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1. Introduction

Phase-change materials (PCMs) are materials characterized by a
drastic change of their electronic and optical properties when they
switch from the amorphous to the crystalline phase.[1,2] This tran-
sition is fast and qualifies them for nonvolatile memory applica-
tions. Most PCMs are Te compounds. They have a portfolio of
remarkable properties: a moderate electrical conductivity, an
anomalous coordination number, a high Grüneisen parameter,
a high dielectric constant ε∞, and a high Born charge Z*.
These outstanding properties originate in the chemical bond.
The bonding in PCMs has long been debated[3] and various mod-
els have been suggested, among which resonant bonding,[4] meta-
valent bonding,[5] and multicenter hyperbonding.[6] The specific
properties of PCMs are related to their electronic properties: they
are at the borderline between a semiconductor and a metal, hence
the evocative name “incipient metal.”[5] The transition from a
metallic phase to a distorted semiconducting phase is driven by
the Peierls distortion,[7–11] a symmetry breaking mechanism.
Large anharmonicities play a role in the electrical, optical, and
thermoelectric properties of PCM.[12,13] Upon crystallization to
a less distorted metallic structure, the vibrational acoustic modes
harden while the optical modes soften,[14] an unusual behavior.

The aim of this article is to show that a minimal model of cova-
lent bonding explains the remarkable properties of PCMs with a
particular emphasis on the vibrational properties.

The motivations of this article are mul-
tiple: 1) analysis of the bonding and vibra-
tional properties of covalent materials in
the vicinity of the vanishing harmonicity
conditions;[13] 2) study of the origin of
the anomalous behavior of the Grüneisen
parameter; 3) relation to the negative
temperature expansion[15,16] in parent com-
pounds; and 4) universality of the behavior
of covalent Peierls distorted structures.

2. Model

The structure of covalent compounds made
of atoms of the right-hand part of the periodic table is dominated
by the σ bonding of p orbitals in a possibly distorted octahedral
structure with partial filling of the p band. The cohesive energy
originates from the broadening of the p band whose effective
width is given by the square root of the second moment μ2 of
the electronic density of states npðEÞ.[17] μ2 is proportional to
the number Z of nearest neighbors; thus, the cohesive energy
is proportional to the square root of the coordination number.
As a consequence, the contributions of the individual interatomic
bonds are not additive; this is crucial for the understanding of the
properties of covalent structures, in particular the PCMs. We take
into account the ppσ coupling, neglecting the (weaker) ppπ cou-
pling. We assume that the lower energy s-levels are filled and do
not play an appreciable role in cohesion (no sp hybridization). In
this case, because of the orthogonality of the p orbitals, the 3D
electronic spectrum of an octahedral structure can be decom-
posed into three 1D independent spectra, an appreciable
simplification.

In addition, the partial filling of the p band induces a Peierls dis-
tortion[7,18] if the repulsion is not too strong[19] (Figure 1). Short and
long bond alternates and consequently an electronic gap opens. The
Peierls distortion of an octahedral structure leads to a coordination
number Z ¼ 6� Np

[8] where Np is the number of p electrons per
atom, more usually written Z ¼ 8� Nsp, the celebrated octet rule.

The octet rule is a simplification/idealization in which two
neighboring atoms are considered bonded or not depending
on their distance. In simple monoatomic crystalline structures,
the situation is relatively clear: e.g., the coordination number is 3
for antimony and 2 for tellurium. More precisely, one should bet-
ter write, respectively, 3(þ3) and 2(þ4) as discussed in ref. [8].
Only when the interatomic separations are grouped into a bunch
of short distances distinct from the longer distances, the count-
ing of bonds is obvious. In amorphous or liquid structures, the
distribution of distances is continuous (e.g., ref. [16]) and the def-
inition of a bond is somewhat arbitrary. In crystalline structures
under pressure, the bond lengths evolve continuously and the
fulfilling or not of the octet rule is subject to some arbitrariness.
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For a half-filled p band, the equilibrium structure is a Peierls
distorted dimerized chain with two alternating distances DS and
DL (Figure 1).

This is the case we will concentrate on for simplicity; the
extension to other band fillings and distortions is obvious.[8]

The cohesive energy is approximated, in a simple tight bind-
ing scheme, by the sum of an attractive resonance σ interaction of
the p orbitals and an effective pairwise repulsion energy.

