80–102) 0.4%(1)

FEV1/ FVC pre (%) 73(66 - 80) 0.2% (1) 75(70–81) 1%(1) 71(62–79) 0%(0)

FEV1/ FVC post (%) 77(69 - 83) 0.5% (2) 80(74–84) 1%(1) 74(66–82) 0%(0)

FRC (% predicted) 118(98 – 138) 31% (132) 110(94–133) 25%(29) 122(102–140) 34%(81)

DLCO/VA (% predicted) 95(83 - 108) 31% (132) 95(82–111) 27%(31) 93(83–106) 34%(81)

DLCO (% predicted) 79(69 - 92) 31% (132) 82(73–92) 27%(31) 76(68–90) 34%(81)

RV (% predicted) 116(92 - 141) 28% (119) 101(83–128) 25%(29) 127(102–156) 29%(70)

TLC (% predicted) 98(89 - 107) 28% (119) 97(88–106) 25%(29) 99(89–107) 29%(70)

sGaw (1/kPa*sec) 0.8(0.6 - 1.1) 33% (139) 1(0.7–1.2) 28%(32) 0.7(0.4–1) 34%(82)

PC20M(mg/ml) 1.8(0.6 - 8) 46% (194) 1.8(0.6–7) 10%(12) 1.6(0.6–8.5) 64%(153)

FeNO (ppb) 37(19 - 62) 1% (4) 41(21–76) 2%(2) 35(19–54) 0.8%(2)

Sputum cell count

Weight of sputum (g) 2.2(1.2 - 3.9) 1% (4) 2(1–4) 2%(2) 2.3(1.2–3.9) 0.4%(1)

Total cell counts (106/g) 1.7(0.9 - 4.5) 2% (7) 1.5(1–5) 1%(1) 1.8(0.8–4.5) 1.7%(4)

Viability (%) 70(56 - 81) 1% (4) 71(51–80) 1%(1) 70(57–82) 0.4%(1)

Squamous (%) 12(4 – 27) 1% (4) 14(7–30) 1%(1) 11(4–27) 0.8%(2)

Macrophages (%) 21(10 - 36) 0% (0) 26(14–37) 0%(0) 18(8–35) 0%(0)

Lymphocytes (%) 1(0.4 - 2) 0% (0) 1(0.6–3) 0%(0) 0.8(0.2–1.8) 0%(0)

Neutrophils (%) 49(31 - 69) 0% (0) 50(32–68) 0%(0) 50(30–69) 0%(0)

Eosinophils (%) 11(5 - 26) 0% (0) 10(5–21) 0%(0) 11(5–30) 0%(0)

Epithelial cells (%) 3(1 - 7) 0.2% (1) 3(1–5) 0%(0) 3(2–8) 0.4%(1)

Macrophages (103/g) 363(140 - 866) 1.6% (7) 433(149–1260) 1%(1) 325(123–787) 1.7%(4)

Lymphocytes (103/g) 17(3 - 47) 1.6% (7) 26(5–86) 1%(1) 13(2–39) 1.7%(4)

Neutrophils (103/g) 702(270 - 2124) 1.6% (7) 715(253–2746) 1%(1) 660(267–2120) 1.7%(4)

Eosinophils (103/g) 211(73 - 711) 1.6% (7) 229(65–711) 1%(1) 214(68–784) 1.7%(4)

Epithelial cells (103/g) 56(17 - 147) 1.9% (8) 43(17–139) 1%(1) 67(16–147) 2.1%(5)
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Table 6.1 – continued from previous page

Variable Whole cohort Steroid naïve (n = 114) High dose ICS (n = 239)

Median (IQR) Missing Value Median (IQR) Missing Value Median (IQR) Missing Value

%(n) %(n) %(n) %(n) %(n) %(n)

Blood cell count

Leucocytes (103/µl) 7(6 - 9) 1.4% (6) 7(6–8) 2%(2) 8(7–9) 1.3%(3)

Neutrophils (%) 54(48 - 61) 1.4% (6) 52(46–58) 2%(2) 55(48–62) 1.3%(3)

Lymphocytes (%) 32(26 - 39) 1.4% (6) 35(30–40) 2%(2) 31(24–37) 1.3%(3)

Monocytes (%) 8(6 – 9) 1.4% (6) 8(6–9) 2%(2) 8(6–9) 1.3%(3)

Eosinophils (%) 4(2 – 6) 1.4% (6) 3(2–5) 2%(2) 4(3–6) 1.3%(3)

Basophils (%) 0.5(0.4 - 0.7) 1.4% (6) 0.5(0.4–0.7) 2%(2) 0.5(0.3–0.8) 1.3%(3)

Neutrophils (1/µl) 3942(3178 – 5171) 1.4% (6) 3648(2844–4475) 2%(2) 4201.5(3387–5435) 1.3%(3)

Lymphocytes (1/µl) 2350(1909 - 2872) 1.4% (6) 2368(1955–2868) 2%(2) 2359(1922–2871) 1.3%(3)

Monocytes (1/µl) 567(460 - 718) 1.4% (6) 539(428–672) 2%(2) 590(477–720) 1.3%(3)

Eosinophils (1/µl) 278(182 - 445) 1.4% (6) 231(178–344) 2%(2) 320(190–506) 1.3%(3)

Basophils (1/µl) 39(27 - 58) 1.4% (6) 37(24–52) 2%(2) 41(28–62) 1.3%(3)

Serum IgE

RAST Birch (t3) %>0.35 (KU/L) 21% (89) 9.4% (40) 26%(77) 6%(7) 20%(48) 10%(24)

RAST Mould (MIX1) %>0.35 (KU/L) 15% (62) 8.9% (38) 10%(11) 9%(10) 18%(44) 9.2%(22)

RAST Grass (GX3) %>0.35 (KU/L) 31% (130) 11.3% (48) 33%(38) 11%(12) 31%(75) 12%(28)

RAST Dog (e5) %>0.35 (KU/L) 30% (127) 6.8% (29) 35%(40) 5%(6) 29%(70) 8%(19)

RAST Cat (e1) %>0.35 (KU/L) 29% (125) 6.3% (27) 35%(40) 4%(5) 29%(69) 7%(18)

RAST DPT (d1) %>0.35 (KU/L) 38% (162) 5.4% (23) 42% (48) 4%(5) 38%(90) 5%(13)

Total IgE(KU/L) 189(60 – 470) 6.3% (27) 201(61–396) 6%(7) 226(64–522) 7%(18)

Systematic inflammation

CRP (mg/l) 2(1 - 5) 3% (13) 1.5(0.7–3.4) 3%(3) 2.1(1–5) 5%(10)

Fibrinogen (g/l) 3.35(2.83 - 3.79) 4.7% (20) 3.21(2.67–3.61) 5%(6) 3.38(2.84–3.87) 5%(11)

Adrenal function

Cortisol (nmol/l) 207(162 - 271) 57% (244) 243(185–309) 78%(89) 203(155–264) 52%(125)

DHEA sulfate (µmol/L) 2.6(1.5 - 5.2) 76% (326) 2.6(1.6–5.6) 79%(90) 2.5(1.4–4.6) 76%(181)

1BMI(Body Mass Index); GERD(Gastroesophageal Reflux Disease); LABA(Long Acting B2 Agonist); LAMA(Long Acting Muscarinic Antagonist); LTRA(Leukotriene

Receptor Antagonist); ICS(Inhaled Corticosteroids); OCS(Oral Corticosteroids); CRP(C-Reactive Protein); DHEAS(Dehydroepiandrosterone Sulfate);

IgE(Immunoglobulin E); FENO(Fractional Exhaled Nitric Oxide); FEV1(Forced Expiratory Volume in one second); FVC(Forced Vital Capacity); TLC(Total Lung Capacity);

RV(Residual Volume); DLCO(Diffusing Capacity for Carbon Monoxide); FRC(Functional residual capacity)

A subset of 239 patients with eosinophilic asthma received high-dose ICS. These

patients were mostly female (59%) with a median age of 53 years, a median asthma

duration was 15 years and 56% were atopic. The majority (54%) had never smoked.

Patients displayed a mild overweight (median body mass index was 26). 50% of pa-

tients had not experienced an exacerbation the year prior to the visit, 20% had expe-

rienced it once, and 18% had experienced it more than once.

6.2 Clustering Framework

In order to account for the uncertainty of missing values in analysis, multiple im-

putation was applied for handling missing values. Multiple imputation generates

a set of m (m = 100) independent plausible values for each missing value (Section

3.1.3). For the second step, FAMD was performed independently on m imputed

dataset for reducing the complexity of huge dimensional data (Section 3.2.2). Then,

hierarchical clustering was applied using Ward's criterion on the principal compo-

nents derived in the first step. The number of clusters for each imputed dataset was

determined using a package of 30 indices for determining the relevant number of

clusters, and then K-means was applied for assigning clusters to patients according
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to the number of clusters detected. Since 100 results have been recorded for clus-

tering, in the final step, consensus clustering was considered based on 4M method

(Section 3.3.3) to assign each individual to a cluster. The proposed framework is pre-

sented in Table 6.2.

Mann-Whitney nonparametric test for quantitative variables and chi-square for

qualitative variables were applied on the original dataset to assess the comparison of

patients'characteristics between clusters. Finally, the difference between the groups

was depicted by boxplots for the quantitative variable. All analyses were performed

using R statistical software with several well-known packages. MICE, FactoExtra, and

FactoMineR are R packages that implement the multiple imputation method, FAMD,

and cluster analysis. The 4M consensus clustering was implemented using R func-

tion built by the author. P values < 0.05 were considered statistically significant.

