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Abstract 

An increasing number of studies have investigated the relationships between inter-individual 

variability in brain regions’ connectivity and behavioral phenotypes, making use of large 

population neuroimaging datasets. However, the replicability of brain-behavior associations 

identified by these approaches remains an open question. In this study, we examined the cross-

dataset replicability of brain-behavior association patterns for fluid cognition and openness 

predictions using a previously developed region-wise approach, as well as using a standard 
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whole-brain approach. Overall, we found moderate similarity in patterns for fluid cognition 

predictions across cohorts, especially in the Human Connectome Project Young Adult, Human 

Connectome Project Aging, and Enhanced Nathan Kline Institute Rockland Sample cohorts, 

but low similarity in patterns for openness predictions. In addition, we assessed the 

generalizability of prediction models in cross-dataset predictions, by training the model in one 

dataset and testing in another. Making use of the region-wise prediction approach, we showed 

that first, a moderate extent of generalizability could be achieved with fluid cognition 

prediction, and that, second, a set of common brain regions related to fluid cognition across 

cohorts could be identified. Nevertheless, the moderate replicability and generalizability could 

only be achieved in specific contexts. Thus, we argue that replicability and generalizability in 

connectivity-based prediction remain limited and deserve greater attention in future studies. 

 

Keywords: behavior prediction, resting-state functional connectivity, generalizability, brain-

behavior relationships, machine learning, fluid intelligence 

 

  



3 

 

1. Introduction 

In recent years, the availability of population-based neuroimaging datasets (Nooner et al. 2012; 

Van Essen et al. 2013; Caspers et al. 2014; Holmes et al. 2015) has enabled many investigations 

into the relationships between functional connectivity (FC) and behavior. Resting-state 

functional connectivity (RSFC) has been employed in the predictions of various psychometric 

variables, ranging from cognitive measures to personality traits (Finn et al. 2015; Noble et al. 

2017; Beaty et al. 2018; Dubois et al. 2018a; Dubois et al. 2018b; Jiang et al. 2018; Maglanoc 

et al. 2019; Avery et al. 2020; He et al. 2020; Jiang et al. 2020). In other words, by training a 

model to learn the relationships between RSFC and psychometric variables, the model can 

infer, to some extent, the values of these psychometric variables in a new sample, using the 

new sample’s RSFC. These approaches can be overall referred to connectivity-based 

psychometric prediction (CBPP) approaches. Generally, when using these approaches, a strong 

focus is put on achieving good, or at least what could be deemed decent, prediction 

performance. To evaluate prediction performance, typically, the data from one dataset is 

repeatedly and randomly partitioned into training and test sets, where the model’s performance 

is thus determined by its average prediction accuracies on the test set data. This is typically 

referred to as a (within cohort) cross-validation approach. In rare cases, prediction performance 

may also be computed using a held-out test set, where the accuracy measured is still within the 

same cohort (Maglanoc et al. 2019; Avery et al. 2020), or out-of-sample test data, where the 

accuracy is measured in a fully new cohort (Beaty et al. 2018; He et al. 2020; Jiang et al. 2020). 

Usually capitalizing on within-cohort cross-validation, many studies have further investigated 

the technical factors affecting the model performance and/or the neurobiological insights 

provided by predictive models (Li et al. 2019; Pervaiz et al. 2020; Wu et al. 2021; Kong et al. 

2021). 
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CBPP approaches typically require relatively large sample size which, however, is a very 

scarce resource in the field. Based on recent surveys (Sui et al. 2020; Yeung et al. 2022), 38 

CBPP studies with relatively large sample size can be identified (𝑁 ≥ 200; see Supplemental 

Materials for a list of the studies), among which 71% made use of the Human Connectome 

Young Adult (HCP-YA; Van Essen et al. 2013) dataset, while 47% used only the HCP-YA 

dataset. This is expected, as the HCP-YA dataset was one of the first large population-based 

dataset which offers high-quality resting-state scans and extensive psychometric 

characterization. Nevertheless, this brings forth the issue of generalizability, as the HCP-YA 

data were distinct from other datasets in multiple aspects. First, the subjects involved had a 

specific age range of 22 to 35. Second, most subjects involved were family members. Finally, 

the demographic characteristics, psychometric tools, scanning protocols and image processing 

of the HCP-YA were also different from most other datasets. The last point could be 

generalized to most existing datasets. As many datasets were based on different initiatives to 

fulfill different research questions, they would be different from each other in terms of sample 

characteristics, psychometric tools, scanning protocols and image processing protocols. 

Consequently, results and insights obtained by a research study performed using a single 

dataset would be inherently affected and limited by the idiosyncrasies of that specific dataset. 

As more and more population-based datasets become available, it is necessary to investigate 

how replicable the brain-behavior association patterns identified could be and to which extent 

the prediction model learnt based on one cohort is generalizable to other cohorts. 

The motivation of this study is two-fold. First, it is necessary to investigate the replicability of 

CBPP results, both in terms of prediction performance and the derived brain-behavior 

association patterns. Importantly, the brain-behavior association patterns derived from a 

prediction model (or brain prediction patterns, for short) can help to interpret the prediction 

model from a neurobiological perspective. Hence, the patterns’ replicability across cohorts 
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could limit the usefulness of the model. Second, the generalizability of prediction models is 

also a crucial aspect of CBPP model validity. In order for the CBPP models to achieve practical 

utility, they must be generalizable to unseen data. In particular, the brain prediction patterns 

and the interpretation of the model should remain consistent in unseen data. 

To investigate the cross-cohort replicability of brain prediction patterns, we first made use of a 

previously proposed region-wise CBPP framework (Wu et al. 2021) for disentangling brain-

behavior relationships, by building a prediction model for each brain region (or parcel) 

separately. Under this framework, an accuracy distribution map could be constructed for a 

psychometric variable, illustrating the contribution of each brain region’s connectivity profile 

to the prediction of this psychometric variable. While such a local approach obviously 

simplifies the complexity of brain function (Horien et al. 2019), it allows us to identify relevant 

brain regional connectivity patterns for easier interpretation of the prediction models, as well 

as for future applications based on small sample sizes that would hence require significant 

features’ reduction. By making use of the accuracy distribution map for a specific psychometric 

variable as a representation for the predictive brain pattern, we can assess the replicability of 

brain prediction patterns (i.e., brain-behavior association patterns derived from a prediction 

model) for similar behavioral measurements in different cohorts. In line with the trend in the 

field, we also implemented whole-brain CBPP, where all region-to-region connectivity values 

were used in one prediction model. As the regression weights from whole-brain CBPP models 

are not directly interpretably, the Haufe transformation (Haufe et al. 2014) was applied to 

transform these regression weights into values which can be associated with the predictive 

power of the functional connectivity edges. In this way, we could use the Haufe transformed 

patterns of different cohorts as prediction patterns of these whole-brain CBPP models. Both 

region-wise and whole-brain prediction patterns in this case will be referred to as ‘within-
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dataset prediction patterns’ for assessing the ‘replicability of brain prediction patterns’, as the 

patterns would be derived from, and thus specific to, a single dataset. 

In addition, since prediction models trained on a specific dataset would be largely influenced 

by the idiosyncrasies of the dataset, its generalizability to a new dataset cannot be simply 

assumed. By training prediction models in one dataset and testing on other datasets, we could 

obtain the ‘cross-dataset prediction patterns’ for assessing the ‘generalizability of prediction 

models’. If the within-dataset prediction pattern of a psychometric variable was similar to 

cross-dataset prediction patterns trained on the same data, we may infer that prediction models 

trained on this dataset could potentially be generalized to other datasets for this psychometric 

variable. 

