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Abstract

Tropical forests are the main contributors of CO, emissions between the biosphere
and the atmosphere in the land use sector. The deforestation and degradation of these
forests are the main sources of emissions from this sector, which accounts for 15% of
the world's CO; emissions. The monitoring of CO, emissions and removals from
tropical forests requires fine measurements of their trees. These measurements are
then used as inputs in allometric model to predict the tree aboveground biomass and
thus indirectly their equivalent in CO,. However, a significant proportion of trees in
tropical forests show morphological singularities on the stem such as buttresses or
other irregularities. The height (Hpom) of the diameter measured (Dpowm) is therefore
commonly raised above the buttresses to reach a circular part of the stem. The standard
of measuring the diameter at breast height (DBH) is then lost. In this context, this
thesis aims to improve the monitoring of tropical trees with stem irregularities by
using recent three-dimensional (3D) measurement tools and developing a model-
based approach to harmonize height measurements of the diameterdo.

First, we evaluated the potential of the close-range terrestrial photogrammetric
approach (CRTP) to measure irregular shaped stems. The advantage of this 3D
approach is its low cost and ease of implementation as it only requires a camera and
targets. Following the convincing results of this approach, we studied the quality of
the allometric relationship between variables extracted from the stem cross-section at
1.3 m height and above-ground biomass. We found that the equivalent diameter of the
basal area at 1.3 m height (DBH') correlates better with aboveground tree biomass and
thus its carbon content than does diameter above buttress (Dpom). Therefore,
harmonization of Hpom to 1.3 m height should be further studied to improve biomass
estimates.

Secondly, we investigated the potential of a hand-held mobile lidar scanner (HMLS)
to measure in 3D not only one tree at a time but many trees from forest plots with a
15 m radius in Belgian temperate forest. To assess the HMLS, we compared it to 3D
measurements made with a more commonly used static terrestrial laser scanning
(TLS) and with conventional forest inventory diameter and position measurements.
The HMLS has a better 3D spatial coverage of the stems than the TLS and the
precision of the stem diameter measurements is also better with the HMLS. Setting
up the plot and scanning it from five locations with the TLS takes three times longer
than scanning with HMLS. This pioneering work shows us the potential of using
HMLS in tropical forests through its speed of execution and its important spatial
coverage at the stem level, an important issue for irregular shaped tree stems.

Thirdly, we developed and assessed a model-based approach for harmonizing Hpom
to correct the bias induced by irregular stems in the aboveground biomass estimates
of forest inventory plots. Following the estimation of DBH' using a taper model
proposed in our study, we find that conventional aboveground biomass estimates (i.e.
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with only Dpom), compared to estimates made with DBH', show an increasing
divergence with the increase of irregular stems proportion within plots and going up
to -15% in our study. These results show the importance of considering Hpom when
estimating aboveground biomass in tropical forests, especially in forests with many
irregular stems. Estimates of the evolution of plot above-ground biomass over time
should also be revised to better consider the biomass growth of irregular shaped tree
stems, which has been underestimated until now.

Finally, based on the results of this research, we summarize the 3D measurement
tools currently available and describe their advantages and disadvantages in the case
of irregular stems. Based on available human and technical resources, we also give
recommendations on the harmonization method to use in permanent sampling plots to
correct the bias induced by irregular stems. Improved monitoring of these tropical
trees may provide a better understanding of some of the residual, i.e. unexplained,
terrestrial ecosystem CO, sink currently noted in IPCC reports.
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Résumé

Les foréts tropicales sont les principales contributrices des émissions de CO» entre
la biosphére et I’atmosphére dans le secteur de I’affectation des terres. La destruction
et dégradation des ces foréts sont les principales sources d’émissions de ce secteur qui
représente 15 % des émissions mondiales de gaz a effet de serre. Le suivi des
émissions et absorptions de CO, des foréts tropicales passe par des mesures fines des
arbres qui les constituent et I’utilisation de ces mesures dans des modeles
allométriques prédisant la biomasse aérienne de ces arbres et donc indirectement leurs
équivalents CO,. Cependant, une part importante d’arbres en forét tropicale présente
des singularités morphologiques sur le tronc telles que des contreforts ou d’autres
irrégularités, ce qui complexifie la transformation des mesures de terrain via ces
modeles allométriques. En effet, sur ces arbres, la hauteur (Hpom) de mesure du
diametre (Dpom) est classiquement rehaussée pour atteindre une partie circulaire du
tronc. Le caractére standard du diamétre mesuré a hauteur de poitrine (DHP) est donc
perdu. Dans ce contexte, cette thése a pour objectif d’améliorer le suivi des arbres
tropicaux présentant des irrégularités sur le tronc par 1’'usage d’outils de mesure en
trois dimensions (3D), et de proposer une méthode qui prenne mieux en compte ces
singularités morphologiques.