Table 6.2: Proposed framework for multiple imputation in cluster analysis

Input: Eosinophilic dataset with missing values and multidimensional vari-
ables

Step 1. Multiple Imputation
i) Obtain 100 complete datasets by multiple imputation (MICE)

Step 2. Factor analysis for mixed data (FAMD)
i) Determine quantitative and qualitative variable
ii) Apply FAMD for each imputed dataset
iii) Determine the number of components for each imputed dataset

Step 3. Hierarchical clustering
i) Choosing the best number of clusters for each imputed dataset

Step 4. Partitioning Clustering
i) Consider the number of clusters in the previous step for each imputed

dataset
ii) Assign patients to each cluster for each imputed dataset.

Step 5. 4M method for Consensus Clustering
i) Combine all ensemble clustering to get a final best clustering

Output: Partition of clustering labels C = {C1, . . . ,Ck }
Step 6. Assign patients to the final result of consensus clustering

i) Allocate patients in the original incomplete dataset to calculate final
result of consensus clustering

Step 7. Description of clustering
i) Calculate median for the original incomplete dataset
ii) Comparison between cluster (Mann-Whitney and Chi-squared tests)

Output: Descriptive analysis tables for clustering
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6.3 Clustering Results

Applying the framework detailed in Table 6.2, provided clustering results as fol-

lows. Using FAMD as the second step, the percentage contribution of variables could

be calculated for the next clustering. Table 6.4 provides the impact of each variable

on clustering for the whole cohort, as well as according to ICS treatment. Spirometric

parameters, asthma control, circulating granulocytes, atopic status, and age were the

variables that contributed the most. The highest contribution for variables in clus-

tering in the whole cohort was for FEV1 pre (% predicted), FEV1 post (%predicted),

ACQ, FEV1/FVC post (%), and FVC post (% predicted). Figure 6.2 illustrates the order

of contributions of variables from highest to lowest for the whole cohort.

Figure 6.2: The percentage contribution of eosinophilic variables in principal components,
in the whole cohort and according to the ICS treatment



126 6.3. Clustering Results

After applying multiple imputation for whole cohort, one imputed dataset pro-

posed 32, 33, 37, 39 PCA components, 81 imputed datasets suggested 34 new com-

ponents, and the others were summarized into 35 components. Next, each imputed

dataset was classified based on its own selected components. Out of 100 imputed

datasets, four, and five clusters were found in two imputed datasets, 81% were clas-

sified into 2 clusters, and the rest had three clusters.

Finally, after completing the framework presented in Table 6.2, two clusters with

acceptable validation values for the whole cohort and both subgroups were identi-

fied in this chapter. The indices for internal validation of clustering are listed in Table

6.3, as well as the two indices for validation of clustering stability.

Cluster analysis revealed two clusters identified as cluster 1 (n = 276) and cluster

2 (n = 150) (Table 6.5). Cluster 1 included younger patients (50 years), with a high

proportion of atopic patients (67%), lower treatment burden (median ICS dose 500

µ g equivalent beclomethasone/d), and preserved lung function (median FEV1 93%

predicted) a relatively good asthma control (median ACT and ACQ 18 and 1.3, respec-

tively).

Cluster 2 included older patients (59 years) with a low proportion of atopic (36%),

a more frequent smoking history (57%), a higher treatment burden (median ICS dose

2000 g/d equivalent beclomethasone), a more intense systemic and airway eosinophilic

inflammation (median circulating eosinophils 379/µ l, median sputum eosinophil

count 16%), greater systemic inflammation as reflected by higher fibrinogen levels

and circulating neutrophil counts, greater airway obstruction (median FEV1 65% pre-

dicted, median FEV1/FVC 69% and median sGaw 0.6 1/KPas.sec) and poorly con-

trolled asthma (median ACT, and ACQ; 11 and 3.1, respectively).

Table 6.3: Clustering validation

Indices Whole cohort
Steroid naïve

cohort
High dose
ICS cohort

Internal measures Silhouette Coefficient 0.78 0.84 0.76

Dunn Index 0.59 0.71 0.88

Stability measures Average Proportion of Non-overlap 0.043 0.038 0.04

Average Distance between Means 0.006 0.009 0.009
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Table 6.4: Percentage of the contribution of variables in clustering, globally and according to
the ICS treatment

Variable Whole cohort Steroid naïve High dose ICS

(n = 426) (n = 114) (n = 239)

Demographic characteristics

Age (Year) 0.12 0.06 0.08

Sex (Male) 0.01 0.01 0.005

BMI (kg/m2) 0.10 0.02 0.005

Smoking 0.10 0.02 0.08

Duration of smoking(Year) 0.10 0.02 0.09

Age at diagnosis (Year) 0.07 0.04 0.06

Duration of asthma(Year) 0.001 0.01 0.005

Atopy (Yes) 0.16 0.03 0.13

Comorbidities

Nasal polyposis (Yes) 0.001 0.001 0.01

Allergic rhinitis (Yes) 0.06 0.02 0.05

GERD (Yes) 0.001 0.004 0.01

Treatment

ICS (µg/d) 0.18

LABA (Yes) 0.15 0.02 0.001

LTRA (Yes) 0.03 0.002 0.005

LAMA (Yes) 0.12 0.03 0.05

Theophylline (Yes) 0.02 0.001 0.01

H1 antagonists (Yes) 0.02 0.01 0.05

SABA.SAMA (Yes) 0.02 0.02 0.02

OCS (Yes) 0.14 0.01 0.04

Asthma control, exacerbation, and quality of life

ACT 0.24 0.2 0.08

ACQ 0.39 0.18 0.16

Number of exacerbation 0.01 0.03 0.009

AQLQ Global 0.26 0.21 0.12

Pulmonary function

FEV1 pre (% predicted) 0.48 0.14 0.24

FEV1 post (%predicted) 0.52 0.13 0.22

FVC pre (% predicted) 0.31 0.14 0.19

FVC post (% predicted) 0.37 0.14 0.17

FEV1/ FVC pre (%) 0.29 0.15 0.12

FEV1/ FVC post (%) 0.37 0.18 0.14

FRC (% predicted) 0.11 0.7 0.05

DLCO/VA (% predicted) 0.06 0.63 0.08

DLCO (% predicted) 0.17 0.66 0.10

RV (% predicted) 0.21 0.72 0.05

TLC (% predicted) 0.06 0.69 0.04

sGaw (1/kPa*sec) 0.02 0.74 0.08

PC20M(mg/ml) 0.03 0.002 0.11

FeNO (ppb) 0.02 0.003 0.03
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Table 6.4 – continued from previous page

Variable Whole cohort Steroid naïve High dose ICS

(n = 426) (n = 114) (n = 239)

Sputum cell count

Weight of sputum (g) 0.01 0.19 0.01

Total cell counts (106/g) 0.02 0.004 0.02

Viability (%) 0.001 0.03 0.003

Squamous (%) 0.03 0.003 0.005

Macrophages (%) 0.22 0.006 0.006

Lymphocytes (%) 0.04 0.003 0.003

Neutrophils (%) 0.01 0.005 0.02

Eosinophils (%) 0.1 0.01 0.03

Epithelial cells (%) 0.005 0.004 0.003

Macrophages (103/g) 0.02 0.01 0.11

Lymphocytes (103/g) 0.002 0.03 0.01

Neutrophils (103/g) 0.02 0.02 0.005

Eosinophils (103/g) 0.04 0.004 0.06

Epithelial cells (103/g) 0.002 0.003 0.01

Blood cell count

Leucocytes (103/µl) 0.15 0.50 0.32

Neutrophils (%) 0.08 0.62 0.41

Lymphocytes (%) 0.12 0.63 0.54

Monocytes (%) 0.05 0.69 0.45

Eosinophils (%) 0.09 0.67 0.47

Basophils (%) 0.07 0.78 0.55

Neutrophils (1/µl) 0.13 0.64 0.53

Lymphocytes (1/µl) 0.1 0.62 0.43

Monocytes (1/µl) 0.16 0.69 0.51

Eosinophils (1/µl) 0.21 0.64 0.50

Basophils (1/µl) 0.21 0.73 0.52

Serum IgE

RAST Birch (t3) %>0.35 (KU/L) 0.13 0.05 0.08

RAST Mould (MIX1) %>0.35 (KU/L) 0.01 0.07 0.03

RAST Grass (GX3) %>0.35 (KU/L) 0.13 0.04 0.13

RAST Dog (e5) %>0.35 (KU/L) 0.13 0.03 0.13

RAST Cat (e1) %>0.35 (KU/L) 0.13 0.05 0.11

RAST DPT (d1) %>0.35 (KU/L) 0.12 0.02 0.11

Total IgE(KU/L) 0.03 0.72 0.05

Systematic inflammation

CRP (mg/l) 0.005 0.75 0.05

Fibrinogen (g/l) 0.09 0.73 0.08

Adrenal function

Cortisol (nmol/l) 0.05 0.63 0.49

DHEA sulfate (µmol/L) 0.06 0.61 0.39
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132 6.3. Clustering Results

Clustering on ICS naïve patients (n = 114) and those receiving high dose ICS treated

patients (n = 239) also yielded two clusters that mainly differentiate by age, atopic

status, and intensity of granulocytic airway inflammation (Table 6.5). The cluster

analysis identified two clusters in ICS naïve patients (n = 114), which were termed

cluster 1 (n = 66) and cluster 2 (n = 48). In high dose ICS treated patients (n = 239),

two clusters were also found, with cluster 1 containing 120 patients, while cluster 2

included 119 patients (Table 6.5).

When comparing the two clusters, in the three cohorts, there was a significant dif-

ference in age. Patients in Cluster 2 were significantly older than those in Cluster 1,

in the whole cohort (59 vs 50 years old), in the steroid naïve cohort (61 vs 41 years

old), and in the high dose ICS treated cohort (59 vs 45 years old) (Figure 6.3). The

proportion of atopy in cluster 1 was significantly higher than that in cluster 2, in all

three cohorts (Figure 6.4).

