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Abstract
Detailed knowledge of the intra-field variability of soil properties and crop charac-

teristics is indispensable for the establishment of sustainable precision agriculture.

We present an approach that combines ground-based agrogeophysical soil and aerial

crop data to delineate field-specific management zones that we interpret with soil

attribute measurements of texture, bulk density, and soil moisture, as well as yield and

nitrate residue in the soil after potato (Solanum tuberosum L.) cultivation. To delin-

eate the management zones, we use aerial drone-based normalized difference vege-

tation index (NDVI), spatial electromagnetic induction (EMI) soil scanning, and the

EMI–NDVI data combination as input in a machine learning clustering technique. We

tested this approach in three successive years on six agricultural fields (two per year).

The field-scale EMI data included spatial soil information of the upper 0–50 cm, to

approximately match the soil depth sampled for attribute measurements. The NDVI

measurements over the growing season provide information on crop development.

The management zones delineated from EMI data outperformed the management

zones derived from NDVI in terms of spatial coherence and showed differences in

properties relevant for agricultural management: texture, soil moisture deficit, yield,

and nitrate residue. The combined EMI–NDVI analysis provided no extra benefit.

This underpins the importance of including spatially distributed soil information in

crop data interpretation, while emphasizing that high-resolution soil information is

essential for variable rate applications and agronomic modeling.

Abbreviations: CSM, classical soil map; ECa, apparent electrical
conductivity; EMI, electromagnetic induction; FCM, fuzzy c-means; NDVI,
normalized difference vegetation index.
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1 INTRODUCTION

During the past centuries, agriculture succeeded in increas-
ing yield production by enlarging field sizes, increasing
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machinery, and using monoculture cropping systems and
homogeneous agronomic management. This led to lower pro-
duction costs, higher profits, vibrant agricultural supply sec-
tors, and low food prices. On the other hand, this food
production system invoked negative environmental impacts
such as increased nitrogen and pesticide concentrations in
ground- and surface waters, eutrophication, presence of chem-
ical residues with potential health hazards in food, and diffi-
culties for smaller family farmers to compete.

Reducing the agricultural impact on the environment and
changing its paradigms is essential to solve these problems
and move toward a sustainable agriculture. To turn the sys-
tem and act sustainable, agriculture needs to scan the soil,
measure the crops, and act on the intra-field variable soil con-
ditions that drive the specific cropping areas. To support this
shift and advocate sustainability, we need detailed knowledge
of the soil, the crops, and the soil–crop interactions in the
specific environmental and climatological conditions. At cer-
tain zones within the field, the soil holds vital plant resources
where the crops need less or even no extra fertilizer, irri-
gation water, and/or agro-chemicals. Knowing the intra-field
soil variability helps to save resources, since this information
enables applying fertilizers, water, or pesticides only where
needed (Cassman, 1999; De Benedetto et al., 2013).

Precision agriculture aims for site-specific and intra-field
management systems based on observing and analyzing the
differences in crop performance, often using remotely sensed
satellite data (Mulla, 2013; Virnodkar, Pachghare, Patil, &
Jha, 2020). The spatial resolution of satellite products has
refined very much in recent years up to the meter scale as com-
mercially offered, for example, by EOS (Earth Observation
System, www.eos.com). Aerial drone-based measurements
offer spatial crop data at centimeter-scale resolution (Mulla,
2013). This allows detailed investigations of the crop status.
Understanding of agro-ecosystem functioning improves even
further when spatially explicit soil information is available
(Gonzalez-de-Santos et al., 2017; Maes & Steppe, 2019).

Based on this spatiotemporal information, agronomic mod-
els can produce high-resolution crop performance maps. Sev-
eral platforms offering high-resolution crop data are available
(e.g., SentinelHub, WatchITGrow, VITO). However, spatial
soil data at similar resolution is less available. Even though the
initial soil maps are typically being improved and/or updated
(see Brevik et al., 2016), these remain coarse (around several
hundreds of meters in resolution). To complement agronomic
modeling results based on high-resolution aerial crop data,
much denser soil data are required.

To identify and illuminate the within-field variability
in agricultural soils, proximal sensing with noninvasive
agrogeophysical methods such as electromagnetic induction
(EMI) systems is a powerful tool (Corwin & Plant, 2005).
Electromagnetic induction allows investigating the soil and
the soil–plant interactions in the field with meter to submeter
resolution (Doolittle & Brevik, 2014; von Hebel et al., 2018;

Core Ideas
∙ Electromagnetic induction (EMI) enables delin-

eation of high-resolution management zones.
∙ Management zone delineation using aerial crop

data depends on acquisition time.
∙ Management zone delineation based on EMI data

seems time independent.
∙ Important for variable rate applications, EMI-

based delineated zones differ agronomically.

Whalley et al., 2017). Agrogeophysics is also emerging in
characterizing active root zones and/or root water uptake pat-
terns of competing and mixed crops by using electrical meth-
ods (Garré et al., 2013; Mary et al., 2020; Weigand & Kemna,
2017).

Due to their contactless operation, EMI systems allow
measuring the apparent electrical conductivity (ECa) distri-
bution of large-scale agricultural fields in relatively short
time (Corwin & Scudiero, 2019). The ECa values reflect a
range of physio-chemical soil attributes including soil texture,
soil water, and soil salinity, as well as soil compaction and
porosity, as shown in a wide range of studies (Abdu, Robin-
son, Seyfried, & Jones, 2008; Altdorff et al., 2017; Boaga,
2017; Calamita, Perrone, Brocca, Onorati, & Manfreda, 2015;
Doolittle & Brevik, 2014; Heil & Schmidhalter, 2012; Huang,
Koganti, Santos, & Triantafilis, 2017; Jadoon et al., 2015;
Robinet et al., 2018; Saey et al., 2013; Zhu, Lin, & Doolit-
tle, 2010). Therefore, analyzing the EMI data together with
ground-truth soil samples collected in different zones in the
field helps in identifying the field-specific soil attributes con-
tributing to ECa. In addition, the combination of ground-based
EMI and aerial crop data can discover hidden soil–crop inter-
actions (De Benedetto et al., 2013; von Hebel et al., 2018;
Wang et al., 2019). This relatively new scientific direction
emerged due to the increasing ability to remotely sense high-
resolution crop information.