Intelligence and personality are core domains in differential psychology and hence in the study 

of interindividual variability in humans (Humphreys and Revelle 1984; Deary et al. 2011). Not 

surprisingly, among the most investigated psychometric variables in CBPP studies were fluid 

intelligence and personality traits. Using HCP-YA data and linear predictive models, the fluid 

intelligence and openness scores were both commonly investigated and generally among the 

best predicted psychometric variables; in particular, among the Big Five personality traits, only 

openness was reported to be predicted with statistical significance (Dubois et al. 2018a). In that 

context, the reported accuracies (Pearson correlation between predicted and observed scores) 

were in the range of 0.20 to 0.25 (Smith et al. 2016; Noble et al. 2017; Dubois et al. 2018a; 

Dubois et al. 2018b; Li et al. 2019; Pervaiz et al. 2020; Wu et al. 2021; Kong et al. 2021). 

Furthermore, the measure of fluid intelligence, as well as fluid cognition, could be related to 

various intelligence quotient (IQ) measures in other datasets and the openness trait from the 

Neuroticism/Extroversion/Openness Five Factor Inventory (NEO-FFI) inventory is a common 

measure in many datasets. Therefore, we selected these two measures as the best candidate 

psychometric variables for our replicability and generalizability investigations.  
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Accordingly, we selected four healthy adult datasets in which both fluid cognition and 

openness measures were available: the HCP-YA, the Human Connectome Project Aging 

(HCP-A), the Enhanced Nathan Kline Institute Rockland Sample (eNKI-RS) and the Brain 

Genomics Superstruct Project (GSP) cohorts, providing opportunities to examine cohort 

differences in terms of sample characteristics, image acquisition and psychometric test 

implementation (see a summary in table 1 and age distribution plots in figure S1). We first 

assessed the replicability of brain prediction patterns across these cohorts by producing the 

region-wise and whole-brain (within-dataset) brain spatial prediction patterns for each 

psychometric variable in each cohort. Then, we assessed the generalizability of prediction 

models for fluid cognition prediction by comparing the within-dataset and cross-dataset 

prediction patterns. Based on these prediction patterns, we demonstrated that a common set of 

brain regions related to fluid intelligence could be identified. Finally, we will discuss the 

implication of our results for the field and future studies. 

Table 1. Summary of datasets used 

 HCP-YA (Van 

Essen et al. 2013) 

HCP-A 

(Bookheimer et al. 

2019) 

eNKI-RS (Nooner 

et al. 2012) 

GSP (Holmes et 

al. 2015) 

Number of 

subjects (N) 

931 601 (fluid 

cognition) 

715 (openness) 

970 (fluid cognition) 

820 (openness) 

867 

Age 28.81±3.70 58.11±13.88 39.70±23.15 21.59±2.84 

Gender 497 female, 434 

male 

329 female, 242 

male 

575 female, 389 

male 

500 female, 367 

male 

Length of resting-

state runs 

14.4 min / 1200 

frames 

6 min / 488 frames 10 min / 900 frames 6 min / 120 frames 

Repetition time 

(TR) 

720 ms 720 ms 645 ms 3000 ms 

Resolution of 

resting-state scans 

2mm isotropic 2mm isotropic 3mm isotropic 3mm isotropic 

Fluid cognition 

measures 

1. fluid cognition 

composite score 

(CogFluidComp_A

geAdj) 

2. fluid intelligence 

(PMAT24_A_CR) 

fluid cognition 

composite score 

(nih_fluidcogcomp

_ageadjusted) 

Wechsler 

Abbreviated Scale 

of Intelligence 

(WASI-II; FSIQ – 4 

Composite Score) 

Shipley IQ 

(EstIQ_Matrix_Int

_Bin) 
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Openness 

measures 

NEO-FFI openness 

(NEOFAC_O)  

NEO-FFI openness 

(neo2_score_op) 

NEO-FFI openness 

(O T-Score) 

NEO-FFI 

openness 

(NEO_O) 

Confounding 

variables 

Sex (Gender), age 

(Age_in_Yrs), age2, 

sex*age, sex*age2, 

handedness 

(Handedness), 

brain size 

(FS_BrainSeg_Vol)

, intracranial 

volume 

(FS_IntraCranial_

Vol), and 

acquisition quarter 

(Acquisition) 

Sex (sex), age 

(interview_age), 

age2, sex*age, 

sex*age2, 

handedness 

(hcp_handedness_s

core), brain size 

(BrainSegVol), 

intracranial volume 

(EstimatedTotalInt

raCranialVol) 

Sex (‘What is your 

sex?’), age 

(Calculated Age), 

age2, sex*age, 

sex*age2, 

handedness 

(LATERALITY 

INDEX), brain size 

(BrainSegVol), 

intracranial volume 

(EstimatedTotalIntr

aCranialVol) 

Sex (Sex), age 

(Age_Bin), age2, 

sex*age, sex*age2, 

handedness 

(Hand), brain size 

(BrainSegVol), 

and intracranial 

volume (ICV) 

 

2. Materials and Methods 

2.1. Data and Preprocessing 

The HCP-YA S1200 Release (Van Essen et al. 2013) includes phenotype and imaging data 

from over 1200 healthy young adults (aged 22 to 37), from families with twins and non-twin 

siblings. Imaging data were acquired using a customized Siemens 3T Skyra. Each subject 

visited in two consecutive days, during each of which two resting-state runs were acquired 

using different phase-encodings, left-right and right-left. Each run is 1200 frames (14.4 min) 

in length, with a repetition time (TR) of 720 ms. All resting-state functional Magnetic 

Resonance Imaging (fMRI) data were 2mm isotropic. We only considered subjects with all 

four runs completed (N = 931). All raw resting-state data were preprocessed by the HCP 

Minimal Processing Pipelines (Glasser et al. 2013), followed by ICA-FIX denoising (Smith et 

al. 2013; Griffanti et al. 2014; Salimi-Khorshidi et al. 2014).  

The HCP-A Release 2.0 (Harms et al. 2018; Bookheimer et al. 2019) includes phenotype and 

imaging data from 725 healthy adults (ages 36 to 100+), as an extension for the HCP-YA 
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cohort. Imaging data were acquired using a Siemens 3T Prisma. Similar to the HCP-YA cohort, 

two resting-state sessions each with two runs were acquired for each subject, using anterior-

posterior and posterior-anterior phase encoding respectively. Each run is 488 frames in length, 

with a TR of 720 ms. All resting-state fMRI data were 2mm isotropic. We only considered 

subjects with all four runs completed (N=720). All raw resting-state data were preprocessed by 

the HCP Minimal Processing Pipelines (Glasser et al. 2013), followed by ICA-FIX denoising 

(Smith et al. 2013; Griffanti et al. 2014; Salimi-Khorshidi et al. 2014). 

The eNKI-RS (Nooner et al. 2012) includes phenotype and imaging data from a lifespan sample 

of over 1000 participants (aged 6 to 85). Imaging data were acquired using a Siemens 3T Tim 

Trio. We made use of the fast repetition time (TR = 645 ms) resting-state scans each lasting 10 

minutes (actual number of time point = 900) and with a resolution of 3mm isotropic (N=1309), 

which was anticipated to improve comparison with the HCP-YA data (Nooner et al. 2012). We 

processed all raw resting-state data with fMRIPrep (Esteban et al. 2019) with default 

parameters and additionally ICA-AROMA denoising (Pruim et al. 2015a; Pruim et al. 2015b); 

the details of the pipeline implementation can be found in Supplemental Materials.  