While the cohort of steroid naïve patients had relatively preserved lung function in

both clusters (median FEV1 of 98% and 88% predicted in cluster 1 and 2 respectively,

Figure 6.6) the cohort of patients treated with high dose ICS displayed a marked dif-

ference in expiratory flow rates between the two clusters (86% predicted and 67%

predicted in cluster 1 and 2 respectively). Cluster 2 of patients treated with high

dose of ICS had a more frequent smoking history, greater circulating basophil counts

(p < 0.001), and, surprisingly, a greater level of cortisol as compared to cluster 1, Fig-

ure 6.7 (p < 0.001) while the proportion of patients receiving maintenance OCS was

higher in cluster 2 (24% vs 12%). The number of patients with adrenal insufficiency

(morning cortisol < 102 nmol/l) in patients treated with high dose ICS was, however,

similar between the two clusters (22% vs 19% in cluster 1 and 2 respectively). As op-

posed to cortisol, the dehydroepiandrosterone sulfate levels (DHEAS) were higher in

cluster 1 (p = 0.07).

ACT was significantly higher in cluster 1 in the whole cohort and the high dose ICS

treated cohort, but not in the steroid naïve cohort (Figure 6.5). Asthma control and

quality of life were similar in the two clusters of steroid naïve patients but patients

from cluster 2 in the cohort of patients with high dose ICS had poorer asthma control

and quality of life than patients from cluster 1.

When comparing atopic patients between cluster 1 and cluster 2 on the whole co-

hort there was an increased sensitization in cluster 1 rate to birch and grass pollens
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(39% vs 18% and 58% vs 40% in cluster 1 and 2 respectively, p < 0.01 for both), cat

(57% vs 39% in cluster 1 and 2 respectively, p < 0.01) and dog ( 56% vs 43% in cluster

1 and cluster 2 respectively, p < 0.05) in cluster 1 but a higher sensitization rate to

molds in cluster 2 (41% vs 22% in cluster 2 and cluster 1 respectively, p < 0.05) while

total serum IgE did not differ between the two clusters(median (IQR) 292(113−843)

vs 349(154−709) in cluster 1 and cluster 2 respectively, p > 0.05).

6.4 Discussion

After extensive clinical characterization of the patients, we found two clusters among

eosinophilic asthmatics that clearly differentiate by demographics, level of asthma

control, functional and inflammatory features. The severity of airway obstruction,

the level of asthma control, the circulating granulocytes counts as well as atopic sta-

tus and age were the variables that contribute the most to the clustering.

A cluster with highly atopic patients may show substantial airway eosinophilic in-

flammation and mild disease as evidenced by a good level of asthma control and

preserved lung function despite longer disease duration. By contrast, this cluster

seems to be equally at risk of exacerbation in the year prior to the visit as com-

pared to the dominantly non-atopic cluster with severely impaired lung function and

poor asthma control, called cluster 2. This suggests that in these atopic patients,

eosinophilic airway inflammation may make the patients prone to exacerbate but

not necessarily to display a decline in expiratory flow rate over the time. This is even

more remarkable that the cluster 1 has a longer disease duration which is in line with

earlier disease onset. Our finding is in keeping with the recent study from Hastie et

al. who showed that pure eosinophilic phenotype predisposes to exacerbation and

health care utilization (Hastie et al., 2021) without leading to lung function decline.

Interestingly, the cluster with severely impaired lung function is a cluster which

combines intense airway eosinophilic together with intense neutrophilic inflamma-

tion. This finding is in line with previous cross-sectional studies which show that

mixed granulocytic inflammation is associated with the worst lung function (Hastie

et al., 2010; Schleich et al., 2013; Simpson et al., 2006; Graff et al., 2020). In addi-

tion, a recent longitudinal prospective study from the SARP (severe asthma research

program) found that patients who combine high sputum and neutrophil airway in-

flammation are those who display lung function decline over time despite treatment
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with ICS (Hastie et al., 2021). There are arguments to suggest that neutrophils are act-

ing as a cofactor to eosinophils to allow them to fully contribute to remodeling (Louis

and Schleich, 2021).

Cluster 1 with high atopic proportion had lower sputum and blood neutrophil

counts. The sputum neutrophil count was particularly low in Cluster 1 of steroid

naïve patients. Whether atopic status may protect against neutrophilic inflamma-

tion and remodeling remains unclear (Radermecker et al., 2018) but there is evi-

dence showing that histamine, a mediator released upon IgE mediated activation

and basophils, may reduce neutrophil chemotaxis (Bury et al., 1992). Furthermore,

one study found that raised sputum tryptase levels in asthmatics were mainly found

in patients with selective sputum eosinophilic inflammation with low sputum neu-

trophil count (Bettiol et al., 1999). Our data also suggest that the possible protection

of atopic status against disease severity may differ according to the type of sensiti-

zation as cluster 1 includes patients with higher sensitization rate towards birch and

grass pollens and animal danders whereas cluster 2 displays a remarkable greater

sensitization rate to molds. As we measured specific IgE towards a molds mixture we

cannot ascertain whether these patients were specifically sensitized to aspergillus.

However, aspergillus is the mold to which asthmatics are the most frequently sen-

sitized and previous studies showed that asthmatics sensitized to aspergillus com-

bined high eosinophilic and neutrophilic airway inflammation, which is one the fea-

ture of our cluster 2 (Wark et al., 2000).

Cluster 2 displayed worse asthma control and altered lung function despite higher

burden of treatment with higher dose of ICS, a greater proportion of patients with

LTRA and maintenance OCS. The persistence of high blood and sputum eosinophil

counts in this cluster highlights the inability of corticoids to control eosinophilic in-

flammation in these asthmatics. This phenomenon partly relates to the inability of

corticoids to fully suppress the influence of interleukin -5 (Peters et al., 2019) as we

know today that severe eosinophilic asthmatics may dramatically respond to anti-IL-

5/IL-5R (Bleecker et al., 2016; Pavord et al., 2012). Interestingly, besides eosinophils,

blood basophils were also clearly increased in cluster 2 despite heavy treatment with

ICS and sometimes OCS.

Surprisingly, levels of morning cortisol were higher in cluster 2 than in cluster 1

whereas the burden of ICS/OCS was greater in patients of cluster 2, which would sug-

gest some kind of resistance to systemic effect of corticoids on the pituitary/adrenal
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axis in the patients from cluster 2. Whether this reduced systemic effect may be,

somehow, linked to a reduced sensitivity to the anti-inflammatory effect of corti-

coids in cluster 2 needs to be further investigated. This hypothesis would, however,

be supported by a high airway and circulating levels of cells known to be usually

eliminated by corticoids such as eosinophils and basophils. Conversely to cortisol,

dehydroepiandrosterone (DHEAS) levels, another adrenal hormone, were higher in

cluster 1, an observation likely to be linked to the younger age of patients in cluster 1

(Thomas, 1999).

With respect to comorbidities, there was no difference in GERD and nasal polypo-

sis proportion between the two clusters but allergic rhinitis and anti-H1 consump-

tion were much more frequent in cluster 1 that includes a greater proportion of atopic

patients.

The current study presents some limitations. First, the retrospective nature of the

study does not allow to be confident on the adherence of the patients nor does it al-

low to be sure about the accurate number of courses of OCS in the year prior to the

visit that defines exacerbation rate. Second, the selection of our eosinophilic pheno-

type was based on a single sputum analysis whereas it is known that some asthmat-

ics may show intermittent eosinophilic airway inflammation (McGrath et al., 2012).

Thus, the considered group of eosinophilic asthmatics may not be entirely represen-

tative of a whole eosinophilic asthmatic population. Third, this study is monocentric

and should be replicated in other centers using sputum in clinical practice.

We conclude that, among eosinophilic asthmatics, there are two clusters which

mainly differentiate by their age, atopic status, their level of functional impairment,

the magnitude of granulocytic inflammation, and the level of asthma control. The

cluster with the lower proportion of atopic patients is clearly the most severe and

resistant to corticoids. Whether eosinophils are phenotypically and functionally dif-

ferent among the two clusters warrant further investigation.
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6.5 Appendix

Figure 6.3: Age (Year) for three categories of cohorts in two clusters

Figure 6.4: Atopy (Yes) for three categories of cohorts in two clusters
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Figure 6.5: ACT for three categories of cohorts in two clusters

Figure 6.6: Pulmonary function for three categories of cohorts in two clusters



138 6.5. Appendix

Figure 6.7: Cortisol (nmol/l) for three categories of cohorts in two clusters



CHAPTER 7

Clustering on the non-eosinophilic asthmatic

patients

In Chapter 6, we attempted to find more homogenous subgroups among eosinophilic

asthmatics. A substantial fraction of asthmatics do not display significant airway

eosinophilia. Non-eosinophilic asthma is likely to be composed of different phe-

notypes. This chapter focuses on performing cluster analyses on a large number

(n = 588) of non-eosinophilic (sputum eosinophils <3%) asthmatics. According to

the same procedure, patients were split into steroid naïve and high-dose ICS treated.

The characteristics of non-eosinophilic asthmatic patients as well as the character-

istics of two ICS subsets are presented in Section 7.1, along with a comprehensive

explanation of the missing values. The proposed clustering framework is repeated in

Section 7.2 for the clustering of the non-eosinophilic asthmatic datasets. The results

of clustering for the whole non-eosinophilic asthma cohort, steroid naïve cohort, and

high dose ICS treated cohort are presented in Section 7.3. Clinical interpretations and

explanations of the cluster analysis results are discussed in Section 7.4.

