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ASYMPTOTIC BEHAVIOR OF ACOUSTIC WAVES SCATTERED BY VERY
SMALL OBSTACLES

Hélène Barucq1, Julien Diaz1, Vanessa Mattesi2 and Sebastien Tordeux1,*

Abstract. The direct numerical simulation of the acoustic wave scattering created by very small
obstacles is very expensive, especially in three dimensions and even more so in time domain. The use
of asymptotic models is very efficient and the purpose of this work is to provide a rigorous justification
of a new asymptotic model for low-cost numerical simulations. This model is based on asymptotic
near-field and far-field developments that are then matched by a key procedure that we describe and
demonstrate. We show that it is enough to focus on the regular part of the wave field to rigorously
establish the complete asymptotic expansion. For that purpose, we provide an error estimate which is
set in the whole space, including the transition region separating the near-field from the far-field area.
The proof of convergence is established through Kondratiev’s seminal work on the Laplace equation
and involves the Mellin transform. Numerical experiments including multiple scattering illustrate the
efficiency of the resulting numerical method by delivering some comparisons with solutions computed
with a finite element software.

Mathematics Subject Classification. 35C20, 35L05, 74J20.

Received April 3, 2020. Accepted July 5, 2020.

1. General introduction

Mechanical wave simulations are of great interest in many applications due to their capability of transporting
information in the medium they propagate into. In particular, they are capable of detecting very small het-
erogeneities that we can visualize using the recording of the scattered fields generated whenever the wave field
encounters obstacles [8,28–30]. This phenomenon of multiple diffraction can be reproduced numerically and for
precise calculations, the finite element method is very efficient. Indeed, finite element methods are able to cap-
ture the characteristics of the obstacles including their shape by the use of tetrahedral meshes. However, if the
obstacles are very small, their use can lead to very high computational costs, especially because it is necessary
to mesh very finely in the neighborhood of the obstacles. This is a considerable drawback which motivates a
clear interest in the development of numerical methods which avoid the use of refined meshes. It should also
be noted that in addition to high direct computational costs, the design of unstructured meshes can also be
difficult and very time consuming and also contributes to high implementation costs.
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Most of the time, the use of explicit time schemes is preferred to integrate wave equations. This choice
is dictated by the need of avoiding inversion of the mass matrix at each time iteration, in order to limit
computational costs as well as memory usage. In this case, the explicit schemes are not fully suitable for direct
numerical simulation. Indeed, they are stable only by respecting the Courant–Friedrichs–Levy condition which
shows a linear dependency of the time step with the space step. Globally applying this condition to a direct
numerical simulation based on a locally refined grid leads to increased computational costs since the time
step will be adapted to the smallest cell. This is particularly disabling when the domain has only a few small
obstacles. And even if the domain contains a lot of them, it should not be forgotten that explicit time schemes
can generate numerical pollution mainly due to dispersion effects caused by the application of a global time
step which is only adapted to the smallest cells. This has motivated the development of time-explicit schemes
using local time steps that can be locally adapted to space steps (see e.g. [16,38].) Local time stepping methods
are particularly interesting when the number of small cells is high. When this is not the case, it may be more
efficient to use locally implicit schemes (see e.g. [34]). These schemes result from coupling an unconditionally
stable implicit scheme applied in the areas of the mesh composed of small cells with an explicit scheme elsewhere.
One can also take another side and decide to work on the mathematical model itself in order to keep an explicit
scheme for time integration. The work to be done on the equations then consists in erasing, as it was, the small
obstacles so that they do not have to be taken into account by the mesh. The latter will no longer contain small
cells and we will thus be able to integrate the equations with a larger time step. To build such a mathematical
model, asymptotic methods turn out to be very efficient besides having a rigorous framework for establishing
convergence results which ensure that the solution calculated by solving the asymptotic model converges towards
the solution of the initial problem. Asymptotic methods have been applied several times to stationary problems
(see [13, 21, 23, 26, 40, 42]) and to the best of our knowledge, Mattesi and Tordeux [32, 33] represents the first
attempt in the time domain.

The construction of a reduced model for representing scattering problems relies on a key procedure which
consists in matching the asymptotic expansions of the near and far field in order to get a full representation of the
scattered field. We describe that procedure in the following section. This work includes two new contributions
in addition to being carried out in the time domain and in three-dimensional space. On the one hand, we extend
the computational method proposed in [32, 33] to the case of several small obstacles. On the other hand, we
develop a mathematical analysis which justifies the asymptotic model proposed in [32,33] for the case of a single
small obstacle.

The paper is organized as follows. We begin with describing the matching procedure for the construction of
the asymptotic model. This requires defining the near-field and far-field approximations which are then matched
to give a representation of the diffracted field throughout the space, disregarding the obstacle which should no
longer be taken into account in the computational method. Then we extend the asymptotic model proposed
to the case of scattering by multiple small obstacles. We illustrate the interest of our approach by carrying
out several numerical experiments which consist in solving the problem of multiple scattering by using either
the asymptotic model or the complete model. The latter is solved with a discontinuous finite element method.
All the calculations we have performed show that the numerical solution obtained from the asymptotic model
achieves a level of precision comparable to that obtained with the finite element method when we consider small
obstacles. In addition, as expected, the computational costs are clearly to the advantage of the asymptotic
method, which moreover does not require any mesh and thus avoiding a step that can be difficult and often
time-consuming. For example, in the case of 216 obstacles, the calculations on the reduced model take 2.56 s while
the direct simulation lasts 12 h for a computation carried out in parallel on 576 processors. We finish our study
by developing a mathematical analysis to rigorously justify the proposed reduced model. The analysis consists
in establishing a convergence result which uses the Mellin transform (see [7]) in the formalism of Kondratiev
spaces [24].
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2. Description of the matching of asymptotic expansions

To simplify the introduction of the matching method, we limit ourselves to the case of a single obstacle
defined as the small sphere 𝐵𝜀 with a near-zero radius 𝜀. We will generalize the method to the case of several
obstacles by the end of the paper. The corresponding scattering problem posed in Ω = R3∖𝐵𝜀 reads as:⎧⎪⎪⎨⎪⎪⎩

∆𝑢𝜀(x, 𝑡)− 1
𝑐2

𝜕2
𝑡 𝑢𝜀(x, 𝑡) = 0, on Ω, ∀𝑡 ≥ 0,

𝑢𝜀(x, 𝑡) = 0, on 𝜕Ω,

𝑢𝜀(x, 0) = 𝑣0(x), 𝜕𝑡𝑢𝜀(x, 0) = 𝑣1(x), on Ω,

(2.1)

where x = (𝑥, 𝑦, 𝑧) is the spatial variable defined in R3, 𝑡 ≥ 0 denotes the time variable and ∆ = 𝜕2
𝑥 + 𝜕2

𝑦 + 𝜕2
𝑧

is the Laplace operator in the cartesian coordinate system.

Hypothesis 2.1. The initial data 𝑣0, 𝑣1 : R3 −→ R are of class 𝐶∞ and their support is included in 𝐵𝑟⋆
∖ {0}

with 𝐵𝑟⋆ := {x ∈ R3 : |x| ≤ 𝑟⋆}, 𝑟⋆ being a non negative real number with 𝜀 ≪ 𝑟⋆.

2.1. Asymptotic parameterization

The construction of the approximation of the diffracted field involves a certain number of physical parameters
which will intervene in the characterization of the wave field. First of all, we introduce the parameter 𝜀 which
defines the radius of the obstacle. It is small in the sense that it is very small in front of the mean wavelength
𝑙𝑚 of the wave field. The latter is defined as the distance between two maximum values of the Fourier transform
of the signal. The Fourier transform is most of the time centered around a characteristic angular frequency 𝜔𝑚

which defines a characteristic wavelength 𝑙𝑚 = 𝑐
𝜔𝑚

where 𝑐 denotes the propagation velocity of the wave. By
small obstacle, we then mean that 𝜀 is very small in front of 𝑙𝑚.

Now that the asymptotic parameters are defined, we move on the parameterization of the exterior domain
surrounding the scatterer. For any x in the exterior of 𝐵𝜀, we set:

x = 𝜀𝑠𝑙1−𝑠
𝑚 X, 𝑠 ∈ (0, 1), |X| ≥ 1. (2.2)

Then we have:

– if 𝑠 = 0, x = 𝑙𝑚X; x is located in the so-called far field region where the propagation phenomenon is
preponderant while the obstacle has little impact on the scattered field. The scatterer acts like a source-
point so that the scattered field can be represented by an asymptotic expansion set in 𝑅3.

– if 𝑠 = 1, x = 𝜀X; x is located in the so-called near-field region where the obstacle has strong impact on the
scattered field while the propagation phenomenon is negligible. A quasi-static behavior of the scattered field
is actually expected from its asymptotic expansion.

– if 0 < 𝑠 < 1, x is in the so-called matching area where both the propagation and the obstacle effects have
to be taken into account. Hence this is here where the far field expansion has to match the near-field one to
ensure that the final asymptotic representation provides a reliable representation of the scattered field. For
this, it is crucial to see that if x is of order 𝜀𝑠ℓ1−𝑠

𝑚 then x/𝜀 is of order 𝜀𝑠−1ℓ1−𝑠
𝑚 . The first one tends to zero

as 𝜀 tends to zero whereas the second tends towards infinity.

Remark 2.2. It is worth noting that it is 𝜀 which acts as the small parameter. Hence in the following, the
scattered field will be given as a series involving powers of 𝜀.

2.2. The far-field approximation

In the far-field region, we seek a solution 𝑢𝜀 to problem (2.1) in the following form (Fig. 1):

𝑢𝜀(x, 𝑡) ∼
+∞∑︁
𝑖=0

𝑢𝑖(x, 𝑡)𝜀𝑖, (2.3)
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Figure 1. Far-field and near-field domains Ωf
𝜀 and Ωn

𝛿 and their limit Ω⋆ and Ω̂.

where each term 𝑢𝑖 : R3,* × R+ −→ R is a space-time function defined in the domain R3 ∖ {0}. Following the
methodology described in [9], we have:

– The first term 𝑢0 is 𝐶∞ and is defined as a solution to the wave equation set in the whole space (i.e. without
obstacle) {︃

∆𝑢0(x, 𝑡)− 1
𝑐2

𝜕2
𝑡 𝑢0(x, 𝑡) = 0, on R3, ∀𝑡 ≥ 0,

𝑢0(x, 0) = 𝑣0(x), 𝜕𝑡𝑢0(x, 0) = 𝑣1(x), on R3.
(2.4)

The function 𝑢0 actually represents the regular part of the wave field and is given thanks to the theory of
separation of variables as

𝑢0(x, 𝑡) =
+∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)𝑍𝑚,𝑛(𝜃, 𝜙). (2.5)

The functions 𝑍𝑚,𝑛 are the spherical angular harmonics and are given by

𝑍𝑚,𝑛(𝜃, 𝜙) =
1√
2𝜋

𝑃
|𝑚|
𝑛 (cos 𝜃) exp(𝑖𝑚𝜙), (2.6)

where 𝑃𝑚
𝑛 are the normalized Legendre function (‖𝑃𝑚

𝑛 ‖𝐿2([−1,1]) = 1) of degree 𝑛 ∈ N and of order 𝑚 ∈ [0, 𝑛].
It is defined for 𝑥 ∈ [−1, 1] by

𝑃𝑚
𝑛 (𝑥) =

√︃
(𝑛 +

1
2

)
(𝑛−𝑚)!
(𝑛 + 𝑚)!

