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Abstract
Crop models have evolved over the past decade to incorporate more soil-related processes. While this may open avenues to
support farmers regarding fertilization practices, it also widens the pitfalls related to model parametrization. Open-access
georeferenced soil databases are often a solution for modelers to derive soil parameters. However, they can potentially add to
model uncertainty depending on database resolution and the variability of the characteristics it contains. Fertimap is an online
spatial database recently released in Morocco. In this study, we aim at assessing how Fertimap could support the use of crop
model in the rainfed wheat production areas of Morocco. Data including local soil analysis, farmers’ practices, wheat biomass,
and yield were collected on 126 farmers’ fields distributed across the rainfed wheat production area in Morocco from 2018 to
2020. Data were first used to parameterize, calibrate, and assess the model, using site-specific data to infer soil parameters. Then,
the impact of soil data source on model uncertainty was assessed by rerunning the simulations while using alternatively locally
measured soil inputs or inputs extracted from Fertimap. To disentangle the effect of data source frommodel sensitivity on model
outputs, the model’s sensitivity to labile phosphorus, pH, and organic carbon parameters was also tested. The APSIM-wheat
model was found to reasonably simulate wheat phenological stages, biomass, and yield. The comparison of model outputs using
one or another source of soil data indicated that using Fertimap had no significant effect on the model’s outputs. This study
provides the first assessment of the APSIM-wheat model for simulation of widely used wheat cultivars in Moroccan rainfed
areas. It is also the first proof of the practical utility of Fertimap database for modeling purposes in Morocco. This preliminary
study delivers a robust basis for model-assisted agricultural advising to take off in Morocco.
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1 Introduction

Soil degradation, low inputs of fertilizers, and suboptimal
management of pests and diseases escalate the effect of water

shortage—the most vital factor for agriculture in Morocco—
on cereal production in Moroccan rainfed areas, threatening
rural livelihoods and the country’s food security (Balaghi et al.
2013; IPCC 2014). Within the second leg of the national ag-
ricultural development plan in Morocco (Plan Maroc Vert
2008–2018) (MAPMDREF 2020a), a major research and de-
velopment effort was made to improve wheat production in
Moroccan rainfed areas (Singh et al. 2009). To continue this
effort, appropriate tools are needed to provide farmers with
appropriate pre-season and in-season advice for an efficient
management of limiting resources, and narrow the gap to wa-
ter limited potential yield in rainfed areas of Morocco
(Shroyer et al. 1990; Jlibene 2009; Attia et al. 2021).

Crop simulation models are useful tools that provide in-
sight in order to understand the interactions between crop
genotype, crop management systems, and soil components
and their dynamics (mainly water, carbon and nutrients) as
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affected by climatic conditions (Hoogenboom et al. 2004;
Asseng et al. 2013; Yan et al. 2020). They can support rec-
ommendations for appropriate crop management practices
(Mohanty et al. 2012; Ahmed et al. 2016). The Agricultural
Production Systems Simulator (APSIM) (Keating et al. 2003)
is among the most widely used models according to the liter-
ature. APSIM-wheat, the wheat version of the APSIM model,
has allowed an increased understanding of wheat cropping
system functioning and improved management practices for
wheat crops, such as nitrogen management (De Silva et al.
2021; Berghuijs et al. 2021), phosphorus management
(Wang et al. 2014), irrigation management (Chen et al.
2010a; Balwinder-Singh et al. 2011), adjusting sowing dates
(Zhang et al. 2012; Hussain et al. 2018), and choosing culti-
vars and breeding (He et al. 2017; Kawakita et al. 2020). This
model has been widely used to estimate potential yield and
actual yield gap, as well as to assess and recommend optimal
wheat management practices under limited soil and climate
conditions, and to estimate wheat yield in various countries
with a Mediterranean climate: Australia (Keating et al. 2003),
Tunisia (Bahri et al. 2019), Spain, and Italy (Berghuijs et al.
2021).

Running crop models to simulate specific situations re-
quires site- and crop-specific data on climate, soil, crop
management, and cultivar characteristics to parameterize,
calibrate, and evaluate the model under local conditions
prior to actual use (Ahmed et al. 2016; Boote et al. 2016).
Parametrization, calibration, and evaluation require large
amounts of data that can be highly costly and time-
consuming to acqu i re th rough exper imenta t ion
(Makowski et al. 2006; Hsiao et al. 2009; Varella et al.
2010), especially for simulations that cover many different
environments. Increasing awareness about the impact of
soil health and fertility on plant growth has led researchers
to complexify models to integrate more below-ground
mechanisms and interactions, such as phosphorus or potas-
sium availability to plants (Delve et al. 2009; Wang et al.
2014; Scanlan et al. 2015). This trend unavoidably results
in a larger number of soil and plant parameters. Values for
soil parameters can be difficult to acquire, which adds more
uncertainty to model outputs (Sinclair and Seligman 1996).
Ideally, parameter values for soil or plants should be mea-
sured locally, but most frequently soil parameters are esti-
mated from the literature, inferred from proximal situations,
and/or calibrated to minimize the error between observed
and simulated model outputs on a limited number of trials.
Consequently, parameter estimation is responsible for a
non-negligible part of model uncertainty (Monod et al.
2006). In many modeling studies conducted over large geo-
graphic areas, existing meteorological or soil databases
were considered for a direct acquisition of model input pa-
rameters (Rigolot et al. 2017; Ojeda et al. 2018; Elli et al.
2020; Liu et al. 2020). The databases’ accuracies, spatially