Tout d'abord, nous avons évalué le potentiel de ’approche photogrammétrique
terrestre (CRTP) pour mesurer les troncs irréguliers. L’avantage de cette approche 3D
est son faible cofit et sa facilité de mise en ceuvre car elle ne nécessite qu’un appareil
photo et des cibles. Suite aux résultats concluants de cette approche, nous avons étudié
la qualité de la relation allométrique entre des variables calculées sur la base de la
surface de sections de troncs a 1,3 m de hauteur et la biomasse aérienne. Il en ressort
que le diameétre équivalent a la surface de la section a 1.3 m de hauteur (DHP’)
présente une meilleure corrélation avec la biomasse aérienne des arbres que la mesure
du diamétre au-dessus des contreforts (Dpom). Par conséquent une harmonisation
permettant de ramener les mesures faites au-dessus des contreforts a 1,3 m est a
envisager pour améliorer les estimations de biomasse.

Ensuite, nous avons étudié le potentiel d’un scanner lidar mobile (HMLS) pour
mesurer en 3D non plus un seul arbre a la fois mais des placettes forestieres de 15 m
de rayon en forét tempérée belge. Pour évaluer cet outil, nous 1’avons comparé a des
mesures 3D faites avec un scanner lidar terrestre statique (TLS) plus communément
utilisé et, avec des mesures de diamétre et de positon classiques d’inventaire forestier.
Le HMLS présente une meilleure couverture spatiale des troncs en 3D que le TLS et
la mesure du diamétre des troncs est également meilleure avec le HMLS. Le temps
de mise en place et d’acquisition d’une placette en HMLS est 3 fois inférieur au temps
d’acquisition de cinq scans TLS. Ce travail précurseur nous montre le potentiel de
I’'usage du HMLS en forét tropicale au travers de I’importante couverture spatiale qu’il
procure a hauteur des troncs et sa rapidité¢ de mise en ceuvre.
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Enfin, nous avons développé et évalué une méthode d’harmonisation du Hpom afin
de corriger le biais induit par les troncs irréguliers dans les estimations de biomasse
aérienne de placettes d’inventaire. Suite a I’estimation du DHP’, grace a 1’équation de
défilement proposée dans notre étude, nous constatons que les estimations de
biomasse aérienne faites de manieére conventionnelle (c’est a dire avec uniquement
Drom) sont inférieures aux estimations faites avec les DHP’. Cette divergence
augmente avec la proportion d’arbres a tronc irrégulier au sein des parcelles et va
jusqu’a -15 % dans le cas de notre étude. Ces résultats dévoilent I’importance de la
prise en compte de Hpom dans les estimations de biomasse aérienne des foréts
tropicales, plus particulierement dans les foréts présentant une proportion importante
de troncs irréguliers. Les estimations sur I’évolution de cette biomasse aérienne au
cours du temps devront également étre revues afin de mieux prendre en compte la
croissance en biomasse des arbres a tronc irrégulier qui est jusqu’a présent sous-
estimée.

Finalement, sur base des résultats de cette recherche nous synthétisons les outils de
mesures 3D actuellement disponibles et présentons leurs avantages et inconvénients
respectifs dans le cas des arbres a tronc irrégulier. Des recommandations sont
¢galement données sur la maniére de corriger le biais induit par ces arbres sur les
estimations de stock et de changements de stocks de carbone des parcelles de suivi de
croissance en fonction des moyens humains et techniques disponibles. L’amélioration
du suivi de ces arbres tropicaux permettra peut-étre de mieux comprendre une partie
du puits de CO, résiduel, c’est a dire non expliqué, de 1’écosystéme terrestre
actuellement constaté dans les rapports du GIEC.
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height (1.3 m) and the height of the point of measurement (Hpom) of the reference
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Figure 5.3: Tree-centered approaches to manage the issue of irregularly shaped tree
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allometric model is the current conventional allometric model requiring the stem
diameter Dpowm as one predictor in the model. AGB-DBH’ model is as model calibrated
on DBH or equivalent DBH measurement instead of Dpom. The approach B is based
on close-range terrestrial photogrammetry (CRTP) or other scanning methods to
extract the DBH’ of the focal tree. In C, the whole tree is scanned with TLS and the
whole aboveground woody volume is modelled and converted into aboveground
biomass using conversion factor based on basic wood density. The accuracy of the
aboveground biomass estimates increases from the approach A4 to
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Chapter 1: General introduction