The GSP initial data release (Holmes et al. 2015) includes phenotype and imaging data from 

young adults (aged 18 to 35; N=867). Imaging data were acquired using matched Siemens 3T 

Tim Trio scanners at two sites. The resting-state scans were 3mm isotropic, each with 120 

frames and a TR of 3000 ms. These resting-state data were preprocessed with an in-house 

pipeline, which includes fieldmap correction, motion correction, slice-time correction, spatial 

normalization to the MNI152 standard space and ICA-FIX denoising. 

For all four datasets, resting-state data in the MNI152 space were used. We applied nuisance 

regression to control for white matter signals, cerebrospinal fluid signals and their derivatives, 

as well as 24 motion parameters. As the HCP-YA and HCP-A datasets offer already 
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preprocessed data, while the eNKI-RS and GSP data were preprocessed by us, we note that the 

data processing across the four cohorts may not be considered comparable. However, this is in 

line with our aim to highlight potential issues of generalizability and replicability in practical 

scenarios, where data processing procedures can hardly be standardized. In particular, we aim 

to avoid situations in which a unique preprocessing pipeline would be selected and could be 

optimal for one dataset, but not for the others. Accordingly, for the eNKI-RS and GSP datasets, 

preprocessing was done in the way that was deemed optimal for the respective dataset so that 

data quality should remain comparable across cohorts despite the difference in preprocessing 

pipelines. 

In order to make sure that our results are not limited by the specificity of a single atlas, or a 

single granularity, we defined brain regions using parcels from two different atlases. We here 

selected the AICHA atlas (Figure 1A; Joliot et al. 2015) as an atlas that is independent from 

the datasets used in this study and derived in a volumetric space. Additionally, we used a 

combination of the Schaefer cortical atlas and the 3T version of Melbourne subcortex atlas 

(Figure 1B-E; Schaefer et al. 2018; Tian et al. 2020) as extensively evaluated and used atlases. 

The Schaefer cortical atlas and the Melbourne subcortex atlas were derived based on the GSP 

cohort and the HCP-YA cohort respectively, but were nonetheless useful in offering different 

levels of granularity. The AICHA atlas contains 384 parcels encompassing both cortical and 

subcortical regions. The Schaefer atlas and the Melbourne atlas were combined by the level of 

granularity. In other words, the 100-parcel Schaefer atlas was combined with the 16-parcel 

Melbourne atlas, the 200-parcel Schaefer atlas with the 32-parcel Melbourne atlas, the 300-

parcel Schaefer atlas with the 50-parcel Melbourne atlas, and the 400-parcel Schaefer atlas with 

the 54-parcel Melbourne atlas. This hence allows us to examine the brain prediction patterns 

across 4 levels of granularity, with 116 parcels, 232 parcels, 350 parcels and 454 parcels 

respectively. Within each parcel, the mean time series across all voxels inside the parcel was 
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computed. The FC profile for each parcel was then obtained by computing the Pearson 

correlation between the mean time series between that parcel and every other parcel. For the 

HCP-YA and HCP-A subjects, the average connectivity values across all four runs were used. 

 

Figure 1. (A) AICHA atlas. (B) 116-parcel Schaefer-Melbourne combined atlas. (C) 232-parcel 

Schaefer-Melbourne combined atlas. (D) 350-parcel Schaefer-Melbourne combined atlas. (D) 454-

parcel Schaefer-Melbourne combined atlas. From left to right, the columns reflect:  the lateral view of 

left hemisphere, the medial view of left hemisphere, the lateral view of right hemisphere, the medial 

view of right hemisphere, the superior view of subcortical regions, and the inferior view of subcortical 

regions. 

 

2.2. Psychometric Variables 

Three psychometric variables were considered for the HCP-YA dataset, namely the fluid 

intelligence measure, the fluid cognition composite score and the NEO-FFI openness measure. 

Fluid intelligence was measured using Form A of an abbreviated version of the Raven’s 

Progressive Matrices (Bilker et al. 2012). The Fluid cognition composite score is an age-

adjusted summary score, comprising the Dimensional Change Card Sort Test for cognitive 
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flexibility, the Flanker Inhibitory Control and Attention Test, the Picture Sequence Memory 

Test for non-verbal episodic memory, the List Sorting Working Memory Test, and the Pattern 

Comparison Processing Speed Test. Lastly, the openness score was based on the 12 specific 

items from the revised 60-item version of the NEO-FFI (McCrae and Costa 2004).  

For the HCP-A dataset, the fluid cognition composite score and the NEO-FFI openness 

measure were selected, both of which were estimated in the same way as their counterpart in 

the HCP-YA dataset. As the two measures were only available in a subset of participants, we 

implemented predictions for them separately using data from all participants with the 

respective measure (N=623 for fluid cognition composite score, N=715 for openness). For the 

fluid cognition prediction, we further excluded subjects whose score values were 999 (final 

N=601). 

For the eNKI-RS dataset, two psychometric variables were considered, the Wechsler 

Abbreviated Scale of Intelligence (WASI-II) measure and the NEO-FFI openness measure. 

The WASI is a general intelligence test designed to assess specific and overall cognitive 

capabilities, consisting of four subtests: vocabulary, block design, similarities, and matrix 

reasoning. Similar to HCP-YA, the openness measure was based on the revised 60-item NEO-

FFI (McCrae and Costa 2004). As the NEO-FFI test was done only in a subset of participants 

who went through the WASI-II test, we implemented predictions for the two psychometric 

variables separately using data from all participants with the respective measure (N=970 for 

WASI-II intelligence; N=820 for openness). 

For the GSP dataset, two psychometric variables were considered, the Shipley IQ measure and 

the NEO-FFI openness measure. The IQ measure was estimated from Shipley-Hartford age-

corrected t-scores, which showed strong relation to WASI derived IQ in a subset of subjects 
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(Holmes et al. 2015). The openness measure was based on the 60-item NEO-FFI (Costa and 

McCrae 1992). 

In order to focus on brain-behavior relationships, the influence of demographic factors, such 

as age and gender, need to be controlled. In our previous work, we also showed that head size 

estimates could affect the psychometric prediction profile of individual parcels (Wu et al. 

2021). In line with our previous work and the HCP MegaTrawl analysis (Smith et al. 2016), 

we considered a set of eight confounding variables for all samples: sex, age, age2, sex*age, 

sex*age2, handedness, brain size, and intracranial volume. For the HCP-YA sample, we 

additionally included acquisition quarter as a confounding variable. As the multiband 

reconstruction algorithm used was different in earlier quarters, controlling for the acquisition 

quarter helps to mitigate the effect of this change in data collection protocol (Dubois et al. 

2018a).  

 

2.3. Whole-brain and Region-wise Connectivity-based Psychometric 

Prediction 

In line with the global trend in the field, the whole-brain CBPP model uses all parcel-to-parcel 

connectivity values as input features for a linear machine learning algorithm to predict the 

target psychometric variable. In contrast, the region-wise model uses each parcel’s FC profile 

separately. For instance, for a 300-parcel atlas, a subject’s input feature for the whole-brain 

model is the upper triangular part of the FC matrix with dimensions of 300 × 300, excluding 

the diagonal values, resulting in a final number of features of 44850. For the region-wise model, 

a subject’s input feature is the FC between the chosen region and all other regions, hence 

resulting in 299 features for a 300-parcel atlas. 
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For each model, the whole-brain FC matrices or parcel-wise FC profiles (the FC features) for 

all training subjects, as well as their psychometric variable values, are provided to a machine 

learning algorithm. A linear relationship is estimated between the FC features and the 

psychometric variables by the algorithm. This linear relationship can then be used to infer 

psychometric variable values in new subjects, using their FC features. Finally, the inferred (or 

predicted) values are compared with the actual observed values in these new subjects, to 

evaluate the prediction performance. 