or temporally (Seidel et al. 2018), may impact the simula-
tion results depending on model sensitivity to the corre-
sponding parameters. Little has been done so far to quantify
the share of uncertainty on soil input sourced from spatial
database within overall model uncertainty. The OCP group
(Cherifian Office of Phosphates) in collaboration with the
agronomic research institutions consortium and the
Moroccan Ministry of Agriculture and Maritime Fisheries
has developed the Moroccan soil fertility map, “Fertimap”
(http://www.fertimap.ma/map.html). The Fertimap
database was constructed from more than 32 000 soil
samples collected from different regions of Morocco
during the last decade and analyzed for different soil
fertility parameters (Fig. 1). Interpolation with a kriging
algorithm has been used to establish the full raster map
from individual observation points. The Fertimap database
could be used in research modelling as a resource for deter-
mining soil input parameters. However, some of the soil
parameters recorded in Fertimap vary significantly over
time, from one season to another. It is therefore necessary
to perform for a first assessment of the impact of using the
Fertimap database on model accuracy and to estimate mod-
el sensitivity to the provided soil parameters in the Fertimap
database.

In the present study, we propose to assess the impact of
sourcing soil parameters from spatialized soil database on
model outputs and recommendations that can be driven from
simulations. In this perspective, we have assessed the rele-
vance of using the Fertimap database to provide inputs for
APSIM-wheat when simulating wheat management scenarios
in Moroccan rainfed areas. We proceeded through a three
step-approach, estimating (i) the capacity of the APSIM-
wheat model to accurately reproduce observed phenological
stages, growth state variables, and final yield, but also soil
water content (a state variable that is a determinant for plant
growth in rainfed areas); and (ii) the effect of using Fertimap
data instead of local- and time-specific soil analysis data on
APSIM-wheat model accuracy.

2 Materials and methods

2.1 Study area

Data were collected throughout the crop cycle on 126 farmers’
wheat fields during three cropping seasons (2018/2019,
2019/2020, and 2020/2021) across the entire area for rainfed
wheat production in Morocco (Fig. 2). The complete database
was obtained by combining fieldsmonitored within the frame-
work of the “SoilPhorLife” project during 2019/2020 and
2020/2021 cropping seasons, and farmers’ fields monitored
by OCP’s Al-Moutmir program during 2018/2019,
2019/2020, and 2020/2021 cropping seasons.
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Farmers’ fields were evenly and randomly selected
across four climate areas (Fig. 2), based on the Strategy
for the Conservation and Restoration of Agricultural Land
(ISCRAL) zoning developed by the FAO: favorable rainfed
areas (i.e., precipitation > 400 mm), intermediate rainfed
areas (i.e., 300–400 mm), unfavorable rainfed areas (i.e.,
precipitation < 300 mm), and mountain rainfed areas.
Hence, the final field sample covered a diversity of climatic
conditions, soil types, and most importantly different crop
management strategies (i.e., cultivars, sowing dates and
densities, fertilization, etc.).

Only five different winter wheat cultivars, considered the
most widely used in Moroccan rainfed areas, were planted by
farmers on these 126 fields: BANDERA, RADIA, FAIZA,
ARREHANE, and ACHTAR. Farmers’ choices for wheat va-
rieties were based, essentially, on local recommendations for
the given climate area and the availability of seeds on the
market.

2.2 Crop and soil monitoring in the field

Phenological stages, yield, above-ground biomass (AGB),
leaf area index (LAI), and soil water content (SWC) were
monitored on the farmers’ fields. Sampling intensity and ob-
servation protocols varied from one field to another. The mon-
itored fields could be classified into three categories: (i) fields
with a high measurement intensity, where crop (phenological
stages, LAI, and AGB) and soil (SWC) measurements were
taken three to four times in-season at critical wheat growth
stages (i.e., emergence, tillering, elongation, anthesis, and

maturity), in addition to final yield assessment; (ii) fields with
medium measurement intensity where only final yield and
phenological stages were recorded; and (iii) fields with a
low level of measurement where only yield was measured
(i.e., end-season measurements).

AGB was assessed through destructive sampling following
the sampling design of Bazot et al. (2008): at each measure-
ment date, five samples were collected randomly in each field.
For row seeded fields, samples were one linear meter long (0.5
m over two consecutive rows). For fields with broadcast sow-
ing, 0.5 m×0.5 m plots were delimited and sampled. Each
sample was then dried at 70°C for 24 h in a well-ventilated
oven (Bell and Fischer 1994; Mehrabi and Sepaskhah 2020)
and weighed.Wheat yield was measured directly in the field at
harvest (i.e., betweenMay and June depending on the climatic
zone). Five plots of 1 m×1 m were sampled randomly in each
field, according to Bell and Fischer’s (1994) methodology.
Phenological stages were recorded using Zadoks scores
(Zadoks et al. 1974) and averaged over 10 to 20 individual
plants selected across each field using a zig-zag design. LAI
was measured using ceptometer (AccuPAR LP80, Decagon
Devices Inc.), at 10 stations along a zigzag design in each field
at each field visit. SWC was measured in the 0-10 cm top soil
layer at every field visit using a capacitive mobile sensor
(WET sensor device, Delta-T Devices Ltd). The sensor was
calibrated before each crop season using generalized calibra-
tions provided for the most common soil types (Delta-T
2018). In each field and at each visit, 10 to 12 SWC measure-
ments were conducted at different points using a zig-zag
design.