To delineate management zones for a given field, cluster
analysis can use ground-based soil, remotely sensed satel-
lite data, and/or combinations of the ground and aerial data
(Grunwald, Vasques, & Rivero, 2015). For example, De
Benedetto et al. (2013) combined ECa and remotely sensed
crop indices to identify different zones related to soil proper-
ties and crop response patterns in one field. Combining EMI
and normalized difference vegetation index (NDVI) maps
successfully delineated zones on three adjacent fields (Saifuz-
zaman et al., 2019), where the ECa maps were consecutively
measured within short time.

Traditionally, ECa data are used for mapping and inves-
tigating soil properties and aerial data for investigating
the crop performances and studies often concentrate and

http://www.eos.com
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F I G U R E 1 (a) Overview map of POTENTIAL fields. In the close ups for the Farmer 1 (BP) and Farmer 2 (KvE) farms in Panels b and c,
respectively, the focus fields BP2017 and KvE2018 of this main article are framed in white

demonstrate data of one specific field. An analysis examin-
ing various fields and spanning over a longer period by per-
forming a combined and separate analysis of ground-based
geophysical soil and drone-based crop data, which are under-
pinned with ground-truth and in situ data, is still open.

This study aims to close this gap by using a series of six
distinct potato (Solanum tuberosum L.) fields measured in
3 yr. We study the use of EMI, NDVI, and the combined
EMI–NDVI datasets for delineating agronomic management
zones. To interpret and quantify the differences between the
resulting and field-specific management zones, we incorpo-
rate different levels of data diversity—namely, the temporal
aerial drone-based NDVI images, the spatial EMI soil scan-
ning maps, ground-truth point-scale soil samples, harvested
yield information, and the nitrate residues in the soil. The pre-
sented study helps to vary rates of fertilization and irrigation
while enabling to obtain high-resolution soil data, which is
necessary for precision agriculture and agronomic modeling.

2 MATERIALS AND METHODS

2.1 Test site descriptions

2.1.1 Basic description of nontreated and
treated fields

This study was carried out in the framework of the POTEN-
TIAL project that aimed at developing options for variable-
rate irrigation and nitrogen fertilization in potato with col-

laborations between Germany, Belgium, Denmark, and the
Netherlands. A background document with guidelines for
variable rate applications are available in Janssens et al.
(2020). For this study, six fields belonging to two farmers
were scanned with EMI between 2017 and 2019. The fields
were in the Campine region of northern Belgium (Figure 1).
Three fields of Farmer 1 (BP) were within a radius of around
1 km, and three fields of Farmer 2 (KvE) were within a radius
of 6 km, and the two farms were around 50 km apart.

Table 1 shows basic information of the agricultural man-
agement of the six fields investigated in the present study.
At each of the six fields, the SSB (Soil Service of Belgium)
selected up to 20 plots with either 10 or 15 m diameter and
monitored two fields each year. The farmer managed the fields
in a homogeneous way for potato cultivation, and SSB mon-
itored soil and crop properties during the growing season. At
one field per year, the plots were specifically treated (addi-
tional or fully reduced fertilization and irrigation amounts)
and SSB monitored the effect of the treatments on the crop
and soil variables. The locations of the plots were selected to
compromise science and the farmer’s needs. For the farmer,
these were minimally disturbing the practice. For science,
these were in most homogeneous regions to ensure com-
parability between the different treatments. The monitoring
program at each plot included soil measurements (soil tex-
ture [sand, silt, and clay], bulk density, soil water content,
water retention characteristics, and nitrogen content in soil),
and in situ crop and yield observations such as tuber weight
and amount of potatoes. The mean soil attributes as well as
yield-related data are shown in Table 2. These indicate



4 of 18 VON HEBEL ET AL.Vadose Zone Journal

T A B L E 1 Basic description to the six fields used in the POTENTIAL project, including the UTM (Universal Transverse Mercator)
coordinates, the soil texture class according to USDA, the cumulative precipitation, the irrigation, and fertilization amounts in the growing period,
the potato variety, and the trial plot management

Descriptor BP2017 KvE2018 BP2019 KvE2017 BP2018 KvE2019
x, y coordinates [UTM−31N] 688692,

5668948
637063,

5674498
687527,

5669151
637803,

5682472
689042,

5668941
639324,

5678271

Soil texture class Sandy loam Sand Loamy sand Loamy sand Sandy loam Sand

Fertilization and irrigation management in the growing period (1 Apr.–31 Aug.)

Precipitation, mm 203 187 204 225 156 306

Potato variety Felsina Zorba Zorba Zorba Fontane Felsina

N fertilization, kg ha−1 200 169 191 181 221 200

Irrigation, mm 110 190 148 102 210 148

Trial plot management Homogeneous Homogeneous Homogeneous Treated Treated Treated

T A B L E 2 Trial plot mean values and standard deviation of the soil attributes and yield information. Each field consisted of 8–20 trial plots.
The diameters were either 10 or 15 m. The trial plots served for measuring the soil attributes and harvest information. At three fields, the farmer
homogeneously managed the crops. At the other three fields, the N and irrigation amounts varied inside the trial plots to study management impacts
on the crops and soil

Field name or attribute (0–30 cm) BP2017 KvE2018 BP2019 KvE2017a BP2018a KvE2019a

Sand, % 71.9 ± 7.0 92.0 ± 1.1 77.0 ± 4.0 87.8 ± 1.3 65.0 ± 3.6 91.3 ± 1.6

Silt, % 23.0 ± 6 3.4 ± 0.4 18.0 ± 3.7 6.3 ± 1.4 26.9 ± 3.0 4.1 ± 1.0

Clay, % 5.1 ± 1.6 4.6 ± 0.9 5.0 ± 0.7 5.9 ± 0.8 8.1 ± 2.0 4.5 ± 1.1

BD, g cm−3 1.43 ± 0.08 1.22 ± 0.08 1.51 ± 0.24 1.30 ± 0.06 1.51 ± 0.07 1.52 ± 0.05

SWC, cm3 cm−3 0.26 ± 0.03 0.27 ± 0.06 0.15 ± 0.01 0.18 ± 0.02 0.26 ± 0.03 0.16 ± 0.02

TAW, cm3 cm−3 0.32 ± 0.02 0.14 ± 0.02 0.17 ± 0.02 0.29 ± 0.08 0.23 ± 0.05 –

TWT, kg m−š 5.8 ± 0.5 4.9 ± 0.4 6.0 ± 0.7 4.4 ± 0.8 5.1 ± 2.0 5.7 ± 1.0

TAT, no. m−š 42 ± 3.4 27.7 ± 2.2 42.0 ± 3.8 52.9 ± 12.4 47.3 ± 6.4 10.8 ± 1.7

Note. BD, bulk density; SWC, volumetric soil water content; TAW, total available water = SWC (pF = 2) – SWC (pF = 4.2); TWT, total weight of tubers; TAT, total
amount tubers.
aFields with specifically treated plots.

easy-to-interpret information while being too coarse for
variable-rate applications and precision agriculture. In addi-
tion to the in situ measurements, VITO (Vlaamse Instelling
voor Technologisch Onderzoek) collected drone-based tem-
poral crop data of NDVI during the growing season and the
IBG-3 (Institute of Bio- and Geosciences, Agrosphere) per-
formed EMI soil scanning before potato planting.