The psychometric prediction was carried out with 100 repeats of 10-fold cross-validation. For 

each fold, subjects inside that fold are considered the test set, while the remaining nine folds 

are considered the training set. The prediction model is learnt using the training set data and 

evaluated using the test set data. During each repeat, every fold is used as the test set fold once; 

such process is then repeated 100 times. For each test set fold, confounding variables were first 

regressed out from the remaining nine training folds. The same regression coefficients were 

used to remove confounding effects from the test set fold.  To account for the family structure 

within the HCP-YA cohorts, family members were always kept within the same fold for the 

HCP-YA cohort.  

We applied support vector regression (SVR; Boser et al. 1992; Cortes and Vapnik 1995) using 

Matlab’s fitrlinear function. The hyperparameter determining the error tolerance during model 

fitting, epsilon, was set to the default value which is dependent on data variance. Specifically, 

epsilon was set to 
𝐼𝑄𝑅(𝑌) 

13.49
, where the numerator is the interquartile range of the target variable 

in the training set. In order to accommodate the large feature space, especially in the whole-

brain approach, ridge penalty is included in the objective function for regularization. The 

regularization strength, lambda, was also set to the default value of 
1

𝑛
, the inverse of the training 

sample size. For comparison’s sake, we also applied elastic net (EN; Zou and Hastie 2005) 



15 

 

using the glmnet package for Matlab (Qian et al. 2013). For each fold, the hyperparameter 

alpha, which determines the compromise between ridge and lasso, was first fixed, while the 

hyperparameter lambda, which determines the degree of regularization, was tuned with 10-fold 

inner-loop cross-validation using 8 of the training folds. The model with the best lambda was 

then validated on the last training fold, to determine the best value for alpha. 

Prediction accuracy was assessed by computing the Pearson correlation between predicted and 

observed psychometric values, averaged across all test set folds and all repeats. For whole-

brain approaches, this means that one accuracy value was computed for each atlas and each 

psychometric variable in each cohort. For region-wise approaches, one accuracy value was 

computed for each parcel in each atlas, and for each psychometric variable in each cohort. 

 

2.4. Replicability of Brain Prediction Patterns 

Interpreting the prediction patterns for the region-wise CBPP models is straightforward. For 

each psychometric variable, we could visually or numerically compare the prediction accuracy 

distribution across parcels (Wu et al. 2021). The prediction accuracy achieved by each parcel’s 

region-wise model can be related to the contribution of that parcel’s connectivity with other 

parcels in the corresponding behavioral function. For each psychometric variable and each 

atlas, permutation test was performed by shuffling the scores of the psychometric variables in 

1000 repeats of 10-fold cross-validation (100 repeats for EN due to higher computational cost). 

Multiple comparisons across parcels were corrected using false discovery rate (FDR; 

Benjamini and Hochberg 1995) of 𝑞 < 0.05. 

The whole-brain CBPP models cannot be interpreted directly using the regression weights 

assigned to each connectivity edge. Since SVR (and most other machine learning models often 

employed in prediction studies) is a backward model, interpreting the weights can be drastically 
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misleading; large weights can be assigned to features unrelated to the brain process of interest 

(Haufe et al. 2014). To solve this issue, the Haufe transformation (Haufe et al. 2014) can be 

used to turn these weights into weights of a corresponding forward model. These transformed 

weight values can then be related to the FC edge’s predictive power, where a larger absolute 

value would suggest that the FC edge is more involved in the prediction of the target 

psychometric variable. For each psychometric variable and each atlas, permutation test was 

performed by shuffling the scores of the psychometric variables during the transformation, in 

1000 repeats of 10-fold cross-validation. Multiple comparisons across parcels were corrected 

using false discovery rate (FDR; Benjamini and Hochberg 1995) of 𝑞 < 0.05. Each set of 

transformed weight values were then z-score normalized to have zero mean and unit variance. 

To numerically assess the cross-cohort replicability of brain prediction patterns, the Pearson 

correlation coefficient was computed between patterns derived for different psychometric 

variables for each atlas option. For the region-wise models, this means computing the 

correlation between the two arrays of parcel-specific prediction accuracies. For the whole-brain 

models, this means computing the correlation between the two sets of Haufe transformed 

weight values. Between two psychometric variables, the replicability is indicated by the 

average Pearson correlation value across different atlases. 

 

2.5. Generalizability of Prediction Models 

In practice, replicability of prediction patterns would not suffice to validate a prediction model, 

as the model’s generalizability to novel data must be tested too. For any population level 

inference, the inference needs to be generalizable to other populations. Similarly, for clinical 

applications using machine learning, models trained on existing data need to be generalizable 

to new patients. Focusing on the prediction patterns derived from region-wise prediction 
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models, we examined such cross-dataset generalizability by training region-wise CBPP models 

based on each single dataset and testing the models on the other datasets.  

For the assessment of cross-dataset generalizability of prediction models, we focused on 

models where relatively higher prediction accuracies and consistent prediction patterns were 

observed across cohorts, i.e., the fluid cognition prediction for the HCP-YA, HCP-A, and 

eNKI-RS cohorts.  Specifically, region-wise CBPP models were trained on the FC and 

psychometric data from one dataset and tested on the FC and psychometric data from another. 

We refer to this as ‘cross-dataset predictions’. For each parcel in each atlas, one model was 

trained and evaluated separately. Consequently, we obtained one accuracy value for each parcel 

in each atlas for each test set (this is different from the replicability case where accuracy values 

were averaged across test sets in cross-validation).  

We then visualize the prediction patterns as prediction accuracy distribution maps, thus 

comparing them to the prediction patterns of models trained and tested in the same dataset, 

which are referred to as ‘within-dataset predictions’. For numerical comparison, we computed 

the Pearson correlation coefficients between cross-dataset and within-dataset prediction 

patterns. The generalizability is indicated by the correlation value between patterns derived 

from models trained and tested in one dataset, and patterns derived from models trained in the 

same dataset but tested in a different dataset (or models trained in a different dataset but tested 

in the same dataset). In other words, for each pair of patterns, we computed the correlation 

between the two arrays of parcel-specific prediction accuracies. 

 

2.6. Data and Code Availability 
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All data were managed via version-controlled DataLad datasets (Halchenko, et al., 2021) that 

are either publicly available, or were provided by an institutional data management system 

when public sharing was prevented by the terms of the respective data usage agreements. 

The HCP-YA imaging data were accessed via the public DataLad dataset provided at 

https://github.com/datalad-datasets/human-connectome-project-openaccess (2e2a8a70-3eaa-

11ea-a9a5-b4969157768c@a33e528) which interfaces the HCP Open Access dataset 

(https://registry.opendata.aws/hcp-openaccess) on AWS S3. The unrestricted and restricted 

phenotype data were downloaded from the ConnectomeDB (https://db.humanconnectome.org) 

after accepting the Open Access Data User Terms and Restricted Access Data Use Terms 

respectively. 

The HCP-A imaging and phenotype data were downloaded from the NIMH Data Archive 

(NDA; https://nda.nih.gov), after applying for the Data Use Certification. The associated study 

ID is 1376 (http://dx.doi.org/10.15154/1524254).  

The eNKI-RS imaging data were downloaded from the COINS data exchange 

(https://coins.trendscenter.org). The phenotype data were downloaded after accepting the Data 

Usage Agreement. 