Fig. 1 Fertimap advisor (http://www.fertimap.ma/map.html).
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Fig. 2 Study area map: locations of 126 farmers’ fields that were
monitored during three crop seasons (i.e., 2018/2019, 2019/2020 and
2020/2021) and used to calibrate and evaluate the models. The colors
of filled symbols represent the wheat cultivar. ● ▲ stand for fields

whose data were used for model calibration, ■ stands for fields whose
data were used for model evaluation. Fields were spread across the four
main ISCRAL climate zones for wheat production (Gommes et al. 2009).
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2.3 Model description

The APSIM v. 7.10 crop model was used in this study.
APSIM-wheat simulates wheat growth and development on
a daily time-step on an area basis by responding to the soil
components and wheat management practices, and is driven
by daily weather data (Asseng et al. 2013; Zhao et al. 2014;
Zheng et al. 2015). Crop development was simulated by
APSIM-wheat with 11 principal development stages calculat-
ed from the accumulation of thermal time, vernalization, and
photoperiod sensitivities, and affected by water-nutrient stress
(Chen et al. 2010b; Zhao et al. 2020). For the APSIM-wheat
model, daily biomass accumulation was calculated based on
radiation interception and radiation use efficiency (RUE)
which is limited by soil water and nitrogen stress factors.
The detailed development history of APSIM-wheat was re-
ported in Holzworth et al. (2014).

2.4 Model parameterization: data sources and
calibration procedure

2.4.1 Weather data

Daily weather data for each field and each of the three
cropping seasons were obtained from different data sources.
Daily precipitation and minimum and maximum temperatures
were obtained from ground-based weather stations, either air-
port stations (available on the website www.tutiempo.net) or
weather stations owned by the Regional Offices for
Agricultural Development (ORMVA). For each field,
weather data were inferred from the closest available
ground-based station. Daily global radiation was extracted
from NASA’s Prediction Of Worldwide Energy Resources
(NASA’s POWER project) (https://power.larc.nasa.gov/data-
access-viewer/) by selecting the corresponding grid cell for
each field (grid resolution: 0.5°×0.5°, (Zhang et al. 2008;
Sparks 2018)).

2.4.2 Soil parameters

Soil parameters for APSIM-wheat calibration and evaluation
runs were derived from a combination of on-site measure-
ments, the open access database, and references from the
literature.

Parameters related to the water holding capacity were
mainly derived from several spatialized soil databases.
Soil water thresholds at lower limit of extraction by crops
(LL), drained upper limit (DUL), and saturation (SAT))
were extracted from the “Global High-Resolution Soil
Profile Database for Crop Modeling Applications”
(https://dataverse.harvard.edu/dataset.xhtml?persistentId=
doi:10.7910/DVN/1PEEY0), which contains soi l
parameter values for the APSIM model maintained at a

resolution of 0.083° (i.e., 10 km) (Han et al. 2019; Liu
et al. 2020). Parameters related to soil evaporation dynam-
ics were derived from the “CSIRO protocol for the devel-
opment of APSoil parameter values for use in APSIM”
(Dalgliesh et al. 2016) based on the values for southern
Australia, due to the similarity in soil type between south-
ern Australia and Morocco. The USDA-Soil curve number
technique was used to parameterize soil run-off and the
“CSIRO protocol for the development of APSoil parameter
values for use in APSIM” (Dalgliesh et al. 2016) was used
to estimate soil albedo and diffusivity parameters, depend-
ing on laboratory-determined soil textural classes and crop
type (i.e., wheat). However, bulk density (BD) was mea-
sured in situ: soil samples were collected each famers’ field,
at two depths (soil layer depths sampled depended on soil
development in each field).

Soil parameters related to chemical and mineral character-
istics of soil were all measured in situ in each field. Soil sam-
ples were collected from two layers (layer depths depending
on soil depth in each field) and were analyzed before planting
for organic matter content, pH, labile P, exchangeable K, elec-
tric conductance (EC), soil texture, NH4

+, and NO3
– using

standard procedures.
Finally, parameters related to organic matter dynamics

in soil (i.e., the fraction of labile (fbiom) and inert (finert)
organic matter) were estimated using the soil type ob-
served in the field and following the CSIRO protocol for
the development of ApSoil (Dalgliesh et al. 2016).
Furthermore, as APSIM-wheat integrates the simulation
of phosphorus dynamics in the soil, phosphorus-related
parameters (labile P, P fertilizers (banded and rock P),
C/P ratio) were determined in each field.

2.4.3 Crop management parameters

The crop management inputs used in the APSIM-wheat sim-
ulations were collected on site based on the real crop practices
and strategies recommended by experts and followed by the
farmers. Crop management parameters included previous
crop, tillage date, sowing factors (type, date, depth, row spac-
ing, densities), cultivar, fertilization (application dates, rates
and forms), weed control (weed species, density, and control
application dates), and harvesting date.

2.4.4 Crop parameters

Crop parameters were estimated using field observations.
Specific parameters related to phenology, biomass accu-
mulation, and yield elaboration had to be calibrated for
each of the five cultivars involved in the study. Previous
studies on the global sensitivity analysis of APSIM-wheat
key outputs (phenology, biomass, yield, and leaf area in-
dex) (Zhao et al. 2014; Casadebaig et al. 2014) were
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utilized to distinguish between the influential and non-
influential crop parameters, and to identify the parameters
that required calibration (Table 1). Calibration was con-
ducted using wheat data from two cropping seasons (i.e.,
2018/2019 and 2019/2020). Data collected across farmers’
fields in the four different agroecological areas and over
two climatic years offered a contrasted dataset suitable for
a robust calibration procedure. The comparison of climatic
data for 2018/2019 and 2019/2020 cropping seasons indi-
cated that, over the four agroecological areas, the
2019/2020 season was characterized by low precipitation
and high temperatures compared to the 2018/2019 season.
Cereal production recorded on farmers’ fields during
2019/2020 season significantly dropped by 39% compared
to the previous crop season of 2018/2019 (MAPMDREF
2020b).

