Structural study of GAS adsorption in porous solids: $\gamma\text{-}Mg(BH_4)_2$ and derivatives

<u>Mathieu Vander Donckt</u>, Yaroslav Filinchuk IMCN, Université Catholique de Louvain (UCL) Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium mathieu.vanderdonckt@student.uclouvain.be

Several porous metal borohydrides are reported: γ -Mg(BH₄)₂¹, *c*-Ce(BH₄)₃², γ -Mn(BH₄)₂⁴, β -Y(BH₄)₃, and α -Mg(BH₄)₂. Porous γ -Mg(BH₄)₂ is the first light metal hydride capable of storing hydrogen both chemically, due to the existence of the covalent B-H bonds, and physically due to its porosity (33% of empty space at high pressure). Physisorption of H₂, N₂, CH₄, C₂H₆, C₂H₄ and C₂H₆ has been studied by X-ray and neutron diffraction¹.

Now we study the adsorption of those gazes by γ -Mg(BH₄)₂ by volumetric methods and by TGA/DSC, aiming to compare the equilibrium curves with those obtained from *in situ* X-ray powder diffraction³. We also study the physisorption of a monoatomic gas, argon, by X-ray diffraction. Interestingly, while only one larger molecule occupies the pore, the smaller hydrogen and argon may take up to 2 crystallographically independent molecules. Furthermore, we study and compare the adsorption of those gazes in similar porous compounds, implying a change of the metal: γ -Mn(BH₄)₂; or a change of the ligand: MgIm₂ (Im = imidazolate).

The synthesis of solvent free γ -Mn(BH₄)₂ is described in the literature⁴. A metathesis 2LiBH₄ + MnCl₂ in DMS/toluene followed by a filtration conduct to the formation of the solvate Mn(BH₄)₂·1/2S(CH₃)₂, which after vacuum gives porous γ -Mn(BH₄)₂. Porous MgIm₂ has been synthesized in our laboratory, the optimal experimental conditions to obtain the porous phase are still being investigated.

The physisorption of argon in γ -Mg(BH₄)₂ is investigated using synchrotron powder diffraction data measured at the Swiss–Norwegian Beam Lines of the ESRF. The volumetry and TGA/DSC measurements are made at UCL.

Bibliography:

- Filinchuk, Y.; Richter, B.; Jensen, T. R.; Dmitriev, V.; Chernyshov, D.; Hagemann, H. Angew. Chem. Int. Ed. 2011, 50 (47), 11162. and not yet published work.
- (2) Ley, M. B.; Jørgensen, M.; Černý, R.; Filinchuk, Y.; Jensen, T. R. *Inorg. Chem.* 2016, 55 (19), 9748.
- (3) Filinchuk, Y. 27th Eur. Crystallogr. Meet. ECM 27 Bergen Nor. 2012. for the methodology.
- (4) Richter, B.; Ravnsbæk, D. B.; Tumanov, N.; Filinchuk, Y.; Jensen, T. R. *Dalton Trans* **2015**, *44* (9), 3988.