The GSP imaging and phenotype data were downloaded from the LONI Imaging Data Archive 

(https://ida.loni.usc.edu) after accepting the GSP Data Use Terms and GSP Restricted Data Use 

Terms.  

All codes are publicly available at https://github.com/inm7/cbpp.  

 

 

https://github.com/datalad-datasets/human-connectome-project-openaccess
https://registry.opendata.aws/hcp-openaccess
https://db.humanconnectome.org/
https://nda.nih.gov/
http://dx.doi.org/10.15154/1524254
https://coins.trendscenter.org/
https://ida.loni.usc.edu/
https://github.com/inm7/cbpp


19 

 

3. Results 

Before investigating the brain patterns supporting the prediction of our selected psychometric 

variables, we first examined the global prediction performance for these variables. We then 

examined the replicability of brain prediction patterns based on the within-dataset brain 

patterns related to the prediction of the two behavioral measures (intelligence and openness). 

This includes patterns obtained when using the region-wise CBPP model, as well as when using 

a whole-brain connectivity matrix with post-hoc evaluation of functional connectivity edges 

contribution. The consistency of these brain patterns across datasets was addressed by 

computing correlation. Finally, in a generalizability perspective, we investigated the similarity 

of the cross-dataset brain patterns derived from a region-wise CBPP when the model is trained 

on one dataset and tested in another dataset, in comparison to the within-dataset brain patterns 

trained or tested using the same dataset. We would here expect that high similarity across 

different train-test datasets pairs reflect a generalizable involvement or contribution of a set of 

regions for the prediction of a given behavioral aspect.   

3.1. Prediction Performance for Fluid Intelligence and Openness 

We first examine the whole-brain model performance and the best region-wise model 

performance for each psychometric variable (figure 2). Each box shows the distribution of 

prediction accuracies across the 5 different atlases used. For each atlas, the best region-wise 

model represents the highest prediction accuracy achieved by region-wise models using that 

atlas. Numerically, the best whole-brain model prediction accuracies were 𝑟 =

0.21, 0.24, 0.39, 0.31, 0.13 for HCP-YA fluid intelligence, HCP-YA fluid cognition, HCP-A 

fluid cognition, eNKI-RS WASI-II intelligence and GSP Shipley IQ, respectively, while the 

best region-wise accuracies were 𝑟 = 0.20, 0.25, 0.30, 0.25, 0.14. For the openness measure, 

the best whole-brain accuracies were 𝑟 = 0.18, 0.28, 0.04, 0.20 for HCP-YA, HCP-A, eNKI-
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RS and GSP respectively, while the best region-wise accuracies were 𝑟 =

0.20, 0.24, 0.15, 0.18. With the exception of the GSP Shipley IQ and eNKI-RS openness, most 

of the psychometric variables were predicted with accuracies similar to existing studies (Smith 

et al. 2016; Noble et al. 2017; Dubois et al. 2018a; Dubois et al. 2018b; Li et al. 2019; Pervaiz 

et al. 2020; Wu et al. 2021; Kong et al. 2021). 

 

Figure 2. Prediction accuracies (Pearson’s correlation between predicted and observed values) for 

each psychometric variable using the whole-brain model (white boxes) and best region-wise model 

(black boxes) with different atlases. For each psychometric variable and each atlas, only the region-

wise model with the highest prediction accuracy (i.e., the best region-wise model) was included. 

Black bars inside the boxes represent the median accuracy value across different parcellations. 

 

3.2. Region-wise CBPP Patterns  

First, we present the prediction patterns for the region-wise CBPP models, shown as prediction 

accuracy distribution maps. Figures 3 and 4 shows the prediction accuracy distribution maps 
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for the fluid intelligence and openness measures respectively. When analyzing these prediction 

patterns, we focus on the relative comparisons of prediction accuracies between different 

parcels, for each psychometric variable separately. 

For the HCP-YA fluid intelligence measure, different prediction patterns were observed when 

different parcellations were used. For predictions using the AICHA atlas, better performing 

parcels were identified in the left precuneus and right anterior cingulate cortex. For predictions 

using the Schaefer-Melbourne atlas, across granularities, better performing parcels were mostly 

in the left supramarginal gyrus, right temporal cortex, and left and right precuneus. For the 

HCP-YA fluid cognition measure, better performing parcels were generally found in the left 

and right occipital lobe, left and right anterior insula, left and right anterior and posterior 

cingulate cortex, left and right supramarginal gyrus, and right prefrontal cortex. For the HCP-

A fluid cognition measure, many parcels achieved predictions accuracies of 𝑟 > 0.2, spanning 

across the prefrontal cortex, cingulate cortex, lateral temporal lobe, occipital lobe, 

supramarginal gyrus, precuneus, and anterior insula. For the eNKI-RS WASI-II intelligence 

measure, the prediction patterns were rather similar to the patterns for the HCP-YA fluid 

cognition measure, with better performing parcels additionally identified in the right temporal 

lobe and left hippocampus body. For the GSP Shipley IQ measure, prediction accuracies were 

generally low across the brain. Overall, by visual inspection, some similarities can be observed 

between the HCP-YA fluid cognition, HCP-A fluid cognition, and eNKI WASI-II intelligence 

measure. 

To validate the robustness of the prediction patterns for fluid cognition, we derived the 

prediction patterns using EN as well (Figure S2). While some differences could be observed 

between patterns using SVR and EN, we could identify the same sets of better performing 

parcels in both patterns for each fluid cognition measure. The similarity between HCP-YA 

fluid cognition, HCP-A fluid cognition, and eNKI WASI-II intelligence measure remains. 
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Overall, we found the region-wise prediction patterns consistent across the two regression 

algorithms used, SVR and EN. 

To validate the specificity of the prediction patterns for fluid cognition, we also derived the 

prediction accuracy distribution maps for the crystallized cognition composite score in the 

HCP-YA and HCP-A cohorts (Figure S3). For the HCP-YA fluid cognition and crystallized 

cognition, better performing parcels were found in the left and right anterior and posterior 

cingulate cortex, left and right supramarginal gyrus, and right prefrontal cortex, in both cases. 

However, some unique better performing parcels were also identified for fluid cognition and 

crystallized cognition. For the HCP-A cohort, many parcels achieved prediction accuracies of 

𝑟 > 0.2 for both fluid cognition and crystallized cognition. 

Regarding the openness measures, first we note that the prediction accuracies were generally 

low for the eNKI-RS data. For the HCP-YA and GSP cohorts, the better performing parcels 

are few and sparse. Accordingly, very little similarity could be observed across datasets. For 

the HCP-YA openness measure, the relatively better performing parcels were found in the left 

and right prefrontal cortex, left and right anterior and posterior cingulate cortex, and left and 

right insula. For the HCP-A openness measure, the relatively better performing parcels were 

found in the left and right prefrontal cortex, right anterior cingulate cortex, left and right 

posterior cingulate cortex, left and right posterior temporal lobe, left and right temporal pole, 

and left and right precuneus. For GSP openness measure, the relatively better performing 

parcels were found in the left and right parietooccipital sulcus when using the AICHA atlas, 

and in the right ventral posterior temporal lobe when using the Schaefer-Melbourne atlas. 

Overall, little similarity was found across openness prediction patterns from different cohorts. 

To quantitatively assess the similarity between the prediction patterns, we computed the 

correlation between the prediction accuracy distributions of each pair of psychometric 
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variables, averaged across different parcellations (Figure 5). The correlation values were low 

to moderate (𝑟 = 0 − 0.40). Relatively, the higher consistencies were found between the two 

HCP-YA fluid intelligence measures, between HCP-YA and HCP-A fluid cognition measures, 

between these two (HCP-YA and HCP-A fluid cognition measures) and eNKI-RS WASI-II 

intelligence, as well as between HCP-A fluid cognition and openness measures. Overall, the 

highest similarity was found between HCP-YA and HCP-A fluid cognition measures, which 

are also the two most similar fluid cognition measures in terms of psychometric tools used. 