The main principle of Boote’s systematic approach
(Boote 1999; Li et al. 2018) was followed to calibrate
APSIM-wheat crop parameters for the five cultivars con-
sidered in this study, using three successive steps as fol-
lows: i) calibration of phenological and growth parameters,
ii) calibration of leaf area parameters, and iii) calibration of
grain yield parameters. Firstly, all crop coefficients were
set using default values for the Australian winter wheat
cultivar REVENUE since it is widely cultivated in
Australian Mediterranean weather conditions, which are
similar to the studied Moroccan rainfed areas. Secondly,
the phenological parameters were adjusted for each of the
five Moroccan cultivars using field observations and local
weather data (see 2.4.a) to estimate the duration of pheno-
logical stages for each cultivar. Thirdly, a manual trial-and-
error method was used to adjust other cultivar parameters
(Table 1) for the five winter wheat cultivars, in order to
minimize the error (estimated by the Root Mean Square
Error, RMSE) between simulated and observed phenolog-
ical stages, AGB, LAI, and grain yield parameters mea-
sured (or observed) during 2018/2019 and 2019/2020
cropping seasons. Fourthly, the consistency of the obtained
parameters with the cultivar characteristics (precocity,
maximum grain weight) as reported in the literature
(Jlibene 2009) was checked and corrected if needed to
avoid over-fitting due to the calibration process. Finally,
P concentration thresholds (i.e., minimum and maximum P
concentrations in plant dry matter) of plant organs at dif-
ferent stages were required as parameters in APSIM-wheat
to activate the phosphorus module. The values of P con-
centration limits were derived from the database of Wang
et al. (2014), which was created using experimental mea-
surements (from Elliott et al. 1997; Rose et al. 2007;
Bolland and Brennan 2008). For other parameters related
to wheat crop (i.e., non-influential cultivar parameters,
wheat-water parameters, wheat-nitrogen parameters,
wheat-radiation parameters, etc.) the default values,

reported in Zheng et al. (2015) and used automatically in
the standard wheat-XML file, were conserved and used in
this study (see Supplementary Materials).

2.5 Model evaluation

Model performances were evaluated by comparing plant
(yield, phenological stages, LAI, AGB) and soil (SWC) vari-
ables as measured in the farmers’ fields during the 2020/2021
growing season (Fig. 2), and the corresponding simulations of
APSIM-wheat.

Root mean square error (RMSE, Eq. 1), normalized root
mean square error (NRMSE, Eq. 2), model efficiency (ME,
Eq. 3), and coefficient of determination (R2) were calculated
to evaluate APSIM-wheat’s capacity to simulate yield, pheno-
logical stages, LAI, AGB, and SWC adequately. The R2 was
determined after modeling a linear regression using SPSS sta-
tistical software (SPSS Inc.).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 xsi−xmi½ �2
r

ð1Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑n

i¼1 xsi−xmi½ �2
r

xm
� 100 ð2Þ

ME ¼ 1−
∑n

i¼1 xsi−xmi½ �2
∑n

i¼1 xmi−xm½ �2 ð3Þ

where xmi are the measured values, xsi are the simulated
values, xm is the mean of the observed values, and n is the
number of observations.

2.6 Assessment of the impact of Fertimap database
uncertainty on APSIM-wheat model output

Fertimap is a spatial soil fertility database of Moroccan agri-
cultural areas developed from 32 000 soil samples collected
from different regions of Morocco during the last decade and
analyzed for different soil fertility parameters. Fertimap advi-
sor gathers four soil parameters for each grid cell, in addition
to soil texture: organic matter content, labile phosphorus con-
tent, potassium content, and pH (averaged over the whole soil
profile). As K availability and its effect on plants are not rep-
resented in APSIM-wheat’s model, the influence of using
Fertimap data to determine soil parameters could be assessed
on the following model parameters: organic carbon, labile P,
and pH.

First, input values for this three parameters when using one
or another source of information were compared. Organic car-
bon, labile P, and pH values from local- and time-specific soil
analyses (averaged over soil layers) conducted in 100 farmers’
fields were compared to their counterparts extracted from the
Fertimap database. RMSE between the two values obtained
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from these two sources were calculated over the 100 farmers’
fields for each of the three parameters.

Second, a simple local sensitivity analysis was conducted
to assess the effect of varying these three soil parameters (i.e.,
organic carbon, pH, and phosphorus) on model output for two
farmers’ fields in contrasting climate and management condi-
tions. The sensitivity analysis was focused on one single mod-
el output: crop yield. Indeed, crop yield was the variable of
interest in this study and the three soil parameters were ex-
pected to influence simulated crop growth variables and even-
tually yield as reported in Attia et al., (2021). Local sensitivity
analysis, which consists in varying the value of a few param-
eters while keeping the others constant, has several defects
including the inability to detect interactions between parame-
ters (Saltelli et al. 2008). To overcome this drawback, we
repeated the sensitivity analysis for two contrasted situations:
one field located in the favorable rainfed area with fertilizer
application, and one field in an unfavorable rainfed area with-
out any fertilizer application.We intended to explore the effect
of weather and wheat management conditions in the studied
farmers’ fields on the results of this sensitivity analysis with
this approach.

