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Abstract: A promising keratin-degrading strain from the genus Chryseobacterium (Chryseobacterium sp.
KMC2) was investigated using comparative genomic tools against three publicly available reference
genomes to reveal the keratinolytic potential for biosynthesis of valuable secondary metabolites.
Genomic features and metabolic potential of four species were compared, showing genomic dif-
ferences but similar functional categories. Eleven different secondary metabolite gene clusters of
interest were mined from the four genomes successfully, including five common ones shared across
all genomes. Among the common metabolites, we identified gene clusters involved in biosynthesis
of flexirubin-type pigment, microviridin, and siderophore, showing remarkable conservation across
the four genomes. Unique secondary metabolite gene clusters were also discovered, for example,
ladderane from Chryseobacterium sp. KMC2. Additionally, this study provides a more comprehensive
understanding of the potential metabolic pathways of keratin utilization in Chryseobacterium sp.
KMC2, with the involvement of amino acid metabolism, TCA cycle, glycolysis/gluconeogenesis,
propanoate metabolism, and sulfate reduction. This work uncovers the biosynthesis of secondary
metabolite gene clusters from four keratinolytic Chryseobacterium species and shades lights on the
keratinolytic potential of Chryseobacterium sp. KMC2 from a genome-mining perspective, can provide
alternatives to valorize keratinous materials into high-value bioactive natural products.

Keywords: keratinous materials; metabolic potential; genome mining; gene clusters; degradation
pathways

1. Introduction

Keratin is the most abundant protein in epithelial cells, constituting the bulk of epider-
mal appendages such as hair and feather [1,2]. Keratinous materials represent an abundant
protein source, particularly originating from the commercial slaughterhouses or poultry
farms [3]. They contain peptides and amino acids, which are renewable natural resources
with great potential in sustainable development [4]. However, keratin is an insoluble pro-
tein with highly cross-linked disulfide bonds giving it a tough and recalcitrant structure [5].
Many attempts have been made to hydrolyze keratinous materials in terms of physico-
chemical treatment, enzymatic hydrolysis, and microbial conversion [6,7]. The hydrolysis
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products of keratinous materials have been used for animal feed [8] and fertilizer [9] based
on conventional processing.

Microorganisms represent one of the most important sources of bioactive natural prod-
ucts, which have the potential to generate compounds such as antibiotics, biofuels, and
natural pigments derived from cellular metabolites [10,11]. For example, Yarrowia lipolytica
has been used to convert different renewable feedstocks to high-value metabolites [12]. Sim-
ilarly, Escherichia coli has become one of the best cell reactors to produce alcohols, organic
acids, biodiesel, and even hydrogen by utilizing renewable resources [13]. Other bacteria
such as Bacillus subtilis [14], Caldicellulosiruptor bescii [15], Corynebacterium glutamicum [16],
and Ruminococcaceae [17] were identified and evaluated with the capacity to generate differ-
ent products by converting renewable carbon sources. Notably, some microorganisms were
reported to degrade keratinous waste effectively [18]. Exploring keratinolytic potential of
these microbes to generate high-value-added products is an important step to recycle and
valorize keratinous materials.

Molecular mechanisms of microbial keratin degradation are still not fully understood,
while genome sequencing offers possibilities to reveal the metabolic potential behind
efficient microbial degradation [19]. Novel keratinolytic enzymes were identified from
the genome of Bacillus pumilus 8A6, an efficient keratin degrader [20]. Furthermore, go-
ing beyond the degradation reaction itself, genomes can also be minded for valuable
accessory functions of interest, adding more values to the microbial conversion processes.
For instance, gene clusters and biosynthesis pathways of secondary metabolites could be
disclosed from genomes via adequate analysis tools [21,22]. A total of 104 putative biosyn-
thetic gene clusters for secondary metabolites were predicted from nine Ktedonobacteria
genomes [23]. Secondary metabolites were identified and linked to gene clusters based
on the comparison and mining of six genomes belonging to diverse Aspergillus species,
successfully fueling industrial biotechnology initiatives and medical research [24]. There-
fore, using the genomes of keratinolytic microbial species in a similar way would represent
a promising approach to discover biosynthetic gene clusters of secondary metabolites of
interest, excavating the full application potential of these microbes.