2.1.2 Focus field descriptions

In the main article, we focus on the fields BP2017 and
KvE2018 to keep the data visualization clear while the sup-
plemental material contains additional results of all six fields.
The soil distribution of the classical soil map (CSM) (van
Ranst & Sys, 2000) essentially shows a loamy sand with two
small edges of sand and sand loam in the northeastern and
southwestern corners at the field BP2017 (Figure 2a), respec-

tively. The soil at the field KvE2018 (Figure 2b) is sand with
a negligible area of loamy sand in the northern part.

Tables 3 and 4 respectively list the soil attributes of the
upper 30 cm measured at each trial plot for the fields BP2017
and KvE2018, as well as the exact date of the measurements.
The soil sampling or start of the monitoring program was in
late April (BP2017) and early May (KvE2018). Here, we add
that a time gap was present between the large-scale EMI scan-
ning (February–March) and the start of the trial plot monitor-
ing program including soil sampling (April–May). For the soil
textures, we assume these being constant over the time span
(Robinson, Abdu, Lebron, & Jones, 2012). The soil water con-
tent and bulk density change with time. During both the EMI
scanning (end of winter) and the soil sampling (early spring),
the soil was probably at or near to field capacity with compa-
rable soil water content. The bulk density was likely similar at
the EMI scanning and program start because of flat soil (nei-
ther tilling nor potato ridge shaping).
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F I G U R E 2 Classical soil map (CSM) of two of the six trial fields: (a) BP2017 and (b) KvE2018 with the respective 8 and 10 trial plot locations.
The texture class and soil description are per the Soil Service of Belgium (SSB) and World Reference Base (WRB), respectively

2.2 Surface based large-scale EMI data
collection

2.2.1 Principle of EMI and system
descriptions

Electromagnetic induction systems generate magnetic fields.
An alternating current energizes the transmitter at a fixed fre-
quency to generate a primary magnetic field. This induces
eddy currents in the soil, which in turn generates a secondary
magnetic field (Ward & Hohmann, 1988). The receiver mea-

sures the superimposing primary and secondary magnetic
field consisting of a real and an imaginary part (Keller &
Frischknecht, 1966). The imaginary or quadrature part of the
secondary to primary magnetic field is related an ECa value
(Beamish, 2011, Guillemoteau, Simon, Luck, & Tronicke,
2016, Hanssens, Delefortrie, Bobe, Hermans, & De Smedt,
2019, McNeill, 1980, von Hebel et al., 2019).

The secondary magnetic field strength is a function of the
electrically acting soil attributes. Such attributes include soil
texture (contents of sand, silt, and clay), soil water content,
and bulk density beside soil salinity, soil pH, and soil organic

T A B L E 3 BP2017 soil attributes of each trial plot sampled timely close to the electromagnetic induction (EMI) measurements

Trial plot no. Sand Silt Clay BD SWC
% g cm−3 cm3 cm−3

1 73.6 22.9 3.5 1.40 0.23

2 64.0 29.6 6.4 1.52 0.29

3 62.9 30.5 6.6 1.58 0.32

4 81.0 15.5 3.5 1.46 0.26

5 83.7 13.1 3.2 1.36 0.26

6 68.5 27.0 4.5 1.38 0.26

7 68.1 24.2 7.7 1.36 0.25

8 73.3 20.9 5.7 1.38 0.23

Note. Soil attributes measured at 21 Apr. 2017, EMI soil scan at 22 Feb. 2017. BD, bulk density; SWC, volumetric soil water content.
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T A B L E 4 KvE2018 soil attributes of each trial plot sampled timely close to the electromagnetic induction (EMI) measurements

Trial plot no. Sand Silt Clay BD SWC
% g cm−3 cm3 cm−3

1 90.5 3.6 5.9 1.14 0.33

2 93.0 2.8 4.2 1.32 0.22

3 91.0 3.4 5.6 1.21 0.23

4 90.9 4.1 5.0 1.04 0.27

5 90.6 3.5 5.9 1.30 0.37

6 93.3 3.7 3.0 1.21 0.22

7 93.6 3.0 3.4 1.22 0.20

8 93.1 2.7 4.2 1.29 0.35

9 92.2 3.4 4.4 1.21 0.22

10 92.2 3.4 4.4 1.23 0.26

Note. Soil attributes measured at 2 May 2018, EMI soil scan at 28 Mar. 2018. BD, bulk density; SWC, volumetric soil water content.

carbon (Altdorff et al., 2017; Brogi et al., 2019; Corwin &
Lesch, 2005; Doolittle & Brevik, 2014; Huang, Scudiero,
Choo, Corwin, & Triantafilis, 2016; Martini et al., 2016; Saey
et al., 2013; Werban, Kuka, & Merbach, 2009). The main
attributes can change with the history of the agricultural soil
usage (Kaufmann et al., 2020) and generally change with the
test site due to the unique soil compositions at each field. Soil
sampling and analysis remain necessary to interpret the field
specific soil attributes based on ECa.

In this study, we used the CMD-MiniExplorer (GF Instru-
ments, 2011) manufactured by GF-Instruments, which oper-
ates at 30 kHz to record the large-scale ECa distribution using
vertical coplanar coils with 71-cm distance between trans-
mitter and receiver. This coil configuration measures a depth
range of approximately 0–50 cm and shows the largest sensi-
tivity at the surface falling rapidly with depth. Since the upper
soil mostly contribute to the signal, the ECa measured with
this coil configuration is representative for a soil depth that
corresponds to the soil used for attribute analysis (0-to-30-cm
depth), as well as the approximate soil depth used for potato
ridge shaping.