For each of the two fields, ranges of uncertainties for OC,
pH, and labile P parameters were determined, using the
Fertimap database, as the limits (minimum and maximum)
of possible parameter values in the climatic zone represented
by each if the two fields (i.e., favorable areas for field (a) and
unfavorable areas for field (b)). Ranges of parameter varia-
tions were therefore defined as follows: for field (a) OC [0.5
to 3.5%], labile P [5 to 50 ppm], and pH [5.5 to 8.5], and for
field (b): OC [0.2 to 1.6%], labile P [5 to 50 ppm], and pH [6.5
to 8.8]. After checking the quasi-linearity of the variation of
simulated yield when varying each input parameter (see
Supplementary Materials), and to better detect the parameters
interaction effect on APSIM-wheat simulated yield, a com-
plete randomized experimental plan was built by varying the
three parameters within their respective possible range at three
equidistant values. All other input parameters were fixed ac-
cording to the field characteristics. Simulations were run for
the 27 possible combinations of values for the three parame-
ters for each field (soil organic carbon, labile P, and pH) and
simulated yield results were analyzed using a one-way ana-
lysis of variance (ANOVA) to assess the effect of each param-
eter on APSIM-wheat model output variability.

Finally, the distributions and medians of simulated yield
and AGB when using Fertimap data were compared to the
simulated results when using time and local-specific soil ana-
lysis data to parameterize the model for 100 farmers’ fields
monitored in this study. A Mann-Whitney U non-parametric
variance test (Mann and Whitney 1947) was performed to
evaluate the difference between model outputs when using
one or another source of data. All the statistical analyses were
executed using the SPSS statistical software (SPSS Inc.).

3 Results and discussion

3.1 Model calibration: effects of rainfed climate
conditions

A good agreement was shown between observed and sim-
ulated values used to calibrate the APSIM-wheat model and
to estimate the cultivars’ genetic coefficients (Table 2). The
calibration of APSIM-wheat provided an accurate predic-
tion of phenological stages for the five cultivars with an
overall RMSE of 4.4 stages (out of 100 stages of Zadoks
growth scale), and NRMSEs ranging between 5 and 16%
depending on the cultivar. Similarly, the overall error on
yield prediction for the five cultivars was within 0.4 t.ha–
1, with variation of the quality of prediction between culti-
vars (NRMSEs between 13% and 23%). Measured AGB
values for the five cultivars were comparable to APSIM-
wheat simulated values with an overall RMSE of 0.8 t.ha–1.

Table 2 APSIM-wheat model calibration results: goodness-of-fit
statistics; using root-mean-square error (RMSE) and normalized root-
mean-square error (NRMSE) indices, after a comparison between
APSIM-wheat simulated and observed Zadok’s phenological stages,
yield (t.ha-1), above-ground biomass (AGB, t.ha-1) and leaf area index
(LAI, m2.m-2).

Calibration data Cultivars RMSE NRMSE

Zadok’s phenological stages Bandera 3.90 8.67

Radia 6.81 16.28

Faiza 2.53 5.53

Arrehane 2.87 6.54

Achtar 3.61 10.40

Overall 4.41 10.33

Final yields Bandera 0.55 13.34

Radia 0.38 21.31

Faiza 0.36 19.23

Arrehane 0.27 23.39

Achtar 0.11 15.27

Overall 0.40 17.30

Above-ground biomass Bandera 0.96 21.40

Radia 1.71 43.70

Faiza 1.19 28.12

Arrehane 0.40 30.13

Achtar 0.40 60.99

Overall 0.83 29.55

Leaf area index Bandera 0.55 19.01

Radia 0.41 50.13

Faiza 0.73 64.96

Arrehane 0.21 38.34

Achtar 0.49 99.93

Overall 0.48 45.58
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In general, calibration results indicated a reasonable esti-
mation of phenological development, biomass, and yield-
related genetic coefficients for the five studied wheat
cultivars.

The LAI predictions were of lesser quality, despite the
model calibration processes. NRMSEs on LAI exceeded
35% for all cultivars except for BANDERA (NRMSE =
19%). Low quality in LAI prediction is a common feature of
modelling studies (DeJonge et al. 2012; Falconnier et al.
2019; Saddique et al. 2019; Attia et al. 2021). A first possible
explanation for this poor prediction of LAI lies to low accu-
racy in LAI measurement. LAI was not measured directly
from destructive sampling but assessed from light interception
measured in the field with a ceptometer, which could result in
overestimation of LAI as light and dry leaves also reduce light
transmission through the canopy as measured by the
ceptometer. However, variations in the quality of LAI predic-
tion between cultivars, fields, and year within the study dataset
indicate that poor LAI simulations could rather from limita-
tions in APSIM-wheat algorithms forMoroccan conditions. In
APSIM-wheat, daily LAI increase is calculated as a function
of the number of nodes; afterwards, several stress factors (wa-
ter stress, N stress, and P stress) apply to potential LAI in-
crease, as well as a carbon stress factor that applies when the
amount of leaf dry matter produced on the preceding day is
not enough to support the LAI increase of the day. The daily
number of nodes depends on thermal time accumulation and
on the achievement of the phenological stages, which were
properly predicted according to model calibration results.
Daily leaf dry matter depends on daily biomass production
and partitioning equations that monitor the allocation of daily
biomass to the different organs (Zheng et al. 2015; Ahmed
et al. 2016). While daily biomass seems to be properly calcu-
lated according to calibration results, it is more likely that
model errors originate in the simulation of dry matter
partitioning or of the stresses reducing leaf area expansion or
inducing early senescence. Better quality of simulations was
obtained for BANDERA cultivar that was mainly used in
favorable areas where water stress is less frequent. This find-
ing supports a possible inaccuracy in the calculation of water
stress effects on the LAI dynamic in the APSIM-wheat model
algorithm (Mohanty et al. 2012). Alternatively, poor LAI sim-
ulation could result from an insufficient description of the
tillering and tiller senescence processes. The APSIM-wheat
algorithm describes the wheat plant as uniclum. Tillering
and tiller senescence are encompassed in the coefficients
allowing the calculation of daily LAI from the number of
nodes on the main stem (Wang et al. 2003). Moreover, as in
reality, tillering highly depends on plant density, which is also
not accounted for in the model algorithm (Saddique et al.
2019). However, in Morocco, plant density can be very het-
erogeneous and low, especially in rainfed conditions, com-
pared to plant density in mechanized wheat systems around