Recently, several studies based on different environments have revealed the remark-
able potential of representative taxa from the Chryseobacterium genus for keratin degra-
dation using isolation, activity tests and genome sequencing [25,26]. A novel strain
Chryseobacterium sp. KMC2 with high keratin degradation capacity was obtained from
our enriched keratinolytic microbial consortium, which was identified base on the 16S
rRNA gene sequencing [27]. In this study, the genome of Chryseobacterium sp. KMC2 was
sequenced and compared with publicly available genomes of other keratinolytic Chryseobac-
terium species to clarify the genomic basis of keratin degradation, and to unravel hidden
biosynthetic gene clusters of interest. Subsequently, the metabolic pathways associated
with keratin degradation were constructed, providing deeper insight into the yet obscure
keratinolytic processes. This work reveals the keratinolytic potential of Chryseobacterium
species and mined potential accessory gene clusters of secondary metabolites, which
could i) contribute to optimizing the processes of keratin degradation and ii) broaden the
perspective to generate added-value products from keratin hydrolysate.

2. Materials and Methods
2.1. DNA Preparation

Chryseobacterium sp. KMC2 was isolated and identified from a keratinolytic microbial con-
sortium enriched from a soil sample [19,27,28]. The keratinolytic capacity of Chryseobacterium sp.
KMC2 was confirmed, and the role of this strain in the consortium was evaluated to be crucial
to achieve efficient keratin degradation [27]. Chryseobacterium sp. KMC2 was inoculated to
LB medium, and cultured overnight (200 rpm, 30 ◦C). Two milliliters of the suspension were
centrifuged and collected to prepare the DNA extraction, performed by using by FAST Soil
DNA Kit (MP Biomedicals, Solon, OH, USA) according to the manufacturer’s instructions.
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2.2. Genome Sequencing, Assembling, and Functional Annotation

The genome sequencing was performed by an Illumina Miseq instrument (2 × 250 bp
paired-end reads) (Illumina, San Diego, CA, USA) at the University of Copenhagen by
using TruSeq DNA Library Preparation Kits v2 (Illumina, San Diego, CA, USA), according
to the manufacturer’s instructions. Raw reads were treated and assembled to contigs on
CLC Genomic Workbench 8.5.1. The obtained contigs were validated using QUAST 4.5 [29].
Genes were predicted from the contigs and further annotated with Prokka v1.14.5 [30].
Predicted genes were submitted to eggNOG 5.0 database to obtain an integrated functional
annotation and classification [31].

2.3. Whole-Genome Phylogenetic Analysis

To determine the phylogenetic origin of Chryseobacterium sp. KMC2 in the
Chryseobacterium genus, the whole-genome sequences of 11 publicly available
Chryseobacterium species were downloaded from NCBI database to construct a phylo-
genetic tree. The whole-genome sequence-based phylogenetic tree was inferred by using
an online pipeline: The Reference sequence Alignment based Phylogeny builder (REAL-
PHY 1.12) [32], based on the merge reference alignments. All genomes were merged
to generate the reference sequences. Sequence reads from each query genome were
chopped into 50 bp fragments and mapped to the reference via Bowtie 2 [33]. Multi-
ple sequence alignments were reconstructed, and a phylogenetic tree was inferred by
PhyML 3.0 [34]. Visualization of the obtained phylogenetic tree was generated by iTOL
v5 [35]. Moreover, gene presence–absence patterns among these genomes were analyzed
with M1CR0B1AL1Z3R server [36], which was further used to calculate homology using
GLOOME with fixed gene gain/loss ratio [37]. The phylogenetic tree was visualized by
FigTree v1.4.4 (tree.bio.ed.ac.uk/software/figtree/) (accessed on 15 April 2021), using the
branches to display the gene gain and loss rates. Average Nucleotide Identity (ANI) was
calculated using OrthoANI [38].

