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A. Cohorts Used in Existing Studies 
Only studies using resting-state functional connectivity for psychometric prediction in mainly 

healthy population with at least 200 subjects were included. 

No. Study reference Cohort used 

1 Sripada et al. 

2019  

Prediction of neurocognition in youth from 

resting state fMRI 

Molecular 

psychiatry 

ABCD 

2 Greene et al. 

2018 

Task-induced brain state manipulation 

improves prediction of individual traits 

Nature 

Communications 

HCP-YA, 

PNC 

3 Noble et al. 

2017 

Influences on test-retest reliability of 

functional connectivity MRI and its 

relationship with behavioral utility 

Cerebral Cortex HCP-YA 

4 Yoo et al. 

2019 

Multivariate approaches improve the 

reliability and validity of functional 

connectivity and prediction of individual 

behaviors 

NeuroImage HCP-YA, 

recruited 

subjects 

5 Finn et al. 

2015 

Functional connectome fingerprinting: 

Identifying individuals using patterns of brain 

connectivity 

Nature 

Neuroscience 

HCP-YA 

6 Elliott et al. 

2019 

General functional connectivity: Shared 

features of resting-state and task fMRI drive 

reliable and heritable individual differences in 

functional brain networks 

NeuroImage HCP-YA, 

Dunedin 

Study 

7 Sripada et al. 

2019 

Basic units of inter-individual variation in 

resting state connectomes 

Scientific 

Reports 

HCP-YA 

8 Chen et al. 

2019 

Resting-state brain information flow predicts 

cognitive flexibility in humans 

Scientific 

Reports 

HCP-YA 

9 Beaty et al. 

2018 

Robust prediction of individual creative ability 

from brain functional connectivity 

PNAS Recruited 

subjects 

10 Jiang et al. 

2020 

Gender differences in connectome-based 

predictions of individualized intelligence 

quotient and sub-domain scores 

Cerebral Cortex UESTC, HCP-

YA, COBRE 

11 Ferguson et 

al. 2017 

Fluid and flexible minds: Intelligence reflects 

synchrony in the brain’s intrinsic network 

architecture 

Network 

Neuroscience 

HCP-YA 

12 Jiang et al. 

2018 

Connectome-based individualized prediction 

of temperament trait scores 

NeuroImage UESTC, HCP-

YA 

13 Gao et al. 

2019 

Combining multiple connectomes improves 

predictive modelling of phenotypic measures 

NeuroImage HCP-YA, 

PNC 

14 Kong et al. 

2018 

Spatial topography of individual-specific 

cortical networks predicts human cognition, 

personality, and emotion 

Cerebral Cortex GSP, CoRR-

HNU, HCP-

YA 

15 Li et al. 2019 Global signal regression strengthens 

association between resting-state functional 

connectivity and behavior 

NeuroImage GSP, HCP-

YA 

16 Dubois et al. 

2018 

A distributed brain network predicts general 

intelligence from resting-state human 

neuroimaging data 

Philosophical 

Transactions B 

HCP-YA 

17 Kashyap et 

al. 2019 

Individual-specific fMRI-subspaces improve 

functional connectivity prediction of behavior 

NeuroImage HCP-YA 

18 Dubois et al. 

2018 

Resting-state functional connectivity best 

predicts the personality dimension of openness 

to experience 

Personality 

Neuroscience 

HCP-YA 



19 Cui et al. 

2018 

The effect of machine learning regression 

algorithms and sample size on individualized 

behavioral prediction with functional 

connectivity features 

NeuroImage HCP-YA 

20 Nostro et al. 

2018 

Predicting personality from network-based 

resting-state functional connectivity 

Brain Structure 

and Function 

HCP-YA 

21 Li et al. 2019 Performing group-level functional image 

analyses based on homologous functional 

regions mapped in individuals 

PLoS Biology HCP-YA 

22 Qin et al. 

2019 

Dissociating individual connectome traits 

using low-rank learning 

Brain Research HCP-YA 

23 Jiang et al. 

2020 

Multimodal data revealed different 

neurobiological correlates of intelligence 

between male and females 

Brain Imaging 

and Behavior 

UESTC 

24 Boeke et al. 

2020 

Toward robust anxiety biomarkers: A machine 

learning approach in a large-scale sample 

Biological 

Psychiatry: 

