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Background & motivations: Manufacturing

Laser Processing
Head

4 Laser Beam

Cladded matcr'ni~ .
Nozzle | "

Melt Pool

Input Laser High energy density =» each layer exhibits a
thermal sequence { v} >
Heterogeneous microstructure

T TN

S. Fetni, T. M. Enrici, T. Niccolini, H. S. Tran, O. Dedry, L. Duchéne, A. Mertens, A. M. Habraken, Thermal model for thE(hC)IIFECIE(] energy aeposIton or composite coatngs or s.1ol stainless steel 4
enriched with tungsten carbides, Materials & Design, Volume 204, 2021,



Background & motivations: DED Manufacturing
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Ti6Al4V : Phases

Schematic continuous cooling diagram for Ti6AI4V

N Solution Treat 1050°C-30 min. - Cooling Rate (CR) after heat treatment

Temp of transition S T ‘ (post-DED fabrication)

: - - The cooling rate enhances the genesis

of the microstructure

- Reheating: heating transferred as result of remelting

©
£
Phases in TiAl6V:
a,d,a.,p
B=>arp.: transformation (slow CR)

B = o : martensitic transformation (high CR)

B = a,,: massive

T. Ahmed and H. J. Rack, “Phase transformations during cooling in a+f titanium alloys,” Mater. Sci. Eng. A, vol. 243, no. 1-2, pp. 206-211, 1998.
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Finite Element Modeling of TiAl6V

Target: Thermal Field Predictions

Thermal equations

Heat transfer by conduction Density  Heat Capacity ]

o(. oT\ o(, 0T\ a(,oT N\ T =) Lagamine

a ka +— k— +6_ ka— +Qint:pcp§

alalals) ala) e

Conductivity Power Q?T ge)r volume T : Temperature (K)
- T, ambiance temperature
L : Ligquidus
Heat transfer at boundary s _sLondus ) o
KOT0) = Gl = T =To) = e0(T* =T e ot (g
Laser F{ﬁr Convection Coef. C, .heat capacity

& radiation coef o Boltzman constant

Latent heat of fusion . Qraser = B 1(x,y,2,U,t)

P T

Thermal field : better indications than models = achieve optimal parameters

of DED processes o
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Introduction of TTB segmentation

- Segmentation of the temperature history in different blocks = T

T -B
- The transformations kinetics in TIAI6V are highly influenced by the
reheating

= Influence of heating rate T on the mechanism and transition points of the
reverse transformations of o’

1.5
B & Maximum physical slope o’-1011
, for lattice expansion
o—> B within saturated o
—_—
=
< 1.0}
£
o
-—
[72]
(b}
2
= 05}
(]
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' 200 200 600 800

Heating time (ms)

Kenel, C.; Grolimund, D.; Li, X.; Panepucci, E.; Samson, V.A.; Sanchez, D.F.; Marone, F.; Leinenbach, C. In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing 12
conditions combining laser melting and high-speed micro-X-ray diffraction. Sci. Rep. 2017, 7, 16358



Introduction of TTB segmentation

Decreased track length =» Clad heterogeneity & graded microstructure

POI3

~ ) U
7 j’/‘\‘/»s_t"./;'-’ Aty
7

S

coarsened
discontinuous

Tchuindjang JT, Paydas H, Tran HS, Carrus R, Duchéne L, Mertens A, Habraken AM. A New Concept for Modeling Phase Transformations in Ti6Al4V Alloy Manufactured by Directed Energy
Deposition. Materials (Basel). 2021

13



Tchuindjang JT, Paydas H, Tran HS, Carrus R, Duchéne L, Mertens A, Habraken AM. A New Concept for Modeling Phase Transformations in Ti6Al4V Alloy Manufactured by Directed Energy

Deposition. Materials (Basel). 2021

TTB segmentation

I History of parent phase B8, ] [ By is transformed Phase Generation , or retained Bcalled 8, ]
TTBO Cooaling (CCT) TT81 = By —
f Tyeun > T, (1660°C) = IT1>0 L—Bs =
P e e ~ < & T ondems
Heating (CHT) s - a’y

Pseudo

Serses of successive
TTB2 and T7T83
ending by one

Last cooling
stage

(ccT)

CCTBOX B —»2 — -um ®)

M, . =893°C
M, . =800"C
M, = 612°C
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TTB segmentation

Advantages :

Robust correlation between Thermal histories and phase genesis

Identification of optimum microstructures.

Taking into account the cooling and the heating effects of the microstructure

Better explanations of the shift in the critical temperatures

## need for automatization of the segmentation procedure to deal with the most highly
diverse cases

= Feed Machine Leaning

15
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Initial RGB imag

Microstructure at dimensionless time 48.68

Fetni et al. 2022 — non published results

Machine Learning : dimensionality reduction

Qutput
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Dimensionality reduction

Input

- Further processing
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Machine Learning : dimensionality reduction

Auto-encoders from a
numerical point of vue

Original dimension

\ S Latent space
by - F > h=c(Wx+b)
v F o » Y =c(Wh+hb)
¢,y = argmin [|X — (¥ 0 §)|I’ l

m

L(x,X) =[x =X|* =[x = ' (W (a(Wx + b)) + b)|?

20

Fetni et al. 2022 — non published results



Machine Learning : dimensionality reduction

Applications on TA6V

Objectives :

/

% Dimensionality reduction of microstructural images of TiAI6V

*¢ Use the reduced Dataset to make classification of TiAl6V images into different phases
=>» identify the different phases : a, B, a,, ...

