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Background & motivations: DED Manufacturing 

Input Laser High energy density  each layer exhibits a 
thermal sequence {1st cooling, reheating, 2nd cooling…} 
Heterogeneous microstructure 
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Background & motivations: DED Manufacturing 

EXPERIMENTAL ANALYSIS: • not completely exhaustive 
• very expensive

=> Need for modeling to avoid cost-consuming trials and error 
experiments.
 Validated Numerical models can deal with this issue.
 Accurate predictions (thermal, thermo-mechanical, thermo-

mechanical- metallurgical )
 Knowledge of the thermal history  nature and grain size of the 

phases.
 Capabilities of Machine Learning techniques to learn Additively 

manufactured materials behaviors. 

 Out-of-equilibrium phases
 Typical AM microstructure
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Ti6Al4V : Phases 

Schematic continuous cooling diagram for Ti6Al4V 
.

Phases in TiAl6V:
α ,α’, αm ,β

β α (or βret) : diffusional transformation (slow CR) 

β α’ : martensitic transformation (high CR)

β αm: massive

- Cooling Rate (CR) after heat treatment 
(post-DED fabrication) 
- The cooling rate enhances the genesis 
of the microstructure
- Reheating: heating transferred as result of remelting

T. Ahmed and H. J. Rack, “Phase transformations during cooling in α+β titanium alloys,” Mater. Sci. Eng. A, vol. 243, no. 1–2, pp. 206–211, 1998.

Temp of transition

7



Contents

Background & motivations

━ Directed Energy Deposition

━ TA6V

Implemented Models

━ Finite Element Modeling

━ TTB segmentation

Machine Learning Framework

━ Team Achievements

━ Proposed Framework

━ Encoding and classification

Conclusions

8



Contents

Background & motivations

━ Directed Energy Deposition

━ TA6V

Implemented Models

━ Finite Element modeling

━ TTB segmentation

Machine Learning Framework

━ Actual Achievements

━ Encoding and classification

━ Proposed Framework

Conclusions

9



Finite Element Modeling of TiAl6V
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T : Temperature  (K)

T0 ambiance  temperature

L : Liquidus

S: Solidus

Lf :Latent  heat  (solid-liquid)

h  :convection

Cp :heat capacity 

ɛ    :radiation  coef   σ Boltzman constant 

Target: Thermal Field Predictions

Thermal field : better indications than residual stress state-based models  achieve optimal parameters
of DED processes

Lagamine code
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Introduction of TTB segmentation

Kenel, C.; Grolimund, D.; Li, X.; Panepucci, E.; Samson, V.A.; Sanchez, D.F.; Marone, F.; Leinenbach, C. In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing 
conditions combining laser melting and high-speed micro-X-ray diffraction. Sci. Rep. 2017, 7, 16358 

- Segmentation of the temperature history in different blocks  Time-phase
Transformation-Block

- The transformations kinetics in TiAl6V are highly influenced by the 

reheating

 Influence of heating rate on the mechanism and transition points of the 

reverse transformations of α’ 
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Decreased track length  Clad heterogeneity & graded microstructure 

Introduction of TTB segmentation

Tchuindjang JT, Paydas H, Tran HS, Carrus R, Duchêne L, Mertens A, Habraken AM. A New Concept for Modeling Phase Transformations in Ti6Al4V Alloy Manufactured by Directed Energy 
Deposition. Materials (Basel). 2021

α' martensite matrix

made of thin orthogonal
laths

αm 

Β prior grain boundary

α/βW basket-weave
structure

coarsened 

discontinuous 

laths of decomposed
α’

α' with some
neighboring α/βW

structure
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TTB segmentation

Tchuindjang JT, Paydas H, Tran HS, Carrus R, Duchêne L, Mertens A, Habraken AM. A New Concept for Modeling Phase Transformations in Ti6Al4V Alloy Manufactured by Directed Energy 
Deposition. Materials (Basel). 2021
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TTB segmentation

Advantages :

- Robust correlation between Thermal histories and phase genesis

- Identification of optimum microstructures.

- Taking into account the cooling and the heating effects of the microstructure

- Better explanations of the shift in the critical temperatures 

## need for automatization of the segmentation procedure to deal with the most highly 

diverse cases 

 Feed Machine Leaning 
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Machine Learning : dimensionality reduction

Fetni et al. 2022 – non published results

Initial RGB image
Dimensionality reduction

Further processing
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Machine Learning : dimensionality reduction

Fetni et al. 2022 – non published results

Auto-encoders from a 
numerical point of vue
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Latent space
Original dimension

loss function



Machine Learning : dimensionality reduction

Applications on TA6V

21

Objectives :

 Dimensionality reduction of microstructural images of TiAl6V

 Use the reduced Dataset to make classification of TiAl6V images into different phases
 identify the different phases : α, β, αm …

 Advanced ML application on TA6V  phase prediction basing on the applied 
thermal histories



Machine Learning : dimensionality reduction

Applications on TA6V  Rich SEM/LOM 
Dataset

22
More than 200 SEM images are until now collected: different thermal
histories, heat treatments conditions



Machine Learning : dimensionality reduction

Applications on TA6V  Rich SEM/LOM 
Dataset
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1000 x 750 x3 187 x 250 x 3

Slicing into

small parts

Micro still representative

One could make classification under
an enough rich dataset
 Need to build a representative 
Dataset ; avoid bias

 Unstructured data : different scales



Machine Learning : dimensionality reduction

Applications on TA6V  Rich SEM/LOM 
Dataset

187 x 250 x3 2000

Input image Code size

Reduction ratio: 1/70
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Machine Learning : dimensionality reduction

Applications on TA6V  computing 
resources

HPC Computing
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Machine Learning : dimensionality reduction

Applications on TA6V  Rich SEM/LOM 
Dataset

Hyperparameters of the auto-encoder 
model : 1 hidden layer, ‘adamax’ optimizer

Training CPU time: 20:30:27 ;  batch_size=264 ; maximum memory needed: ≈ 83GB 
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Machine Learning : Classification - Clustering

 Unsupervised learning
 Apply on the reduced dataset χ
(latent space :2000)

 Investigate the capabilities of Machine 
Learning

To deal with the complexity of TA6V
microstructures  and identify the different 
phases.
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K-means Clustering



Machine Learning : Classification - Clustering

K-Means Clustering

 For 20 clusters, the inertia still high.
 Data scaling enhances the improvement of the inertia value.
 However, kmc could place each sample in the associated class.
 The microstructural-images based dataset could clustered into 19 groups for instant. 
more data processing should be applied (better choice of representative micros, 
deal with bias ..)
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Without scaling data
scaling data :MinMaxscaler



Machine Learning : Classification - Clustering

K-Means Clustering

 Clustering results for 10 clusters (for simplification purposes).
 First appearance of some distinguishing groups
 Note that the size features (2000) is relatively high for a good clustering  need to 

decrease to (200 -350) 29



Machine Learning : Proposed Framework
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Conclusions
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 Investigations of TiAl6V using : Finite Element Modeling, Microstructural investigations and

Machine Learning.

 Finite Element Modeling  prediction of the Thermal history in all parts of the Clad.

 TTB allow Robust correlation between Thermal histories and phase genesis.

 Implementation of Auto-Encoders as practical Machine Learning technique for the compression

of microstructural images.

 Further work : Feed ML algorithms (auto-encoders, k-means clustering, decision tree, 

reinforcement learning techniques …) with two types of datasets: FEM-based and from 

experiments ( SEM, LOM, micro-hardness maps ..)  Control the phase-changes and mechanical

properties in TiAl6V  improve materials design.



33

Thank you very much for your attention