At each field, we inserted the EMI systems into plastic
sleds. Before the large-scale soil scanning, the EMI systems
warmed up for ∼30 min. In this time, the differential global
positioning systems (RTX center point DGPS system of Trim-
ble) converged to centimeter accuracy. During the measure-
ments, a quad-bike dragged the sleds along parallel tracks with
spatial distances of 2 m to 3 m. The inline sampling was ∼ 30
to 40 cm, resulting in a driving speed from 5 to 8 km h−1 and
a sampling rate of 5 Hz. Depending on the field size, the EMI
scanning recorded 25,000 to 50,000 ECa values as illustrated
in Figure 3a and 3c, respectively, shown for the BP2017 and
KvE2018 fields, where the black border indicates the drone
data acquisition area. The ECa maps of all six fields are shown
in the supplemental material.

2.2.2 EMI data processing

The EMI system is factory calibrated for the supplied crutch
handle, as well as stable against moderate temperature varia-
tions (GF Instruments, 2011). Since we use our sled setup and
aim at patterns for management zone delineation, the parame-
ters found by von Hebel et al. (2019) turn the sled-based ECa
to handle-based values. When the data need to be quantitative
for reliable inversion results to compute a subsurface model
with layer/horizon depths, this can be obtained when calibrat-
ing the ECa against independent geoelectrical data (Binley
et al., 2015; Cavalcante Fraga, Schamper, Noël, Guérin, &
Rejiba, 2019; Heil & Schmidhalter, 2019; Lavoué et al., 2010;
Mester, van der Kruk, Zimmermann, & Vereecken, 2011;
von Hebel et al., 2014; Whalley et al., 2017) or when using
an EMI system-based numerical calibration procedure (Hun-
keler, Hendricks, Hoppmann, Paul, & Gerdes, 2015; Minsley,
Kass, Hodges, & Smith, 2014; Tan et al., 2018).

To tackle the outliers, the histogram filter method (von
Hebel et al., 2014) sieved the ECa values. This filter method
performed successfully in a range of studies (Brogi et al.,
2019; Kaufmann et al., 2020; Wang et al., 2019) and uses the
following steps. The first filter removes too large and too small
values defined by the user. A second filter uses histogram bins
and remove those carrying less data than a threshold (here
set to 0.1% at all fields). In a third step, the filter identifies
and discards ECa values that deviate from adjacent positions.
Here, 2 mS m−1 difference was set for all fields as threshold
between the 30- to 40-cm distant measurements. This strat-
egy kept ∼95% of all ECa values at each of the six fields. The
nearest neighbor interpolation TriScatteredInterp of Matlab
(The Mathworks) finally obtained regular ECa maps with 1-
m grid node distance. Figures 3b and 3d for the fields BP2017
and KvE2019, respectively, show that due to the dense mea-
surement tracks, the small-scale patterns present in the field



VON HEBEL ET AL. 7 of 18Vadose Zone Journal

F I G U R E 3 Processing of the apparent electrical conductivity (ECa) data. The upper and lower rows correspond to the BP2017 and KvE2018
fields, respectively. Panels a and c show the data along the measurement tracks, and Panels b and d show the data interpolated to the 1-m × 1-m grid
and the locations of the trial plots. EMI stands for electromagnetic induction

were well resolved in the 1-m × 1-m interpolated maps with
no exaggeration, which often appear when using wide track
distances.

2.3 Aerial NDVI data

2.3.1 Multispectral sensor characteristics and
image acquisition

We used a Parrot Sequoia camera (Parrot Drone SAS)
mounted on the senseFly eBee drone (senseFly, Cheseaux-
Lausanne, a Parrot Group company) to collect high-resolution
(8-cm pixels) temporal NDVI data during the growing season
at three to eight flights depending on the field and year (com-
pare NDVI temporal images in the supplemental material). To
obtain the images, we performed the following acquisition,
calibration, and processing steps.

The commercially available eBee drone is a remotely
piloted aircraft system equipped with fixed wings. We flew
the drone at a nominal flight height of 85 m above ground
level, which ensured collecting high-resolution images by the
multispectral camera. This camera consists of four synchro-
nized single-band cameras. Each camera uses a 1.2-megapixel

sensor with a 3.75-μm pixel pitch and a 4-mm lens, while
using different interference filter. The filters enable simulta-
neous measurements in four spectral regions: one in the green
(550 ± 20 nm), one in the red (660 ± 20 nm), one in the
red-edge (720 ± 10 nm), and one in the near-infrared (790
± 20 nm) band. This generated four 16-bit tiff images at each
acquisition point (each with a slight offset in the field of view).

A commercial lightweight GPS– Inertial Measurement
Unit (IMU) system attached to the drone tracked the acqui-
sition points, and an upward-looking irradiance sensor array
with a diffuser plate on top delivered the specific irradiance
values using the same interference filter as the multispec-
tral camera. At each field, we installed five artificial control
point markers on the ground to improve the geometric camera
calibration and to ensure accurate co-registration across the
temporal datasets. The control points were commercially
available 1-m2 36% reflectance gray tarp markers with
factory-supplied reflectance spectrum, which we used for
independent spectral and radiometric verification. The posi-
tion of these ground control points were accurately located
using a differential GPS, which additionally corrected the
drone GPS–IMU coordinates (positional and rotational accu-
racy in the meter and degree range, respectively) to centimeter
accuracy.



8 of 18 VON HEBEL ET AL.Vadose Zone Journal

2.3.2 Image processing

For the image processing, the Agisoft Metashape 1.5.x soft-
ware performed a structure from motion photogrammetry
workflow. This workflow consists of tie-point extraction and
matching (alignment) and geometric camera calibration, as
well as refinement of the georeferencing (optimization). Addi-
tional steps were reflectance calibration, dense point cloud
generation, and their classification into ground, aboveground,
and noise classes. The generation of a raster digital sur-
face model and a digital terrain model finally results in the
reflectance orthomosaic.

2.3.3 Radiometric and spectral calibration

The Parrot Sequoia delivery includes a 10-cm × 10-cm gray
reflectance calibration panel (outfitted with a bubble level)
with factory-supplied reflectance values for the four mul-
tispectral bands. This panel served for camera calibration
before and after each flight. For this, we held the airplane over
the panel and acquired three four-band images, while the cen-
tered panel filled a significant portion of the camera view. The
sun was behind the drone, and neither shadows nor reflections
were on the panel or on the irradiance sensor.