2.4. Secondary Metabolite Gene Cluster Detection and Annotation

Assembled contigs of four Chryseobacterium species were uploaded to antiSMASH 5.0
secondary metabolite genome mining web platform [21]. Predicted secondary metabolites
gene clusters from Chryseobacterium sp. KMC2 were compared with other keratinolytic
Chryseobacterium species. Gene annotation of each cluster from Chryseobacterium sp. KMC2
was performed by Prokka v1.14.5 [30] and BLASTP with the NCBI database. The best match
sequencing ID was recorded for the annotated genes. Synteny and features of conservative
secondary metabolite gene clusters were analyzed by using Easyfig 2.2.2, showing the
similarity of gene sequences [39]. Feature comparison of amino acid sequences and motifs
from core synthetic genes were analyzed by using Clustal Omega [40] to get the multiple
sequence alignment and using Seq2logo to generate sequence logo [41].

2.5. Metabolic Networks Construction and Protease Families Prediction

The genomes of Chryseobacterium sp. KMC2 and other three Chryseobacterium species
were submitted to GhostKOALA [42] to obtain the KO number for each gene, then genes
were assigned to different metabolic pathways and functional categories. Following the
metabolic networks construction of Chryseobacterium sp. KMC2 was achieved through map-
ping the annotated enzyme genes to KEGG [43] reference pathway and Biocyc database [44]
manually. Protease families’ prediction was performed based on CDSs sequence alignment
against the MEROPS peptidase database according to the peptide-based functional annota-
tion principle of Peptide Pattern Recognition (PPR) [45] implemented by the Homology to
Peptide Pattern method [46]. The signal peptides of putative proteases were predicted by
the SignalP 5.0 Server [47].
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3. Results and Discussion
3.1. Genome Feature Comparison of Four Keratinolytic Chryseobacterium Species

Chryseobacterium sp. KMC2 originated from a river-bank soil sample, and displayed a
potent degradation ability toward milled pig bristle and hooves [27,28]. The genome of
Chryseobacterium sp. KMC2 was sequenced and compared to three reference genomes of
Chryseobacterium species (Table 1).

Table 1. Feature’s comparison of four Chryseobacterium species genomes.

Parameters
Chryseobacterium

sp. KMC2

Chryseobacterium
camelliae

Dolsongi-HT1

Chryseobacterium
gallinarum strain

DSM 27622

Chryseobacterium
sp. P1-3

Total length (bp) 5.276.159 4.376.354 4.633.632 4.628.764
Contigs 63 1 1 45
N50 (bp) 231.784 4.376.354 4.633.632 342.512

GC content (%) 36.33 41.80 37.30 37.02
Gene 4.773 4.012 4.161 4.906
CDS 4.692 4.009 4.151 4.939

Including: (i) Chryseobacterium camelliae Dolsongi-HT1, isolated from green tea leaves [48];
(ii) Chryseobacterium gallinarum strain DSM 27622, isolated from chicken [49]; and (iii)
Chryseobacterium sp. P1-3 isolated from poultry waste [50], which all display keratinolytic
capacity. Chryseobacterium sp. KMC2 showed distinct genome feature from the other
known keratinolytic strains. The genome size of Chryseobacterium sp. KMC2 is 5.28 Mbp,
larger than the other three genomes, which ranged from 4.38 Mbp to 4.63 Mbp. A to-
tal of 4773 genes were predicted from Chryseobacterium sp. KMC2 genome, and more
than 4000 genes were predicted from the other three genomes. Besides, the GC content
ranges from 36.33% to 41.80% in Chryseobacterium species genomes. Furthermore, the
whole-genome phylogenetic tree was constructed with other eight publically available
Chryseobacterium species genomes (Figure 1a), showing the close phylogenetic relationship
between Chryseobacterium gallinarum strain DSM 27622 and Chryseobacterium sp. P1-3. No-
tably, Chryseobacterium sp. KMC2 and Chryseobacterium camelliae Dolsongi-HT1 have closer
homology with other Chryseobacterium species. Average Nucleotide Identity (ANI) among
Chryseobacterium genomes was calculated (Figure 1b), which shows that the similarity
percentages among most pairwise genome are around 70% to 85%. While the genomes
of Chryseobacterium gallinarum strain DSM 27622 and Chryseobacterium sp. P1-3 display
highly similarity (98.9%). On the other hand, the genome-wide relationship was also
evaluated by gene loss and gain dynamics (Supplementary Figure S1). The genomes of
the four keratinolytic Chryseobacterium species were not present in the same branch of the
phylogenetic trees. This result suggests that the keratinolytic capacity is a generalist trait
that occurs in several places without links to phylogeny.