Cognitive 

Neuroscience and 

Neuroimaging 

GSP 

25 Liu et al. 

2018 

Neural and genetic determinants of creativity NeuroImage Recruited 

subjects 

26 He et al. 

2020 

Deep neural networks and kernel regression 

achieve comparable accuracies for functional 

connectivity prediction of behavior and 

demographics 

NeuroImage HCP-YA, 

UKB 

27 Avery et al. 

2020 

Distributed patterns of functional connectivity 

predict working memory performance in novel 

healthy and memory-impaired individuals 

Journal of 

Cognitive 

Neuroscience 

HCP-YA 

28 Burr et al. 

2020 

Functional connectivity predicts the 

dispositional use of expressive suppression but 

not cognitive reappraisal 

Brain and 

Behavior 

Recruited 

subjects 

29 Maglanoc et 

al. 2019 

Brain connectome mapping of complex 

human traits and their polygeninc architecture 

using machine learning 

Biological 

Psychiatry 

UKB 

30 Cai et al. 

2020 

Brain functional connectome-based prediction 

of individual decision impulsivity 

Cortex HCP-YA 

31 Takagi et al. 

2019 

State-unspecific patterns of whole-brain 

functional connectivity from resting and 

multiple task states predict stable individual 

traits 

NeuroImage HCP-YA 

32 Ren et al. 

2021 

Connectome-based predictive modelling of 

creative anxiety 

NeuroImage Recruited 

subjects 

33 Zhang et a. 

2020 

Do intrinsic brain functional networks predict 

working memory from childhood to 

adulthood? 

Human Brain 

Mapping 

GUSTO, 

CBDC, PING, 

BCAS 

34 He et al. 

2021 

Executive function-related functional 

connectomes predict intellectual abilities 

Intelligence HCP-YA 

35 He et al. 

2021 

Functional connectome prediction of anxiety 

related to the COVID-19 pandemic 

The American 

Journal of 

Psychiatry 

Recruited 

subjects 

36 Tomasi and 

Volkow 

2020 

Network connectivity predicts language 

processing in healthy adults 

Human Brain 

Mapping 

HCP-YA 

37 Sen et al. 

2020 

Predicting biological gender and intelligence 

from fMRI via dynamic functional 

connectivity 

IEEE 

Transactions on 

Biomedical 

Engineering 

HCP-YA 

38 Liu et al. 

2021 

The functional connectome predicts feeling of 

stress on regular days and during the COVID-

19 pandemic 

Neurobiology of 

Stress 

GBB, 

recruited 

subjects 



ABCD = Adolescent Brain Cognitive Development; HCP-YA = Human Connectome Project Young 

Adult; PNC = Philadelphia Neurodevelopmental Cohort; UESTC = University of Electronic Science 

and Technology of China; COBRE = Center for Biomedical Research Excellence; GSP = Genomic 

Superstruct Project; CoRR-HNU = Consortium for Reliability and Reproducibility – Hangzhou Normal 

University; UKB = UK Biobank; GUSTO = Growing Up in Singapore Towards healthy Outcomes; 

CBDC = Cognition and Brain Development in Children; PING = Pediatric Imaging, Neurocognition, 

and Genetics; BCAS = Brain and Cognition Aging Study; GBB = Gene-Brain-Behavior 

 

B. fMRIPrep Methods 
The same pipeline was run for each subject separately, processing both its anatomical T1 image 

and all BOLD images. The boilerplate for the first subject is shown below. 

Results included in this manuscript come from preprocessing 

performed using *fMRIPrep* 20.1.1 

(@fmriprep1; @fmriprep2; RRID:SCR_016216), 

which is based on *Nipype* 1.5.0 

(@nipype1; @nipype2; RRID:SCR_002502). 

 

Anatomical data preprocessing 

 

: A total of 2 T1-weighted (T1w) images were found within the input 

BIDS dataset. 

All of them were corrected for intensity non-uniformity (INU) 

with `N4BiasFieldCorrection` [@n4], distributed with ANTs 2.2.0 [@ants, 

RRID:SCR_004757]. 

The T1w-reference was then skull-stripped with a *Nipype* implementation of 

the `antsBrainExtraction.sh` workflow (from ANTs), using OASIS30ANTs 

as target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM) and gray-matter (GM) was performed on 

the brain-extracted T1w using `fast` [FSL 5.0.9, RRID:SCR_002823, 

@fsl_fast]. 