In Agisoft Metashape, a reflectance calibration module
allows digitizing regions of interest on each spectral band
image for the images containing the panel. Then, the module
executes a digital number-to-reflectance calibration using an
empirical line method and transfers the results to all images
considering the irradiance sensor values.

2.3.4 Vegetation index extraction

Each reflectance orthomosaic was transferred to NDVI maps
using the available reflectance bands, where RNIR and RRed are
the reflections in the near infrared (790 nm) and red (660 nm)
spectra, respectively:

NDVI =
𝑅NIR −𝑅RED
𝑅NIR +𝑅RED

=
𝑅790 −𝑅660
𝑅790 +𝑅660

(1)

Note that we masked out the pixels containing bare soil and
only keep the vegetation information.

2.3.5 Down sampling and rotation of
high-resolution NDVI data to farming-grid

The orhtomosaic NDVI maps with 8-cm pixel size shown in
Figures 4a and 4c for the BP2017 and KvE2018 fields, respec-
tively, allow identifying details on single crops, which can be

used to identify differences in the crop status (Janssens et al.,
2020). These were scaled to the 1-m × 1-m EMI grid using
the Matlab function interp2 (see Figures 4b and 4d). Since
information on a 1-m × 1-m grid is less suitable for common
land machinery, we implemented a semiautomatic upscal-
ing and rotation approach to delineate manageable zones. To
identify the rotation angle, we observed the crop rows as
indicated by the lines in Figures 4b and 4d for the BP2017
and KvE2018 fields, respectively, and tested different angles
to find the best match. The correct angle rotated the grid,
and the interp2 function of Matlab scaled up the maps. The
grid size here was 10 m in the x direction and 5 m in the
y direction, which compromises resolution on the one hand
and the dimension for land machinery on the other hand. In
principle, any size is feasible in our semiautomatic upscaling
and rotation approach, which may be useful for optimizing
infield route planning to reduce soil compaction, labor costs,
fuel consumption, and field trafficking intensity (Edwards
et al., 2017).

2.4 Machine learning for management zone
delineation

The machine learning algorithm used here is the fuzzy
c-means (FCM) clustering method introduced by Bezdek
(1981). The FCM is an unsupervised continuous classifica-
tion procedure (McBratney & de Gruijter, 1992), where the
clusters contain similar data that are as dissimilar to the other
clusters. The FCM algorithm is a soft clustering technique.
Each data point belongs to a certain cluster only to some
degree, which is expressed by a membership value (Schröter
et al., 2017). A higher value for the data point indicates a larger
certainty in the cluster assignment (Martinez, Vanderlinden,
Ordóñez, & Muriel, 2009; Stetco, Zeng, & Keane, 2015).
Since our approach combines data of different bio-physio-
chemical nature and their temporally changing dependencies,
the FCM algorithm is more suitable to identify the zones of
different soil and crop interactions potentially present in the
fields as compared with other hard clustering methods such as
k means that use binary decision to assign a datum to a clus-
ter (Panda, Sahu, Jena, & Chattopadhyay, 2012). The FCM is
also a standard tool in many scientific software packages (Cas-
trignanò et al., 2018; Gili, Álvarez, Bagnato, & Noellemeyer,
2017; Nawar, Corstanje, Halcro, Mulla, & Mouazen, 2017)
and is used relatively fast as compared with advanced compu-
tational and statistical methods that can find hidden links in
soil and crop interaction (Kamilaris & Prenafeta-Boldú, 2018;
Wang et al., 2019).

Before the clustering, the EMI and NDVI data were z trans-
formed (data minus mean and divided by standard deviation).
For the spatiotemporal analysis, we used the FCM imple-
mentation of Matlab. An important issue in the clustering
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F I G U R E 4 Normalized difference vegetation (NDVI) data. The upper and lower rows correspond to the BP2017 and KvE2018 fields, respec-
tively. Panels a and c show the drone based full resolution (8 × 8 cm) data measured by Vlaamse Instelling voor Technologisch Onderzoek (VITO)
using the multispectral camera. These data were scaled to a resolution of 1× 1 m as shown in Panels b and d that also show the 10-m separated lines
parallel to the potato crop rows

procedure is to choose the number of clusters. Here, we tested
two to five clusters assuming heterogeneity in the field and
present the outcome of the algorithm (i.e., we keep every pixel
of the clustering results to show the strength of the approach).
To objectively decide the appropriate number of clusters, the
silhouette method (Rousseeuw, 1987) allows the user to com-
pare the quality of the clusters. Furthermore, this method is
especially useful for identifying compact and widely sepa-
rated clusters (Kaufman & Rousseeuw, 1990) as we seek in
our management zone delineation for agricultural purposes.

The silhouette values measure how similar a data point is
to its own cluster (cohesion) compared with other clusters
(separation). This cohesion-separation value therefore indi-
cates how well the data points have been classified and range
from −1 to 1. The positive one means that the data point
fully belongs to the assigned cluster. A silhouette of zero indi-
cates that a data point could equally belong to other clus-
ters. A value of 0.5 indicates a weak cohesion separation.
A negative value indicates that the data point has been mis-
classified. The Matlab internal silhouette function evaluated
the test of two to five clusters per field, and the mean sil-
houette value eventually indicated the appropriate number
of clusters.

Once the management zones were delineated, the soil
attributes corresponding to the zones were tested against the
null hypothesis that the zones are similar given a signifi-
cance level. The ttest2 function of Matlab was used that per-
forms a two-sample t test testing whether the soil attributes
in the different zones come from distributions with equal
means at the significance level. The result H = 0 indicates that
the null hypothesis ("means are equal") cannot be rejected.
When H = 1, this indicates that the null hypothesis can be
rejected and the differences between the zones are statistically
significant.