× (1− 𝑥2)
𝑚
2 𝑑𝑚

𝑥 𝑃𝑛(𝑥), (2.7)
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where 𝑃𝑛 is the Legendre polynomial of degree 𝑛 given by

𝑃𝑛(𝑥) =
1

2𝑛𝑛!
𝑑𝑛

𝑥

[︀
(𝑥2 − 1)𝑛

]︀
. (2.8)

More details on Legendre polynomials are available for instance in ([37], see p. 35), in ([21], see p. 47) or in
([19], see p. 353). The radial function 𝑢𝑚,𝑛 has the following expression

𝑢𝑚,𝑛(𝑟, 𝑡) = 𝑅𝑚,𝑛(Λ0,𝑚,𝑛𝑟, 𝑡) (2.9)

where Λ0,𝑚,𝑛 : R −→ R is the amplitude of the regular mode 𝑅𝑚,𝑛 which takes the form

𝑅𝑚,𝑛(Λ, 𝑟, 𝑡) =
𝑛∑︁

ℓ=0

𝑞ℓ
𝑛

Λ(𝑛−ℓ)(𝑡− 𝑟/𝑐)− (−1)𝑛−ℓΛ(𝑛−ℓ)(𝑡 + 𝑟/𝑐)
4𝜋 𝑟ℓ+1 𝑐𝑛−ℓ

· (2.10)

– For 𝑖 > 0, the far-field terms 𝑢𝑖 are singular solutions to the wave equation which are undefined at the origin
and satisfy {︃

∆𝑢𝑖(x, 𝑡)− 1
𝑐2

𝜕2
𝑡 𝑢𝑖(x, 𝑡) = 0, ∀x ∈ R3,*, ∀𝑡 ≥ 0,

𝑢𝑖(x, 0) = 0, 𝜕𝑡𝑢𝑖(x, 0) = 0, ∀x ∈ R3,*.
(2.11)

We adopt the notation R3,* to refer to the space R3 free of origin. Each term 𝑢𝑖 is represented as

𝑢𝑖(x, 𝑡) =
+∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑀𝑚,𝑛(Λ𝑖,𝑚,𝑛; 𝑟, 𝑡) 𝑍𝑚,𝑛(𝜃, 𝜙), (2.12)

which is a finite sum of multipoles 𝑀𝑚,𝑛(Λ; ·) : R+,* × R −→ R, where R+,* refers to non negative real
numbers, defined as functions of their magnitude Λ𝑖,𝑚,𝑛 : R −→ R

𝑀𝑚,𝑛(Λ𝑖,𝑚,𝑛; 𝑟, 𝑡) =

(︃
𝑛∑︁

ℓ=0

𝑞ℓ
𝑛

Λ(𝑛−ℓ)
𝑖,𝑚,𝑛 (𝑡− 𝑟/𝑐)
4𝜋 𝑟ℓ+1 𝑐𝑛−ℓ

)︃
· (2.13)

We have Λ𝑖,𝑚,𝑛(𝑡− 𝑟/𝑐) = 0 for 𝑡− 𝑟/𝑐 ≤ 0 and 𝑞ℓ
𝑛 = (𝑛+ℓ)!

ℓ!(𝑛−ℓ)!
1
2ℓ , see [32,33].

2.3. The near-field approximation

Here we use the dimensionless variable X = x
𝜀 which satisfies 𝑅 := |X| ≥ 1 and we seek for 𝑈𝜀(X, 𝑡) which

satisfies
𝑈𝜀(X, 𝑡) = 𝑢𝜀(x, 𝑡), (2.14)

and

𝑈𝜀(X, 𝑡) ∼
+∞∑︁
𝑖=0

𝑈𝑖(X, 𝑡)𝜀𝑖. (2.15)

Given that ∆x = 1
𝜀2 ∆𝑋 , if we have ∆x𝑢𝜀 − 𝜕2

𝑡

𝑐2 𝑢𝜀 = 0 we also have 1
𝜀2 ∆𝑈𝜀(X, 𝑡) = 𝜕2

𝑡

𝑐2 𝑈𝜀(X, 𝑡). Using (2.15),
we formally get

1
𝜀2

∆𝑈0 +
1
𝜀

∆𝑈1 +
+∞∑︁
𝑖=0

𝜀𝑖
(︁

∆𝑈𝑖+2(X, 𝑡)
)︁

=
+∞∑︁
𝑖=0

𝜀𝑖
(︁𝜕2

𝑡

𝑐2
𝑈𝑖(X, 𝑡)

)︁
. (2.16)

Then, by identifying each term multiplied by 𝜀𝑖 with 𝑖 ≥ −2, we get that the two first terms 𝑈0 and 𝑈1 in (2.16)
solve the Laplace equation

∆𝑈0(X, 𝑡) = ∆𝑈1(X, 𝑡) = 0 for 𝑅 ≥ 1 (2.17)
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whereas 𝑈𝑖, for 𝑖 ≥ 2, satisfies the nested Laplace equations given by

∆𝑈𝑖(X, 𝑡) =
𝜕2

𝑡

𝑐2
𝑈𝑖−2(X, 𝑡) for 𝑅 ≥ 1. (2.18)

Moreover all the terms of this expansion including those for 𝑖 = 0 and 𝑖 = 1, solve the Dirichlet boundary
condition

𝑈𝑖(X, 𝑡) = 0 for 𝑅 = 1. (2.19)

2.4. The matching procedure

To make the asymptotic representation of the scattered field self-content, we have to realize the matching
between both developments previously introduced. For that purpose, we go back to the relation that links the
variables x and X. Given that x = 𝜀X, we have that x tends to be close to 0 while X tends to infinity. This
leads us to consider an expansion of each 𝑢𝑖 in the vicinity of the origin as well as a development of 𝑈𝑖 in a
neighborhood of infinity. For this, we use the spherical coordinate system and write down:

𝑢𝑖(𝑟, 𝜃, 𝜙, 𝑡) ∼
+∞∑︁

𝑝=−∞
𝑢𝑖,𝑝(𝜃, 𝜙, 𝑡) 𝑟𝑝, (2.20)

for 𝑢𝑖 and

𝑈𝑖(𝑅, 𝜃, 𝜙, 𝑡) ∼
+∞∑︁

𝑝=−∞
𝑈𝑖,𝑝(𝜃, 𝜙, 𝑡) 𝑅𝑝, with 𝑅 =

𝑟

𝜀
, (2.21)

for 𝑈𝑖. Identifying 𝑢𝜀 and 𝑈𝜀 in the matching zone and using the different expansions (2.3), (2.15), (2.20) and
(2.21), we obtain the following matching relation

𝑢𝑖,𝑝(𝜃, 𝜙, 𝑡) = 𝑈𝑖+𝑝,𝑝(𝜃, 𝜙, 𝑡) ∀𝑖 ∈ Z, 𝑝 ∈ Z, (2.22)

or equivalently
𝑈𝑖,𝑝(𝜃, 𝜙, 𝑡) = 𝑢𝑖−𝑝,𝑝(𝜃, 𝜙, 𝑡) ∀𝑖 ∈ Z, 𝑝 ∈ Z. (2.23)

In the following, we adopt the convention

𝑢𝑖 ≡ 0 and 𝑈𝑖 ≡ 0 for 𝑖 < 0 (2.24)

which implies in particular that for 𝑖 ≥ 0

𝑢𝑖,𝑝(𝜃, 𝜙, 𝑡) = 0 for 𝑝 < −𝑖 and 𝑈𝑖,𝑝(𝜃, 𝜙, 𝑡) = 0 for 𝑝 > 𝑖. (2.25)

Expansions (2.20) and (2.21) read then⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢𝑖(𝑟, 𝜃, 𝜙, 𝑡) ∼

+∞∑︁
𝑝=−𝑖

𝑢𝑖,𝑝(𝜃, 𝜙, 𝑡) 𝑟𝑝,

𝑈𝑖(𝑅, 𝜃, 𝜙, 𝑡) ∼
𝑖∑︁

𝑝=−∞
𝑈𝑖,𝑝(𝜃, 𝜙, 𝑡) 𝑅𝑝, with 𝑅 =

𝑟

𝜀
·

(2.26)

Now we move on to the explicit writing of the first terms of (2.26). In the vicinity of the origin, the far-field
term 𝑢0 is a regular solution to the wave equation (2.4) and we have

𝑢0(x, 𝑡) = 𝑢0(0, 𝑡) +∇𝑢0(0, 𝑡) · x + 𝑂
𝑟→0

(𝑟2). (2.27)
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By identifying the different terms, we get that

𝑢0,0(𝜃, 𝜙, 𝑡) = 𝑢0(0, 𝑡) and 𝑢0,1(𝜃, 𝜙, 𝑡) =∇𝑢0(0, 𝑡) · x
𝑟
·

The matching conditions (2.23) and (2.25) then imply that

𝑈0,0(𝜃, 𝜙, 𝑡) = 𝑢0,0(𝜃, 𝜙, 𝑡) = 𝑢0(0, 𝑡) and 𝑈0,𝑝(𝜃, 𝜙, 𝑡) = 0 for 𝑝 > 0.

In particular,
𝑈0(X, 𝑡) = 𝑢0(0, 𝑡) + 𝑂

𝑟→0
(𝑟). (2.28)

Regarding 𝑈0, it is a solution to the Laplace equation (2.17) which admits the following modal expansion [35]

𝑈0(𝑅, 𝜃, 𝜙) =
+∞∑︁
𝑛=0

(︁
𝐴𝑛𝑅𝑛 + 𝐵𝑛𝑅−𝑛−1

)︁
𝑍𝑚,𝑛(𝜃, 𝜙). (2.29)

Taking (2.28) into account and given that 𝑍0,0 = 1√
4𝜋

, we deduce that 𝐴0 =
√

4𝜋𝑢0(0, 𝑡) and 𝐴𝑛 = 0 for 𝑛 ≥ 1.
It follows from (2.19), that 𝐵𝑛 = −𝐴𝑛. We then get

𝑈0(X, 𝑡) = 𝑢0(0, 𝑡)
(︁

1− 1
𝑅

)︁
, (2.30)

and the matching condition (2.23) implies that

𝑈0,−1(𝜃, 𝜙, 𝑡) = −𝑢0(0, 𝑡) and 𝑈0,−2(𝜃, 𝜙, 𝑡) = 0.