The resonance integral of the covalent σ bond varies with the
distance r as σðrÞ ¼ β0=rq. The repulsion is approximated by
VRðrÞ ¼ V0=rp; the parameter p does depend on the nature of
the atoms. The energy is given, by atom, by
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where DS and DL are the short and long interatomic separations.
The square root comes from the second moment approximation.
One is above a simple pair potential: the interaction involves
three successive atoms (i – 1, i, and iþ 1). These three-body inter-
actions are a key point for the Peierls symmetry breaking
mechanism.

For a quantitative analysis, the model presented here requires
four parameters: p, q, β0, and V0. Taking q ¼ 2 according to
Harrison,[20] the remaining three parameters p, β0, and V0 could
be obtained by fitting to the cohesive energy, interatomic dis-
tance, and compressibility. Instead, to analyze the general behav-
iors of the model, in this work I have chosen β0 ¼ 1. To impose
that the equilibrium distance is equal to 1 for an undistorted
chain, I have taken V0 ¼ p=q. With these additional conditions,
a single parameter is remaining: p (or p=q). This parameter fixes
the amplitude of the Peierls distortion as compiled in Table 1.
Consequently, all plots will be presented in arbitrary units in
order to concentrate on the mechanisms and trends that are pro-
duced by this model.

If the two interatomic separations DS and DL are equal,
Equation (1) reduces to the classical Mie potential,[21] which is
a pair potential.

In this minimal model of the covalent bond, the system is
assumed to be composed of identical averaged atoms. The mod-
est charge transfer in PCM is disregarded. We stress that the
model (1) is local and as such can be applied to crystalline, amor-
phous, or liquid structures.

The tight-binding model (1) connects three sites. It has some
analogy within the model of multicenter hyperbonding[6] but

with a totally different approach. Despite the fact that the energy
depends only on the distances, the energy is not pair additive
because of the square root in (1). This plays a central role in
the structural and the vibrational properties as we will see.

The second term of (1) is the effective repulsion characterized
by an effective exponent p.[22,23] The heavier the element, the
larger is the number of closed shells, the harder is the repulsive
term, and the larger is the p-value. The parameters p and q deter-
mine whether the structure is distorted or not.[8] If p < 2q
(soft repulsion), the structure is distorted. If p > 2q, the strong
repulsion prevents the structure from being distorted (Table 1)
and (Table 2).

The aim of this article is to analyze what kind of physical prop-
erties of the Peierls distorted structures (and PCM) a simple
(minimal) 1D covalent model can account for. Of course, the
model shows some limitations. The distortion in the distances
implies a (small) departure of the bond angles with respect to
90° in a Euclidean space. As a consequence, the factorization
of the 3D equations into 3� 1D equations is not strictly true:
a correction to the second order in the angle deviation from
90° is required. By nature, the 1D model involves only the lon-
gitudinal phonons. The lone pairs are formally absent from this
description. The demonstration of the octet rule[8] makes no ref-
erence to the lone pairs. Of course on a more fine scale, the lone
pair should be taken into account, but the issue is still subject to
discussion. For example, while in the orthorhombic GeS the lone
pairs are clearly visible; in GeTe their role is questionable.[9] It is
generally admitted that the opening of a gap at the Fermi energy
produces an energy gain and stabilizes the distorted structure
provided that the effective repulsive term does not hinder the
deformation. However, this universal behavior is questioned
and the role of electrostatic interactions is highlighted in some
systems.[10,11] The two structures, crystalline and amorphous,
have different densities. The Peierls distortion is highly sensitive
to the density with important consequences on the electronic and
vibrational properties. We use the pressure as a tuning parameter
that drives the volume or the density (Table 2).

Figure 2 shows typical energy landscapes. Figure 2a corre-
sponds to the situation where p > 2q; the minimum is on
the ascending diagonal (DS ¼ DL); the stable structure is a linear
chain of equally spaced atoms. The repulsive potential prevents
dimerization.

Figure 2c p < 2q, i.e., a soft repulsion, a spontaneous symme-
try breaking appears; it corresponds to the Peierls distorted case
with two different distances DS < DL (Strictly, at equilibrium,
the long bonds are infinitely long: a well-known artifact of the
tight-binding model. However, the à la Landau development
gives also a finite DL). The stable configuration is shown by
the red dot. In the three cases, the bonding is covalent.