This Chapter is based on

Nekoee Zahraei, H., Guissard, F., Paulus, V., Henket, M., Donneau, A.F., & Louis, R., Clustering
on the non-eosinophilic asthmatic patients. (manuscript in under-review)
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7.1 Non-eosinophilic asthmatic dataset

Asthma is chronic airway disease, usually associated with airway inflammation,

characterized by the conjunction of respiratory symptoms such as dyspnea, chest

tightness and wheezing together with excessive airway caliber fluctuation (GINA 2021).

The inflammatory process frequently features an eosinophilic inflammation often

combined with a raised IgE production directed against aeroallergens defining the

T2 high phenotype. Today, the majority of asthma treatment and prevention strate-

gies are focused on allergic and eosinophilic asthma (O’Byrne et al., 2019; Pavord

et al., 2018). However, asthma may be present without airway eosinophilic inflam-

mation (McGrath et al., 2012). While much work has been done on T2 high asthma,

the mechanisms leading to a T2 low disease have been much less studied although

chronic infection and pollutant exposure are thought to contribute (Douwes, 2002;

Esteban-Gorgojo et al., 2018; Fitzpatrick et al., 2020).

Therefore, it is likely that T2 low asthma represents a heterogeneous group of pa-

tients. Clustering has become a popular method to identify phenotypes among a

large set of asthmatic patients (Bourdin and Chanez, 2013). It is therefore important

to study non-eosinophilic asthma further, and to investigate how these patients can

be grouped into multiple homogenous clusters.

In this study, three groups of patients were evaluated: i) all non-eosinophilic asth-

matics, ii) all patients without ICS, and iii) all patients with ICS >1000 g/d equiva-

lent beclomethasone. In all parts, qualitative variables were presented as count and

percentage, while quantitative variables were expressed as median and interquartile

range (P25 - P75).

The descriptive table, Table 7.1, also included the number of missing values and

their percentages. The percentage of missing values ranged from 0% to 66% for DHEA

sulfate (µmol/L) and 94% of patients presented at least one missing value. According

to the investigation, the missing values were missing completely at randoms.

In addition, in Figure 7.1, a general perspective of the whole non-eosinophilic

asthmatic cohort, and two subgroups were presented. Variables are represented by

columns, and patients by rows. Missing data is represented by white cells.
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Figure 7.1: A general overview of non-eosinophilic asthmatic cohorts (white cells are missing
values)

Table 7.1: Descriptive statistics of characteristics of non-eosinophilic asthmatic cohort

Variable Whole cohort(n = 588) Steroid naïve (n = 280) High dose ICS (n = 135)

Median (IQR) Missing Value Median (IQR) Missing Value Median (IQR) Missing Value

%(n) %(n) %(n) %(n) %(n) %(n)

Demographic characteristics

Age (Year) 50(35-61) 1.53% (9) 50(36–61) 0.36% (1) 48(34–58) 4.4% (6)

Sex (Female) 61.90% (364) 4.4% (6) 61% (171) 0.36% (1) 1.53% (9) 58.5% (79)

BMI (kg/m2) 26(22.85-29.70) 3.57% (21) 24.9(22–28.9) 0.72% (2) 27.1(23.2–20.9) 6.7%(9)

Smoking 2.38% (14) 5.9% (8) 1.43% (4)

Ex-smoker 25% (147) 23.9% (67) 26.7% (36)

Smoker 23.47% (138) 28.6% (80) 20.7% (28)

Age at diagnosis (Year) 33(15-52) 30.95% (182) 36(20–53) 32.26% (90) 32(14.2–45.7) 33.3% (45)

Duration of asthma(Year) 5.45(0.72-22) 1.7% (10) 3(0.1–13.6) 32.26% (90) 12(2.6–22.9) 33.3% (45)

Atopy (Yes) 45.58% (268) 1.7% (10) 38.6% (108) 2.5% (7) 49.6% (67) 1.48% (2)

Treatment

ICS (yes) 50.34% (296) 2.21% (13)

ICS (µg/d) 0(0-1000) 5.1% (30)

LABA (Yes) 48.30% (284) 2.21% (13) 1.8% (5) 0% (0) 100% (135) 0% (0)

LTRA (Yes) 20.41% (120) 2.21% (13) 5.7% (16) 0% (0) 44.4% (60) 0% (0)

LAMA (Yes) 4.25% (25) 2.21% (13) 1.8% (5) 0% (0) 9.6% (13) 0% (0)

Theophylline (Yes) 1.02% (6) 2.21% (13) 0% (0) 0% (0) 3% (4) 0% (0)

H1 antagonists (Yes) 14.12% (83) 2.21% (13) 7.5% (21) 0% (0) 22.2% (30) 0% (0)

SABA.SAMA (Yes) 58.84% (346) 0% (0) 56.1% (157) 0% (0) 73.3% (99) 0% (0)

OCS (Yes) 2.89% (17) 2.21% (13) 1.8% (5) 0% (0) 5.9% (8) 0% (0)

Asthma control, exacerbation, and quality of life

ACT 16(12-21) 2.04% (12) 18(13–22) 2.5 12(9–16) 1.48% (2)

ACQ 1.7(0.7-2.7) 2.38% (14) 1.3(0.5–2.2) 2.1% (6) 2.6(1.5–3.3) 1.48% (2)

Number of exacerbation 9.35% (55) 11.4% (32) 5.19% (7)

0 64.8% (381) 77.1% (216) 44.4% (60)

1 15.14% (89) 7.5% (21) 23% (31)

≥ 2 10.71% (63) 3.9% (11) 27.4% (37)

AQLQ Global 4.7(3.7-5.7) 3.1% (18) 5.3(4.1–6.1) 2.9% (8) 3.6(2.9–4.8) 1.48% (2)
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Table 7.1 – continued from previous page

Variable Whole cohort(n = 588) Steroid naïve (n = 280) High dose ICS (n = 135)

Median (IQR) Missing Value Median (IQR) Missing Value Median (IQR) Missing Value

%(n) %(n) %(n) %(n) %(n) %(n)

Pulmonary function

FEV1 pre (% predicted) 88(77-100) 5.44% (32) 92(81–101) 3.21% (9) 81(62.5–91) 5.93% (8)

FEV1 post (%predicted) 94(84-105) 5.44% (32) 97(88–106) 3.57% (10) 88(76–100) 5.19% (7)

FVC pre (% predicted) 96(85-107) 5.27% (31) 98(88–108) 3.21% (9) 91(76.7–102) 5.19% (7)

FVC post (% predicted) 99(89-109) 10.03% (59) 99(90–109) 4.64% (13) 94(84–108) 14.8% (20)

FEV1/ FVC pre (%) 76(68-81) 5.27% (31) 77(71–82) 3.21% (9) 73(60.7–79) 5.19% (7)

FEV1/ FVC post (%) 80(73-85) 5.61% (33) 81(75–85) 3.57% (10) 78(70–82.2) 5.19% (7)

FRC (% predicted) 117(96-135) 34.01% (200) 118(96–139) 22.5% (63) 115.5(96.7–143) 49.63% (67)

DLCO/VA (% predicted) 93(79-104) 35.54% (209) 92(76.2–102.7) 23.57% (66) 92(80–108) 50.37% (68)

DLCO (% predicted) 79(67-90) 35.71% (210) 77(65–90) 23.93% (67) 74(61.5–88.5) 50.37% (68)

RV (% predicted) 111(91-136) 33.67% (198) 113(92–136) 22.86% (64) 117(97–148) 48.89% (66)

TLC (% predicted) 98(89-108) 33.33% (196) 98(88–108) 22.5% (63) 97.5(87.2–108.7) 48.15% (65)

sGaw (1/kPa*sec) 0.9(0.6-1.2) 36.22% (213) 0.9(0.7–1.1) 25% (70) 0.8(0.5–1.1) 51.11% (69)

PC20M(mg/ml) 2.45(0.79-6.83) 20.58% (121) 3.06(1.41–8.23) 10% (28) 1.66(0.54–5.02) 44.44% (60)

FeNO (ppb) 18(11-30) 5.27% (31) 18(11.5–26) 3.21% (9) 17.5(9–39.2) 5.19% (7)

Sputum cell count

Weight of sputum (g) 2.4(1.4-3.9) 0% (0) 2.3(1.5–3.7) 0% (0) 2.3(1.2–3.7) 0% (0)

Total cell counts (106/g) 1(0.45-2.6) 0.34% (2) 1.1(0.5–2.6) 0.36% (1) 1.1(0.4–3) 0.74% (1)

Viability (%) 75(58-86) 0.68% (4) 75(59–86) 0.36% (1) 75(59–86) 1.48% (2)

Squamous (%) 18(7-33) 65.14% (383) 18.5(7.0–33.5) 69.3% (194) 22(6.5–36) 62.2% (84)

Macrophages (%) 23.6(11.4-43) 0% (0) 22(10.75–44.12) 0% (0) 24.8(12.1–39.4) 0% (0)

Lymphocytes (%) 0.95(0.2-2) 0% (0) 1(0.2–2.6) 0% (0) 1(0.2–1.8) 0% (0)

Neutrophils (%) 67.6(46.7-83.8) 0% (0) 69.6(43.3–84.7) 0% (0) 65.6(50.6–81.2) 0% (0)

Eosinophils (%) 0.4(0-1) 0% (0) 0.4(0–1) 0% (0) 0.5(0–1.4) 0% (0)

Epithelial cells (%) 2.6(1-6.4) 0.17% (1) 2.3(1–6) 0% (0) 4.0(1.25–7.3) 0.74% (1)