3.2. Metabolic Potential Comparison of Four Keratinolytic Chryseobacterium Genomes

About 40% of the genes from the four genomes were annotated and classified into
various functional categories based on the KEGG database. The vast majority of annotated
genes belonged to metabolism, genetic information processing, environmental information
processing, and cellular processes (Figure 2). The functional categories of the genomes
were overall highly similar, with ~85% of annotated genes assigned to “metabolism”
(category A) which included ~1.000 genes into the sub-category “global and overview
maps”. Additionally, about 8% and 4% annotated genes from each genome were assigned to
“genetic information processing” (category B) and “environmental information processing”
(category C), respectively. The remaining annotated genes belonged to “cellular processes”
(category D), which occupied 3% of the annotated genomes approximately.
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Figure 1. Analysis of Chryseobacterium genomes. (a) The whole-genome sequence-based phylogenetic
tree of Chryseobacterium species, based on the merge reference alignments of all genomes. Branch
length represents divergence, and stars show the keratinolytic Chryseobacterium species. (b) Overall
orthologous average nucleotide identity (ANI) among pairwise Chryseobacterium genomes. Values in
heatmap indicate the similarity percentage.

Remarkably, each genome had more than 200 genes assigned into the “amino acid
metabolism” sub-category. Keratin is mainly composed of amino acids [3], which is
ultimately the operational nutrient source exploited for microbial growth. Numerous
amino acid metabolism-related enzymes were annotated, revealing the genetic potential of
these Chryseobacterium strains for using keratin materials as carbon source.

Of particular interest, several biosynthesis genes of secondary metabolites were de-
tected from the genomes, of which more than 20 genes were assigned to “metabolism
of terpenoids and polyketides” and around 40 genes were assigned to “biosynthesis of
other secondary metabolites” sub-category (Figure 2). Terpenoids are a group of natural
products with diverse commercial applications, which have been produced from microbial
cell factories [51]. Many polyketides are considered as significant natural products with
broad applications in the agriculture and pharmaceutical industry [52]. The metabolic
pathways related to polyketides biosynthesis are well understood in some microorganisms
like Streptomyces which play a crucial role in industrial bioproduction [53]. This result indi-
cates that these Chryseobacterium strains could have the potential to synthesize high-value
secondary metabolites such as terpenoids and polyketides from keratinous materials.

Figure 1. Analysis of Chryseobacterium genomes. (a) The whole-genome sequence-based phylogenetic
tree of Chryseobacterium species, based on the merge reference alignments of all genomes. Branch
length represents divergence, and stars show the keratinolytic Chryseobacterium species. (b) Overall
orthologous average nucleotide identity (ANI) among pairwise Chryseobacterium genomes. Values in
heatmap indicate the similarity percentage.

Remarkably, each genome had more than 200 genes assigned into the “amino acid
metabolism” sub-category. Keratin is mainly composed of amino acids [3], which is
ultimately the operational nutrient source exploited for microbial growth. Numerous
amino acid metabolism-related enzymes were annotated, revealing the genetic potential of
these Chryseobacterium strains for using keratin materials as carbon source.

Of particular interest, several biosynthesis genes of secondary metabolites were de-
tected from the genomes, of which more than 20 genes were assigned to “metabolism
of terpenoids and polyketides” and around 40 genes were assigned to “biosynthesis of
other secondary metabolites” sub-category (Figure 2). Terpenoids are a group of natural
products with diverse commercial applications, which have been produced from microbial
cell factories [51]. Many polyketides are considered as significant natural products with
broad applications in the agriculture and pharmaceutical industry [52]. The metabolic
pathways related to polyketides biosynthesis are well understood in some microorganisms
like Streptomyces which play a crucial role in industrial bioproduction [53]. This result indi-
cates that these Chryseobacterium strains could have the potential to synthesize high-value
secondary metabolites such as terpenoids and polyketides from keratinous materials.
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Figure 2. Comparison of KEGG function classification amongst four Chryseobacterium genomes. Func-
tional categories: Metabolism (A), Genetic information processing (B), Environmental information
processing (C), and Cellular processes (D). The stars show the sub-categories: Amino acid metabolism,
metabolism of terpenoids and polyketides, and biosynthesis of other secondary metabolites.