Figure 1. A dimerized linear chain. Reproduced with permission.[13]

Copyright 2021, Wiley-VCH.

Table 1. The occurrence of a distortion depends on the ratio p
q.
[19]

p=q Structure Conductivity

<2 Distorted Semiconductor

¼2 Marginal Incipient metal

>2 undistorted Metal

Table 2. Several examples of the tight binding parameters p and q.

Compound q p p=q

GeTe 2 3.5 1.75

Ge2Sb2Te5 2 3.6 1.8

Sb2Te 2 3.72 1.86

PbTe 2 4.2 2.1
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We define a dimensionless distortion parameter η.

η ¼ DL �DS

DL þDS
(2)

The energy given by Equation (1) is expanded à la Landau in a
series expansion of η.

EðD, ηÞ ¼ E0ðDÞ þ αðDÞη2 þ γðDÞη4 ¼ E0ðDÞ þ ΔEP (3)

where D ¼ ðDL þ DSÞ=2 is the average interatomic separation
and ΔEP is the Peierls energy, i.e., the energy gained by the
distortion when α < 0

αðDÞ ¼ q
2

1
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At the equilibrium distance De, one has

αðDeÞ ¼
1
2
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Dp
eq
ðp� 2qÞ ¼ EcohðDeÞ

pqðp� 2qÞ
2ðp� qÞ (5)

Figure 2b is the interesting marginal case where with p ¼ 2q
and α ¼ 0, i.e., there is no restoring force in η to first order. It
corresponds to the so-called “incipient metal”[5] shown in the red
curve in Figure 3.

The interaction energy (1), expanded to second order in the
displacement (harmonic expansion), differs from a harmonic
potential with two force constants. The two distances DL and
DS are correlated and the dynamical matrix has cross terms.
This has important consequences on the vibrational spectrum.

The Peierls distortion is sensitive to the density (volume) of
the material. The relevant difference from the amorphous (less
dense) and the crystalline phases of the PCMs is their density
difference by about 6% (e.g., Ge2Se2Te5

[24]). In the 1D model,
we differentiate the two phases by a density variation in 1D of
2%. Even with such a low-density variation, the vibrational prop-
erties are strongly affected as one sits close to a structural
transition.

3. Phonons

The enthalpy of a dimerized structure (Figure 1) is given by
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as a function of the distancesDi. The atomic positions are Ri with
displacements ui, the atomic separations are Di ¼ Riþ1 � Ri, and
their fluctuations are δi ¼ uiþ1 � ui.

An extra pressure term PDi is added to the energy for several
reasons: 1) in a simple tight binding model, the distortion is
infinite (DL ¼ ∞) when it occurs in the absence of an external
pressure; 2) the additional pressure simulates the neglected cohe-
sive contributions (e.g., van der Waals interactions); 3) pressure

Figure 2. Energy landscapes EðDS,DLÞ as a function of the distancesDS,DL. From left to right: a) undistorted, b) incipient metal, and c) Peierls distorted.
The red dot indicates the stable configuration. In the incipient metal (b),[5] the reference point rattles along the descending red diagonal because the force
constants vanish to first order. It corresponds to the red curve in Figure 3. The dotted line in panel (c) is a constant length line (DS þDL ¼ constant); it
corresponds to the blue curve in Figure 3.

Figure 3. Evolution of the Peierls distortion energy ΔEP as a function of η
for different values of the ratio p=q. The red curve (incipient metal)
corresponds to a vanishing harmonic term in η. The curves correspond
to increasing pressures (force in 1D) from bottom to top.
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allows changing the volume. In 1D, the “pressure” P has the
dimension of a force MLT�2 (M¼mass, L¼ length, T¼ time).

Of course in 1D, the notion of amorphous is difficult to define.
We distinguish the amorphous and the crystalline structures by
their sole density and the density is controlled by pressure.

The Taylor expansion of the energy is given by, to second order
in δi’s, at the equilibrium

E ¼ E0 þ
X
i

½1
2
∂2E
∂D2

i
δ2i þ

∂2E
∂Di ∂Diþ1

δiδiþ1� (7)

The mixed partial derivatives come from the nonadditivity
of the interaction potential, giving rise to an additional second
nearest-neighbor force constant because of the 3-atom connec-
tion. The hessian matrix is tridiagonal.