3 RESULTS AND DISCUSSION

3.1 Farming-grid CSM, EMI, and NDVI
maps

Figure 5 shows the data on the rotated and scaled farm-
ing grid. The EMI data of the field BP2017 (Figure 5b)
roughly shows a southwest- to northeast-directed gradient.
The ECa was around 1 mS m−1 in the southwest and around
10 mS m−1 in the northeast. The field KvE2018 (Figure 5f)
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F I G U R E 5 Large-scale maps at the farm-use grid: in the top row, field BP2017, and in the lower row, field KvE2018 fields. Panels a and e show
the classical soil map (CSM) data, Panels b and f show the electromagnetic induction (EMI), Panels c and g show the normalized difference vegetation
(NDVI) data, and Panels d and f show the NDVI evolution over the drone flights, as well as the potato planting and harvest dates

contained relatively small distinct areas of increased ECa val-
ues up to 10 mS m−1. These patches were distributed in a gen-
erally low (<3 mS m−1) electrically conductive area.

The NDVI maps of all dates for each of the six fields are
presented in the supplemental material, whereas Figures 5c
and 5g show the NDVI maps of the fields BP2017 and
KvE2018 measured toward the end of the growing season.
At this stage, we expected to see differently senescing crops
in different zones in the fields. For the field BP2017, plant-
ing was on 14 Apr. 2017, harvesting was on 1 Sept. 2017,
and the last drone flight imaged in Figure 5c was on 5 Aug.
2017. As shown in Figure 5d, the mean NDVI during the last
flight was lower than in July, which indicates that the pota-
toes started entering the senescence phase. However, the val-
ues were around 0.8 (Figure 5d), indicating well-performing
crops and dense green vegetation (Rascher et al., 2015; von
Hebel et al., 2018). As a result, the clear soil patterns scanned
by EMI (Figure 5b) were not visible in the NDVI data. Note
that Sentinel-2 satellite images acquired few days before har-
vest and close to senescence (Janssens et al., 2020) showed
spatially different performing crops, which potentially allow
investigation of soil–crop interaction in that field.

The NDVI data measured few days before the harvest (see
Figures 5g and 5h) showed NDVI values around 0.3 in the
largest part of the field indicating senescent potatoes and/or
stressed crops. At the few small distinct patches, the crops
were still performing well with NDVI values of around 0.85.
Here, the crop data reflect the highly heterogeneous soil,

and knowing the intra-field soil variability therefore helps
explaining patterns in crop performances, which can conse-
quently help guiding systems for variable rate applications.

3.2 Agronomic properties in management
zones

3.2.1 Delineating management zones

We use the z-transformed ground-based EMI and aerial NDVI
maps as single and combined datasets in FCM clustering to
delineate management zones. Since crops likely show dis-
tinctive spatial patterns toward the end of the growing sea-
son, especially in dry periods, the NDVI map of the last
date of data acquisition was used in the FCM algorithm. The
EMI maps reflect the soil and were measured before potato
planting and ridge shaping such that their combination with
the NDVI data may indicate spatiotemporal soil and crop
interaction.

In Figure 6, two clusters were used to delineate manage-
ment zones using the single and combined datasets of the
focus fields BP2017 and KvE2018. The mean silhouette val-
ues [μ(sil.)] served as goodness indicator of the cohesion-
separation classification. At the field BP2017 shown in
Figure 6a, the NDVI-based clustering results were highly scat-
tered due to still green vegetation present during the drone
flights. At that phase of the growing stage, the homogeneous
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F I G U R E 6 Fuzzy c-means (FCM) clustering results for two clusters together with the mean silhouette values, [μ(sil.)]. The top row shows the
field BP2017 and the lower row shows the field KvE2018. In Panels a and d, the FCM used the normalized difference vegetation (NDVI) data only.
In Panels b and e, the FCM algorithm clustered the electromagnetic induction (EMI) data. In Panels c and f, the FCM used the combined EMI and
NDVI data

management seem to mask soil heterogeneity. At the field
KvE2018, the NDVI data were obtained a few days before
the harvest (compare Figure 5g here and the time series in
the supplemental material), and the clustering obtained rela-
tively clear delineated zones. At this stage, strong crop growth
patterns were visible and closely related to soil heterogeneity
(compare Figures 5f and 5g ).

When using the EMI data of the field BP2017
(Figure 6b), two zones with northwestern–southeastern
border were clearly delineated. At the field KvE2018
(Figure 6e), the patches of increased crop performance
were distinctly visible. The μ(sil.) was around 0.8 for both
fields indicating a good cohesion-separation of the clusters.
Adding the NDVI data to the analysis as shown in Figures 6c
and 6f for the BP2017 and KvE2018 fields, respectively, the
clustering results changed and the μ(sil.) decreased.

The clustering using the NDVI and the EMI data of the
field BP2019 obtained similar results: highly scattered vs.
clearly delineated zones for the NDVI and EMI-based cluster-
ing, respectively. The combined EMI–NDVI data negligibly
changed the delineated zones as compared with the clusters
based on the EMI data. In order to understand the clustering
results, Figure 7 shows the z-transformed EMI and NDVI data
distributions and the data according to the clusters using the

combined analysis. The histograms and scatter plots indicate
that the data distributions of ECa and NDVI over the field are
unimodal and that, except for the KvE2018 field, there is no
correlation between these two variables. The skewness of the
distribution makes that the pixels are not equally distributed
between the two clusters so that the cluster that represents the
extreme values in the tail of the distribution covers a smaller
area of the field. The clustering of the combined ECa and
NDVI dataset mainly clustered the dataset based on the ECa
values. We attribute this to differences in the shape of the ECa
and NDVI distributions. The clustering algorithm will split
the dataset so that data points with the largest absolute z val-
ues are separated. When the two variables are not correlated
and both have a unimodal distribution, this means that the
algorithm will split the dataset according to the variable that
shows the most and largest absolute z values (ECa data) and
will be less influenced by the other variable (NDVI data). The
delineation of management zones using drone NDVI data only
depends on the timing of the flights. This may improve when
adding satellite data that, depending on the scope, may have
too coarse resolution. On the other hand, we see the strong
impact of the time-invariant soil patterns reflected by ECa on
the clustering. The spatial soil textural distribution that has a
strong impact on ECa can be considered stable such that the
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F I G U R E 7 Distribution of the normalized electromagnetic induction (EMI) and normalized difference vegetation (NDVI) data in the upper row,
as well as the cluster data in the lower row for the fields (a, d) BP2017, (b, e) KvE2018, and (c, f) BP2019. ECa is the apparent electrical conductivity

shape of the spatial patterns will be the same for a measure-
ment at another time given the same setup and data process-
ing. This indicates that EMI data can delineate management
zones independent of the timing.