3.3. Mining and Comparing Secondary Metabolite Gene Clusters

Genome mining is an effective approach to discover new bioactive natural products
from microorganisms based on “signature genes” detection or searching for specific pat-
terns in gene sequences [54]. To explore the potential of producing high value chemicals
from these four Chryseobacterium, secondary metabolite gene clusters were predicted by
using antiSMASH 5.0 mining pipeline (Figure 3). In total, eleven different secondary
metabolite gene clusters were identified. Chryseobacterium sp. KMC2 possesses the largest
number (15), while Chryseobacterium camelliae Dolsongi-HT1 has the fewest (8). Ten gene
clusters were predicted from the other two strains. Five gene clusters are present in
the four genomes, which are flexirubin-type pigment (resorcinol and arylpolyene), mi-
croviridin, lanthipeptide, NRPS-like, and siderophore. Remarkably, the flexirubin-type
pigment is a typical metabolite produced from Flavobacterium [55]. Several species from
Chryseobacterium were previously designated and known as Flavobacterium owing to similar
characteristics with the yellow pigments [56]. Flexirubin-type pigment was isolated and
characterized from Chryseobacterium sp. UTM-3T [57]. In addition, Chryseobacterium sp.
KMC2 owns a unique gene cluster to produce ladderane. Another unique natural product
is beta-lactone from Chryseobacterium camelliae Dolsongi-HT1. Ladderanes are hydrocar-
bon chains which were regarded as membrane lipid components produced by anammox
(anaerobic ammonia-oxidizing) bacteria uniquely, but the production is not affordable
due to their extremely low growth [58,59]. Secondary metabolite gene clusters of other
eight Chryseobacterium genomes were also predicted, consisting of 14 different candidates
(Supplementary Figure S2). These results demonstrate that various secondary metabolite
gene clusters including both expected and unusual were discovered from Chryseobacterium
genomes, which could turn into novel bioactive natural product sources.

Figure 2. Comparison of KEGG function classification amongst four Chryseobacterium genomes. Func-
tional categories: Metabolism (A), Genetic information processing (B), Environmental information
processing (C), and Cellular processes (D). The stars show the sub-categories: Amino acid metabolism,
metabolism of terpenoids and polyketides, and biosynthesis of other secondary metabolites.

3.3. Mining and Comparing Secondary Metabolite Gene Clusters

Genome mining is an effective approach to discover new bioactive natural products
from microorganisms based on “signature genes” detection or searching for specific pat-
terns in gene sequences [54]. To explore the potential of producing high value chemicals
from these four Chryseobacterium, secondary metabolite gene clusters were predicted by
using antiSMASH 5.0 mining pipeline (Figure 3). In total, eleven different secondary
metabolite gene clusters were identified. Chryseobacterium sp. KMC2 possesses the largest
number (15), while Chryseobacterium camelliae Dolsongi-HT1 has the fewest (8). Ten gene
clusters were predicted from the other two strains. Five gene clusters are present in
the four genomes, which are flexirubin-type pigment (resorcinol and arylpolyene), mi-
croviridin, lanthipeptide, NRPS-like, and siderophore. Remarkably, the flexirubin-type
pigment is a typical metabolite produced from Flavobacterium [55]. Several species from
Chryseobacterium were previously designated and known as Flavobacterium owing to similar
characteristics with the yellow pigments [56]. Flexirubin-type pigment was isolated and
characterized from Chryseobacterium sp. UTM-3T [57]. In addition, Chryseobacterium sp.
KMC2 owns a unique gene cluster to produce ladderane. Another unique natural product
is beta-lactone from Chryseobacterium camelliae Dolsongi-HT1. Ladderanes are hydrocar-
bon chains which were regarded as membrane lipid components produced by anammox
(anaerobic ammonia-oxidizing) bacteria uniquely, but the production is not affordable
due to their extremely low growth [58,59]. Secondary metabolite gene clusters of other
eight Chryseobacterium genomes were also predicted, consisting of 14 different candidates
(Supplementary Figure S2). These results demonstrate that various secondary metabolite
gene clusters including both expected and unusual were discovered from Chryseobacterium
genomes, which could turn into novel bioactive natural product sources.
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3.4.1. Flexirubin-Type Pigment