In a dimerized chain, the nearest-neighbor force constant ∂2E
∂D2

i

is either kS or kL, respectively, for the short and long interatomic
distances. The next nearest-neighbor force constants ∂2E

∂Di ∂Diþ1
¼

∂2E
∂DS ∂DL

¼ knn are all identical as the Di are alternatively DS and

DL (Figure 1).
The force on the atom number n is given by the derivative

of the energyU with respect to un. The parameter un is contained
in the five terms δ2n�1, δ2n, δn�2δn�1, δn�1δn, and δnδnþ1.

We put R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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independent of n in a dimerized

structure.
Standard calculations[25–27] give the equation of motion
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In a dimerized structure with Dn�1 ¼ DS and Dn ¼ DL

(Figure 1)
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In the absence of distortion kS ¼ kL ¼ qðp� 2qÞ and knn ¼ q2.
The latter is relatively independent of the nature of the constitu-
ent atoms.[20] On the contrary, the two nearest-neighbor force
constants kS and kL vary with the nature of the atoms, through
the p parameter.

From (8) one gets the phonon dispersion relations, sum of two
contributions from the nearest neighbors, unequal in the dis-
torted structure, and the next nearest neighbors.

Let us remark that an early study[28] on the vibrational prop-
erties of (distorted) R-3m bismuth shows that the second-nearest
neighbor interactions are essential to get the correct dispersion
relation of Bi.

In the next two figures, the phonon dispersion relations
(0 ≤ ka ≤ π

2) are shown for increasing values of the pressure
that decrease the amplitude of the Peierls distortion.

3.1. Phonon Dispersion Relations

In a limited pressure range close to PC, a dramatic change in the
distribution of phonon modes occurs. The optical phonons are
the most sensitive to the pressure, specially in the small k
domain. We first consider the range of pressure below PC, which
corresponds to the case of PCMs. The structure is Peierls dis-
torted, with different amplitudes as a function of the pressure.
At low pressure and high distortion rate, a fairly flat band of opti-
cal frequencies appears. When the distortion (and the volume)
decreases with pressure, the optical modes widen considerably
in frequency and converge toward the acoustic modes (Figure 4).

The distortion vanishes at a transition pressure PC (in our
dimensionless units, PC ¼ 0.102) and so does the Peierls energy
ΔEP (3) as a function of η and the α parameter (Equation (4)). The
electronic gap is zero (incipient metal) and the potential in η has a
vanishing harmonic contribution.[13]

At PC (Figure 5), the optical curve coincides with the acoustic
curve because the first-neighbor force constant vanishes
(kL ¼ kS ¼ 0). Only the second-nearest neighbor force constant
is active. The two sublattices (odd and even atoms) move inde-
pendently; they are decoupled at PC. This qualifies the PCMs for
thermoelectric materials.[29]

Similar results have been obtained in carbyne.[30]

In this 1D model, we only show the dispersion relations
because the vibrational density of states is peculiar in 1D with
divergencies at the band edges (except k ¼ 0), contrary to the
3D density of states which goes smoothly to zero at the band
edges as seen in the measured phonon densities of states
(Figure 6).

The results of Figure 4 are in agreement with the experimental
data obtained by inelastic neutron scattering.[14,15,31,32] With a
density difference as low as 6%, the vibrational densities of states

Figure 4. Evolution of the dispersion relations ωðkaÞ below the transition
pressure PC. The arrow indicates the pressure increase. The optical branch
(full line) evolves faster than the acoustic branch (broken lines). They con-
verge toward each other when the pressure increases.
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of the amorphous and crystalline phases of Ge2Sb2Te5 are very
different.

In the amorphous phase, the optical and acoustic vibrations
are in well-separated energy domains (Figure 6): the acoustic
band is in the range [0, 12] meV with a maximum around
8meV while the optical band has its maximum around
28meV, well identified, unlike the crystalline phase, weakly
Peierls distorted, for which both bands are totally merged, in
agreement with Figure 7 (crystal). At PC and above, the system
is no longer Peierls distorted (Figure 5); the atoms are equally
spaced; however, the phonon dispersion relations are very differ-
ent from the textbook case where the optical curve is above the
acoustic curve. The anomalous behavior of the optical dispersion
relations is related to the anharmonicity of the potential. Just
above PC the dispersion relation has still some reminiscence

of the Peierls distorted case even if the distortion is no longer
present. At higher pressures, a gradual evolution is observed:
the optical dispersion relations go up anew with pressure as
shown in Figure 5.