1.1 The tropical forests in the global carbon budget
1.1.1 How forests fit into the global carbon budget?

Current human activity profoundly affects the environment, from Earth’s major
biogeochemical cycles to the evolution of life, leading to a new geological epoch: the
Anthropocene (Lewis and Maslin, 2015). The human alteration of biogeochemical
cycles has been long recognized (Vitousek, 1992) and specifically that of the carbon
cycle (Vitousek et al., 1986). The total net land-atmosphere flux of CO, on both
managed and unmanaged lands provided a global net removal from 2007 to 2016
according to models: -6.0 £ 3.7 GtCO, yr!' (Jiaetal., 2019; yellow rectangle in Figure
1). This net removal comes from two main components: (i) The net anthropogenic
emissions from the sector of Agriculture, Forestry and Other Land Use (AFOLU)
which are 6 + 3 Gt CO, yr' and mainly driven by land cover change, including
deforestation and afforestation/reforestation, and wood harvesting, and (ii) modelled
net removals due to non-anthropogenic processes are 12 = 3 Gt CO, yr' on managed
and unmanaged lands, driven by environmental changes such as increasing CO,,
nitrogen deposition and climate changes (accounting for the removal of 29% of the
CO; emitted from all anthropogenic activities: fossil fuel, industry and AFOLU).

Global carbon dioxide budget
(gigatonnes of carbon dioxide per year)

2009-2018
Fossil fuels & Atmospheric Land sink
industry growth . 123 Budget
35+2 1%) landie  (20%)  Imbalanc
i e 63 2

(15 %)
Ocean sink

ez 72

Geological *
reservoirs

Figure 1.1: Schematic representation of the overall perturbation of the global carbon
cycle caused by anthropogenic activities, averaged globally for the decade 2009-2018.
The budget imbalance is also shown in grey. This figure is from Le Quéré et al. (2017;

2009) and has been updated with data from Friedlingstein et al. (2019).
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1.1.2 How important is the role of tropical forests in the global
carbon budget?

The aboveground tropical forest growing stock is around 200 - 250 Gt C (Avitabile
et al., 2016; Baccini et al., 2012; Saatchi et al., 2011), about a fifth to a quarter much
of the carbon held in the atmosphere or about half of the reserve of coal (Friedlingstein
et al., 2019). This pool is however very dynamic through the photosynthesis and the
respiration processes leading to large forest-atmosphere fluxes. Given these large
fluxes, a small proportional change in either the uptake or the release of CO; can result
in a large net source or sink (Mitchard, 2018). Many drivers can affect these CO»
fluxes at different spatial and temporal scales as the air temperature, rainfalls, forest
fire, harvest, deforestation, afforestation/reforestation, increase in atmospheric CO;
concentration (CO; fertilisation), and nitrogen deposition (Jia et al., 2019). Depending
on the spatial and time scale, anthropogenic activities are directly or indirectly related
to these drivers.

The largest potential for reducing AFOLU emissions is through reduced deforestation

and forest degradation (0.4-5.8 Gt COx-eq yr', Jia et al. 2019), activities that are
mainly occurring in the tropics (Butsic et al., 2015; Moutinho et al., 2016; Zarin et al.,
2016). Besides preserving carbon stocks, the tropical forest has also a second carbon
beneficial effect of keeping a land use with a net sink in the case of the remaining
structurally intact tropical forests (Lewis et al., 2009; Pan et al., 2011; Phillips and
Lewis, 2014; Zarin et al., 2016). This second beneficial effect is nevertheless expected
to slow down in the climate-changing future (McDowell et al., 2020; Phillips et al.,
2009; Rowland et al., 2015) and seems to be already less important (Brienen et al.,
2015; Hubau et al., 2020). Shortly, tropical forests are likely to become a carbon
source, owing to continued forest loss and the effect of climate change on the ability
of the remaining forests to capture excess atmospheric carbon dioxide (Mitchard,
2018). Note these sink estimates and trends are accompanied by high uncertainties
(Jia et al., 2019; Mitchard et al., 2013; Mitchard, 2018; Phillips and Lewis, 2014).
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1.1.3 How precise are the carbon stocks and stock change
estimates in tropical forests?

Based on IPCC guidelines (2006, 2019), monitoring the forest land annual emissions

and removals of greenhouse gases (GHQG) requires subdividing this category into
managed and unmanaged lands. Managed lands category, defined as “land where
human interventions and practices have been applied to perform production,
ecological or social functions”, is sub-divided into the forest land remaining forest
land  (including  activities such as  logging), deforestation and
afforestation/reforestation. The two last sub-categories are land-use changes while no
land-use change is occurring in the first category. The emissions and removals of
GHG from these lands are estimated following the general equation 1.