Natural pigments have increasing applications in food, pharmaceutical, and textile
industries, owing to their advantages such as non-toxic, biodegradable, and low allergenic
potential compared to synthetic pigments [61]. In particular, flexirubin-type pigment has
a potential antimicrobial and anti-tumoral activities [62]. Biosynthesis gene clusters of
flexirubin-type pigment are conserved across the four tested genomes, especially within
Chryseobacterium gallinarum strain DSM 27622 and Chryseobacterium sp. P1-3 (Figure 4a).
A total of 61 biosynthesis-related genes of flexirubin-type pigment were predicted from
Chryseobacterium sp. KMC2, including four core biosynthesis genes. One of the core
biosynthesis genes was annotated as 3-oxoacyl-(acyl carrier protein) synthase III (Flex11),
and the other three were annotated as Beta-ketoacyl synthases (Flex21, Flex24, and Flex40).
Besides, transport-related genes and regulatory genes were predicted from the gene cluster.
A previous study identified the molecular structure of flexirubin-type pigment isolated
from Chryseobacterium sp. UTM-3T [57]. According to the products from core biosynthesis
genes and their molecular structures, a proposition of biosynthesis pathway was established
(Figure 4b), where flexirubin-type pigment is generated from resorcinol and arylpolyene.
Further transcriptomics and metabolomics analysis would be required to confirm the
validity of this potential pathway discovery.

3.4.2. Microviridin

Microviridins represent a group of peptides under post-translational modifications,
which have been mainly isolated from cyanobacteria and present potent serine-type pro-
tease inhibitory activities [63,64]. These properties could make microviridin serve as the
natural antimicrobial agents for developing potential drugs. Biosynthesis gene clusters
of microviridin from four Chryseobacterium genomes show a highly conserved structure
with a similarity greater than 71% from most gene synteny analysis (Figure 5a). 22 biosyn-
thesis genes of microviridin were predicted from Chryseobacterium sp. KMC2. Two core
biosynthetic genes (A and B) were identified from genomes and transport-related genes
were also been discovered. Besides, amino acid sequences of mvdA and mvdB were
aligned, showing that multiple motifs from mvdA and mvdB are conserved (Figure 5bc).
Interestingly, many keratinases were reported to be classified as serine proteases, acting
on the molecular structure of keratin [65]. This suggests that microviridins may regulate
keratinolytic activity. Further characterizing and manipulating the microviridin synthetic
pathway could contribute to improving the keratin degradation efficiency.

3.4.3. Siderophore

Siderophores are ferric ion-specific chelators to scavenge iron from the extracellular
environment, which play important roles in virulence and oxidative stress tolerance in
microorganisms [66]. It has been designed as a Trojan horse antibiotic to enter and kill
pathogenic bacteria [67], and has been reported with the potential to decrease the growth
of cancerous cells [68]. Biosynthesis gene cluster of siderophore shows a high synteny con-
servation among Chryseobacterium sp. KMC2 and Chryseobacterium camelliae Dolsongi-HT1,
Chryseobacterium gallinarum strain DSM 27622 and Chryseobacterium sp. P1-3, respectively
(Figure 6). A total of ten genes were predicted from siderophore biosynthesis cluster of
Chryseobacterium sp. KMC2, and eight genes from the other three Chryseobacterium strains
separately. Functional description of each gene related to siderophore biosynthesis in
Chryseobacterium sp. KMC2 shows two core biosynthesis genes, and includes one regula-
tory gene and one transport-related gene. This further suggests that those siderophores
are potentially fully functional molecular features that can be regulated on-demand and
exported outside the cell when needed.