Thanks to (2.22), we have 𝑢1,−1(𝜃, 𝜙, 𝑡) = 𝑈0,−1(𝜃, 𝜙, 𝑡) = −𝑢0(0, 𝑡). It follows from (2.25) that 𝑢1,𝑝(𝜃, 𝜙, 𝑡) = 0
for 𝑝 < −1. This implies that

𝑢1(x, 𝑡) = −𝑢0(0, 𝑡)
𝑟

+ 𝑂
𝑟→0

(1). (2.31)

Next, we compare (2.31) with the term 𝑢1 in (2.12). It is worth noting that the term 𝑀𝑚,𝑛(Λ1,𝑚,𝑛, 𝑡) in (2.12)
is computed in the vicinity of x = 0 according to the representation formula:

𝑀𝑚,𝑛(Λ1,𝑚,𝑛; x, 𝑡) =
𝑞𝑛
𝑛 Λ1,𝑚,𝑛(𝑡)
4𝜋 𝑟𝑛+1

𝑍𝑚,𝑛(𝜃, 𝜙) + 𝑂
𝑟→0

(︂
1
𝑟𝑛

)︂
· (2.32)

Then, remarking that Λ1,𝑚,𝑛 ≡ 0, barring (𝑚, 𝑛) = (0, 0), we get

𝑢1(x, 𝑡) = 𝑀0,0(Λ1,0,0; x, 𝑡) =
Λ1,0,0(𝑡− 𝑟

𝑐 )

(4𝜋)
3
2

1
𝑟

=
Λ1,0,0(𝑡)
(4𝜋)

3
2⏟  ⏞  

𝑢1,−1(𝜃,𝜙,𝑡)

1
𝑟
−

Λ′1,0,0(𝑡)

(4𝜋)
3
2 𝑐⏟  ⏞  

𝑢1,0(𝜃,𝜙,𝑡)

+ 𝑂
𝑟→0

(𝑟). (2.33)

It follows that Λ1,0,0(𝑡) = −(4𝜋)3/2 𝑢0(0, 𝑡) and consequently we obtain

𝑢1(x, 𝑡) = −
𝑢0(0, 𝑡− 𝑟

𝑐 )
𝑟

and 𝑢1,0(𝜃, 𝜙, 𝑡) =
𝜕𝑡𝑢0(0, 𝑡)

𝑐
· (2.34)

Similarly, we get the first order near-field term

𝑈1(X, 𝑡) =
𝜕𝑡𝑢0(0, 𝑡)

𝑐

(︂
1− 1

𝑅

)︂
+∇𝑢0(0, 𝑡) ·

(︂
X− X

𝑅3

)︂
, (2.35)
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while the second order far-field term is given by

𝑢2(x, 𝑡) = −
𝜕𝑡𝑢0(0, 𝑡− 𝑟

𝑐 )
𝑟𝑐

· (2.36)

We then end up with the second order far-field expansion:⎧⎨⎩
𝑢𝜀,2(x, 𝑡) := 𝑢0(x, 𝑡) + 𝜀𝑢1(x, 𝑡) + 𝜀2𝑢2(x, 𝑡)

= 𝑢0(x, 𝑡)− 𝜀
𝑢0(0,𝑡− 𝑟

𝑐 )

𝑟 − 𝜀2 𝜕𝑡𝑢0(0,𝑡− 𝑟
𝑐 )

𝑟𝑐 ,

(2.37)

where 𝑢0 is the regular solution to the wave equation in the whole space (2.4) (i.e. without obstacle).
Moreover, we have

𝑢0

(︂
0, 𝑡− 𝑟 − 𝜀

𝑐

)︂
= 𝑢0

(︁
0, 𝑡− 𝑟

𝑐

)︁
+

𝜀

𝑐
𝜕𝑡𝑢0

(︁
0, 𝑡− 𝑟

𝑐

)︁
+ 𝑂

𝜀→0
(𝜀2). (2.38)

This last expression can be injected in (2.37) to get a second order approximation of the wave field:

Theorem 2.3. A second order far-field approximation of the exact solution is given by

𝑢mod
𝜀,2 (x, 𝑡) := 𝑢0(x, 𝑡)− 𝜀

𝑢0(0, 𝑡− 𝑟−𝜀
𝑐 )

𝑟
]· (2.39)

Remark 2.4. This formal result can be made rigorous by an error analysis, [40]. Given that (𝑢𝜀 = 𝑢𝜀,2 +𝑂(𝜀3))
and 𝑢𝜀,2 = 𝑢mod

𝜀,2 + 𝑂(𝜀3), we obtain that for all x ̸= 0, there exist 𝐶x > 0 and 𝜀x > 0 such that for all 𝜀 ∈]0, 𝜀x[.⃒⃒⃒
𝑢𝜀(x, 𝑡) − 𝑢mod

𝜀,2 (x, 𝑡)
⃒⃒⃒
≤𝐶 𝜀3. (2.40)

It is worth noting that (2.37) and (2.39) do not involve the obstacle, which explains why using such repre-
sentation of the scattered field will not require considering the obstacle as a geometrical object. By this way,
there will be no need to reproduce the surface of the scatterer by a set of points, the latter being modeled as a
point source.

3. Application to multiple scattering

We consider the scattering problem (2.1) created by 𝑁 spheres of radius 𝜀 and center x𝑛 ∈ R3, 1 ≤ 𝑛 ≤ 𝑁 .
The propagation domain is denoted by Ω = R3 ∖

(︁⋃︀𝑁
𝑛=1 𝐵𝜀(x𝑛)

)︁
. The total field 𝑢𝜀 is decomposed as the sum

of an incident field 𝑢0 defined by (2.4) and a finite superposition of scattered fields 𝑢𝑛:

𝑢𝜀(x, 𝑡) = 𝑢0(x, 𝑡) +
𝑁∑︁

𝑛=1

𝑢𝑛(x, 𝑡). (3.1)

There are different ways for computing an approximation of the solution of this problem. The field 𝑢𝑛 can be
approximated by a mono-polar source of amplitude Λ𝑛 in the following way:

𝑢𝑛(x, 𝑡) =
Λ𝑛(𝑡− 𝑟

𝑐 )
4𝜋|x− x𝑛|

with Λ𝑛(𝑡) = − 4𝜋𝜀 𝑢inc,𝑛

(︁
x𝑛, 𝑡 +

𝜀

𝑐

)︁
(3.2)

where 𝑢inc,n is the field illuminating the obstacle 𝐵𝜀(x𝑛). Then, the approximate solution depends on the
definition of 𝑢inc,𝑛. Here, we address the following possibilities:
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– Adopting the first order Born approximation, the interactions between obstacles are neglected. In that case,

𝑢inc,𝑛(x, 𝑡) = 𝑢0(x, 𝑡). (3.3)

This leads to an explicit formula of 𝑢𝑛 from:

Λ𝑛(𝑡) = − 4𝜋𝜀 𝑢0

(︁
x𝑛, 𝑡 +

𝜀

𝑐

)︁
· (3.4)

– The Foldy-Lax model, written classically for harmonic waves [9,11,12,18,31], includes the interactions between
obstacles. Here for a given obstacle 𝐵𝜀(x𝑛), the incident field is the sum of the incident wave 𝑢0 and the
fields scattered by all the other obstacles:

𝑢inc,𝑛(x, 𝑡) = 𝑢0(x, 𝑡) +
𝑁∑︁

𝑚=1, 𝑚 ̸=𝑛

𝑢𝑚(x, 𝑡) (3.5)

with the corresponding amplitude computed according to the definition (3.2)

Λ𝑛(𝑡) = − 4𝜋𝜀

⎛⎝𝑢0

(︁
x𝑛, 𝑡 +

𝜀

𝑐

)︁
+

𝑁∑︁
𝑚=1, 𝑚 ̸=𝑛

Λ𝑚(𝑡− 𝑑𝑛,𝑚−𝜀
𝑐 )

4𝜋𝑑𝑛,𝑚

⎞⎠ with 𝑑𝑛,𝑚 = |x𝑛 − x𝑚|. (3.6)

Numerically, the unknown functions 𝑡 ↦→ Λ𝑛(𝑡) will be approximated on a regular grid in time: 𝑡𝑘 = 𝑘𝛿𝑡 with
𝑘 ∈ N. In the following, we denote by (Λ𝑛)𝑘 the numerical approximation of Λ𝑛(𝑡𝑘). It is worth noting that
the numerical solution of system (3.5) requires some evaluations at time 𝑡𝑘 − 𝑑𝑛,𝑚−𝜀

𝑐 for all 𝑛 ̸= 𝑚. These
are discrete times which may not be on the time grid. An interpolation technique is then used to evaluate
the right hand side with respect to the values on the grid.

(Λ𝑛)𝑘 = − 4𝜋𝜀

⎛⎝𝑢0

(︁
x𝑛, 𝑡𝑘 +

𝜀

𝑐

)︁
+

𝑁∑︁
𝑚=1, 𝑚 ̸=𝑛

̃︀Λ𝑚

(︁
𝑡𝑘 − 𝑑𝑛,𝑚−𝜀

𝑐

)︁
4𝜋𝑑𝑛,𝑚

⎞⎠ · (3.7)

In the above expression, ̃︀Λ𝑚 is an interpolation of Λ𝑚 given by⎧⎪⎨⎪⎩
̃︀Λ𝑚(𝑡) = 0 for 𝑡 < 0

̃︀Λ𝑚(𝑡) = (Λ𝑚)𝑘
𝑡𝑘+1 − 𝑡

𝛿𝑡
+ (Λ𝑚)𝑘+1

𝑡− 𝑡𝑘
𝛿𝑡

with 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1.
(3.8)

In the following numerical study, we will compare results obtained with

– The Born approximation.
– The Foldy Lax model.
– A Direct Numerical Simulation performed with the numerical Library Hou10ni [6]. This software package is

able to simulate time-dependent acoustic wave propagation in 3D. The space discretization is based upon
the Interior Penalty Discontinuous Galerkin method [2, 4, 5, 15, 20] and the time integration is carried out
with a Leap Frog scheme. There is a need in truncating the computational domain and for this, we use
a first order absorbing boundary condition which is set on the exterior boundary. The code integrates the
𝑝-adaptivity option, which allows to use different orders of approximation ranging from 𝑝 = 1 to 𝑝 = 6. In
this way, the computational costs of the direct simulation method are minimized by adopting a refined mesh
in the vicinity of obstacles and larger cells elsewhere.
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In each numerical experiment, we consider an incident wave which is analytically defined by

𝑢0(x, 𝑡) =
Λ0

(︁
𝑡− |x|

𝑐

)︁
4𝜋|x|

(3.9)

with
Λ0(𝑡) = (𝑡− 𝑡0)𝑒−𝛼2

0(𝑡−𝑡0)
2
. (3.10)

The wave speed 𝑐 is equal to 1. The real numbers 𝛼0 = 5 is a characteristic frequency whereas 𝑡0 = 1.2 𝜋
𝛼0

is a
characteristic time. Most of the energy of the signal corresponds to the wave length:

𝜆 ∈ [𝜆𝑚, +∞[ with 𝜆𝑚 = 𝑐𝑡0 ≃ 0.75. (3.11)

First numerical experiment: the case of five spheres. We consider two configurations with five spherical
obstacles with radius 𝜀 = 0.1 and 𝜀 = 0.01 centered in

x1 =

⎡⎣−.5
.5
0

⎤⎦ , x2 =

⎡⎣0
.5
0

⎤⎦ , x3 =

⎡⎣.5
.5
0

⎤⎦ , x4 =

⎡⎣.5
0
0

⎤⎦ , x5 =

⎡⎣ .5
−.5
0

⎤⎦ . (3.12)

In terms of ratio of characteristic length, the ratio 𝜀/𝜆𝑚 is equal to 0.13 in the first configuration and to 0.013
in the second configuration.