Figure 7 summarizes the evolution of the phonon band
extension (support of the dispersion relations) as a function of
the pressure. At low pressure (large distortion), the two bands,
acoustic and optical, are nonoverlapping with a vibrational gap
in between. The vibrational gap closes before the closure of
the electronic gap (incipient metal) at PC.

In a 1D chain, an electronic gap appears when the structure
is dimerized (here below PC) with a gap width equal to
2ðσðDSÞ � σðDLÞÞ. The light blue broken lines suggest the posi-
tion of the amorphous (left) and crystalline (right) phases of a
typical PCM with a linear difference of 2% between the two
phases (corresponding to 6% in 3D). A similar behavior is found
in, e.g., GeSe.[33]

The volume (upper blue curve) evolves with pressure differ-
ently in the distorted structure and in the nondistorted structure.
This is obvious as in the distorted structure; the long bonds are
more compressible than the short bonds.

3.2. Sound Velocity

The sound velocity vs, slope at k ¼ 0 of the acoustic dispersion
relation, increases with pressure, as usual, as already observed in
Figure 4.

At the equilibrium in the absence of distortion, the dispersion
relation is the sum of two contributions, from the first- and
second-nearest neighbors

Figure 5. Evolution of the dispersion relations ωðkaÞ at and above
the transition pressure PC. The arrow indicates the pressure increase.
The optical branch (full line) goes up with pressure faster than the acoustic
branch (broken lines). For comparison with Figure 4, the lattice parameter
a is unchanged although the system is now undistorted.

Figure 6. Densities of vibrational states of Ge2Sb2Te5; adapted with
permission.[14] Copyright 2014, American Chemical Society. In the amor-
phous phase, the acoustic (around 8meV) and optical (around 28meV)
bands are well identified unlike the crystalline phase where they are merged.
This corresponds, respectively, to two sections left and right of Figure 7.

Figure 7. Frequency extrema (left scale) of the acoustic and optical
modes of vibration as a function of the pressure. A vibrational gap—if
any—occurs between the top of the acoustic band (black curve) and
the bottom of the optical band (green curve). The vibrational gap closes
before the closure of the electronic gap (incipient metal) at PC. The light
blue broken lines suggest the position of the amorphous and crystalline
phases of a typical PCM with a linear difference of 2% between the two
phases (6% in 3D). The volume (upper blue curve, right scale) has a larger
slope in the distorted structure than in the nondistorted structure.
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mω2ðkÞ ¼ qðp� 2qÞsin2 ka
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where m is the average atomic mass of the atoms. In the limit
k ! 0, the sound velocity is vs ¼ a

2
ffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðp� qÞp

. It increases with

the hardness p of the potential. The increase of vs is very fast just
below PC (Figure 8), i.e., in the region corresponding to crystalli-
zation. The crystalline metallic structure, less distorted than the
amorphous structure, has a higher sound velocity, and then
slowly increasing above PC. The crystallization hardens the
structure.[12]

In conclusion, the covalent model (6) resolves the apparent
contradiction that, upon crystallization, the acoustic modes
harden while the optical modes soften.[25] The softening of
the optical modes is merely a widening of the optical dispersion
curves to the low frequencies. These peculiar vibrational proper-
ties induce peculiar thermomechanical properties (Grüneisen
parameter and negative thermal expansion (NTE)).

4. Grüneisen Parameter

The Grüneisen parameter γ is one of the most characteristic
parameters of the PCMs as it varies dramatically around the
semiconductor–metal transition,[5,13] unlike conventional semi-
conductors or metals. This spectacular behavior is due to the
Peierls distortion.

The coefficient of thermal expansion is β ¼ 1
V

∂V
∂T ¼ χT

Cv
V γ

where χT is the isothermal compressibility, Cv the heat capacity
at constant volume, and γ the dimensionless Grüneisen param-
eter. The sign of the Grüneisen parameter determines whether
the thermal expansion is positive or negative.

There are many definitions of the Grüneisen parameters.[34]

We choose the mode Grüneisen parameter

γk,i ¼ � V
ωk,i

∂ωk,i

∂V
(11)

where i stands for the band (acoustic or optical), and k is the recip-
rocal coordinate. The mean Grüneisen parameter is defined by

γ ¼
X
k, i

γk,iCk,i=Cv (12)

where Ck,i is the specific heat per mode. The Grüneisen param-
eters are weakly dependent on the temperature and we will neglect
their thermal variation.