E=AXEF Equation 1

Where, E= GHG emissions in tons of COseq; A = activity data relating to the
emission source (can be an area, animal numbers or mass unit, depending on the
source type) and EF = emission factor for a specific gas and source category, tons per
unit of A.

Tropical forest lands are a key category that requires the most accurate estimates of

the emissions and removals of GHG. In the case of the subcategory of deforestation,
estimating the emissions would be a major challenge without the use of remote
sensing data for remote regions as in many parts of the tropics. Spaceborn remote
sensing data combined with ground measurements play a key role in determining the
loss of forest cover and their fluxes (Achard et al., 2007). The uncertainty on the
emissions would then depend on the uncertainty of forest biomass estimates at the
pixel level combined with the number of samples, i.e., the number of pixels within the
area deforested (EF uncertainty) and the uncertainty related to the detection of the
pixel deforested (A uncertainty).

The uncertainty around EF is the result of error propagation from field measurements

up to mean aboveground biomass (AGB) density estimates (Mg of aboveground
biomass per hectare; Figure 1.2). To illustrate the uncertainty related to biomass
estimates at a very large scale Mitchard et al. (2013) compared two well known pan-
tropical biomass maps based on medium resolution imagery (500 m — 1000 m) and
showed substantial differences in pixel AGB values with a little consistency in the
direction of the difference. Note that none of the data layers used (imagery and
RADAR) to capture the variations of forest biomass are sensitive to the range of
biomass values found in tropical forests and often saturate at low biomass values
(Mitchard et al., 2013).

The state-of-the-art remote sensing technology for dendrometrics estimates, the
Aerial Laser Scanning (ALS, Zolkos et al. 2013) with an area-based approach for
modelling plot AGB, could estimate regional/national AGB density with an error of
around 5 % (Chen et al., 2016). This is an error similar to the estimates from design-
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based approach with conventional forest inventory plot data but with the advantage to
be spatially explicit (Chen et al., 2016).

The uncertainties in tropical forest biomass estimates from remote sensing data
(medium-resolution imagery, RADAR or ALS) are based on the assumption of no
bias throughout the whole workflow from field measurements to biomass maps
from the choice of the allometric biomass model used to convert tree field
measurement to aboveground biomass (Chave et al., 2004; Chen et al., 2016; Molto
et al., 2013; Zhao et al., 2012). Moreover, the absence of bias in the measurement of
one of the main features to predict the AGB, the stem diameter, is not guaranteed as
we will see in the next section (Clark, 2002; Cushman et al., 2014; Dean et al., 2003;
Metcalf et al., 2009; Muller-Landau et al., 2014).

Plot tree attributes Destructive Data Plot-level RS metrics ~ Region-wide RS metrics
Species, Dooy, Heom, (TH) AGB, p, Doy TH T o
Tree AGB model L RS model
AGB=f(p, Doy, TH) Bo:=f(M1gs, ..., MXgs)
Tree-level AGBof Plot-level AGB _ Region-wide  28,,/n,,  Region-wide (EF):
the plots (Byee) i (Byor) Pixel-level AGB map i) area-level AGB map or
e i (Bgix) ii) AGB estimate

3B

Design based approach

Figure 1.2: Error propagation from the data sources (light blue rectangles) up to the
region-wide AGB estimates (light orange rectangle) by using tree aboveground
biomass model (Tree AGB model) and remote sensing model (RS model). The
region-wide AGB density (Mg/ha) is then used as emission factor (EF) in eq. 1.
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1.2. The stem diameter, a key feature in tropical forests
monitoring

1.2.1 Why and how measuring the stem diameter?

The most important and easiest variable to measure in the field is the stem diameter

at the base of the tree. At the tree level, diameter is a proxy of tree size, which is an
important life-history trait that determines the probability of regular fruiting
(Plumptre, 1995). The diameter is also strongly related to the other descriptors of tree
size such as total height (Feldpaush et al. 2011, Banin et al. 2012) and crown
dimensions (Antin et al. 2013). Diameter is thus a key predictor to estimate stem and
tree volume (Belyea, 1931; Fayolle et al., 2013b; Nogueira et al., 2006) and biomass
(Chave et al., 2014, 2005). At the stand level, the distribution of diameters is used to
describe stand structure (Rondeux, 1993) and recovery after disturbance. Successive
diameter measurements of trees in permanent sample plots (PSP) enable the
quantification of tree growth (Clark and Clark, 1999; Swaine et al., 1987), wood
production (Banin et al., 2014), and forest-level carbon budgets (Clark, 2002; Coomes
etal., 2014; Pan et al., 2011).