¢ Advanced ML application on TA6V =» phase prediction basing on the applied
thermal histories

21



171115 Ti EBM 7 mm
MAG: 1000 x HV: 7.5 KV WD: 13.2 mm

171115 TI EBM 7 mm
MAG: 4000 x HV: 7.5 kV- WD: 13.2 mm

Machine Learning : dimensionality reduction

Applications on TA6V = Rich SEM/LOM
Dataset

171115 TLEBM 7 mm 171115 Ti EBM 7 mm 171115 Ti SLM 7 mm
MAG: 2000 x HV: 7.6 KV WD: 13.2 mm MAG: 4000 x HV: 7.5 KV WD: 13.2 mm MAG: 1000 X HV: 7.5 kV_WD: 10.1 mm

. ST : 7 : _ Ny ot
171115 Ti SLM 1 mm 171115 TLSLM 1 mm 171115 TI SLM 7. mm h
MAG; 2000 x HV: 7.5 kV_WD: 11.3 mm 2 1 MAG: 4000 x HV: 7.5 KV WD: 11.3 mm s MAG: 4000'x MV: 7.5 kv WD: 10:1 mm

More than 200 SEM images are until now collected: different thermal
histories. heat treatments conditions




Machine Learning : dimensionality reduction

Applications on TA6V = Rich SEM/LOM
Dataset

Slicing into ¢
Micro still representative

' small parts

4

=>» One could make classification under
1000 x 750 x3 187 x 250 x 3 ﬁ an enough rich dataset
=>» Need to build a representative

Dataset ; avoid bias

=» Unstructured data : different scales

23
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Machine Learning : dimensionality reduction

Applications on TA6V = Rich SEM/LOM

Output

LITTTTTTIT]

|

Decoder

Dataset
Input image Code size
187 x250x3 | =) 2000

Model: “model”
Layer (type) Output Shape Param #
input_3 (InputLayer) [ (None, 187, 250, 3)]

sequential (Sequential) (None, 2000) 280502000

sequential_1 (Sequential) (None, 187, 250, 3) 280640250

Total params: 561,142,250
Trainable params: 561,142,250
Non-trainable params: 0

Reduction ratio: 1/70

24



Machine Learning : dimensionality reduction

Applications on TA6V = computing

resources
CECI HPC Computing
fns 4% = pE=
‘:L'EGE
UMONS
¥ UCLouvain
i) o
ot Al (@58
Hercules2 UNamur Naples 2 GHz 1024 (30x32+2x 64GB.2TB 10GbE  NFS20TB None 15days  iserial /= SMP

SandyBridge 2.20 64)
GHz 512 (32 x 16)

25



Machine Learning : dimensionality reduction
Applications on TA6V = Rich SEM/LOM

Dataset e
25
model loss - Reconstructed
| =—— train !
1 et 75
5 100
.l 125
i 150
23
ol 175
2 0
5 Code
1 0
- o Reconstructed %
04 s
0 100 200 300 400 500 100 50 50 Reconstructed
epoch
- 100 ]
150 0 100 100
Hyperparameters of the auto-encoder - 125
model : 1 hidden layer, ‘adamax’ optimizer g = 150 ¢ W

05
175

Training CPU time: 20:30:27 ; batch_size=264 ; maximum memory needed: = 83GB

26
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Machine Learning : Classification - Clustering

K-means Clustering

o Palnts
* Cluster Center

** Unsupervised learning
s Apply on the reduced dataset y
(latent space :2000)

¢ Investigate the capabilities of Machine
Learning

To deal with the complexity of TA6V

microstructures and identify the different

phases.

27
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1025

1000

Machine Learning : Classification - Clustering

K-Means Clustering

Number of clusters vs Inertia

1 2 3 4 5 6 T 8 9 10 1 12 13 14 15 16 17 18 19

Number of clusters

s For , the inertia still high.

/

/

deal with bias )

Inertia Value

250

245

240

235

*» Data scaling enhances the improvement of the inertia value.
** However, kmc could place each sample in the associated class.
=>» The microstructural-images based dataset could clustered into 19 groups for instant.
=» more data processing should be applied (better choice of representative micros,

Number of clusters vs Inertia

rd a8 9 10 " 12 13 14 15 16 17 18 19

Number of clusters

kmc.labelsJ
v/ 04s

array([2, 1, 2, ...

» 9, 9, 8])

28



Machine Learning : Classification - Clustering

K-Means Clustering

1.0
08
06

04

20 00 00 00 00
©ONDODOAEWN-=-O

02

0.0 @
0.0 02 04 06 08 1.0

¢ Clustering results for 10 clusters (for simplification purposes).
+»* First appearance of some distinguishing groups

+» Note that the size features (2000) is relatively high for a good clustering = need to
decrease to (200 -350)



Machine Learning : Proposed Framework

— Geometry

=5

~— Process

Phase change

Mechaical
properties

FEM & DL / Ti6AI4V

Machine Learning

-

__ Thermal
history

Residual

__ stress
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Conclusions

% Investigations of TIAI6V using : Finite =lement |Vlodeling, investigations and
Machine Learning.

% Finite Element Modeling =» prediction of the Thermal history in all parts of the Clad.

% TTB allow Robust correlation between Thermal histories and phase genesis.

* Implementation of Auto-Encoders as practical Machine Learning technique for the compression
of microstructural images.

s Further work : Feed ML algorithms (auto-encoders, k-means clustering, decision tree,
reinforcement learning techniques ...) with two types of datasets: FEM-based and from
experiments ( SEM, LOM, micro-hardness maps ..) = Control the phase-changes and mechanical
properties in TiIAI6V = improve materials design.
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Thank you very much for your attention
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