the world. This could explain the limited capacity of the model
to finely reproduce LAI dynamics in Moroccan wheat fields.

3.2 Model evaluation

Observed phenological stages, AGB, yield, LAI, and SWC
from 27 farmers’ fields during the 2020/2021 cropping season
were compared to corresponding variables simulated using the
calibrated crop parameters (Fig. 3).

When compared to observed data independent from those
used for calibration, APSIM-wheat accurately predicted phe-
nological stages for each of the five cultivars (NRMSEs lower
than 15% and ME exceeding 0.95). The APSIM-wheat model
also reasonably reproduced observed yield for the five culti-
vars with overall NRMSEs equal to 14%. Also, the model
acceptably simulated AGB with an overall RMSE equal to
1.2 t.ha–1 and ME equal to 0.91. AGB was better simulated
by the APSIM-wheat model for BANDERA, FAIZA, and
RADIA cultivars, that were used in favorable and intermedi-
ate rainfed areas. The agreement between observed and sim-
ulated AGB was better during vegetative stages (before Z70)
than during grain filling (Z70 to Z90). These two findings
were consistent with potential possiblemodel error originating
in the calculation of water stress factors and their impact on
daily leaf expansion and dry matter production in the APSIM-
wheat model, as suggested by calibration results.

APSIM-wheat’s predictive quality for yield, AGB, and
phenology as evaluated in this study was consistent with the
literature on model evaluations for wheat production in
rainfed areas. Calculated RMSEs and yield were in the same
range or smaller than in most other studies using the APSIM-
wheat model (Makowski et al. 2006; Hussain et al. 2018;
Zhao et al. 2020). Ahmed et al. (2016) reported higher model
quality scores in simulated yield and AGB and a similar per-
formance in predicting phenological stages during the calibra-
tion and evaluation of APSIM-wheat under favorable rainfed
conditions in Pakistan. However, in the present study, the
calibration and evaluation process was carried out in 126
farmers’ fields with various soil, management practices, and
climatic conditions which offset slightly higher errors. This
diversity of conditions in the calibration and evaluation
datasets warrants a robust model evaluation for wheat simula-
tions in Moroccan rainfed areas. In addition, the quality of
model prediction for phenology, AGB, and yield that was
found in this study matched that of other crop models
(WOFOST and CropSyst) that have been used previously in
Morocco (Bregaglio et al. 2015). This study therefore enlarges
the range of models suitable for simulating wheat in Morocco
and provides an opportunity for simulating more complex
scenarios such as P fertilization scenarios that are only possi-
ble with APSIM-wheat.

As in the calibration step, APSIM-wheat was found to have
a limited capacity to reproduce LAI observations recorded in
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the evaluation dataset. APSIM-wheat model error on LAI pre-
diction was acceptable only for the BANDERA cultivar
(NRMSE = 26%) and to a lesser extent FAIZA (NRMSE =
36%) that were cultivated in favorable rainfed areas. In con-
trast, for other cultivars that were cultivated in intermediate
and unfavorable areas, LAI was underestimated by the model,
which seemed to overestimate the stress effect intensity.
Nevertheless, acceptable to high coefficients of determination
(R2 > .80) were observed between the simulated and observed
LAI values for ACHTAR cultivar in unfavorable rainfed
areas. Similarly, Ahmed et al. (2016) and Seyoum et al.
(2018) found a high agreement (NRMSE < 9%) between ob-
served LAI and LAI as simulated by APSIM-wheat only in
areas with cumulative rainfall exceeding 600 mm in the crop
season in Pakistan and Ethiopia, respectively. Additional im-
provements in the models’ response to drought could be
achieved by improving the simulation of soil water state
and/or adapting the calculation of the water stress coefficient
in the model.

APSIM-wheat showed poor accuracy in simulating soil
water content in the top soil layer (SWC) with RMSE = 0.08
m3.m–3 and tended to overestimate SWC. The model even
seemed to have a decreased capacity to simulate SWC in drier
environments: in favorable rainfed areas (> 400 mm) NRMSE

on SWC ranged between 22% and 24% while NRMSEs
exceeded 40% in most cases in intermediate (300–400 mm)
and in unfavorable (< 300 mm) areas. These findings were
consistent with results reported in Mohanty et al. (2012)
which showed that the prediction of SWC by APSIM-wheat
was relatively accurate (RMSEs in the 0–15 cm soil layer were
below 0.04 m3.m–3) in non-water stress conditions. In con-
trast, a weak prediction of SWC in the soil surface layer by
APSIM-wheat was reported in Australia, in dry conditions
with only 160 mm in-season rainfall (Zeleke 2020). In
Zeleke’s work, APSIM-wheat was also found to overestimate
SWC in the surface layer (i.e., 0–15 cm) in unirrigated and
irrigated plots.