For the first configuration, the direct numerical simulation has involved 88 073 elements distributed as fol-
lows 108 𝑃2-elements, 298 𝑃3-elements, 105 𝑃4-elements, 3640 𝑃5-elements and 82 969 𝑃6-elements. This
corresponds to 7 183 951 degrees of freedom. The time step is approximately 1.6×10−4. About 25 000 time steps
are required to reach the final time 𝑡 = 4. The duration of the experiment is 10 min on 576 processors (16 nodes
of 36 cores).

The second configuration involves 89 751 elements, distributed as follows; 718 𝑃 1-elements, 360 𝑃 2-elements,
221 𝑃 3-elements, 954 𝑃 4-elements, 3579 𝑃 5-elements and 83 919 𝑃 6-elements. This corresponds to 7 293 902
degrees of freedom. The time step is 8.3×10−6 (about 480 000 iterations). The numerical experiments last three
hours on 576 processors (16 nodes of 36 cores).

It is worth noting here that reducing the diameters of the sphere by a factor 10 only slightly increased the
number of elements, since we only need to small elements close from the obstacle. However, this divided the
time step by a factor 20.

The results are depicted for the first configuration in Figure 2. We notice that the numerical solution of the
Foldy-Lax model is much closer to the direct numerical solution than the solution of the Born approximation.
This is particularly true in the center of the computational domain where a diffusion phenomenon can be
observed. This is related to multiscattering which is not correctly taken into account by the Born model.

For the second configuration, the results are depicted in Figure 3. In this case, the radius of the obstacles
and consequently the ratio 𝜀/𝜆𝑚 are smaller. Both approximations give excellent qualitative results.

Second numerical experiment: the case of 216 spherical obstacles evenly distributed. We consider
here the case of a network of 6 by 6 by 6 spheres with radius 𝜀 = .01 whose centers x𝑖,𝑗,𝑘 lie on a regular grid
of space step ℎ = .5. More precisely, we for 0 ≤ 𝑖, 𝑗, 𝑘 ≤ 5,

x𝑖,𝑗,𝑘 =
[︀
𝑖ℎ− 3.5ℎ, 𝑗ℎ− 3.5ℎ, 𝑘ℎ− 3.5ℎ

]︀𝑇 with ℎ = .5. (3.13)

It is worth noting that we are in the ideal case where the obstacles are clearly small in regards with the
wavelength. We thus expect the asymptotic model will deliver very good results when compare with the finite
element method. The direct numerical simulation involves 209 344 elements, with 32 748 𝑃 1-elements, 14 994 𝑃 2-
elements, 9779 𝑃 3-elements, 9630 𝑃 4-elements, 10 911 𝑃 5-elements and 131 282 𝑃 6-elements. This corresponds
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Figure 2. Comparison between Born, Foldy-Lax and direct numerical simulation. (a) Born
𝑡 = 2. (b) Born 𝑡 = 4. (c) Foldy 𝑡 = 2. (d) Foldy 𝑡 = 4. (e) Direct numerical simulation 𝑡 = 2. (f)
Direct numerical simulation 𝑡 = 4.
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Figure 3. Comparison between Born, Foldy-Lax and direct numerical simulation. (a) Born
𝑡 = 3. (b) Born 𝑡 = 4. (c) Foldy 𝑡 = 3. (d) Foldy 𝑡 = 4. (e) Direct numerical simulation 𝑡 = 3. (f)
Direct numerical simulation 𝑡 = 4.
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to 12 452 266 degrees of freedom. The time step is 4.62× 10−6. The numerical experiment lasts 12 hours on 576
processors (16 nodes of 36 cores) to compute the solution at time 𝑡 = 5.

This case is only affordable with direct numerical simulation performed on a supercomputer. On a laptop it
would have taken almost two years. Since the simulation is performed in time-domain the memory issue is less
crucial.

A clear difference can be observed close to the boundary of the computational domain. This is due to the
approximate outgoing wave condition which does not filter the reflections completely, so we can see a spurious
wave which pollutes the finite element calculation.

The Foldy-Lax model took 2.56 s to solve the problem on a personal computer (1.8 GHz simple core with
4 Gb of RAM). These preliminary results are presented in Figure 4. We can observe the solution at times 𝑡 = 2
and 𝑡 = 3. Only 36 spheres are visible since we are representing the solution on the plane 𝑧 = 0.25.

It is worth mentioning that thanks to Foldy-Lax model, we have been able to perform simulations of acoustic
wave diffraction by dense arrays of small obstacles up to 10 000 in number. These simulations could not be
carried out with the finite element code.

4. Mathematical analysis

4.1. Statement of the result

In Section 2, we have formally written a matched asymptotic expansion 𝑢𝜀 providing a representation of the
scattered field in presence of a small obstacle. In the following, we justify this development by proving that the
Taylor expansion of 𝑢𝑖 in (2.20) converges.

For 𝑖 > 0, the terms 𝑢𝑖 are singular functions and according to (2.12) and (2.13), they are represented by a
finite sum (see [32, 33] for details). As far as convergence is concerned, we will thus focus on the regular term
𝑢0 ∈ 𝐶∞(R3 × R), solution to the wave equation (2.4), given by (2.5) along with (2.9) and (2.10).

The computation of the Taylor expansion of 𝑢0 can be achieved by decomposing (2.5) in two terms

𝑢0(𝑟, 𝜃, 𝜙, 𝑡) = s𝑁 (x, 𝑡) + u𝑁 (x, 𝑡) (4.1)

with a finite sum of functions

s𝑁 (x, 𝑡) =
𝑁∑︁

𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡) 𝑍𝑚,𝑛(𝜃, 𝜙) (4.2)

and a modal series whose convergence deserves a particular attention

u𝑁 (x, 𝑡) =
+∞∑︁

𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡) 𝑍𝑚,𝑛(𝜃, 𝜙). (4.3)

We then have

Lemma 4.1. The Taylor expansion of u𝑁 and s𝑁 with respect to 𝑟 at order 𝑁 is given by

s𝑁 (x, 𝑡) =
𝑁∑︁

𝑝=0

𝑢
(𝑝)
0 (𝜃, 𝜙, 𝑡) 𝑟𝑝 + 𝑂

𝑟→0

(︀
𝑟𝑁+1

)︀
(4.4)

max
𝑡≤𝑇

|u𝑁 (x, 𝑡)| = 𝑂
𝑟→0

(︀
𝑟𝑁+1

)︀
, (4.5)

with

𝑢
(𝑝)
0 (𝜃, 𝜙, 𝑡) =

𝑝∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

Λ(𝑝+𝑛+1)
0,𝑚,𝑛 (𝑡)

2𝜋 𝑐𝑝+𝑛+1
𝑄𝑛−𝑝+1

𝑛 (−1) 𝑍𝑚,𝑛(𝜃, 𝜙), (4.6)
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Figure 4. Comparison between Born, Foldy-Lax and direct numerical simulation. (a) Foldy
𝑡 = 2. (b) Direct numerical simulation 𝑡 = 2. (c) Foldy 𝑡 = 3. (d) direct numerical simulation
𝑡 = 3. (e) Foldy 𝑡 = 4. (f) Direct numerical simulation 𝑡 = 4.
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with

𝑄𝑘
𝑛(𝑋) =

inf (𝑛,2𝑛−𝑘)∑︁
ℓ=0

𝑞𝑛−ℓ
𝑛

𝑋𝑛−ℓ−𝑘

(2𝑛− ℓ− 𝑘)!
· (4.7)

It has been proved that 𝑄𝑘
𝑛(−1) = 0 for any odd positive integer number 𝑘, see [32]. It follows the following

Theorem

Theorem 4.2. The Taylor expansion of the regular solution 𝑢0 is given by

𝑢0(x, 𝑡) =
𝑁∑︁

𝑝=0

𝑟𝑝𝑢
(𝑝)
0 (𝜃, 𝜙, 𝑡) + r𝑁

0 (x, 𝑡) (4.8)

with 𝑢
(𝑝)
0 given by (4.6) and the rest r𝑁

max
𝑡≤𝑇

|r𝑁
0 (x, 𝑡)| = 𝑂

𝑟→0
(𝑟𝑁+1). (4.9)

The proof of (4.4) of Lemma 4.1 is simply related to an explicit computation. Details can be found in [32]. The
rest of this section is devoted to the proof of (4.5) of Lemma 4.1.

4.2. Prerequisite for the mathematical analysis

The key tool for this work is
– the Mellin transform which is part of singularity theory studies, see Section 4.2.1;
– energy estimates for the wave equation, see Section 4.2.2;
– the theory of modal expansion of regular solution to wave equation, see Section 4.2.3.

4.2.1. Mellin transform: definition and properties

In this sub-section, we summarize the classic Mellin transformation results, whose proofs have been gathered
in [7] (easily accessible online). The reader may also refer to [37].

In what follows, 𝛽 is a real and 𝑝 is a positive integer. The Kondratiev spaces (see for instance [24], [10] and
[14]) are defined by ⎧⎪⎨⎪⎩

𝐾0
𝛽 =

{︁
𝑣 : R+ → R such that 𝑟−𝛽−1/2𝑣(𝑟) ∈ 𝐿2(R+)

}︁
,

𝐾𝑝
𝛽 =

{︁
𝑣 : R+ → R such that 𝑣{ℓ} ∈ 𝐾0

𝛽 ∀ℓ ≤ 𝑝
}︁

,
(4.10)

where the notation ·{ℓ} stands for the differential operator

𝑣{ℓ}(𝑟) =
(︂

𝑟
d
d𝑟

)︂ℓ

𝑣(𝑟). (4.11)

These spaces are equipped with the Hilbertian norms⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖𝑣‖𝐾0

𝛽
=
(︂∫︁ +∞

0

𝑟−2𝛽
⃒⃒
𝑣(𝑟)

⃒⃒2 d𝑟

𝑟

)︂1/2

,

‖𝑣‖𝐾𝑝
𝛽

=

(︃
𝑝∑︁

ℓ=0

⃦⃦
𝑣{ℓ}

⃦⃦2

𝐾0
𝛽

)︃ 1
2

.