We tested two to five clusters for management zone delin-
eation based on the EMI data for all six fields, and Table 5 lists
the corresponding mean silhouette values. For the focus fields
BP2017 and KvE2018, the decreasing μ(sil.) with increasing
number of clusters shows that two zones appropriately classify
the field. At the third homogeneously managed field BP2019,
two zones [μ(sil.) = 0.75] or three zones [μ(sil.) = 0.74]
seem appropriate to delineate the field. At the three fields

containing the treated trial plots (KvE2017, BP2018, and
KvE2019), the optimal number of clusters was four, four,
and two.

Summarizing two management zones was optimal for the
investigated fields except of the fields KvE2017 and BP2018.
At these fields, it was more appropriate to delineate four clus-
ters. However, the differences in the μ(sil.) for four and two
clusters were relatively small (see Table 5). Next, Table 6
compares the differences between the mean apparent elec-
trical conductivity and the corresponding portion of the area
for the two fields KvE2017 and BP2018, where four clusters
obtained the largest silhouette values. Comparing this optimal

T A B L E 5 Mean silhouette [μ(sil.)] values of the two- to five-cluster test for the electromagnetic induction (EMI) clustering at all six fields

Field 2-cluster μ(sil.) 3-cluster μ(sil.) 4-cluster μ(sil.) 5-cluster μ(sil.)
BP2017 0.79 0.68 0.69 0.68

KvE2018 0.83 0.77 0.72 0.70

BP2019 0.75 0.74 0.69 0.71

KvE2017a 0.72 0.72 0.74 0.72

BP2018a 0.64 0.67 0.70 0.69

KvE2019a 0.76 0.73 0.72 0.70

aFields with treated trial plots.
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T A B L E 6 Mean apparent electrical conductivity (ECa) and percentage of area for two clusters compared with the cluster results with the largest
mean silhouette value [μ(sil.)]

Cluster 1 Cluster 2 Cluster 3 Cluster 4
No. cluster μ(ECa) Area μ(ECa) Area μ(ECa) Area μ(ECa) Area

mS m−1 % mS m−1 % mS m−1 % mS m−1 %

KvE2017

2 4.0 68 5.4 32 – – – –

4a 3.7 44 4.6 36 5.6 18 7.7 2

BP2018

2 6.1 51 9.1 49 – – – –

4a 6.6 41 8.5 40 11.2 10 3.5 9

aOptimal clustering result (see Table 5).

number of clusters with the results of two management zones,
increasing the number of clusters decreases the portion of the
area. This is expected, while the differences in the mean ECa
were small. The additional clusters mainly incised the smaller
management zone. To avoid this, setting a minimum areal size
for the clusters or a post-classification removing small clus-
ters can be implemented. This essentially reduces the number
of zones. Here, we set two zones as appropriate, which seem
sizably well for variable rate management.

3.2.2 Soil attributes and yield information in
the delineated management zones

Figure 8 shows the final EMI-based management zones with
no simplification such as redrawing of small patches after
the clustering. In order to check and verify the differences
in the delineated zones, we used the information measured
in the trial plots of the homogeneously managed fields. At the
three fields BP2017, KvE2018, and BP2019, those plots that

F I G U R E 8 Management zones (MZs) for the six fields based on the electromagnetic induction (EMI) data. Panels a–c show the homogeneously
managed fields with the positions of the trial plots. Here, we use the soil attribute information measured in these plots. For completeness, Panels d–e
show the finally delineated zones of the specifically treated fields used for monitoring the effect of fertilization and irrigation on the potatoes
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T A B L E 7 Management zone (MZ) information using following data of the trial plots

BP2017 KvE2018 BP2019
Trait MZ 1 MZ 2 MZ 1 MZ 2 MZ 1 MZ 2

Trial plots

EMI-based 2, 3, 4, 8 5, 6 2, 3, 4, 6, 9, 10 5, 8 6, 9, 10, 11 2, 4, 5, 7, 12

NDVI-based 2, 3 4, 7 2, 3, 6, 9 5, 8 2, 4, 5, 8 3, 11

Texture classa

EMI-based sL lS S S sL to lS sL to lS

NDVI-based sL sL S S LS to sL lS

Clay, %

EMI-based 4.3 ± 1.4 3.9 ± 0.9 4.4 ± 0.9 5.0 ± 1.2 5.0 ± 0.5 5.3 ± 0.7

NDVI-based 6.5 ± 0.2 5.6 ± 3.0 4.3 ± 1.1 5.0 ± 1.2 4.8 ± 1.0 5.1 ± 0.7

Silt, %

EMI-based 24.1 ± 7.2 20.0 ± 9.8 3.5 ± 0.4 3.1 ± 0.6 18.2 ± 3.7 19.1 ± 4.8

NDVI-based 30.0 ± 0.7 24.1 ± 6.1 3.3 ± 0.3 3.1 ± 0.6 19.4 ± 5.4 18.3 ± 0.8

Sand, %

EMI-based 70.3 ± 8.5 76.1 ± 10.7 92.1 ± 1.0 91.9 ± 1.8 76.8 ± 3.9 75.6 ± 4.7

NDVI-based 63.5 ± 0.9 70.3 ± 9.1 92.4 ± 1.0 91.9 ± 1.8 75.7 ± 5.7 76.6 ± 1.5

BD, g cm−3

EMI-based 1.48 ± 0.09 1.37 ± 0.01 1.20 ± 0.09 1.30 ± 0.01 1.57 ± 0.06 1.43 ± 0.39

NDVI-based 1.55 ± 0.04 1.41± 0.07 1.2 ± 0.05 1.30 ± 0.01 1.0 ± 0 –

ECa, mS m−1

EMI-based 4.2b ± 0.6 7.9b ± 1.3 2.1b ± 0.4 6.3b ± 3.5 3.3b ± 0.5 5.7b ± 0.8

NDVI-based 4.3 ± 0.7 4.9 ± 0.2 2.1b ± 0.5 6.3b ± 3.5 4.7 ± 1.0 4.3 ± 1.0

NDVI

EMI-based 0.82b ± 0.02 0.77b ± 0.02 0.43b ± 0.06 0.61b ± 0.01 0.36 ± 0.03 0.37 ± 0.02

NDVI-based 0.83 ± 0.01 0.80 ± 0.02 0.40b ± 0.03 0.61b ± 0.01 0.38b ± 0.01 0.36b ± 0.002