3.5. Metabolic Pathways of Keratin Utilization in Chryseobacterium sp. KMC2 Genome

The main metabolic pathways related to keratin utilization in Chryseobacterium sp.
KMC2 genome were investigated. These pathways included amino acid metabolism,
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TCA cycle, glycolysis/gluconeogenesis, propanoate metabolism, and sulfate reduction
(Figure 7). A previous study suggested that abundant amino acids are released during
microbial degradation and used as nutrient sources, such as leucine and aspartate [28].
The metabolic pathways of amino acid utilization were mapped from the genome of
Chryseobacterium sp. KMC2. Most of the amino acids are converted into intermediates
of the TCA cycle. For instance, arginine can be converted to succinate, then enter to
TCA cycle after a multiple-steps enzyme reaction. Aspartate, tyrosine, phenylalanine,
and glutamate could serve as the substrates to generate fumarate, thus being part of
the TCA cycle. Besides, isoleucine turns into the substrates of 2-methyl-acetoacetyl-CoA
after several enzymatic steps, which is then converted into acetyl-CoA and propanoyl-
CoA via acetyl-CoA C-acyltransferase. Acetyl-CoA is an important intermediate, which
can entry to the TCA cycle via citrate synthase [69]. It is also the precursors of fatty
acid and polyketides biosynthesis [70]. Propanoyl-CoA serves as the critical substrate
within propanoate metabolism and can also be used to make lipids [71,72]. On the other
hand, methionine can be converted to 2-oxobutanoate, which is also an intermediate of
propanoate metabolism. Subsequently, the methylmalonyl-CoA generated in propanoate
metabolism enters into the TCA cycle via succinyl-CoA. Besides, the key enzymes of
glycolysis/gluconeogenesis were found, indicating the potential to produce essential
biomass components based on oxaloacetate from TCA cycle.
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Evidence indicates that a source of redox is needed for complete keratin degrada-
tion with keratinases [73,74]. Several metabolites, including sulfite have been revealed
to associate with efficient keratin degradation [75]. Moreover, sulfide is the metabolic
product derived from the assimilatory sulfate reduction pathway, which not only increases
the production of keratinase but also could participate in the breakdown of disulfide
bonds [76]. The release of these metabolites during the microbial growth on keratinous
materials probably leads to sulfitolysis [3,77]. Therefore, the complete metabolic pathway
of assimilatory sulfate reduction was mapped in the genome, which could play important
role during the keratin degradation process.

Furthermore, 286 proteases were predicted in Chryseobacterium sp. KMC2 genome,
which are assigned to 61 protease families. 140 contain signal peptides, indicating that they
are the potential secreted proteases (Supplementary Figure S5). Interestingly, about 78%
secreted proteases from the prediction belong to serine proteases and metalloproteases,
which is consistent with the fact that most known keratinases have been identified within
these two protease families [65,77]. Following the development of sequencing technologies,
increasing genomes of keratinolytic species have been unveiled, which provide a genomic
perspective to reveal the molecular keratinolytic mechanisms. For instance, metabolic
pathways related to keratin degradation such as enzymolysis and reduction of disulfide
bonds were clarified through uncovering the genetic basis of microbial genomes [78]. The
complex keratinolytic processes of Streptomyces sp. included protease secretion, iron uptake,
spore formation, and resuscitation were recently revealed from a genome view [79]. Our
results are in line with the notion that a redox environment is indeed required for efficient
keratinolytic activity to occur. It is expected that the integrated metabolic pathways
associated with keratinolytic processes will be deciphered along with more genomes
sequencing and biochemical studies of relevant metabolic pathways.

4. Conclusions

In this work, the genomes from four Chryseobacterium species with keratinolytic ac-
tivity were analyzed. Common and unique secondary metabolite gene clusters were
mined from Chryseobacterium genomes, suggesting the potential to generate high value
metabolites using keratin-rich wastes as the nutrient sources. Therefore, the use of these
microorganisms could be an alternative way to valorize keratinous materials through
microbial conversion. Furthermore, the metabolic pathways of keratin degradation from
Chryseobacterium sp. KMC2 was studied from a genomic viewpoint. Nevertheless, there are
still unknowns to link both metabolic pathways of keratinous utilization and the secondary
metabolite biosynthesis. Understanding these connected pathways and their regulation
will contribute to developing synthetic biology approaches to boost high value-added
products from microbial keratin degradation.
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genomes. Figure S4: NRPS-like gene cluster from four Chryseobacterium genomes. Figure S5: Protease
families predicted from Chryseobacterium sp. KMC2 genome. Table S1: The description of flexirubin-
type pigment biosynthesis related gene cluster from Chryseobacterium sp. KMC2. Table S2: The
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