(4.12)

We denote by 𝜆 ∈ C complex number

𝜆 = 𝛽 + 𝑖𝜉, 𝛽 ∈ R and 𝜉 ∈ R, (4.13)

which will serve as the Mellin variable. Let 𝒟(]0, +∞[) be the space of functions with compact support included
in ]0, +∞[.
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Definition 4.3. For any 𝑣 ∈ 𝒟(]0, +∞[), the Mellin transform is defined for any 𝜆 ∈ C by

ℳ𝑣(𝜆) =
1√
2𝜋

∫︁ +∞

0

𝑟−𝜆𝑣(𝑟)
d𝑟

𝑟
· (4.14)

Using the density of 𝒟(]0, +∞[) in 𝐾𝑝
𝛽 , the Mellin transform can be extended to 𝐾𝑝

𝛽 . Moreover, the Mellin
transform 𝜆 ↦→ ℳ𝑣(𝜆) is defined for any 𝑣 ∈ 𝐾𝑝

𝛽 and for any 𝜆 ∈ C𝛽 where C𝛽 denotes the line in the complex
plane

C𝛽 :=
{︁

𝜆 ∈ C : ℛ𝑒(𝜆) = 𝛽
}︁

. (4.15)

On the other hand, the Mellin transform is an isomorphism from 𝐾𝑝
𝛽 onto 𝐾̂𝑝

𝛽 , where 𝐾̂𝑝
𝛽 stands for

𝐾̂𝑝
𝛽 = {𝜔 : C𝛽 → C : 𝜆 ↦→ 𝜆ℓ𝜔ℓ(𝜆) ∈ 𝐿2(C𝛽), ∀ℓ ≤ 𝑝}. (4.16)

In the above definition, 𝐿2(C𝛽) denotes the space of functions on C𝛽 equipped with the norm

‖𝑣‖2𝐿2(C𝛽) =
∫︁ +∞

−∞
|𝑣(𝛽 + 𝑖𝜉)|2 d𝜉. (4.17)

Property 4.4. Let 𝑝 be a positive integer. For any 𝑣 ∈ 𝐾𝑝
𝛽 , we have 𝑣{𝑝} ∈ 𝐾0

𝛽 and for a.e. 𝜆 ∈ C𝛽

ℳ𝑣{𝑝}(𝜆) = 𝜆𝑝ℳ𝑣(𝜆). (4.18)

Property 4.5. Let 𝑣𝑞 : R+ −→ C be defined by 𝑣𝑞(𝑟) = 𝑟𝑞𝑣(𝑟), with 𝑞 ∈ R. If 𝑣 ∈ 𝐾0
𝛽 , then

𝑣𝑞 ∈ 𝐾0
𝛽+𝑞, (4.19)

and for any 𝜆 ∈ C𝑞+𝛽

ℳ𝑣𝑞(𝜆) =ℳ𝑣(𝜆− 𝑞). (4.20)

Proposition 4.6. Let 𝑝 be a positive integer. For any 𝑣 ∈ 𝐾𝑝
𝛽0

, such that 𝑣(𝑟) = 0 for every 𝑟 > 𝜌⋆ > 0, the
function 𝑣 belongs to 𝐾𝑝

𝛽 for any 𝛽 ≤ 𝛽0. The Mellin function is analytical in the half-plane

C]−∞,𝛽0[ := {𝜆 ∈ C : ℛ𝑒(𝜆) < 𝛽0} (4.21)

and satisfies for ℛ𝑒(𝜆) = 𝛽 < 𝛽0

|𝜆𝑝ℳ𝑣(𝜆)| ≤ 𝜌𝛽0−𝛽
⋆√︀

2(𝛽0 − 𝛽)
‖𝑣‖𝐾𝑝

𝛽0
. (4.22)

Proposition 4.7. Let 𝑝 be a positive integer, 𝛽1 and 𝛽2 be two real numbers such that 𝛽1 < 𝛽2. Let 𝐾𝑝
[𝛽1,𝛽2]

:=
𝐾𝑝

𝛽1
∩𝐾𝑝

𝛽2
. Then for any 𝛽 ∈ [𝛽1, 𝛽2], we have 𝐾𝑝

𝛽 ⊂ 𝐾𝑝
[𝛽1,𝛽2]

.

To prove Theorem 4.2 and thereby estimate the rest u𝑁 , we are going to apply the following theorem coming
from singularity theory, that is:

Theorem 4.8. Let 𝛽0 < 𝛽1 < 𝛽2 be three real numbers. Let 𝑣 ∈ 𝐾0
𝛽1

and C[𝛽1,𝛽2] be the strip of the complex
plane defined by

C[𝛽1,𝛽2] = {𝜆 ∈ C : ℛ𝑒(𝜆) ∈ [𝛽1, 𝛽2]}. (4.23)

We assume that
(i) the Mellin transform ℳ𝑣 : C𝛽1 → C admits an analytical continuation 𝑣 in C]𝛽0,𝛽2[;
(ii) there exists 𝛼 > 0 such that for any 𝜆 = 𝛽 + 𝑖𝜉 ∈ C]𝛽0,𝛽2[ and |𝜉| > 1

|𝜉2 𝑣(𝜆)| ≤ 𝛼; (4.24)

then for any 𝛽 ∈]𝛽0, 𝛽2[, 𝑣 ∈ 𝐾1
𝛽, and satisfies

|𝑣(𝑟)| ≤ 𝑟𝛽

√
2𝜋

∫︁ +∞

−∞

⃒⃒⃒
𝑣(𝛽 + 𝑖𝜉)

⃒⃒⃒
d𝜉. (4.25)
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4.2.2. Energy estimates

In this paragraph, we recall some elementary properties of the wave equation such as energy conservation
or the principle of finite velocity propagation. Let us consider the solution 𝑢0 ∈ 𝐶∞(R3 × R+) to the Cauchy
problem (2.4) defined from a pair of initial data (𝑣0, 𝑣1) satisfying Hypothesis 2.1. The wave field 𝑢0 propagates
with finite speed and its energy is preserved (see [39], Chapt. 2, Sect. 6), that is

𝐸(𝑢0, 𝑡) = 𝐸(𝑢0, 0) with 𝐸(𝑢0, 𝑡) =
∫︁

R3

⃒⃒
𝜕𝑡𝑢0(x, 𝑡)

⃒⃒2 + 𝑐2
⃒⃒
∇𝑢0(x, 𝑡)

⃒⃒2 dx, ∀𝑡 ≥ 0. (4.26)

From (4.26), we deduce that:

Property 4.9. For any pair of Cauchy data (𝑣0, 𝑣1) satisfying Hypothesis 2.1, we have for all 𝑡 ≥ 0⎧⎪⎪⎨⎪⎪⎩
∫︁

R3

⃒⃒⃒
𝜕2𝑝+1

𝑡 𝑢0(x, 𝑡)
⃒⃒⃒2

dx≤ 𝑐4𝑝
(︁∫︁

R3

⃒⃒
∆𝑝𝑣1(x)

⃒⃒2 + 𝑐2

∫︁
R3

⃒⃒
∇∆𝑝𝑣0(x)

⃒⃒2)︁
, ∀𝑝 ≥ 0,∫︁

R3

⃒⃒⃒
𝜕2𝑝

𝑡 𝑢0(x, 𝑡)
⃒⃒⃒
dx ≤ 𝑐4𝑝

(︁∫︁
R3

⃒⃒
∆𝑝𝑣0(x)

⃒⃒2 dx +
1
𝑐2

∫︁
R3

⃒⃒
∇∆𝑝−1𝑣1(x)

⃒⃒2 dx
)︁
, ∀𝑝 ≥ 1.

(4.27)

Proof. Since the initial data are in 𝐶∞, any time derivative 𝑤 = 𝜕𝑝
𝑡 𝑢0 satisfies the wave equation (2.4). For

𝑝 ≥ 1, we can thus apply (4.26) to 𝑤∫︁
R3

⃒⃒
𝜕𝑡𝑤(x, 𝑡)

⃒⃒2 dx≤𝐸(𝑤, 𝑡) = 𝐸(𝑤, 0) ∀𝑡 ≥ 0. (4.28)

�

Property 4.10. For any pair of Cauchy data (𝑣0, 𝑣1) satisfying Hypothesis 2.1, the support of 𝑢(·, 𝑡) is enclosed
in 𝐵𝑟⋆+𝑐𝑡 and ∫︁

R3
|𝑢0(x, 𝑡)|2 dx≤ (𝑟⋆ + 𝑐𝑡)2

𝑐2𝜋2

(︂∫︁
R3

⃒⃒
𝑣1(x)

⃒⃒2 + 𝑐2

∫︁
R3

⃒⃒
∇𝑣0(x)

⃒⃒2)︂
, ∀𝑡 ≥ 0. (4.29)

Proof. From the finite speed propagation principle, we have that 𝑢0(x, 𝑡) = 0 except if |x| ≤ 𝑟 ≤ 𝑐𝑡 + 𝑟⋆. The
Poincaré inequality implies that

‖𝑢0(·, 𝑡)‖2𝐿2(𝐵𝑟⋆+𝑐𝑡)
≤ (𝑟⋆ + 𝑐𝑡)2

𝜋2
‖∇𝑢0(·, 𝑡)‖2𝐿2(𝐵𝑟⋆+𝑐𝑡)

. (4.30)

Thus, the previous inequality extends to 𝑅3:∫︁
R3
|𝑢0(x, 𝑡)|2 dx≤ (𝑟⋆ + 𝑐𝑡)2

𝜋2

∫︁
R3

⃒⃒
∇𝑢0(x, 𝑡)

⃒⃒2 dx. (4.31)

�

To complete the proof of Property 4.10, all that remains is to combine (4.26) with (4.31).

4.2.3. Spectral decomposition

In what follows, we recall some classical results about separation of variables for writing regular solutions of
the wave equation (see e.g. [17, 22,36]).