Macrophages (103/g) 236.5(95.1-608.3) 0% (0) 240(95.7–638.8) 0% (0) 240(89.7–613.5) 0% (0)

Lymphocytes (103/g) 7.62(1.0-28.57) 0% (0) 9.6(1.8–36.4) 0% (0) 7.8(1–30.6) 0% (0)

Neutrophils (103/g) 595.4(231.6-1630.8) 0% (0) 621.6(251–173) 0% (0) 595(248–2164) 0% (0)

Eosinophils (103/g) 2.6(0-14) 0% (0) 3(0–15.3) 0% (0) 3.6(0–19.2) 0% (0)

Epithelial cells (103/g) 29.3(10.5-76.2) 0% (0) 28.9(10–73.6) 0% (0) 36(14.1–93.6) 0% (0)

Blood cell count

Leucocytes (103/µl) 7(5.9-8.5) 1.36% (8) 7.03(5.9–8.5) 1.43% (4) 7.52(6.09–9.2) 1.48% (2)

Neutrophils (%) 54.95(48.3-61.7) 1.36% (8) 54.7(47.7–60.7) 1.43% (4) 57.5(49.7–65) 1.48% (2)

Lymphocytes (%) 34.1(28.3-40.2) 1.36% (8) 34.8(29.6–40.8) 1.43% (4) 31.2(25.5–39.9) 1.48% (2)

Monocytes (%) 7.6(6.2-9.3) 1.36% (8) 7.7(6.1–9.3) 1.43% (4) 7.3(6.2–9.2) 1.48% (2)

Eosinophils (%) 1.75(1-2.8) 1.36% (8) 1.8(1.1–2.7) 1.43% (4) 1.5(0.7–3.1) 1.48% (2)

Basophils (%) 0.4(0.3-0.6) 1.36% (8) 0.4(0.3–0.6) 1.43% (4) 0.4(0.3–0.6) 1.48% (2)

Neutrophils (1/µl) 3838(2935-4912) 1.36% (8) 3821(2922–4817) 1.43% (4) 4276(3076–5810) 1.48% (2)

Lymphocytes (1/µl) 2345(1896-2927) 1.36% (8) 2390(1911–2900) 1.43% (4) 2343(1960–2980) 1.48% (2)

Monocytes (1/µl) 537(4195-6810) 1.36% (8) 523(400–684) 1.43% (4) 557(442–692) 1.48% (2)

Eosinophils (1/µl) 121(72-191) 1.36% (8) 122(79–191) 1.43% (4) 120(58–200) 1.48% (2)

Basophils (1/µl) 30(20-43) 1.36% (8) 30(19–47) 1.43% (4) 30(20–47) 2.22% (3)

Serum IgE

RAST Birch (t3) %> 0.35 (KU/L) 16.84% (99) 8.67% (51) 14.3% (40) 5% (14) 15.6% (21) 17.04% (23)

RAST Mould (MIX1) %> 0.35 (KU/L) 7.14% (42) 7.82% (46) 4.6% (13) 4.29% (12) 7.4% (10) 14.07% (19)

RAST Grass (GX3) %> 0.35 (KU/L) 23.13% (136) 9.18% (54) 18.9% (53) 6.07% (17) 24.4% (33) 15.56% (21)

RAST Dog (e5) %> 0.35 (KU/L) 16.5% (97) 6.63% (39) 12.1% (34) 3.57% (10) 17% (23) 14.07% (19)

RAST Cat (e1) %> 0.35 (KU/L) 15.99% (94) 5.95% (35) 12.1% (34) 2.86% (8) 15.6% (21) 12.59% (17)

RAST DPT (d1) %> 0.35 (KU/L) 30.61% (180) 7.99% (47) 27.5% (77) 5% (14) 27.4% (37) 14.07% (19)

Total IgE(KU/L) 69.9(22-197.7) 3.91% (23) 49(18–157) 1.43% (4) 93(36–268) 10.37% (14)

Systematic inflammation

CRP (mg/l) 2.20(0.93-5.10) 3.91% (23) 2.16(0.92–4.62) 5% (14) 2.41(1.08–5.73) 2.96% (4)

Fibrinogen (g/l) 3.22(2.71-3.72) 56.12% (330) 3.21(2.71–3.7) 3.21% (9) 3.27(2.71–3.79) 2.96% (4)

Adrenal function

Cortisol (nmol/l) 206.5(149.7-266) 56.12% (330) 232(178–277) 67.86% (190) 168.9(125-235) 46.67% (63)

DHEA sulfate (µmol/L) 3(2-6) 65.65% (386) 4(2–7) 69.3%(194) 3(2–5) 62.96% (85)

1BMI(Body Mass Index); LABA(Long Acting B2 Agonist); LAMA(Long Acting Muscarinic Antagonist); LTRA(Leukotriene Receptor Antagonist); ICS(Inhaled

Corticosteroids); OCS(Oral Corticosteroids); CRP(C-Reactive Protein); DHEAS(Dehydroepiandrosterone Sulfate); IgE(Immunoglobulin E); FENO(Fractional Exhaled

Nitric Oxide); FEV1(Forced Expiratory Volume in one second); FVC(Forced Vital Capacity); TLC(Total Lung Capacity); RV(Residual Volume); DLCO(Diffusing Capacity for

Carbon Monoxide); FRC(Functional residual capacity)

According to Table 7.1, the whole cohort (n = 588), patients were mainly females

(62%) with a median age of 50, and 46% of patients were atopic. Patients displayed

a slight overweight (median body mass index was 26). The median asthma duration

was 5 years. There were 51% of patients who had never smoked while 25% were ex-
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smoker and 23.5% were currently smokers (Table 7.1). There are 65% of patients who

had not experienced an exacerbation the year prior to the visit, 15% have had it once,

and 11% have had it more than once. Lung function was preserved with spirometric

indices within the normal range in the majority of patients.

As shown, in Table 7.1, 280 steroid naïve non-eosinophilic asthmatic patients were

included with a median age of 50 and age at diagnosis of 36 years. This cohort fea-

tured a clear dominance of female gender (61%), a majority of patients with a smok-

ing history (52%) and a minority of atopic (39%) patients. The median BMI was 24.9.

77% of patients had not experienced an exacerbation the year prior to the study, 7%

had experienced it once, and 4% had experienced it more than once. 135 patients

with non-eosinophilic asthma received high-dose ICS. The patients were mostly fe-

male (59%) with a median age of 48 and median age asthma duration was 12 years.

Half of this cohort (50%) were atopic patients. Patients displayed a mild overweight

(median body mass index was 27.1). 44% of patients had not experienced an ex-

acerbation the year prior to the study, 23% had experienced it once, and 27% had

experienced it more than once.

7.2 Clustering Framework

The procedure for applying cluster analysis and consensus clustering to consider

the uncertainty of missing values in analysis, and reduce the dimension of variables

were the same as that performed for the eosinophilic asthmatic cohort and described

in detail in Chapter 6. The framework was summarized in Table 7.2.
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Table 7.2: Proposed framework for multiple imputation in cluster analysis

Input: Non- eosinophilic dataset with missing values and multidimensional
variables

Step 1. Multiple Imputation (Section 3.1.3)
i) Obtain 100 complete datasets by multiple imputation (MICE)

Step 2. Factor analysis for mixed data (FAMD) (Section 3.2.2)
i) Determine quantitative and qualitative variable
ii) Apply FAMD for each imputed dataset
iii) Determine the number of components for each imputed dataset

Step 3. Hierarchical clustering (Section 2.2.2)
i) Choosing the best number of clusters for each imputed dataset

Step 4. Partitioning Clustering (Section 2.2.1)
i) Consider the number of clusters in the previous step for each imputed

dataset
ii) Assign patients to each cluster for each imputed dataset.

Step 5. 4M method for Consensus Clustering (Section 3.3.3)
i) Combine all ensemble clustering to get a final best clustering

Output: Partition of clustering labels C = {C1, . . . ,Ck }
Step 6. Assign patients to the final result of consensus clustering

i) Allocate patients in the original incomplete dataset to calculate final
result of consensus clustering

Step 7. Description of clustering
i) Calculate median for the original incomplete dataset
ii) Comparison between cluster (Mann-Whitney and Chi-squared tests)

Output: Descriptive analysis tables for clustering

7.3 Clustering Results

Based on the framework detailed in Table 7.2, the clustering result is as follows.

The percentage contribution of variables could be calculated for the next clustering

using FAMD as the second step. For the whole cohort and ICS treated separately, Ta-

ble 7.4 gives an overview of the impact of each variable on clustering.
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In addition, the relative contribution of the variables to the clustering for the whole

cohort is detailed in Figure 7.2. With more than 90% contribution, lymphocytes

(103/g), sputum epithelial cells (%), macrophages (103/g), eosinophils (103/g), ACT,

ACQ, SABA.SAMA, OCS, age, BMI, number of exacerbations, sex, and AQLQ Global

were the most influential variables (Figure 7.2).

Figure 7.2: Percentage contribution of variables to principal components in the whole cohort

After applying multiple imputation for whole cohort, one imputed dataset pro-

posed 22, 23, 27, and 35 PCA components, 34 imputed datasets suggested 32 new

components, and the others were summarized into 33 components. Next, each im-

puted dataset was classified based on its own selected components. Out of 100 im-

puted datasets, two clusters were found in 96% imputed datasets, and the rest, 4%,

had three clusters.