A T1w-reference map was computed after registration of 

2 T1w images (after INU-correction) using 

`mri_robust_template` [FreeSurfer 6.0.1, @fs_template]. 

Brain surfaces were reconstructed using `recon-all` [FreeSurfer 6.0.1, 

RRID:SCR_001847, @fs_reconall], and the brain mask estimated 

previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical 

gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle]. 

Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, 

MNI152NLin2009cAsym) was performed through 

nonlinear registration with `antsRegistration` (ANTs 2.2.0), 

using brain-extracted versions of both T1w reference and the T1w template. 

The following templates were selected for spatial normalization: 



*FSL's MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 

Stereotaxic Registration Model* [@mni152nlin6asym, RRID:SCR_002823; 

TemplateFlow ID: MNI152NLin6Asym], *ICBM 152 Nonlinear Asymmetrical template 

version 2009c* [@mni152nlin2009casym, RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym],  

 

Functional data preprocessing 

 

: For each of the 13 BOLD runs found per subject (across all 

tasks and sessions), the following preprocessing was performed. 

First, a reference volume and its skull-stripped version were generated 

using a custom methodology of *fMRIPrep*. 

Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using 

`mcflirt` [FSL 5.0.9, @mcflirt]. 

BOLD runs were slice-time corrected using `3dTshift` from 

AFNI 20160207 [@afni, RRID:SCR_005927]. 

Susceptibility distortion correction (SDC) was omitted. 

The BOLD reference was then co-registered to the T1w reference using 

`bbregister` (FreeSurfer) which implements boundary-based registration [@bbr]. 

Co-registration was configured with six degrees of freedom. 

The BOLD time-series were resampled onto the following surfaces 

(FreeSurfer reconstruction nomenclature): 

*fsaverage*. 

The BOLD time-series (including slice-timing correction when applied) 

were resampled onto their original, native space by applying 

the transforms to correct for head-motion. 

These resampled BOLD time-series will be referred to as *preprocessed 

BOLD in original space*, or just *preprocessed BOLD*. 

The BOLD time-series were resampled into standard space, 

generating a *preprocessed BOLD run in MNI152NLin6Asym space*. 

First, a reference volume and its skull-stripped version were generated 

using a custom methodology of *fMRIPrep*. 

*Grayordinates* files [@hcppipelines] containing 91k samples were also 

generated using the highest-resolution ``fsaverage`` as intermediate 

standardized 

surface space. 

Automatic removal of motion artifacts using independent component analysis 

[ICA-AROMA, @aroma] was performed on the *preprocessed BOLD on MNI space* 

time-series after removal of non-steady state volumes and spatial smoothing 

with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). 

Corresponding "non-aggresively" denoised runs were produced after such 

smoothing. 

Additionally, the "aggressive" noise-regressors were collected and placed 

in the corresponding confounds file. 

Several confounding time-series were calculated based on the 

*preprocessed BOLD*: framewise displacement (FD), DVARS and 



three region-wise global signals. 

FD was computed using two formulations following Power (absolute sum of 

relative motions, @power_fd_dvars) and Jenkinson (relative root mean square 

displacement between affines, @mcflirt). 

FD and DVARS are calculated for each functional run, both using their 

implementations in *Nipype* [following the definitions by @power_fd_dvars]. 

The three global signals are extracted within the CSF, the WM, and 

the whole-brain masks. 

Additionally, a set of physiological regressors were extracted to 

allow for component-based noise correction [*CompCor*, @compcor]. 

Principal components are estimated after high-pass filtering the 

*preprocessed BOLD* time-series (using a discrete cosine filter with 

128s cut-off) for the two *CompCor* variants: temporal (tCompCor) 

and anatomical (aCompCor). 

tCompCor components are then calculated from the top 5% variable 

voxels within a mask covering the subcortical regions. 

This subcortical mask is obtained by heavily eroding the brain mask, 

which ensures it does not include cortical GM regions. 

For aCompCor, components are calculated within the intersection of 

the aforementioned mask and the union of CSF and WM masks calculated 

in T1w space, after their projection to the native space of each 

functional run (using the inverse BOLD-to-T1w transformation). Components 

are also calculated separately within the WM and CSF masks. 