Any regular solution 𝑢 of the acoustic wave equation can be decomposed into

𝑢0(x, 𝑡) =
+∞∑︁
𝑛=0

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)× 𝑍𝑚,𝑛(𝜃, 𝜙). (4.32)
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This writing is valid for any value of 𝑡 and the series converges in 𝐿2(R3). The terms 𝑢𝑚,𝑛 are the spectral
coefficients of 𝑢0 in the orthogonal basis 𝑍𝑚,𝑛 of 𝐿2(S) previously introduced in (2.6); we have:

𝑢𝑚,𝑛(𝑟, 𝑡) =
∫︁

S
𝑢0(𝑟, 𝜃, 𝜙, 𝑡)𝑍𝑚,𝑛(𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙, (4.33)

where S denotes the unit sphere parameterized with the angular space variables (𝜃, 𝜙).
It is then important to list the properties of the functions 𝑍𝑚,𝑛. We have:

Property 4.11. The functions 𝑍𝑚,𝑛 satisfy

(i) ‖𝑍𝑚,𝑛‖𝐿2(S) = 1,
(ii) 𝑍𝑚,𝑛(0, 𝜙) = 0, if 𝑚 ̸= 0, ∀𝜙 ∈ [0, 2𝜋],

(iii) 𝑍0,𝑛(0, 𝜙) =

√︂
𝑛 + 1/2

2𝜋
, for 𝑚 = 0, ∀𝜙 ∈ [0, 2𝜋].

(iv)
∫︁

S
𝑍𝑚,𝑛(𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙 = 0 for 𝑛 ̸= 0.

Proof. By construction, the set of functions 𝑍𝑚,𝑛 forms an orthonormal basis of 𝐿2(S). Indeed according to
(2.6), we have

‖𝑍𝑚,𝑛‖2𝐿2(S) =
1

2𝜋

∫︁ 2𝜋

0

| exp(𝑖𝑚𝜙)|2 d𝜙

∫︁ 𝜋

0

⃒⃒⃒
𝑃
|𝑚|
𝑛 (cos 𝜃)

⃒⃒⃒2
sin 𝜃 d𝜃. (4.34)

The corresponding Legendre polynomials are orthogonal and satisfy for any 𝑚 ∈ [0, 𝑛] (see e.g. [37] p. 37)∫︁ 1

−1

⃒⃒⃒
𝑃𝑚

𝑛 (𝑥)
⃒⃒⃒2

d𝑥 = 1. (4.35)

By applying the change of variable 𝑥 = cos 𝜃, we get the normalized Legendre polynomials which satisfy∫︁ 𝜋

0

⃒⃒⃒
𝑃
|𝑚|
𝑛 (cos 𝜃)

⃒⃒⃒2
sin 𝜃 d𝜃 = 1. (4.36)

This ends the proof of (i).
Still by definition (see (2.7)), 𝑃𝑚

𝑛 (1) = 0, ∀𝑚 ̸= 0. We thus have (ii) according to (2.6).
By definition (see (2.6) and (2.7)), we have

𝑍0,𝑛(0, 0) =
𝑃 0

𝑛(1)√
2𝜋

=

√︂
𝑛 + 1/2

2𝜋
, (4.37)

because 𝑃𝑛(1) = 1. Indeed, following [37] (see p. 35), we have

(𝑥2 − 1)𝑃 ′𝑛(𝑥) = 𝑛𝑥𝑃𝑛(𝑥)− 𝑛𝑃𝑛−1(𝑥), (4.38)

and by using the recurrence relation (4.38) for 𝑥 = 1, we obtain 𝑃𝑛(1) = 𝑃𝑛−1(1). It is then sufficient to see
that 𝑃0(1) = 1 for getting (iii).

By orthogonality, we have for all 𝑛 > 0∫︁
S
𝑍𝑚,𝑛(𝜃, 𝜙) 𝑍0,0(𝜃, 𝜙) sin(𝜃) d𝜃 d𝜙 = 0. (4.39)

We then remark that 𝑍0,0(𝜃, 𝜙) = 1√
4𝜋

which gives (iv) from (4.39). This completes the proof of
Property 4.11. �
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In [27], the basis functions 𝑍𝑚,𝑛 of 𝐿2(S) are defined as eigenfunctions of the Laplace–Beltrami operator
which reads in spherical coordinates as

∆Γ =
1

sin 𝜃
𝜕𝜃

[︁
sin 𝜃𝜕𝜃

]︁
+

1
sin2 𝜃

𝜕2
𝜙. (4.40)

We actually have

Property 4.12. The functions 𝑍𝑚,𝑛 satisfy

∆Γ𝑍𝑚,𝑛(𝜃, 𝜙) = −𝑛(𝑛 + 1)𝑍𝑚,𝑛(𝜃, 𝜙). (4.41)

The partial differential equation

∆𝑢0(x, 𝑡) =
1
𝑐2

𝜕2
𝑡 𝑢0(x, 𝑡), with ∆ =

1
𝑟2

𝜕𝑟

[︁
𝑟2𝜕𝑟

]︁
+

1
𝑟2

∆Γ, (4.42)

can be diagonalized by using the spectral coefficients 𝑢𝑚,𝑛. According to (4.41) together with the fact that the
functions 𝑍𝑚,𝑛 are orthogonal in 𝐿2(S), the coefficients 𝑢𝑚,𝑛 satisfy for any 𝑟 > 0 and 𝑡 ≥ 0

1
𝑟2

𝜕𝑟

(︀
𝑟2𝜕𝑟𝑢𝑚,𝑛(𝑟, 𝑡)

)︀
− 𝑛(𝑛 + 1)

𝑟2
𝑢𝑚,𝑛(𝑟, 𝑡) =

1
𝑐2

𝜕2
𝑡 𝑢𝑚,𝑛(𝑟, 𝑡). (4.43)

Each 𝑢𝑚,𝑛 is a 𝒞∞-function with support in {(𝑟, 𝑡) : 𝑡 ≥ 0 et 0 < 𝑟 < 𝑟⋆ + 𝑐𝑡}. We now rewrite (4.43) as

𝑢{2}𝑚,𝑛(𝑟, 𝑡) + 𝑢{1}𝑚,𝑛(𝑟, 𝑡)− 𝑛(𝑛 + 1)𝑢𝑚,𝑛(𝑟, 𝑡) =
𝑟2

𝑐2
𝜕2

𝑡 𝑢𝑚,𝑛(𝑟, 𝑡). (4.44)

with ·{ℓ} defined by (4.11) On the other hand, since for any given time 𝑡, the function x ↦→ 𝑢(x, 𝑡) belongs to
𝒞∞ and has a compact support, the following energy

𝐸𝑇
ℓ = max

𝑡≤𝑇

∫︁
R3
|𝜕ℓ

𝑡𝑢(𝑟, 𝜃, 𝜙, 𝑡)|2 dx. (4.45)

is bounded. Thanks to the Parseval equality related to the spectral decomposition, we then have for all 𝑣 ∈ 𝐿2(S)∫︁ 𝜋

0

∫︁ 2𝜋

0

|𝑣(𝜃, 𝜙)|2 sin 𝜃 d𝜃 d𝜙 =
∑︁
𝑚,𝑛

|𝑣𝑚,𝑛|2, (4.46)

with 𝑣𝑚,𝑛 =
∫︁

S
𝑣(𝜃, 𝜙)𝑍𝑚,𝑛(𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙. These terms can be displayed with the spectral coefficients

𝐸𝑇
ℓ = max

𝑡≤𝑇

∫︁ +∞

0

∑︁
𝑚,𝑛

⃒⃒
𝜕ℓ

𝑡𝑢𝑚,𝑛(𝑟, 𝑡)
⃒⃒2

𝑟2 d𝑟. (4.47)

We then have

Proposition 4.13. The space 𝐿2(R3) can be characterized as

𝐿2(R3) =

{︃
𝑣 : R3 → R | 𝑣𝑚,𝑛 ∈ 𝐾0

−3/2,∀𝑛 ≥ 0, 𝑚 ∈ [−𝑛, 𝑛] (4.48)

and
∑︁
𝑚,𝑛

‖𝑣𝑚,𝑛‖2𝐾0
−3/2

< +∞

}︃
. (4.49)
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Proof. Let 𝑣 be in 𝐿2(R3). From (4.46), we know that∫︁
R3
|𝑣(x)|2 dx =

∫︁ +∞

0

∫︁ 𝜋

0

∫︁ 2𝜋

0

|𝑣(𝑟, 𝜃, 𝜙)|2𝑟2 d𝑟 sin 𝜃 d𝜃 d𝜙, (4.50)

=
∫︁ +∞

0

∑︁
𝑚,𝑛

|𝑣𝑚,𝑛(𝑟, 𝜃, 𝜙)|2𝑟2 d𝑟. (4.51)

By switching sum and integral terms (following Fubini theorem), it holds that∫︁
R3
|𝑣(x)|2 dx =

∑︁
𝑚,𝑛

∫︁ +∞

0

|𝑣𝑚,𝑛(𝑟, 𝜃, 𝜙)|2𝑟2 d𝑟. (4.52)

Then, considering that ∫︁ +∞

0

⃒⃒
𝑣𝑚,𝑛(𝑟, 𝜃, 𝜙)

⃒⃒2
𝑟2 d𝑟 =

∫︁ +∞

0

⃒⃒⃒
𝑟−(− 3

2 ) 𝑣𝑚,𝑛(𝑟, 𝜃, 𝜙)
⃒⃒⃒2 d𝑟

𝑟
, (4.53)

the proof of Proposition 4.13 is complete. �

4.3. Convergence proof

We remind that u𝑁 is given by the modal expansion (4.3). It is represented by a series to which we want to
give meaning. We begin by studying the terms of this series precisely and then we deal with the convergence of
this series in the classical sense and not only in 𝐿2(R3). We follow a two-step approach:

– The first step will consist in estimating precisely the spectral coefficients 𝑢𝑚,𝑛 for every 𝑛 ∈ N and −𝑛 ≤
𝑚 ≤ 𝑛.

– The second step consists in processing the infinite summation and demonstrate its convergence.