To summarize, using a region-wise CBPP approaches within each dataset, a certain degree of 

replicability of the brain pattern was mainly observed for intelligence measures, while openness 

can hardly be predicted in some datasets and show poor replicability of brain patterns across 

datasets.  
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Figure 3. Prediction accuracy distribution maps of (A) HCP-YA fluid intelligence, (B) HCP-YA fluid 

cognition, (C) HCP-A fluid cognition, (D) eNKI-RS WASI-II intelligence, and (E) GSP Shipley IQ. 

Within each section, each row shows the prediction accuracy distribution overlaid on a parcellation 

used in region-wise CBPP prediction, in lateral and medial views of the left and right cortical 

hemispheres, as well as the bottom and top views of the subcortical regions. Color represents the 

magnitude of the prediction accuracies (Pearson correlation between predicted and observed values). 

Accuracies below 0.05 and non-significant accuracies are shown in gray. 
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Figure 4. Prediction accuracy distribution maps of (A) HCP-YA openness, (B) HCP-A openness, (C) 

eNKI-RS openness, and (D) GSP openness. Within each section, each row shows the prediction 

accuracy distribution overlaid on a parcellation used in region-wise CBPP prediction, in lateral and 

medial views of the left and right cortical hemispheres, as well as the bottom and top views of the 

subcortical regions. Color represents the magnitude of the prediction accuracies (Pearson correlation 

between predicted and observed values). Accuracies below 0.05 and non-significant accuracies are 

shown in gray. 
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Figure 5. Correlation between prediction accuracy distributions of each pair of psychometric variables, 

averaged across parcellation choices. 

 

3.3. Whole-brain CBPP Patterns 

For the whole-brain CBPP models, we present the prediction patterns derived using the Haufe 

transformation. Figures 6 and 7 shows the Haufe transformed patterns for the fluid intelligence 

and openness measures respectively. To avoid visual clutter, only the top 0.05% edges by z-

score normalized absolute values for each psychometric variable and each parcellation were 

shown. Visual inspection showed that little similarity could be found between Haufe 
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transformed patterns between any pair of psychometric variables, or across different 

parcellations for the prediction of the same psychometric variable. 

To quantitatively assess the similarity, or dissimilarity, between the Haufe transformed 

patterns, we computed the correlation between the activation values of each pair of 

psychometric variables, averaged across different parcellations (Figure 8). Very low similarity 

was found between any pair of psychometric variables, although a negative correlation was 

found between the activation values for GSP Shipley IQ measure and those for GSP openness 

measure.  

 

Figure 6. Haufe transformed patterns of HCP-YA fluid intelligence, HCP-YA fluid cognition, HCP-A 

fluid cognition, eNKI-RS WASI-II intelligence and GSP Shipley IQ respectively. Each row shows the 

patterns for predictions using one specific parcellation. In each plot, only significant edges with the top 

0.05% z-score normalized absolute values were shown, with positive edges shown in red and negative 

edges in blue. 
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Figure 7. Haufe transformed patterns of HCP-YA, HCP-A, eNKI-RS and GSP openness measures 

respectively. Each row shows the patterns for predictions using one specific parcellation. In each plot, 

only significant edges with the top 0.05% z-score normalized absolute values were shown, with positive 

edges shown in red and negative edges in blue. 
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Figure 8. Correlation between Haufe transformed patterns of each pair of psychometric variables, 

averaged across parcellation choices. Colors were assigned based on the absolute correlation value, 

since the signs of the Haufe transformed values can be arbitrary. 

 

3.4. Cross-dataset Generalizability 

The prediction accuracy distribution maps for cross-dataset predictions from the 3 pairs of 

datasets are shown in figure 9 (using the AICHA atlas) and figure S4 (using the Schaefer-

Melbourne atlases). The within-dataset prediction patterns are shown in the diagonal spots for 

comparison. In general, the prediction accuracies in cross-dataset predictions (with best region-

wise prediction accuracies in the range 𝑟 = 0.17 − 0.25) were lower compared to the within-

dataset predictions (with best region-wise prediction accuracies in the range 𝑟 = 0.25 − 0.30). 
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To facilitate comparison of patterns, the color scales were adjusted and hence are different from 

those for within-dataset prediction patterns.  

For most cross-dataset prediction patterns, some similarity can be observed in comparison with 

the within-dataset prediction patterns using the same test set. For the HCP-YA fluid cognition 

measure (i.e., using the HCP-YA data as test set), both cross-dataset and within-dataset models 

(figure 9 top row) showed better performing parcels in the right anterior insula, left and right 

anterior cingulate cortex and right supramarginal gyrus. For the HCP-A fluid cognition 

measure (i.e. using the HCP-A data as test set), both cross-dataset and within-dataset models 

(figure 9 middle row) showed better performing parcels in the left lateral prefrontal cortex, left 

and right cingulate cortex, left and right lateral temporal lobe, left and right supramarginal 

gyrus, left and right precuneus and left and right anterior insula. For the eNKI-RS WASI-II 

intelligence measure (i.e., using the eNKI-RS data as test set), the cross dataset models trained 

on HCP-A data and the within-dataset models (figure 9 bottom row, middle and rightmost 

columns) showed better performing parcels in left medial prefrontal cortex and right middle 

cingulate cortex. 

Figure 10 shows the correlation between the prediction accuracy distributions of both within-

dataset and cross-dataset predictions for these fluid intelligence measures. Overall, cross-

dataset prediction patterns were still similar, to some extent, to the within-dataset prediction 

patterns of each fluid intelligence measure respectively. For most cross-dataset prediction 

pattern, the correlation to the within-dataset prediction pattern using the same test set is higher 

than the correlation to the within-dataset prediction pattern using the same training set. Finally, 

the cross-dataset prediction patterns are more similar to other cross-dataset prediction patterns 

using the same pair of datasets than to any within-dataset prediction pattern. For instance, the 

most similar pair of prediction patterns are between the cross-dataset prediction patterns using 

the HCP-YA and HCP-A datasets, but swapping the training and test set (𝑟 = 0.76). 
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By evaluating region-wise CBPP models in out-of-sample test sets, a certain degree of 

generalizability of the prediction models could be observed (𝑟 = 0.13 − 0.52), especially 

when the brain prediction patterns were compared to the within-dataset patterns where the same 

test set was used (𝑟 = 0.24 − 0.52). Notably, the highest similarity between prediction patterns 

was observed when two models are trained and tested on the same pair of datasets (𝑟 =

0.66, 0.50, 0.38).  

 

Figure 9. Prediction accuracy distribution maps of within-dataset and cross-dataset predictions using 

the AICHA atlas, arranged according to the training set and test set involved. Each plot shows the 

prediction accuracy distribution overlaid on the AICHA atlas, in lateral and medial views of the left and 

right cortical hemispheres, as well as the bottom and top views of the subcortical regions. Color 

represents the magnitude of the prediction accuracies (Pearson correlation between predicted and 

observed values). Accuracies below 0.05 and non-significant accuracies are shown in gray. 
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Figure 10. Correlation between within-dataset and cross-dataset prediction patterns of HCP-YA fluid 

cognition, HCP-A fluid cognition, and eNKI-RS WAISI-II intelligence. Each box shows the Pearson’s 

correlation between one pair of prediction patterns, average across all 5 atlas options. 