For each CompCor decomposition, the *k* components with the largest singular 

values are retained, such that the retained components' time series are 

sufficient to explain 50 percent of variance across the nuisance mask (CSF, 

WM, combined, or temporal). The remaining components are dropped from 

consideration. 

The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. 

The confound time series derived from head motion estimates and global 

signals were expanded with the inclusion of temporal derivatives and 

quadratic terms for each [@confounds_satterthwaite_2013]. 

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS 

were annotated as motion outliers. 

All resamplings can be performed with *a single interpolation 

step* by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). 

Gridded (volumetric) resamplings were performed using `antsApplyTransforms` 

(ANTs), 

configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels [@lanczos]. 

Non-gridded (surface) resamplings were performed using `mri_vol2surf` 

(FreeSurfer). 

 

Many internal operations of *fMRIPrep* use 

*Nilearn* 0.6.2 [@nilearn, RRID:SCR_001362], 



mostly within the functional processing workflow. 

For more details of the pipeline, see [the section corresponding 

to workflows in *fMRIPrep*'s 

documentation](https://fmriprep.readthedocs.io/en/latest/workflows.html 

"FMRIPrep's documentation"). 

 

### Copyright Waiver 

 

The above boilerplate text was automatically generated by fMRIPrep 

with the express intention that users should copy and paste this 

text into their manuscripts *unchanged*. 

It is released under the 

[CC0](https://creativecommons.org/publicdomain/zero/1.0/) license. 
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C. Supplementary Figure 

 

Figure S1. Distribution of age in the four cohorts. The distribution is plotted separately for 

fluid cognition and openness in HCP-A and eNKI-RS, as different measures are available in 

different subsets of the dataset in these two cases. 

 



 

Figure S2. Prediction accuracy distribution maps of (A) HCP-YA fluid intelligence, (B) HCP-

YA fluid cognition, (C) HCP-A fluid cognition, (D) eNKI-RS WASI-II intelligence, and (E) 

GSP Shipley IQ, using elastic net. Within each section, each row shows the prediction accuracy 

distribution overlaid on a parcellation used in region-wise CBPP prediction, in lateral and 

medial views of the left and right cortical hemispheres, as well as the bottom and top views of 

the subcortical regions. Color represents the magnitude of the prediction accuracies (Pearson 

correlation between predicted and observed values). Accuracies below 0.05 and non-significant 

accuracies are shown in gray. 

 



 

Figure S3. Prediction accuracy distribution maps of (A) HCP-YA crystallized cognition, and 

(B) HCP-A crystallized cognition. Each row shows the prediction accuracy distribution 

overlaid on a parcellation used in region-wise CBPP prediction, in lateral and medial views of 

the left and right cortical hemispheres, as well as the bottom and top views of the subcortical 

regions. Color represents the magnitude of the prediction accuracies (Pearson correlation 

between predicted and observed values). Accuracies below 0.05 and non-significant accuracies 

are shown in gray. 

 



 

Figure S4. Prediction accuracy distribution maps of (A) HCP-YA fluid cognition with models 

trained on HCP-A data, (B) HCP-A fluid cognition with models trained on HCP-YA data, (C) 

HCP-YA fluid cognition with models trained on eNKI-RS data, (D) eNKI-RS WASI-II 

intelligence with models trained on HCP-YA data, (E) eNKI-RS WASI-II intelligence with 

models trained on HCP-A data, (F) HCP-A fluid cognition with models trained on eNKI-RS 

data. Each row shows the prediction accuracy distribution overlaid on a parcellation used in 

region-wise CBPP prediction, in lateral and medial views of the left and right cortical 

hemispheres, as well as the bottom and top views of the subcortical regions. Color represents 

the magnitude of the prediction accuracies (Pearson correlation between predicted and 

observed values). Accuracies below 0.05 are shown in gray. 



 

 

Figure S5. Correlation between prediction accuracy distributions of within-dataset prediction 

patterns (reliability) or between within-dataset and cross-dataset prediction patterns 

(generalizability), plotted against the Schaefer-Melbourne atlas with increasing granularity. 

Each line shows the mean correlation values across all pairs of comparisons, while the colored 

areas around the lines represent the 95% confidence interval. 