SMD, cm3 cm−3

EMI-based 0.06 ± 0.005 0.04 ± 0.003 0.01b ± 0.006 −0.01b ± 0.001 0.03 ± 0.02 0.02 ± 0.006

NDVI-based 0.06 ± 0.003 0.05 ± 0.01 −0.01b ± 0.004 −0.01b ±0.001 0.02 ± 0 –

Yield, kg ha−1

EMI-based 59,970 ± 5,800 54,440 ± 4,860 47,640 ± 3,090 50,740 ± 6,130 58,890 ± 12,660 60,260 ± 4,780

NDVI-based 63,010 ± 410 59,300 ± 4,630 47,750 ± 2,500 50,740 ± 6,130 59,370 ± 5,000 58,900 ± 624

Potato, no. ha−1

EMI-based 444,440 ± 22,460 427,220 ± 25,930 269,810 ± 27,010 277,780 ± 9,430 457,500b ± 40,160 397,780b ± 30,460

NDVI-based 435,560 ± 22,000 417,780 ± 77,000 282,500 ± 23,300 277,780 ± 9,430 397,220 ± 33,610 401,670 ± 5,500

NO3 res., kg ha−1

EMI-based 24 ± 10 33 ± 6 133b ± 33 73b ± 19 79b ± 18 107b ± 25

NDVI-based 19 ± 2 21 ± 0 133b ± 25 73b ± 19 116 ± 38 81 ± 16

Note. Soil texture class obtained by plotting the texture distribution in texture triangle, as well as mean and standard deviation of texture, bulk density (BD), apparent
electrical conductivity (ECa), last normalized difference vegetation (NDVI) data closest to the harvest, soil moisture deficit at harvest (SMD) calculated by subtracting
the actual soil water content (SWC) from the SWC at field capacity (at pF = 2) divided by the sampling depth (30 cm). In addition, the yield and number of potatoes
per hectare and the nitrate residue in the soil right after harvest are shown. The statistical significance was tested at a significance level of 10%. EMI, electromagnetic
induction; NDVI, NDVI of last image; NO3 res., nitrate residue at harvest.
asL, sandy loam; lS, loamy sand, S, sand.
bH = 1, p < .1 for unpaired two-sample significance t test.
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clearly belonged to a specific zone were selected; few plots
were marginally between the zones (see Figures 8a–8c).

For each management zone of the homogeneously man-
aged fields, Table 7 compares the soil attributes and yield
information when using the clustering results based on either
EMI or NDVI. The properties inside the zones for an unequal
amount of trial plots were tested for a 10% significance
level. The zonation based on EMI data obtained more sta-
tistically different soil attributes and crop or harvest proper-
ties than the clustering using NDVI data. Already the loca-
tions of the trial plots inside the different zones obtained
by using EMI or NDVI data were remarkably different
for the fields BP2017 and BP2019. Although the NDVI-
based clustering was highly scattered due to the relatively
dense green vegetation at the time of image acquisition, the
management zones based on EMI data were clearly delin-
eated. At the field KvE2018, the zones and thus the trial
plots inside the zones used for testing were similar. Since
the NDVI data acquisition was seasonally late (a few days
before harvest), the crop patterns resembled the spatial soil
distributions.

In the content-rich Table 7, we see that for the EMI-based
zonation in both BP fields large differences were present in
ECa, whereas the differences in soil texture and bulk den-
sity were comparably small and large, respectively. However,
a clear relation between ECa and bulk density seems diffi-
cult given the observation of a positive correlation at both BP
fields and a negative correlation at the field KvE2018. Con-
sidering harvest information, the zones were different in yield
and potato counts. Note that the soil still contained relatively
large amounts of nitrate residues. This agronomically shows
that similar yield can be expected when using reduced and
potentially zone-specific varying fertilization rates.

Summarizing, the EMI-based clustering delineates zones
where the soil interacts and supplies the potatoes differently.
The spatial soil patterns measured with EMI are time inde-
pendent (considering time ≪ geochronological age) such
that similar zonation is expected for measurements at any
time in the year. Though De Benedetto et al. (2013) found
that crops can be more sensitive to the management prac-
tices than to the intrinsic soil property, this study indicates
that clear management zone delineation based on NDVI data
depends on the data acquisition timing. In either way, we
anticipate that the characterization of soil and intra-field
variability strongly improve when fusing data of different
proximal soil, as well as crop scanning sensors and harvest
information. Such data fusion approaches help to obtain soil
attribute maps with greater accuracy and potentially novel soil
property models (Corwin & Scudiero, 2019), which conse-
quently support farm-, field-, and zone-specific variable rate
applications.

4 CONCLUSIONS

We proposed a joint interpretation of ground-based EMI soil
scanning data together with aerial drone-based crop data of
NDVI and soil sampling data. The EMI data delineate field-
scale management zones, where the nitrate residues and yield
was different. Each management zone essentially showed spe-
cific agronomic soil quality. This knowledge enables the usage
of zone-specific rates of fertilization and irrigation to cultivate
the crops as successful while reducing nitrate leaching and
saving irrigation water, which allows concluding that delin-
eating the management zones using EMI is highly valuable to
improve precision agriculture. A prerequisite to capture soil
spatial variability is dense track spacing (e.g., parallel tracks
≥5–7 m).

The high-resolution soil information derived from large-
scale EMI data showed detailed patterns in the soil attributes,
which could not be derived from classical and coarsely
resolved soil maps. Conclusively, the detailed information
can better explain yield differences that may not be observed
by high-resolution aerial crop data. Therefore, including the
high-resolution soil data together with aerial crop data in agro-
nomic modeling can improve the prediction of stress condi-
tions and/or nutrient demands. The detailed soil maps can
also inform pedotransfer functions, soil crop models, and
machine learning techniques to improve soil, nutrient, and
agro-chemical management in agricultural soils. This will
help saving fertilization and irrigation amounts.

On the longer view, the findings in this paper can help
changing the management practices toward sustainable inter-
cropping and/or mixed cropping systems that select and adapt
the crops according to the specific properties of each manage-
ment zone. In a more future-directed way, the approach pre-
sented here may also help establish digital farming in terms
of sustainable precision agriculture or even more out-of-the-
box robotic-based permaculture. Such a shift needs to include
the farmers in any debate, while exceedingly reducing the
environmental impacts and damages and fulfilling the need to
produce enough and highly nutritious food eventually at low
costs.
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