Figure 9 shows the origin of the special behavior of the
Grüneisen parameters in systems that undergo a Peierls transi-
tion. The blue curve is the average Grüneisen parameter. It
shows a divergence around a dimensionless transition pressure
of 0.102 that corresponds to a p=q ratio of 1.8 typical of the
Ge2Sb2Te5 compound. Unfortunately, many publications men-
tion the absolute value of the Grüneisen parameter; its sign is
also interesting.

Above the transition pressure PC, i.e., for small volumes, the
frequencies of all vibrational modes increase with pressure
(decrease with the volume) (Figure 5) and the Grüneisen param-
eters γi are positive; hence, the thermal expansion is positive
(PTE), the normal way.

At the transition pressure PC, the Grüneisen parameter
diverges and changes sign (Figure 9). The low energy part of
the optical dispersion relation contributes the most on this effect
(green curve). The acoustic dispersion curve on the contrary has a
quite a normal behavior.

Below the transition pressure PC, the frequencies of the acous-
tic modes increase with pressure (Figure 7) giving a positive par-
tial contribution to the Grüneisen parameter γ. At the opposite,
the optical modes decrease with pressure contributing negatively
to the Grüneisen parameter. In the balance between these two
competing effects, the lowest optical modes, strongly pressure
dependent (green curve of Figure 7), play the dominant role
in the NTE.

At still lower pressures, possibly negative, the positivity of γ is
restored.

Figure 8. The sound velocity is increasing at any pressure with a sharp
increase just belowPC.

Figure 9. Average Grüneisen parameter γ (blue curve) and its components
as a function of the pressure. The dominant effect comes from the lower
branches of the optical phonons (in green). Inset: transverse optical
phonons of GeTe; adapted with permission.[5] Copyright 2018, Wiley-VCH.
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In conclusion, the lower branches of the optical modes play
the major role.

5. Vibrational Entropy and NTE

NTE is the exception in covalent materials. It occurs mainly in Te
compounds, at composition reminiscent of those of PCMs, in the
liquid state, just above the melting temperature.[15,16] The origin
of NTE can be explained by simple handwaving arguments.

The structure is the result of the balance between the cohesive
energy and the entropy and consequently its volume. When tem-
perature increases, the entropy starts playing an important role.
In a Peierls distorted structure, the atoms vibrate in a shallow
potential well (Figure 10 left). Should the volume decrease,
the system gets closer to a vanishing harmonicity with an
increase of the vibrational entropy. Indeed, the vibration ampli-
tude gets larger/wider (Figure 10 right). The thermal expansion
is always in the direction of increasing entropy. Here, the entropy
increases when the volume shrinks because the system is Peierls
distorted. In model (6), the vibration occurs around a tempera-
ture, given by the Peierls, T t ¼ ΔEP

kB
. One can demonstrate that the

entropy is maximum at the vanishing harmonicity conditions
(¼incipient metal).

An alternative view is the following. If the frequency of a vibra-
tional mode ωi decreases (resp. increases) with the volume, its
contribution to the partial entropy Si increases (resp. decreases)
and the corresponding Grüneisen parameter γi is positive (resp.
negative). The acoustic mode frequencies decrease with volume
giving a positive partial Grüneisen parameter γi and contributing
to a positive thermal expansion. At the opposite, the optical
modes increase with volume (P< PC) giving a negative partial
Grüneisen parameter γi. As the lower modes of the optical modes
are severely volume dependent (green curve of Figure 7), they
play the dominant role in the NTE. This explains that systems
close to the vanishing Peierls distortion show a NTE.

6. Conclusion

A simple model of the covalent bonding may account for the
characteristic properties of PCM. In particular, it shows,

qualitatively, the original trends of the vibrational spectrum. It
allows explaining the apparently counterintuitive behavior: hard-
ening of the elastic properties and softening of the optical pho-
nons upon crystallization. In addition, it shows why PCM are
good candidates for themoelectric materials and it shed some
light on the NTE mechanism of compounds that undergo a
Peierls transition. It originates from the singular behavior of
the Grüneisen parameter. The Grüneisen parameter diverges
and changes sign at the transition, when the harmonic contribu-
tion vanishes.
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