Low-quality SWC estimation in the top soil layer com-
bined with a limited capacity to estimate LAI in the driest
region was both consistent with possible errors originating in
the model’s water module. Overestimation of the top soil wa-
ter content could result from an underestimation of soil evap-
oration or infiltration in the heavy cracking soil that is com-
mon in Morocco and known as “Tirs” (Moussadek et al.
2017). Conversely, some authors have previously suggested
that low-quality simulation of the soil water content could
result from inaccurate calculation of the canopy cover and
water stress factors, hence of the transpiration flux (Paredes

Fig. 3 APSIM-wheat validation results for the five wheat cultivars used
in the Moroccan rainfed areas. Comparison between simulated and
observed a Zadok’s phenological stages, b yield (t.ha-1), c above-
ground biomass (AGB, t.ha-1), d leaf area index (LAI, m2.m-2), and e

soil water content (SWC, m3.m-3). Red line represents (x=y) equation.
R2, root-main-square error (RMSE), normalized root-main-square error
(NRMSE) and model efficiency (ME) are the statistical indices used to
evaluate APSIM-wheat model accuracy.
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et al. 2014; Montoya et al. 2016; Mehrabi and Sepaskhah
2020), which was also supported by the medium to low
quality of LAI prediction found in the present work.
Deviations between observed and measured SWC could
also result from errors on the soil parameters that we in-
ferred from the “Global High-Resolution Soil Profile
Database” (Han et al. 2019), in particular DUL and LL to
which the model has a strong sensitivity. Uncertainties on
the climatic input in particular on rainfall that may differ
between the field location and the weather station could
also participate in the error on SWC.

3.3 Impact of Fertimap database uncertainties and
parameters on APSIM-wheat output

As reported in previous studies, the uncertainty in a crop mod-
el comes from three sources: model structure, model parame-
ters, and input data (White et al. 2011; Challinor et al. 2013;
Seidel et al. 2018). The use of existing large databases affected
by temporal and spatial variability (e.g., Fertimap) as model
input parameters constitutes a source of uncertainty (Xiong
et al. 2020). In this study, we conducted a first assessment of
the impact of integrating the digitalizedMoroccan soil fertility
database (Fertimap) as a source of APSIM-wheat input param-
eters on the model output (i.e., AGB and yield).

The values of soil pH, OC, and labile P inputs extracted
from Fertimap were first compared to those obtained from site
specific measurements. The comparison between the two data
sources of the distributions of values obtained for these pa-
rameters for the 126 framers field in the study showed a small
difference between the medians for the three parameters (OC
medians = 1.2% and 1.1%, labile P medians = 28 ppm and 21
ppm, and pH medians = 7.9 and 7.8, for Fertimap and soil
specific analysis respectively) (Fig. 4). RMSEs between inputs
from the two sources were equal to 0.63% for OC, 10 ppm for
labile P, and 0.67 for pH. Therefore, uncertainties on model
parameters imputable to data source were small compared to
the variation observed between fields and remained within the
ranges of variation used for the local sensitivity analysis pre-
sented afterwards. Differences between parameter values from
two sources could originate from several causes. First,
spatialized data available in Fertimap were obtained from
interpolation of localized measurements; differences
could therefore result from the fact that the location of
farmers’field used in this study did not exactly coincide
with one of the location where measurements were taken
to elaborate Fertimap. Second, the temporality of param-
eter value assessment differs between the two sources of
inputs: soil chemical characteristics evolve under the ef-
fect of soil management and fertilization practices ap-
plied to a given field. While values recorded in the
Fertimap database were measured a few years ahead,
parameter values measured in situ were assessed a few

days before planting date for each year. Finally, the var-
iation and complexity of soil organo-chimical processes
(e.g., P sorption and desorption, P immobilization and
mineralization, organic matter decomposition etc.) over-
lap with human management practices in complicated
mechanisms and processes that contribute to in those
variations. Despite these differences, parameters
contained in Fertimap database appeared to remain rather
close proxies of actual soil characteristics when mea-
sured at the beginning of the copping seasons, revealing
that i) soil chemical properties would vary little over
short distances within the wheat production area in
Morocco, and ii) soil fertility characteristics vary slowly
in time, maybe due to low organic matter and reduced
fertilization inputs in Moroccan wheat production area.

The effect of the variation of each of the three parameters
on wheat grain yield as simulated by APSIM-wheat was then
assessed for field type (a) (> 600 mm in-season rainfall and
added fertilizers) and field type (b) (< 200 mm in-season, no
applied fertilizers), with a local sensitivity analysis for the two
fields. For field (a), the ANOVA revealed a significant effect
of OC [p < .001] on simulated grain yield with an increase of
274 kg.ha-1 between the use of the minimum (0.2%) and max-
imum (1.6%) observed OC values, while there was no signif-
icant impact of labile P [p = .076], and pH variations had no
effect on simulated yield [p = 1]. This finding was consistent
with real-world experimental evidence showing that wheat is a
crop that has low demand for phosphorus (Olsen and
Sommers 1982; Tsadila et al. 2012) and is tolerant to pH
variation (Franc de Ferrière 1933; Froese et al. 2015). In the
case of field (a), phosphorus demand may be satisfied with
applied fertilizers (130 kg.ha–1 of N and 60 kg.ha–1 of P fer-
tilizers added during the crop season). Conversely, the in-
crease of simulated yield when OC was varied most likely
only results from an improved N status of the plant as simu-
lated by the model, as the OC parameter is not involved in the
calculation of the soil water balance in APSIM. Since water
stress levels were moderate in field (a), it is likely that N was
the limiting resource in the corresponding simulations; an in-
crease in the OC soil parameter most likely allows an increase
in available N along the simulated crop cycle and, consequent-
ly, a slight increase of yield.