 

4. Discussion 

To investigate the replicability of connectivity-based psychometric prediction (CBPP) patterns 

across distinct population neuroscience cohorts, we compared the prediction performance and 

prediction patterns based on whole-brain and region-wise CBPP models for two psychometric 

variables in four separate large datasets. Similar prediction accuracies can be achieved in most 

cases. However, low similarity in prediction patterns was observed across datasets, illustrating 

the difficulty in cross-cohort replicability of brain prediction patterns. Similarly, 
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generalizability of prediction models trained on one dataset to a new dataset could only be 

achieved to a low to moderate extent. In our examination of replicability of prediction patterns, 

we noted higher similarity between the region-wise prediction patterns of the HCP-YA fluid 

cognition measure, the HCP-A fluid cognition measure, and the eNKI-RS WASI-II intelligence 

measure, suggesting potential replicability for intelligence measure. In addition, our analysis 

demonstrated the usefulness of the region-wise CBPP approach (Wu et al. 2021) for comparing 

prediction results based on brain-behavior association patterns. Due to the inherent low 

psychometric prediction accuracies based on RSFC, focusing on a set of parcels with relatively 

higher prediction accuracies may be helpful for both the power and the generalizability of an 

analysis. 

4.1. The HCP-YA Cohort as an overoptimistic benchmark 

Many existing studies showed similar prediction accuracies in the range of 0.2 to 0.25 for fluid 

intelligence and the openness trait in the HCP-YA cohort (Smith et al. 2016; Noble et al. 2017; 

Dubois et al. 2018a; Dubois et al. 2018b; Li et al. 2019; Pervaiz et al. 2020; Wu et al. 2021; 

Kong et al. 2021). However, our results demonstrated that similar accuracies should not be 

assumed to be achievable in other cohorts. As the HCP-YA dataset contains a large sample of 

high-quality imaging data (long scan durations, short TR and high resolution) which is often 

not available in other datasets, it may not be advisable to use the accuracy values reported for 

the HCP-YA cohort as benchmarks for other cohorts. Because the majority of existing CBPP 

studies made use of the HCP-YA cohort; the reported prediction accuracies from these studies 

may lead to overoptimistic expectations of prediction performance for future studies. Such 

expectations may indirectly lead to some form of hacking, in order to match such expectations, 

which in turn would maintain and further contribute to unrealistic expectations with regards to 

performance. We would hence here suggest that underperforming results may be reported in 

reference to the characteristics of the cohort(s). 



34 

 

4.2. Replicability of Brain Prediction Patterns for Fluid Cognition and 

Openness Predictions 

Furthermore, similar prediction accuracies do not imply that similar interpretation can be made 

based on the prediction model. For instance, while personality traits scores are generally 

thought to be stable within individuals (Murray et al. 2003; McCrae and Costa 2004; Dubois 

et al. 2018a), the non-revised NEO-FFI openness score (Costa and McCrae 1992; used in the 

GSP cohort) may suffer from lower reliability and lack of congruency in distinct samples 

(Caruso 2000; Egan et al. 2000).  In our case, even though we achieved similar prediction 

accuracies for HCP-YA openness, HCP-A openness and GSP openness, we did not find similar 

prediction patterns between predictions of these three measures. In contrast, for the fluid 

cognition measure, we have observed some similarity in prediction patterns between HCP-YA, 

HCP-A and eNKI-RS cohorts, with moderate correlations (𝑟 = 0.31 − 0.35). Overall, our 

results suggested better replicability from test performance measures like fluid cognition than 

self-reported measures like openness, when different versions or types of measurement were 

used across cohorts.  

For fluid cognition prediction, for which some similarity was observed between the prediction 

patterns of HCP-YA fluid cognition, HCP-A fluid cognition and eNKI-RS WASI-II 

intelligence, we demonstrated that a subset of the within-dataset prediction patterns could also 

be replicated with cross-dataset predictions. This convergence may reveal the common brain 

regions related to fluid cognition, namely the right prefrontal cortex, the right anterior insula, 

left anterior cingulate cortex and right supramarginal gyrus, when considering all three cohorts. 

The prefrontal cortex, anterior cingulate cortex and supramarginal gyrus have been identified 

as neural correlates for fluid intelligence using task-based fMRI, possibly involved in 

attentional control, executive control, and visualization (Kane and Engle 2002; Gray et al. 

2003; Preusse et al. 2011; Ebisch et al. 2012; Santarnecchi et al. 2021). Furthermore, the right 
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prefrontal cortex and right inferior parietal cortex have been identified to be associated with 

fluid intelligence in lesion studies, possibly involved in working memory and spatial processing 

(Roca et al. 2010; Barbey et al. 2013). All four regions have been identified as core functional 

hubs in network analyses (van den Heuvel and Sporns 2013), and hence may be related to 

efficiency of information processing in general. These regions were also observed to have 

higher interindividual variability, with frequent reports of associations between their FC 

measures and individual differences across different cognitive domains (Mueller et al. 2012). 

Following these observations, it may be recommended to focus on these key regions when the 

number of predictive features has to be limited, not only specifically for fluid intelligence 

prediction, but also for behavioral phenotype in general, as these regions represent crucial hub 

for which interindividual variability importantly matters.  

4.3. Generalizability of Prediction Models 

Many studies assessed the generalizability of their prediction models by applying them to a 

new cohort (Rosenberg et al. 2016; Beaty et al. 2018; Jiang et al. 2018; Avery et al. 2020; Jiang 

et al. 2020; Speer et al. 2022). In most cases, the generalizability of the developed prediction 

model seems promising. However, our results suggest that the generalizability of models may 

be less optimistic when assessed using the region-wise prediction patterns.  

Varying degree of similarity was observed between cross-dataset prediction patterns and their 

corresponding within-dataset prediction patterns (𝑟 = 0.16 − 0.53) in this study. Overall, the 

higher correlations and visual similarity were observed between cross-dataset prediction 

patterns and within-dataset prediction patterns using the same test set. In contrast to our initial 

speculation, prediction patterns seem to depend more on the brain-behavior association in the 

test data than in the training data. It is possible that, in cross-dataset predictions, the final 

prediction pattern indicates an overlap of the specific brain-behavior association patterns in the 

training set and those in the test set. As the final prediction pattern was generated in the test 
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set, the brain-behavior association patterns specific to the test set may be more prominently 

observed, hence the higher similarity to the within-dataset prediction pattern generated using 

the same test set. Moreover, the highest similarity was observed between cross-dataset 

prediction patterns using the same pair of datasets but swapping the training and test set. In this 

case, both prediction patterns would be relating to the overlap of specific brain-behavior 

association patterns in the same two sets of data, hence the high similarity. Indeed, the most 

similar pair of cross-dataset prediction patterns used the HCP-YA and the HCP-A datasets, 

where most similar data collection protocols were used, where more overlap in brain-behavior 

association patterns may be expected.  

Finally, for both the reliability and generalizability analyses, our findings are mostly consistent 

across granularity, except at the 116-parcel level where pattern similarities were generally 

lower (see figure S5). Thus, our results would tend to suggest that higher granularities (≥200) 

offer better representations of features for machine learning approaches, in line with previous 

studies (Arslan et al. 2018; Varikuti et al. 2018).  