Finally, as a result of completing the framework presented in Table 7.2, for the

whole cohort and both subgroups, the two clusters have accepted validation values

in this chapter. In Table 7.3 is listed the indices for internal validation of clustering,

as well as the two indices for stability validation.
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Table 7.3: Clustering validation

Indices Whole cohort
Steroid naïve

cohort
High dose ICS

cohort

Internal measures Silhouette Coefficient 0.67 0.88 0.72

Dunn Index 0.61 0.82 0.85

Stability measures Average Proportion of Non-overlap 0.028 0.044 0.03

Average Distance between Means 0.03 0.011 0.01

Table 7.4: percentage contribution of non-eosinophilic variables in principal components, in
the whole cohort and according to the ICS treatment

Variable Whole cohort Steroid naïve High dose ICS

(n = 588) (n = 280) (n = 135)

Demographic characteristics

Age (Year) 0.93 0.19 0.20

Sex (Female) 0.91 0.02 0.01

BMI (kg/m2) 0.92 0.20 0.15

Smoking 0.69 0.04 0.0001

Age at diagnosis (Year) 0.02 0.13 0.13

Duration of asthma(Year) 0.02 0.11 0.12

Atopy (Yes) 0.01 0.16 0.15

Treatment

ICS (µg/d) 0.02 0.19 0.30

LABA (Yes) 0.02 0.19 0.31

LTRA (Yes) 0.02 0.19 0.34

LAMA (Yes) 0.60 0.17 0.28

Theophylline (Yes) 0.04 0.03 0.0001

H1 antagonists (Yes) 0.02 0.05 0.07

SABA.SAMA (Yes) 0.94 0.01 0.0001

OCS (Yes) 0.93 0.12 0.13

Asthma control, exacerbation, and quality of life

ACT 0.96 0.20 0.1

ACQ 0.95 0.02 0.01

Number of exacerbation 0.91 0.01 0.0001

AQLQ Global 0.90 0.02 0.04

Pulmonary function

FEV1 pre (% predicted) 0.001 0.01 0.0001

FEV1 post (%predicted) 0.014 0.06 0.08

FVC pre (% predicted) 0.001 0.0001 0.01

FVC post (% predicted) 0.000 0.07 0.08

FEV1/ FVC pre (%) 0.003 0.01 0.01

FEV1/ FVC post (%) 0.022 0.02 0.0001

FRC (% predicted) 0.001 0.12 0.17

DLCO/VA (% predicted) 0.0001 0.01 0.0001

DLCO (% predicted) 0.001 0.09 0.14

RV (% predicted) 0.0001 0.0001 0.0001

TLC (% predicted) 0.001 0.0001 0.01

sGaw (1/kPa*sec) 0.0001 0.01 0.0001

PC20M(mg/ml) 0.0001 0.07 0.06

FeNO (ppb) 0.0001 0.09 0.11
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Table 7.4 – continued from previous page

Variable Whole cohort Steroid naïve High dose ICS

(n = 588) (n = 280) (n = 135)

Sputum cell count

Weight of sputum (g) 0.0001 0.01 0.0001

Total cell counts (106/g) 0.0001 0.06 0.06

Viability (%) 0.02 0.07 0.08

Squamous (%) 0.02 0.09 0.08

Macrophages (%) 0.02 0.09 0.08

Lymphocytes (%) 0.02 0.01 0.01

Neutrophils (%) 0.01 0.001 0.0001

Eosinophils (%) 0.02 0.001 0.0001

Epithelial cells (%) 0.98 0.10 0.06

Macrophages (103/g) 0.98 0.70 0.06

Lymphocytes (103/g) 0.98 0.70 0.06

Neutrophils (103/g) 0.64 0.69 0.06

Eosinophils (103/g) 0.98 0.71 0.02

Epithelial cells (103/g) 0.02 0.01 0.0001

Blood cell count

Leucocytes (103/µl) 0.02 0.07 0.0001

Neutrophils (%) 0.02 0.12 0.23

Lymphocytes (%) 0.03 0.02 0.011

Monocytes (%) 0.03 0.03 0.08

Eosinophils (%) 0.01 0.05 0.04

Basophils (%) 0001 0.03 0.02

Neutrophils (1/µl) 0005 0.01 0.001

Lymphocytes (1/µl) 0.01 0.0001 0.001

Monocytes (1/µl) 0.003 0.28 0.23

Eosinophils (1/µl) 0.001 0.0001 0.001

Basophils (1/µl) 0.004 0.0001 0.0001

Serum IgE

RAST Birch (t3) %> 0.35 (KU/L) 0.0001 0.01 0.001

RAST Mould (MIX1) %>0.35 (KU/L) 0.001 0.08 0.09

RAST Grass (GX3) %>0.35 (KU/L) 0.002 0.04 0.05

RAST Dog (e5) %>0.35 (KU/L) 0.0001 0.13 0.13

RAST Cat (e1) %>0.35 (KU/L) 0.002 0.06 0.09

RAST DPT (d1) %>0.35 (KU/L) 0.01 0.25 0.23

Total IgE(KU/L) 0.03 0.15 0.08

Systematic inflammation

CRP (mg/l) 0.01 0.32 0.25

Fibrinogen (g/l) 0.01 0.23 0.14

Adrenal function

Cortisol (nmol/l) 0.01 0.22 0.17

DHEA sulfate (µmol/L) 0.01 0.33 0.28

Eventually, two subgroups were identified from the cluster analysis: cluster 1 that

comprised the large majority of patients (n = 417) and cluster 2 (n = 171) (Table 7.5).

Patients in cluster 1 were 53 years old, (Figure 7.3), had a low proportion of atopic

status (24%), a low level of treatment (55% without ICS) and preserved lung function
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(median FEV1 88% predicted) but uncontrolled asthma for the majority of them (me-

dian ACT and ACQ 16 and 1.7 respectively, Figure 7.4). Twenty four percent of them

reported at least one exacerbation in the previous year.

More than half the patients in cluster 1 had a smoking history with 28.5% ex-

smokers and 25% current smokers (Figure 7.3). Patients from this cluster displayed

dominant airway and systemic neutrophilic inflammation with median (IQR) spu-

tum and blood neutrophil reaching 70% and 56% respectively. Despite the frequent

smoking history in this cluster, spirometric values were preserved in almost 75% (up-

per three quartiles) of the patients with median FEV1% predicted and FEV1/FVC%

reaching 88% and 75% respectively.

Cluster 2 included younger patients (median age 39 years) being almost exclusively

atopic (99%) and reporting infrequent smoking history (36%) (Figure 7.3). They had

a higher treatment burden with 64% of patients receiving maintenance ICS (median

ICS dose 1000 µ g/d equivalent beclomethasone) and had better-controlled asthma

(Median ACT and ACQ 18 and 1.3 respectively Figure 7.4) than in cluster 1. The pa-

tients had a good lung function with a median FEV1 of 92% predicted and displayed

paucigranulocytic asthma for the majority of them.

While spirometric indices were similar between the two clusters, bronchial hyper-

responsiveness was more marked in cluster 2 than cluster 1 (Median PC20 M 1.6 vs

2.7, p=0.001). Diffusing capacity and transfer coefficient were slightly altered in clus-

ter 1 and significantly lower than in cluster 2.

Total serum IgE levels were higher in cluster 2 than in cluster 1 (median (IQR) 170

(51 -427) vs 35 (13-103) p< 0.0001), Figure 7.10). Similarly, sensitization rate towards

common aeroallergens were much higher in cluster 2 than in cluster 1 (Table 7.5).

FeNO levels were significantly higher in cluster 2 than in cluster 1 (25 ppb vs 15 ppb)

though median value in cluster 2 remained within the normal range. In contrast to

FeNO, fibrinogen levels were significantly higher in cluster 1 than in cluster 2.

Clustering on ICS naïve patients (n = 280) and those treated with high dose ICS

treated patients (n = 135) also revealed two clusters that differ mainly by age, disease

onset and atopic status (Table 7.5). While in the cohort of steroid naïve patients there

was a significant difference in sputum neutrophils (% & 103/g) between the two clus-

ters (median neutrophils of 75% in cluster 1 vs 54% in cluster 2).
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It was the difference in blood neutrophils that was observed between the clusters

in the cohort of patients treated with high dose ICS (median neutrophils of 60% in

cluster 1 vs 50% in cluster 2) (Figure 7.7, Figure 7.8).

Overall asthma control and quality of life were generally significantly worse in clus-

ter 1 than in cluster 2 and this was especially evident in the group treated with dose

ICS (Figure 7.4). Among patients treated with high doses ICS, 53% of patients from

cluster 1 reported at least one exacerbation vs 46% in cluster 1. Raised FeNO levels

in cluster 2 as compared to cluster 1 was especially evident in those patients treated

with high dose of ICS (Figure 7.6). As for fibrinogen it was more elevated in cluster 1

in both steroid naïve and those treated with high dose of ICS (Figure 7.9).

In further investigation, cluster 1 in the whole cohort, as well as in both steroid

naïve and high dose ICS, was broken down according to the smoking history. Over-

all, as compared to never smokers, smoking patients were slightly older with lower

FEV1 and FEV1/FVC ratio and impaired DLCO. They also displayed greater airway

and systemic granulocytic inflammation and total serum IgE but lower FeNO. Pa-

tients treated with high dose ICS who had no smoking history were dominantly fe-

male (80%) and had a high BMI (median (IQR) 30 (24-33)).