For field (b), in conditions with lower precipitation
(< 200 mm in-season) and no fertilization, labile P [p
< .0001] and OC [p = .001] significantly influenced the
variability of simulated yield, whereas pH did not [p = 1]. Yet,
the sensitivity of simulated yield to OC parameter variations was
much smaller than in field (a), as simulated yield increased only
by 1.6 kg.ha–1 when OC increased fromminimum to maximum
observed values. For labile P, yield increased by 96 kg.ha–1

when labile P increased from minimum to maximum observed
values. This result consolidates the interpretation given above:
when water stress increases and water becomes the main
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limiting resource, the effect of higher OC in soil resulting in
higher N availability is less, as N uptake is limited in the model
by water stress. Actually, in APSIM’s Soil-N component, soil
water and soil temperature are factors that impact the
decomposition of organic matter, nitrification, and urea
hydrolysis processes. This interaction between water and N
resources on plant N uptake and growth has been largely
observed in reality and reported in the literature. Cramer et al.
(2009) and Nawaz et al. (2012) reported that early or late
drought in the cropping season decreased nutrient uptake, which
would be due to both reduced mass flow in the soil and sap flow
and vascular conductivity in the plant as evidenced in controlled
conditions. The higher sensitivity of model output to variation of

labile P parameters in field (b) compared to field (a) may result
from the absence of applied fertilizer, and, consequently, the
plant relying only on soil P to satisfy its P demand, but also
from reduced labile P input from mineralization which is also
dependent on soil humidity in the model (Delve et al. 2009).
Finally, the low sensitivity of simulated yield to the pH param-
eter in field (a) as well as in field (b) was consistent with the fact
that, in real-world contexts, wheat is tolerant to alkaline and acid
soil and that fertilizing practices as entered in the model may
output the effect of soil pH on crop yield.

The results outlined by the sensitivity analysis were con-
firmed by the comparison of model outputs when using one or
another data source to infer soil parameters in APSIM-wheat.

Fig. 4 Comparison of Fertimap
data and specific soil analyses
data values (left) and their
distributions (right) for three soil
parameter values: a organic
carbon, b labile P, and c pH.
Black line in left graphs
represents (x=y) equation.
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No significant difference was found between the median of
simulated outputs when using Fertimap or local data as soil
inputs with APSIM-wheat, neither for yield (median: 0.21
t.ha–1; p = 0.936 ) nor AGB (median: 1.42 t.h–1, p = 0.939).
Distributions of model outputs over the 100 farmers’ fields and
the three cropping seasons were similar whatever data source
was used, for the three parameters (Fig. 5). Whether parameter
values were extracted from Fertimap or local measurement,
yield and AGB predictions varied within similar ranges over
the entire study zone and the 3 years: yield varied within
[6509–149 kg.ha–1] and [6509–167 kg.ha–1] ranges with site-
specific measurements and Fertimap data respectively, and
AGB varied within [8.23–0.09 t.ha–1] and [8.23–0.09 t.ha–1]
with site-specific measurements and Fertimap data respective-
ly. Therefore, the source of data used to parameterize OC, pH,
and labile P did not seem to impact APISM-wheat model out-
puts overall in rainfed Moroccan conditions.

4 Conclusion

This study delivered crucial results that open avenue to use
APSIM for pre-season and in-season advising of farmers in
Morocco: (i) it delivered verified parameters for the five main
wheat cultivars grown in the rainfed area of Morocco. (ii) It
demonstrated a satisfactory capacity of the APSIM model to
predict wheat yield for different climate and fertilization man-
agement within the same area. Although APSIM-wheat was
found to fail to predict LAI with an NRMSE lower than 26%
for the five cultivars, several hypotheses to explain this lack of
accuracy have been identified. Indeed, the low predictive
quality of the model for LAI was partly explained by errors
in the prediction of SWC, especially in the driest conditions,
where SWC was systematically overestimated by the model.
The present study allowed the identification of possible ways
to adapt APSIM-wheat to Moroccan conditions and improve

Fig. 5 Overall comparison of APSIM-wheat simulated output values
(left) and their distributions (right); a yield (kg.ha-1) and b above-
ground biomass (AGB, t.ha-1), when using two soil data types as model

soil input: specific soil analyses and Fertimap database. Black line in left
graphs represents (x=y) equation.
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the quality of LAI prediction, such as the adaptation of soil
evaporation algorithms for cracking soils. (iii) It validated the
Fertimap database as a data source for parameterizing soil in
APSIM, especially for labile P, OC, and pH parameters. We
showed that despite the possible variation in time and space of
the variables it compiles, Fertimap can be a valuable source of
data to determine soil parameters for crop models and partic-
ularly to simulate P availability in soil. Using verifiedAPSIM-
wheat model parameterized with Fertimap for the five culti-
vars should allow to simulate appropriate management scenar-
ios spatialized across the wheat production area in Morocco
and to advise farmers to adapt their planting and fertilization
strategies at sowing and in season, depending on climate ex-
perienced and/or expected during the on-going season.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s13593-022-00813-4.
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