4.3.1. Control of the terms of the series

Here we will apply the Theorem 4.8 . After testing hypotheses (i) and (ii), we will obtain the behavior close
to 𝑟 =0 of 𝑢𝑚,𝑛 which is described in the following proposition:

Proposition 4.14. Let 𝑁 be an even integer greater or equal to 2. For any integer 𝑛 ≥ 𝑁 , 𝑚 ∈ N with
−𝑛 ≤ 𝑚 ≤ 𝑛, we have

|𝑢𝑚,𝑛(𝑟, 𝑡)| ≤ 1
𝑛(𝑛 + 1)

√︂
𝜋(𝑟⋆ + 𝑐𝑡)

2
𝑟𝑁 ‖𝜕𝑁+2

𝑇 𝑢𝑚,𝑛‖𝐾0
−3/2

with 𝑇 = 𝑐𝑡. (4.54)

− Checking (i). The function x ↦→ 𝜕ℓ
𝑡𝑢(x, 𝑡) belongs to 𝐿2(R3), for every integer ℓ ≥ 0 and 𝑡 ≥ 0. The featuring

of 𝐿2(R3), given by Proposition 4.13, justifies that the spectral coefficients 𝑟 ↦→ 𝜕ℓ
𝑡𝑢𝑚,𝑛(𝑟, 𝑡) are functions of

𝐾0
−3/2. Since 𝑟 ↦→ 𝑢𝑚,𝑛(𝑟, 𝑡) is compactly supported in [0, 𝜌⋆], with 𝜌⋆ = 𝑟⋆ + 𝑐𝑡, we deduce that

𝜕ℓ
𝑡𝑢𝑚,𝑛 ∈ 𝐾0

𝛽 , ∀ℓ ∈ N, ∀𝛽 ≤ −3/2. (4.55)

We can thus apply the Mellin transform to equation (4.44) and we use Properties 4.4 and 4.5 to get that for
any 𝑡 ≥ 0 and for any 𝜆 ∈ C]−∞,− 3

2 [

𝛼𝑛(𝜆) ℳ𝑢𝑚,𝑛(𝜆, 𝑡) = 𝜕2
𝑇ℳ𝑢𝑚,𝑛(𝜆− 2, 𝑡), (4.56)

with
𝛼𝑛(𝜆) = 𝜆2 + 𝜆− 𝑛(𝑛 + 1). (4.57)
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We continue by proving that 𝜆 ↦→ ℳ𝑢𝑚,𝑛(𝜆, 𝑡) admits a meromorphic continuation 𝜆 ↦→ 𝑢̂𝑚,𝑛(𝜆, 𝑡) in the
complex plane. For 𝜆 = 𝛽 + 𝑖𝜉 with 𝛽 < −3/2, the meromorphic continuation 𝑢̂𝑚,𝑛(𝜆, 𝑡) necessarily coincides
with ℳ𝑢𝑚,𝑛(𝜆, 𝑡)

𝑢̂𝑚,𝑛(𝜆, 𝑡) = ℳ𝑢𝑚,𝑛(𝜆, 𝑡). (4.58)

For 𝛽 ≥ −3/2, we construct the meromorphic continuation by means of formula (4.56)

𝑢̂𝑚,𝑛(𝜆, 𝑡) =
𝜕2𝑝

𝑇 𝑢̂𝑚,𝑛(𝜆𝑝, 𝑡)
𝑝−1∏︁
𝑘=0

𝛼𝑛(𝜆𝑘)

, with 𝜆𝑘 = 𝜆− 2𝑘 and 𝜕𝑇 = 𝜕𝑡/𝑐, (4.59)

where 𝑝 denotes the integer such that 𝛽− 2𝑝 ∈ [− 7
2 ;− 3

2 [. It is explicitly given by 𝑝 = 𝐸( 7
4 + 𝛽

2 )) with 𝛽 = ℜ(𝜆).
The formula (4.59) makes it possible to define 𝑢̂𝑚,𝑛(·, 𝑡) as a meromorphic function of C.

The zeroes of 𝛼𝑛 being located at 𝜆 = 𝑛 and 𝜆 = −𝑛 − 1, we can deduce from formula (4.59) that, for all
integer ℓ, 𝜆 ↦→ 𝜕ℓ

𝑡 𝑢̂𝑚,𝑛(𝜆, 𝑡) is an analytical function in C ∖ {𝑛 + 2𝑘 | 𝑘 ∈ N}.

− Checking (ii).

Lemma 4.15. For any 𝜆 = 𝛽 + 𝑖𝜉 ∈ C such that |𝜉| ≥ 1

|𝜉|2 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ 𝛾𝑛(𝑡, 𝛽), (4.60)

where 𝛾𝑛 is a function of R+ × R −→ R+ locally bounded in .

Proof. We remind that 𝜆 = 𝛽 + 𝑖𝜉. We first remark that formula (4.59) is also valid for 𝑝 = 2

𝑢̂𝑚,𝑛(𝜆, 𝑡) =
𝜕2𝑝0

𝑇 𝑢̂𝑚,𝑛(𝜆− 2𝑝0, 𝑡)
𝑝0−1∏︁
𝑘=0

𝛼𝑛(𝜆𝑘)

· (4.61)

Considering the imaginary part of 𝛼𝑛, we have

if 𝛽 /∈ [−1, 0] then |𝛼𝑛(𝜆)| ≥ |ℐ𝑚(𝛼𝑛(𝜆))| = |(2𝛽 + 1)𝜉| ≥ |𝜉|,

if 𝛽 ∈ [−1, 0] then |𝛼𝑛(𝜆)| ≥ |ℛ𝑒(𝛼𝑛(𝜆))| = 𝑛2 + 𝑛⏟  ⏞  
≥0

− (𝛽2 + 𝛽)⏟  ⏞  
≤0

+ 𝜉2 ≥ 𝜉2 ≥ |𝜉|. (4.62)

For 𝑝0 ≥ 2 and |𝜉| ≥ 1, it follows

𝜉2 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ 𝜉𝑝0 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ |𝜕2𝑝0
𝑇 𝑢̂𝑚,𝑛(𝜆− 2𝑝0, 𝑡)| (4.63)

we apply Proposition 4.6 with 𝛽0 = −3/2, the following estimates hold

– If 𝜆− 4 < −2 (𝜆 < 2),⎧⎨⎩ 𝜉2 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ |𝜕4
𝑇 𝑢̂𝑚,𝑛(𝜆− 4, 𝑡)| ≤ 𝛾1

𝑛(𝑡, 𝛽)‖𝜕4
𝑇 𝑢𝑚,𝑛(·, 𝑡)‖𝐾0

−3/2

≤ 𝛾1
𝑛(𝑡, 𝛽)‖𝜕4

𝑇 𝑢(·, 𝑡)‖𝐿2(R3) see Prop. 4.13,
(4.64)

with 𝛾1
𝑛(𝑡, 𝛽) = (𝑟⋆+𝑐𝑡)−

3
2−𝛽+4

√
2(− 3

2−𝛽+4)
.
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– If 𝜆− 4 > −2 (𝜆 > 2). Let 𝑝0 be the integer such that 𝛽 − 2𝑝0 ∈]− 4,−2]⎧⎪⎨⎪⎩
𝜉2 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ 𝜉𝑝0 |𝑢̂𝑚,𝑛(𝜆, 𝑡)| ≤ |𝜕2𝑝0

𝑇 𝑢̂𝑚,𝑛(𝜆− 2𝑝0, 𝑡)|

≤ 𝛾2
𝑛(𝑡)‖𝜕2𝑝0

𝑇 𝑢𝑚,𝑛(·, 𝑡)‖𝐾0
−3/2

≤ 𝛾2
𝑛(𝑡)‖𝜕2𝑝0

𝑇 𝑢(·, 𝑡)‖𝐿2(R3).
(4.65)

with

𝛾2
𝑛(𝑡, 𝛽) = max

𝛽>2

(𝑟⋆ + 𝑐𝑡)−
3
2−𝛽+2𝑝0(𝛽)√︁

2(− 3
2 − 𝛽 + 2𝑝0(𝛽))

= max
𝛽∈[0,2]

(𝑟⋆ + 𝑐𝑡)
1
2+𝛽√︁

1
2 + 𝛽

· (4.66)

The result follows form (4.64) and (4.65). �

− Final step. Due to Proposition 4.6, the function 𝜆 ↦→ 𝑢̂𝑚,𝑛(𝜆, 𝑡) is analytical for any ℛ𝑒(𝜆) < 𝑛 and it
satisfies (4.60) for any |𝜉| > 1. Theorem 4.8 implies that 𝑢𝑚,𝑛(·, 𝑡) ∈ 𝐾1

𝛽 for any 𝛽 < 𝑛.

Lemma 4.16. Let 𝑛 and 𝑁 be two integers with 𝑛 > 𝑁 and 𝑁 even. If 𝜆 = 𝑁 + 𝑖𝜉, we have

𝑛(𝑛 + 1)
(︁

1 + 𝜉2
)︁ ⃒⃒⃒

𝑢̂𝑚,𝑛(𝜆, 𝑡)
⃒⃒⃒
≤ √𝜌⋆ ‖𝜕𝑁+2

𝑇 𝑢𝑚,𝑛(·, 𝑡)‖𝐾0
−3/2

. (4.67)

Proof. If 𝑁 is even, according to (4.59) for 𝑝 = 𝑁
2 + 1, we have

𝑢̂𝑚,𝑛(𝜆, 𝑡) =
𝜕𝑁+2

𝑇 𝑢̂𝑚,𝑛(−2 + 𝑖𝜉, 𝑡)

𝛼𝑛(𝜆)

⎛⎝𝑁/2−1∏︁
𝑘=1

𝛼𝑛(𝜆𝑘)

⎞⎠𝛼𝑛(𝑖𝜉)

, with 𝜆𝑘 = 𝑁 − 2𝑘 + 𝑖𝜉. (4.68)

We remark that for any 𝜉 ∈ R

|𝛼𝑛(𝑖𝜉)| ≥ |ℛ𝑒(𝛼𝑛(𝑖𝜉))| = 𝑛2 + 𝑛 + 𝜉2 ≥ 𝑛(𝑛 + 1). (4.69)

Since 1 ≤ 𝑘 ≤ 𝑁/2− 1, it follows that 𝛽𝑘 := ℛ𝑒(𝜆𝑘) = 𝛽 − 2𝑘 ∈ [2, 𝑁 − 2] ⊂ [0, 𝑁 ]. As a consequence, we get

|𝛼𝑛(𝜆𝑘)| ≥ |ℛ𝑒(𝛼𝑛(𝜆𝑘))| = 𝑛2 + 𝑛− 𝛽2
𝑘 − 𝛽𝑘 + 𝜉2 ≥ 𝑛2 + 𝑛−𝑁2 −𝑁 + 𝜉2 ≥ 1, (4.70)

because 𝑛 > 𝑁 . Likewise, since 𝛽 = 𝑁 , we have

|𝛼𝑛(𝜆)| ≥ |ℛ𝑒(𝛼𝑛(𝑁 + 𝑖𝜉))| = 𝑛2 + 𝑛−𝑁2 −𝑁 + 𝜉2 ≥ 1 + 𝜉2. (4.71)

It follows then from (4.69) to (4.71)

𝑛(𝑛 + 1)(1 + 𝜉2)
⃒⃒⃒
𝑢̂𝑚,𝑛(𝜆, 𝑡)

⃒⃒⃒
≤
⃒⃒⃒
𝜕𝑁+2

𝑇 𝑢̂𝑚,𝑛(−2 + 𝑖𝜉, 𝑡)
⃒⃒⃒
. (4.72)

By applying Proposition 4.6 with 𝛽0 = −3/2, we get⃒⃒⃒
𝜕𝑁+2

𝑇 𝑢̂𝑚,𝑛(−2 + 𝑖𝜉, 𝑡)
⃒⃒⃒
≤ √𝜌⋆‖𝜕𝑁+2

𝑇 𝑢𝑚,𝑛(·, 𝑡)‖𝐾0
−3/2

, with 𝜌⋆ = 𝑟⋆ + 𝑐𝑡. (4.73)

Then according to (4.72), Lemma 4.16 is proved. �

Finally to get estimate (4.54) and Proposition 4.14, it remains to evaluate the following integral

∫︁ +∞

−∞

⃒⃒⃒
𝑢̂𝑚,𝑛(𝑁 + 𝑖𝜉, 𝑡)

⃒⃒⃒
𝑑𝜉 ≤

√
𝜌⋆

𝑛(𝑛 + 1)

⎛⎜⎜⎝∫︁ +∞

−∞

d𝜉

1 + 𝜉2⏟  ⏞  
𝜋

⎞⎟⎟⎠ ⃦⃦⃦𝜕𝑁+2
𝑇 𝑢𝑚,𝑛(·, 𝑡)

⃦⃦⃦
𝐾0
−3/2

,

and then to apply (4.25) in Theorem 4.8.
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4.3.2. End of the proof of Theorem 4.2

Let S be the unit sphere. We establish preliminary results dealing with the Laplace Beltrami operator.