7.4 Discussion

Non-eosinophilic asthmatics represent a large proportion of our asthmatics with

588 patients over a total of 1014 patients with successful sputum induction screened

from our database (58%). Our data provide evidence for two distinct clusters among

non-eosinophilic asthmatics. The cluster 1, which is the dominant cluster, include

patients the majority of whom had a late disease onset together with a smoking his-

tory, display greater magnitude of neutrophilic airway and systemic inflammation,

yet without satisfying functional criteria for COPD. The cluster 2 is a cluster of younger

dominantly male patients, consisting of, almost exclusively, atopic patients with a

classical sensitization profile for our geographical area, a better level of asthma con-

trol and quality of life and a greater use of ICS/LABA, LTRA and H1 antagonist as

compared to cluster 1.
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The reality of smoking asthma has been firmly established in epidemiological stud-

ies (Thomson, 2004), yet there is always a trend in medical community to consider

a smoker with chronic respiratory symptoms as a patient with chronic bronchitis

and/or COPD rather than as an asthmatic. Our patients here were carefully diag-

nosed based either on reversibility to salbutamol or on bronchial hyperresponsive-

ness to methacholine. Their spirometric values were considered as being in the nor-

mal range with FEV1 % predicted above 80% and post FEV1/FVC ratio well above

70% in the large majority of patients. Our finding supports the concept of smoking

induced airway disease is not necessarily accompanied by COPD (Thomson, 2017).

As a consequence of greater smoking history patients from this cluster had mildly

impaired diffusion capacity and rather low FeNO values. The airway inflammatory

profile was highly neutrophilic with median values close to those seen in COPD, a

finding in keeping with the demonstrated relationship between pack years and spu-

tum neutrophils (Demarche et al., 2016). Airway dysbiosis may be another cause of

raised sputum neutrophilia in cluster 1 (Abdel-Aziz et al., 2021). Likewise, the blood

neutrophil counts was also raised in that cluster, which combined to a slightly in-

creased fibrinogen levels, points to a low grade systemic inflammation.

Patients from cluster 1 had a poorer asthma control and asthma quality of life com-

pared to patients from cluster 2. However, patients from cluster 1 did not report a

greater exacerbation rate the year prior to the visit than those from cluster 2, with

60% to 67% of the patients denying any course of OCS in the 12 preceding months

in both clusters. This finding indicates that poor day to day asthma control may not

necessarily results into greater exacerbation rate, especially in smoking patients.

Atopic status is usually associated with an eosinophilic trait. The reason why the

cluster 2 with such a high atopic prevalence remains non-eosinophilic could due to

several factors. First it may reflect the impact of ICS on airway eosinophilic inflam-

mation. Up to two third of patients in cluster 2 were receiving ICS combined to LABA

as maintenance treatment. It is highly likely that some of these patients were actu-

ally eosinophilic prior to starting their treatment with ICS, a class of drug known to

be able to sharply decrease sputum eosinophils (Jatakanon et al., 1998; Lim et al.,

1999). Second, the lack of airway eosinophilia may also reflect low allergen exposure

in daily life as it is well recognized that allergen contact in the airways of a sensitized

patient drives a long lasting eosinophilic infiltrate through mast cell activation (Fahy

et al., 1994). Allergen avoidance has been reported to result in a decrease in sputum
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eosinophils (Piacentini et al., 1996). FeNO values in the cluster 2 were largely in the

normal range which also could support the absence of significant exposure though it

may evenly be the consequence of chronic treatment with ICS.

Overall cluster 2 received more often maintenance treatment for their asthma with

ICS/LABA combination (65% vs 45% in cluster 1) and LTRA (33% vs 15% in cluster 1)

and a greater proportion of patients were receiving H1 antagonist for treating allergic

rhinitis (32% vs 7% in cluster 1), a finding in keeping with the atopic status in this

cluster.

Our study points to a significant group of steroid naïve patients who are featur-

ing paucigranulocytic asthma and normal FeNO. For this group of patients the best

treatment strategy is still unclear as ICS were not found superior to placebo or LAMA

(Lazarus et al., 2019) and more research needs to be performed to find the most cost

effective treatment strategy.

As it is currently unpractical to apply the induced sputum technique on a large

scale in routine practice, blood eosinophils have been advocated as a valuable, but

imperfect, proxy to approach sputum eosinophils (Demarche et al., 2017). It is worth

noting that blood eosinophil count was also low in our two clusters with median

values below 150/µl and 75% of the patients with blood eosinophils count less than

187/µl in cluster 1 and less than 223/µl in cluster 2. These values are close to what is

seen in a healthy population (Hartl et al., 2020).

By focusing on the patients treated with high doses of ICS we selected patients

deemed to have severe asthma (Chung et al., 2014). Several national and interna-

tional registries have shown that most of the severe asthmatics display sign of T2

high inflammation (van Bragt et al., 2020; Denton et al., 2021). A recent study investi-

gating rizankizumab a p19 IL-23 receptor antagonist, in severe asthma has provided

similar finding as it turned out that the large majority of recruited patients displayed

sputum eosinophils, although no inflammatory inclusion criteria was mandatory in

that study (Brightling et al., 2021).

The novelty study has however challenged this view showing poor relationship

between clinical severity of the disease and the magnitude of the eosinophilic trait

(Reddel et al., 2021). The patients in that study were, however, qualified as being

asthmatics without any firm lung function criteria needed to ascertain the diagnosis.
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Our study, which has included asthmatics with demonstration of either reversibil-

ity or bronchial hyperresponsiveness to methacholine, also points to a group of se-

vere non-eosinophilic asthmatics as the patients receiving high doses of ICS and still

showing insufficient asthma control may be considered as severe according to the

ERS/ATS criteria (Chung et al., 2014).

Smoking certainly contribute to poor control in some of those patients as this ad-

diction makes ICS less efficient (Thomson, 2017) and high BMI may certainly con-

tribute in those who are non-smoking as shown in our study, which confirms the

cluster of non-eosinophilic obese female first described by Haldar et al. (Haldar et al.,

2008).

It is worth noting that in those severe patients from cluster 2, FeNO levels was in

the high zone (35 ppb) while airway eosinophilia was absent. The high FeNO lev-

els may actually reflect the almost exclusive atopic status found in tis cluster since it

has been firmly established that atopy favours high FeNO (Gerday et al., 2022). How-

ever, it is unusual to have such a dissociation in severe asthmatics while low FeNO

together with high sputum eosinophils may often be observed in smoking asthmat-

ics. Why FeNO remains high despite ICS is unclear but may reflect a true resistance

to ICS (Couillard et al., 2022).

The strength of our study is the application of new method of clustering on a large

cohort of non-eosinophilic asthmatics precisely characterized in terms of lung func-

tion and airway and systemic inflammation. Our study has, however, several limita-

tions. First, as this is a real life study, we are uncertain about the compliance of the

patients to the treatment thus limiting our interpretation of disease severity. Second,

we lack accurate data on comorbidities that may play a role in altering asthma con-

trol and quality of life such psychologic disorders, gastro oesophagal reflux or chronic

rhinosinusitis (Tay and Hew, 2018; Freitas et al., 2020). Third there was no longitu-

dinal follow-up that could give us insight on the evolution lung function decline or

exacerbation trend in our clusters.

In conclusion we have provided evidence for two major clusters among non-eosinophilic

asthmatics, one containing the greater number of patients, being associated with a

late disease onset, a significant smoking history in the majority of the patients to-

gether with signs of airway and systemic neutrophilic inflammation, and another

cluster including a majority of young and dominantly male, and most exclusively,



156 7.4. Discussion

atopic patients essentially featuring paucigranulocytic asthma.

Even if smoking cessation should be the first goal to achieve, more treatment trials

need to be done in the dominant smoking cluster, a group of patient which has been

neglected in the past, yet representing a frequent situation and a real challenge for its

management in clinical practice. Likewise, it is worth further investigating what can

be the optimal management strategy in those steroid naive paucigranulocytic and

FeNO low asthmatics.
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7.5 Appendix

Figure 7.3: Box plot of demographic variables in two clusters of non-eosinophilic asthmatics
and their subgroups

Figure 7.4: ACT and AQLQ for three categories of cohorts in two clusters
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Figure 7.5: DLCO (% predicted) and DLCO/VA (% predicted) for three categories of cohorts in
two clusters

Figure 7.6: FeNo(ppb) and PC20M(mg/ml) for three categories of cohorts in two clusters

Figure 7.7: Blood Neutrophils for three categories of cohorts in two clusters
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Figure 7.8: Sputum Neutrophils for three categories of cohorts in two clusters

Figure 7.9: Fibrinogen (g/l) for three categories of cohorts in two clusters
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Figure 7.10: Total IgE(KU/L) for three categories of cohorts in two clusters



CHAPTER 8

Discussion and Conclusion

COPD and asthma are the most common airway obstructive diseases affecting 15-

20% of the population in western countries and accounting for substantial costs in

terms of public health expenditure. It is now well accepted that the terms COPD and

asthma actually hide considerable heterogeneity among the patients.

The current definition of COPD is based on a spirometric abnormality (i.e. post

bronchodilation FEV1/FVC < 70%) arising from chronic exposure to toxic gas or par-

ticulate matters among which tobacco smoke is playing a critical role. Patients sat-

isfying this criterion may actually be very heterogeneous in terms of associated co-

morbidities, emphysema, airway, and systemic inflammation, symptomatic expres-

sion and exacerbation rates, and risk of mortality. Similarly, the current definition

of asthma, which implies excessive fluctuation of airway caliber over short period of

times allows patients with very different inflammatory, functional and symptomatic

profiles to be classified as asthmatics. In particular, it has become clear that eosinophilic

and non-eosinophilic asthma phenotypes may behave differently in terms of response

to pharmacological treatment. Although there was a time when clinicians used the

concept of "one size fits all" to treat chronic airway diseases with ICS combined LABA

being prescribed indistinctively to every patient, things are rapidly changing to fol-

low the path of precision medicine leading to more personalized treatments. This

may have advantages both in terms of treatment efficiency but also in terms of drug

cost sparing (Louis and Roche, 2017).

161



162

Cluster analysis has become a popular statistical method to identify phenotypes

among a large set of patients. The cluster analysis is a well-known unsupervised

learning methodology that creates homogeneous groups based on multiple variables.