4.4. A Possible Effect of Data Collection and Processing Protocols on 

reliability and generalizability 

From our findings of the highest similarity between the cross-dataset prediction patterns being 

observed for the HCP-YA and the HCP-A datasets, we suggest that data collection and 

processing protocols may be the most influential factor in cross-cohort replicability and 

generalizability. It should be acknowledged, however, that comparison between different 

datasets is not straightforward, and that differences in prediction accuracies or patterns could 

not attributed to any specific factor with certainty. As this work is focused on assessing the 

extent of replicability and generalizability of prediction patterns, our results were limited in 

finding the exact causes for the lack of replicability or generalizability. Future work with 

methods specifically designed would be required to identify the actual causes. Potentially, 
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several factors influencing the prediction accuracies or patterns could be suggested for further 

investigation, including the differences in psychometric test implementation, sample 

characteristics, imaging protocols and data quality across the different cohorts.  

For the GSP cohort, the shorter time series may have undermined both the prediction accuracies 

and interpretation based on prediction patterns. Scan duration and number of scans have been 

reported to influence the reliability of RSFC (Mueller et al. 2015; Shah et al. 2016; Noble et 

al. 2017; Noble et al. 2019), which could in turn affect the predictive power of the derived FC 

features. A previous study has also shown that prediction accuracies in GSP were lower than 

those in HCP-YA across multiple behavior phenotypes, not only for fluid cognition and 

openness (Li et al. 2019). Thus, altogether these findings may suggest that the length of the 

time series may play an important role in the reliability and validity of the connectivity-based 

prediction of behavioral phenotype in healthy populations.  

One potential factor not investigated in this work is the sample size, which is less concerning 

when large open datasets and the easy-to-acquire resting-state data are used. However, in 

studies using recruited subjects or task-based fMRI (Beaty et al. 2018; Christov-Moore et al. 

2020; Kwon et al. 2021; Speer et al. 2022), sample sizes tend to be much smaller. Most self-

recruited sample includes fewer than 100 subjects and may suffer from shorter scan duration 

(Yeung et al. 2022). While some task-based fMRI samples include more than 100 subjects, the 

reproducibility of the analysis may still suffer if the amount of data for each subject is 

insufficient (Turner et al. 2018; Nee 2019).  

4.5. Region-wise Models for Brain Prediction Pattern Analysis and 

Identification of Key Predictive Regions 

The prediction accuracy distribution maps based on region-wise models (Wu et al. 2021) were 

particularly useful in our analysis, as it allows comparisons to be made with direct reference to 

brain regions’ contributions to the prediction of each psychometric variable. In contrast, the 
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Haufe transformed patterns were harder to interpret. As there is little similarity between the 

Haufe transformed patterns from different atlases or cohorts, we were not able to identify a 

representative pattern for any psychometric variable based on the Haufe transformed weights. 

It should be noted that how well the Haufe transformed patterns captured the true brain-

behavior relationships is mostly dependent on the accuracy of the backward regression model 

(Haufe et al. 2014). As the part of variance in psychometric variables in healthy adult 

population that can be explained by interindividual variability in RSFC is limited, the field of 

CBPP inherently suffers from low prediction performance. Therefore, the validity of the 

regression weights themselves, based on models with low predictive power, may be 

questionable, further limiting analyses relying on interpreting these weights. While it has been 

shown that the transformation improves the robustness of the weight patterns in comparison to 

using regression weights directly (Chen et al. 2022), it has been also shown that the Haufe 

transformed weights themselves generally have poor reliability (Tian and Zalesky 2021). Our 

results hence converged with previous findings by revealing the poor reliability of the Haufe 

transformed patterns.  

Several other studies have also investigated the replicability of feature importance under the 

framework of Connectome Predictive Modelling (CPM). As the CPM process selects features 

most correlated with the prediction target based on the training set, the group of selected 

features can be considered a representation of prediction pattern too. A pattern consisting of 

features selected in all cross-validation splits can be used to infer brain-behavior association 

pattern (Jiang et al. 2018; Jiang et al. 2020). Nevertheless, this feature selection has been shown 

to be unstable even in the same dataset across cross-validation splits (O’Connor et al. 2021). 

More research would be required to assess the extent to which these selected features can be 

related to the underlying brain-behavior association. 
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Despite the overall low prediction accuracies, the region-wise accuracy distribution maps allow 

researchers to easily identify and hence focus on the important regions for the psychometric 

variable in question. From a general and technical perspective, the optimal number of features 

for the highly correlated RSFC features in a dataset of 𝑁 subjects would be √𝑁 (Jain and 

Waller 1978).  As a result, studies with relatively small sample sizes, for instance, studies using 

clinical population or locally acquired datasets have to select a low number of features. This is 

usually done by focusing on canonical networks (such as the default mode network or the 

cognitive control network) derived from task-fMRI meta-analysis or RSFC network atlases 

(Nostro et al. 2018; Chen et al. 2020; Plaeschke et al. 2020). Nevertheless, such approaches are 

prone to neglecting potentially relevant regions because those where not highlighted in 

activation studies or not included in the selected RSFC network. These regions may, 

nonetheless, be involved in information processing and cognitive processes in general, or have 

high interindividual variability in terms of the features used for prediction, such as the three 

regions identified in our fluid cognition predictions. In this context, the region-wise CBPP 

approach can help to select a set of key regions in a data-driven fashion. 

Nonetheless, the utility of the region-wise CBPP approach for feature selection is dependent 

on, and limited by, the generalizability of the region-wise prediction patterns. Key regions for 

predicting a psychometric variable may be identified by selecting the better performing brain 

regions in the prediction patterns. However, in order to use these key regions in the smaller 

sample of interest, the predictive model based on these regions need to be generalizable to the 

new sample. Overall, our results suggested limited generalizability of region-wise prediction 

patterns, although a small set of key regions did show decent generalizability. Therefore, the 

prediction patterns derived from the region-wise approach should be interpreted with caution. 

The key regions identified may serve as a general guidance to select the regions of interest, but 

not always applicable directly to new cohorts. 
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It should be noted that the comparison between the Haufe transformation and the region-wise 

approach was only discussed in relation to brain prediction pattern analysis. As our focus was 

on assessing the replicability and generalizability of prediction patterns, we used the same 

linear model for all approaches to make them more comparable. Therefore, our results were 

not indicative of the predictive power of the region-wise approach or the whole-brain approach. 

In cases where the focus is on maximizing prediction performance, the whole-brain approach 

should be preferred. As demonstrated in our previous work (Wu et al. 2021), implementing 

region-wise models in addition to the whole-brain model can help to bring additional insights 

into the relevant brain-behavior association. As the whole-brain and region-wise approaches 

address different objectives and applications of connectivity-based prediction, they appear as 

two complementary rather than competitive approaches for the field. 

4.6. Conclusion 

To conclude, we examined the convergence and divergence of connectivity-based 

psychometric prediction patterns across four distinct population neuroscience cohorts. While 

similar prediction accuracies could be achieved for several fluid intelligence and NEO-FFI 

openness measures across cohorts, the prediction patterns could not be replicated across cohorts 

in many cases. In the case where the prediction patterns were partly replicated for the prediction 

of fluid cognition across HCP-YA, HCP-A and eNKI-RS cohorts, we further demonstrated that 

some extent of cross-dataset generalizability could be achieved. Accordingly, making use of a 

region-wise CBPP approach, we revealed a set of common brain regions potentially involved 

in fluid cognitive ability, hence demonstrating that region-wise CBPP could provide regions of 

interest in a data-driven way for future studies in smaller cohorts to focus on. In view of our 

results, we caution researchers to not be overoptimistic in replicating brain-behavior 

relationships discoveries in distinct cohorts. While many large population neuroimaging 

datasets are now available, predictive models and the corresponding brain-behavior association 
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patterns identified based on such datasets could still only represent a small portion of the 

general population. Generalizing these models and patterns to the general population may 

remain a challenge for a long time.  
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