Lemma 4.17. For any 𝑣 ∈ 𝐿2(S) such that ∆Γ𝑣 ∈ 𝐿2(S) and∫︁
S
𝑣(𝜃, 𝜙) sin 𝜃 d𝜃 d𝜙 = 0, (4.74)

we have 𝑣 ∈ 𝐿∞(S) and the following estimate holds:

‖𝑣‖𝐿∞(S) ≤ ‖∆Γ𝑣‖𝐿2(S). (4.75)

Proof. We set ŷ ∈ S and we introduce a coordinate change that associates ẑ ∈ S to x̂ ∈ S with⎧⎨⎩ ẑ1 = x̂ · ŷ⊥,1,
ẑ2 = x̂ · ŷ⊥,2,
ẑ3 = x̂ · ŷ,

(4.76)

where ŷ⊥,1 and ŷ⊥,2 are two vectors such that (ŷ, ŷ⊥,1, ŷ⊥,2) forms an orthonormal basis of R3. The application
𝑅ŷ : S ↦→ S which associates x̂ to ẑ is an isometry. Let ̃︀𝑣 : S ↦→ S be the function defined by

̃︀𝑣(ẑ) = 𝑣(x̂), with ẑ = 𝑅ŷ(x̂). (4.77)

We remark that the function ̃︀𝑣 satisfies∫︁
S
̃︀𝑣 d𝑠 =

∫︁
S
𝑣 d𝑠 = 0, ‖∆Γ̃︀𝑣‖𝐿2(S) = ‖∆Γ𝑣‖𝐿2(S) and ̃︀𝑣(ẑtop) = 𝑣(ŷ), (4.78)

where ẑtop = (0, 0, 1) denotes the North pole of the sphere. Using the spectral decomposition of ∆Γ, the functioñ︀𝑣 can be written as ̃︀𝑣 =
∑︁
𝑚,𝑛

̃︀𝑣𝑚,𝑛𝑍𝑚,𝑛, (4.79)

with ̃︀𝑣𝑚,𝑛 =
∫︀

S ̃︀𝑣𝑍𝑚,𝑛 d𝑠. Following Property 4.11, we have 𝑍𝑚,𝑛(0, 0) = 0 for any 𝑚 ̸= 0. Moreover, since 𝑍0,0

is proportional to the constant function and
∫︀

S ̃︀𝑣 = 0 d𝑠, we obtain ̃︀𝑣0,0 = 0. It follows that

̃︀𝑣(ẑtop) =
+∞∑︁
𝑛=1

̃︀𝑣0,𝑛𝑍0,𝑛(ẑtop), (4.80)

with 𝑍0,𝑛(ẑtop) =

√︂
(𝑛 + 1/2)

2𝜋
(see Property 4.11). We then apply Cauchy Schwarz inequality

|̃︀𝑣(ẑtop)| ≤

(︃
+∞∑︁
𝑛=1

𝑛 + 1/2
2𝜋𝑛2(𝑛 + 1)2

)︃1/2(︃+∞∑︁
𝑛=1

𝑛2(𝑛 + 1)2|̃︀𝑣0,𝑛|2
)︃1/2

. (4.81)

Next, we note that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+∞∑︁
𝑛=1

𝑛2(𝑛 + 1)2|̃︀𝑣0,𝑛|2 ≤
∑︁
𝑚,𝑛

𝑛2(𝑛 + 1)2|̃︀𝑣𝑚,𝑛|2 = ‖∆Γ̃︀𝑣‖2𝐿2(S),(︃∑︁
𝑛>0

𝑛 + 1/2
2𝜋𝑛2(𝑛 + 1)2

)︃1/2

≤ 1,

(4.82)

and we conclude that
|̃︀𝑣(ẑtop)| ≤ ‖∆Γ̃︀𝑣‖𝐿2(S), (4.83)

which ends the proof thanks to (4.78). �
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Lemma 4.18. Let 𝑁 ≥ 2 be an even integer. We have

‖∆Γu𝑁 (𝑟, ·, 𝑡)‖𝐿2(S) ≤
√︂

𝜋(𝑟⋆ + 𝑐𝑡)
2

𝑟𝑁 ‖𝜕𝑁+2
𝑇 𝑢‖𝐿2(R3). (4.84)

Proof. According to Parseval equality (4.46), we get

‖∆Γu𝑁 (𝑟, ·, 𝑡)‖2𝐿2(S) =
+∞∑︁

𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑛2(𝑛 + 1)2|𝑢𝑚,𝑛(𝑟, 𝑡)|2. (4.85)

From Proposition 4.14, we deduce that

‖∆Γu𝑁 (𝑟, ·, 𝑡)‖2𝐿2(S) ≤
𝜋(𝑟⋆ + 𝑐𝑡)

2
𝑟2𝑁

+∞∑︁
𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

‖𝜕𝑁+2
𝑇 𝑢𝑚,𝑛‖2𝐾0

−3/2
. (4.86)

We apply Parseval theorem once again to get

+∞∑︁
𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

‖𝜕𝑁+2
𝑇 𝑢𝑚,𝑛‖2𝐾0

−3/2
≤ ‖𝜕𝑁+2

𝑇 𝑢‖2𝐿2(R3). (4.87)

This ends the proof. �

Remark 4.19. The norm involved in the right hand side of inequality (4.84) can be bounded by a constant
independent of the time thanks to Property 4.9.

The function u𝑁 is defined as the remainder of the series (2.5)

u𝑁 (x, 𝑡) =
+∞∑︁

𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)𝑍𝑚,𝑛(𝜃, 𝜙). (4.88)

Due to Property 4.11 and since this series is convergent in 𝐿2(S),∫︁
S
u𝑁 (𝑟, 𝜃, 𝜙, 𝑡) sin(𝜃) d𝜃 d𝜙 =

+∞∑︁
𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)
∫︁

S
𝑍𝑚,𝑛(𝜃, 𝜙) sin(𝜃) d𝜃 d𝜙 = 0. (4.89)

Then, from Lemma 4.17, we obtain that for every x on the sphere with radius 𝑟

|u𝑁 (x, 𝑡)| ≤
√︂

𝜋(𝑟⋆ + 𝑐𝑡)
2

𝑟𝑁 ‖𝜕𝑁+2
𝑇 𝑢‖𝐿2(R3). (4.90)

This estimate holds true for any 𝑟 > 0 and we deduce a non-optimal estimate of u𝑁 for any even integer 𝑁 set
in the following proposition.

Proposition 4.20. For any 𝑇 > 0 and for any even integer 𝑁 with 𝑁 ≥ 2, we have

max
𝑡≤𝑇

|u𝑁 (x, 𝑡)| = 𝑂
𝑟→0

(𝑟𝑁 ). (4.91)

Proof. To get the estimate of Theorem 4.2, we perform an order upgrading. Let 𝑁 be a given integer and let 𝑃
be an even integer such that 𝑃 > 𝑁 . By definition of u𝑁 (see (4.3)), we have

u𝑁 (x, 𝑡) =
𝑃∑︁

𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)𝑍𝑚,𝑛(𝜃, 𝜙) + u𝑃 (x, 𝑡), (4.92)
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where u𝑃 is defined like u𝑁 , replacing in (4.88) 𝑁 by 𝑃 . According to Proposition 4.20 we know that⎧⎪⎪⎨⎪⎪⎩
max
𝑡≤𝑇

|
𝑃∑︁

𝑛=𝑁+1

𝑛∑︁
𝑚=−𝑛

𝑢𝑚,𝑛(𝑟, 𝑡)𝑍𝑚,𝑛(𝜃, 𝜙)| = 𝑂
𝑟→0

(𝑟𝑁+1),

max
𝑡≤𝑇

|u𝑃 (x, 𝑡)| = 𝑂
𝑟→0

(𝑟𝑃 ) = 𝑂
𝑟→0

(𝑟𝑁+1).
(4.93)

since Theorem 1.3 page 57 of [32] states that 𝑢𝑚,𝑛(𝑟, 𝑡) = 𝑂
𝑟→0

(𝑟𝑛). It follows that

max
𝑡≤𝑇

|u𝑁 (x, 𝑡)| = 𝑂
𝑟→0

(𝑟𝑁+1). (4.94)

This ends the proof of Theorem 4.2. �

5. Conclusion and perspectives

We have proposed a new solution methodology for solving 3D multiple scattering problems when the size of
the obstacles is small with respect to the characteristic wavelength. This work contains two key results. First,
it validates an asymptotic representation of the field diffracted by a small obstacle illuminated by an incident
acoustic wave of very large characteristic length in front of the radius of the obstacle. The proof is based on
Kondratiev’s theory and the extensive use of the Mellin transform. To the best of our knowledge, this result
is the first one addressing the case of time-dependent wave problems. Second, this work shows the potential
of the proposed asymptotic model to numerically simulate the effects of a large number of small obstacles on
an incident wave. The proposed asymptotic method is confronted with an advanced direct simulation method
based on discontinuous finite elements, the time integration being performed with a leapfrog scheme. In a rather
simple case where the number of obstacles is limited to 5, the asymptotic method is validated by comparison
with the finite element method. Then we treat the case of 216 obstacles to show that the asymptotic method
continues to deliver an accurate solution for a very short computation time while the finite element method
reaches its limits. It would also be interesting to consider the case of penetrable obstacles. A more complicated
case would be to treat the case of elastoacoustic interactions in order to quickly detect small defects in large
structures. It would also be of great interest to compare our solution methodology with those involving high-
order radiation conditions [1, 41] and to investigate possible extensions of [3] in the time domain. Indeed, now
that we dispose of an accurate representation of the scattered field, we should be able to construct an OSRC
in the time domain. Finally, the method we have proposed can be extended to other wave equations. Recently,
it has been developed for Maxwell’s equations in harmonic regime [25, 26]. The time-dependent case is clearly
more technical but it is quite possible, at least when considering low order asymptotic models.
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(2019).
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