Once the original cohorts have been selected, missing values and the set of variables

of interest are the first initial considerations for cluster analysis. Therefore, cluster

analysis on incomplete datasets with multidimensional variables are unavoidable

challenges in this thesis. However, there are a number of studies and methods avail-

able in the literature that apply cluster analysis to COPD and asthma patients (Horne

et al., 2020). There is no clear indication as to which method of cluster analysis on in-

complete datasets with multidimensional variables is more efficient or effective than

the other. In the literature on clustering, the most common method of handling miss-

ing values is the complete case analysis by excluding all patients with any unrecorded

values. The majority of these studies considered mixed-type variables. However, the

variable selection methods were preferred to the variable reduction methods in these

studies (Horne et al., 2020).

The major objective of this thesis was to determine homogeneous groups in chronic

obstructive pulmonary disease, eosinophilic asthmatic patients, and non-eosinophilic

asthmatic patients. As a result, this thesis provides original data on cohorts of COPD

and eosinophilic and non-eosinophilic asthmatics, indicating substantial heterogene-

ity between clusters and, in asthma, highlighting the differences that may exist in-

side prespecified airway inflammatory phenotypes. On a statistical point of view and

after considering all drawbacks and comprehensively evaluating the cluster anal-

ysis methods, we proposed in this thesis a new competitive and complex statisti-

cal analysis framework to combine the efficient methods for clustering the datasets

containing a large number of variables with missing values. Therefore, a proposed

framework for handling missing values using multiple imputation and variable re-

duction in cluster analysis which contains a new method based on mixture multi-

variate multinomial model (4M) was introduced. In this perspective, comprehen-

sive simulation scenarios were designed to evaluate the performance of the pro-

posed framework with parallel frameworks and methods using simulated datasets

with known clustering results under different missingness and overlapping rates. Due

to these scenarios on the simulated datasets, this framework was found to be effec-

tive in cluster analysis using multiple imputation when applied to multidimensional

incomplete data and has a higher performance than competing methods.
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As explained, we combined methods from handling missing data, dimension re-

duction, cluster analysis, and consensus clustering to discover homogenous clusters

in multidimensional incomplete data. In terms of the objects contain by missing val-

ues, we have stressed the importance of applying multiple imputation to consider the

uncertainty in the analysis. We attempted to present how the missing data influence

the different results of a cluster analysis. furthermore, in the literature, many meth-

ods are introduced for applying dimension reduction and cluster analysis. Some of

these methods work better under some research questions or some specific proper-

ties of the datasets. There is no priority in methods of cluster analysis and variable

reduction and no clear guidelines as to which ones should be used. However, in this

thesis, the well-known and practical methods were introduced and compared. The

proposed framework is very flexible and allows users to replace these methods and

apply their own methods for clustering and variable reduction. Consequently, it is

important to note that the proposed framework can be adapted to replace cluster

analysis and dimension reduction methods with alternative methods.

The biggest advantage of this thesis, despite all of the challenges, is applying mul-

tiple imputation in cluster analysis, and the consequence of applying multiple im-

putation is proposing a new framework based on Rubin’s rule for cluster analysis in

multidimensional incomplete datasets and a new method for consensus clustering.

In multidimensional datasets, the complete case study leads to biased results and

lost efficiency, especially in our datasets that should exclude a high percentage of the

objects containing at least one missing value. In this thesis, our concern was on the

uncertainty in missing values and, consequently, multiple imputation was applied.

However, single imputation is another method for handling missing values. In this

method, bias is reduced by using an appropriate method of single imputation. How-

ever, this method does not account for the uncertainty in the dataset. We believe this

method has an effect on the final clustering results so that single imputation and the

efficient methods of the single imputation could be a topic for the next comparisons.

We performed our first cluster analysis on a selected population of COPD. We took

care of selecting what could be considered "pure COPD" avoiding the population

that mixes a previous history of asthma before the age of 40 years and the develop-

ment of COPD later in life as a consequence of smoking. By applying the framework,

three different clusters, which shared the functional definition of COPD and a sim-

ilar smoking history. The three clusters differed by the sex ratio, the lung function
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impairment and the extent of granulocytic airway inflammation, and the propen-

sity to exacerbation but interestingly not by the symptomatic expression as reflected

by the CAT score. This further highlights the importance of going beyond symptom

collection when assessing a disease like COPD. T2 biomarkers such as FeNO, blood

eosinophils, and serum IgE were not different between the clusters whereas absolute

sputum eosinophils were increased together with sputum neutrophils in the clus-

ter that showed the most severe clinical outcomes. Remarkably, FeNO levels, atopic

status as well as airway colonization by potentially pathogenic microorganisms were

low across the three clusters. Overall our study points to a considerable heterogeneity

among stable COPD patients recruited from ambulatory care even if they deny any

previous history of asthma. The summarization of these clusters is shown in Figure

8.1.

Figure 8.1: General interpretation for COPD clustering (n = 178 patients)

Although the retrospective nature of our studies was a limitation, the strengths

were that asthma was carefully diagnosed according to recognized functional cri-

teria and that we collected sputum samples in a large number of patients allow-

ing for airway inflammation assessment. In our eosinophilic and non-eosinophilic

asthma studies, the clustering framework yielded two clusters mainly structured by

age, atopic status, the intensity of granulocytic airway inflammation, and magnitude

of lung function impairment. To the best of our knowledge, there has been no cluster

analysis study specifically focused on eosinophilic and non-eosinophilic asthma in

the past.

The interest in focusing on eosinophilic asthma was that previous a study sug-
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gested that eosinophils found in the respiratory tract may actually differ in their func-

tion some of them being clearly pro-inflammatory while others may a regulatory role

in dampening airway inflammation (Mesnil et al., 2016). Our data brings clear and

novel results with two clusters among eosinophilic asthmatics. One cluster included

a majority of non-atopic asthmatics and showed corticoresistance with severe lung

function impairment and poor asthma control. The other cluster, which was domi-

nant in terms of number of patients, included a large majority of atopic patients with

no functional impairment and showed a relatively good asthma control with a low

treatment burden.

Figure 8.2: General interpretation for eosinophilic asthmatic patients clustering (n = 426 pa-
tients)

Even if the magnitude of airway eosinophilic inflammation was more pronounced

in the non-atopic cluster our finding would support the idea that eosinophils may

indeed be different in the two clusters and that significant eosinophilic airway infil-

tration may coexist with mild asthma. In addition, by showing higher cortisol levels

in the most clinically severe cluster among those who are treated with high dose ICS
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we hint towards a true systemic corticoresistance in this cluster, which extends what

was already been demonstrated at a local level in the airways. The patients from

this cluster are known to greatly benefit from treatment targeting interleukine-5 or

interleukine-4/IL-13 (Brusselle and Koppelman, 2022). The results of these analyses

are summarized in Figure 8.2.

The study on non-eosinophilic asthma comprised a large asthmatic population

highlighting the numerical importance of this population. Our results identified two

clusters, one featuring a frequent, but not uniform, smoking history and showing a

dominant airway neutrophilic inflammation, the other featuring an almost exclusive

atopic cluster with a younger age and no significant airway granulocytic inflamma-

tion, entering the category of paucigranulocytic asthma. Exposure to tobacco, air

pollutants or microbes may contribute to the neutrophilic airway inflammation and

asthma symptoms and play a major role in the first cluster (Fitzpatrick et al., 2020).

Atopic asthmatics without eosinophilia may reflect the lack of exposure to the aller-

gen to which the patient is sensitized. We also know that some patients may present

intermittent eosinophilia, likely to follow the extend of allergen exposure (McGrath

et al., 2012).

Figure 8.3: General interpretation for non-eosinophilic asthmatic patients clustering (n = 588
patients)
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Why patients with paucigranulocytic asthma may still experience symptoms and

poor asthma control is an interesting question but there are arguments in the liter-

ature to suggest that asthma harbor a fundamental smooth muscle abnormality the

contraction of which may be triggered in the absence of overt airway inflammation

(An et al., 2007). The relatively high frequency of non-eosinophilic asthma raises a

real question of public health as this population was generally found to be poorly re-

sponsive to treatment with ICS (Lazarus et al., 2019), and this is particularly the case

of the patients displaying marked airway neutrophilia (Green, 2002). Of course, some

of the non-eosinophilic asthmatics already treated by ICS are native eosinophilic pa-

tient the inflammation of whom has been controlled by the ICS and show a rise in

sputum eosinophils when stepping down ICS (Demarche et al., 2018). A summary of

the results of these analyses is shown in Figure 8.3.

In this thesis, we have focused on retrospective cross-sectional studies for mixed,

continuous, and categorical, variables. As a future direction, it would be interest-

ing to consider the effect of time in our study and clustering the objects during the

time. We suggest applying the framework presented in this thesis for handling miss-

ing values and consensus clustering, the methods for variable reduction and cluster

analysis can be replaced with proper methods for longitudinal data. A longitudinal

clustering approach provides a detailed and comprehensive description of objects’

time profiles. In this study, we applied the hard clustering method in which each

object is only assigned to one cluster. We propose for future studies to consider the

soft clustering which does not consider the clustering results as a binary solution and

grouping the objects such that an object can exist in multiple clusters with specific

clustering probability. These probabilities are ranging from 0 to 1 and indicate how

similar an object is to the mean of the cluster.

On the medical side, the clinical validity of our clusters should be validated in other

cohorts and most importantly in a longitudinal study as the interest of clustering

mainly resides in finding groups of patients that may share common prognosis and

treatment response over time. Of particular interest would be to assess the hospital-

ization rate and the mortality over a five years period in our COPD clusters and the

propensity to lung function decline and exacerbation in the same time frame in our

asthma clusters.
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