In PSP, tree diameter is repeatedly measured at the same location on the stem
(location defined as the “point of measurement - POM” and its related height: Hpom).
The international standard for Hpom is “at breast height,” and the corresponding
diameter is called the diameter at breast height (DBH, Belyea, 1931). This breast
height is generally defined as 1.3 m above ground level (Alder and Synnott, 1992;
Bruce and Schumacher, 1950), but there are still local variations (e.g. 4.5 ft in the
USA and 1.5 m in the South of Belgium). In forest inventories, special
recommendations have been made for trees on slopes, leaning trees, forked trees, and
trees with local deformation at breast height (Alder and Synnott, 1992; Cailliez and
Alder, 1980; Condit et al., 1998; Forbes and Meyer, 1955; Picard and Gourlet-Fleury,
2008; Rondeux, 1993). However, there is no standardized protocol for irregularly
shaped stems such as fluted or buttressed trees and trees with stilt roots, even though
they are abundant in tropical forests.

1.2.2. How to measure the diameter on irregular stems?

Handbooks and technical papers recommend moving the Hpom above the buttresses
or the stilts to reach a regular part of the stem (Figure 1.3). In the case of buttressed
trees, Alder and Synnott (1992) recommended using a height of at least 1 m above
buttresses so that the POM can remain the same for a decade or more and does not
require continual upward adjustment. In some permanent sample plots, diameter
measurements have been moved up 30 cm above the buttresses (Cailliez and Alder,
1980), as in Marca Island, Brazil (Thompson et al., 1992), or 50 cm above the
buttresses, as in Barro Colorado Island, Panama (Condit, 1998) and the Amazonian
plots of the RAINFOR network (Phillips et al., 2015). Alternatively, focusing on
tropical African forests where trees are known to achieve larger diameters (Slik et al.,

7
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2013) and show huge deformations at breast height (Chapman et al., 1998; Letouzey,
1982), Picard and Gourlet-Fleury (2008) recommended fixing the Hpom at a
standardized height of 4.5 m for all trees belonging to species that develop buttresses.
This recommendation was adopted in Mbaiki, Central African Republic (Gourlet-
Fleury et al., 2013) and the Central African plots of the DynAfFor network
(www.dynaffor.org). In the case of fluted trees, two contrasting options have been
recommended: either the selection of the POM arbitrarily above the deformation
(Alder and Synnott 1992, Condit et al. 1998) or measuring the perimeter of the convex
hull of the stem at the standard 1.3 m height (Phillips et al., 2015).

S

S

' e

== == Standard height of the POM: 1.3 m POM of the reference diameter measured (D,,;)

Figure 1.3: The international standard of the point of measurement (POM): the breast

height, i.e.:1.3 m, and the practical diameter POM (D,.r) measured in a tropical forest

with irregularly shaped tree stems such as buttresses trees. The copyright of the forest
drawing belongs to Andreja Brule.

Despite the development of regional and worldwide PSP networks, a standard for
measuring the reference diameter for all morphological stem types is still missing.
Moreover, the occurrence of irregularities is highly variable in the different forest
types and stands, increasing the difficulty of comparing the plots/stands/forest types
on the basis of derived diameter metrics as basal area or AGB (Cushman et al., 2021,
2014; Muller-Landau et al., 2014). The information of a higher Hpom than the standard
height of 1.3 m is an indirect indicator of the presence of irregularities at the breast
height in forest inventory plots. Figure 1.4 shows the importance and the variability
of the number of trees with Hpom > 1.3m in 1 ha plots in Central Africa.
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Figure 1.4: The distribution of Hpom values higher than 1.3m in 1 ha tropical forest
plots of Central Africa (data from Ploton et al., 2020).
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1.3. The current methods to measure irregular stem
cross-sections

1.3.1 Direct measurements in the field

To accurately measure the basal area and the volume of irregular stems, a variety of
methods, including destructive and non-destructive approaches, have been proposed.
Destructive methods have been used to develop allometric equations. The irregular
parts of stems are logged, and the cross-sections are measured based on georeferenced
photographs and digitalization of the outline of the sections (Dean and Roxburgh,
2006; Fayolle et al., 2013a) or drawings on large sheets of paper (Nogueira et al.,

Figure 1.5: Wire method to estimate the basal area of a cross-section (left: shaping the
wire, right: counting the number of squares with a reference area).

Non-destructive approaches include the wire method, the convex-concave method
and the Terrestrial Laser Scanning (TLS) method. The wire method uses two wires
pressed against the irregular stem to shape the cross-section. The shaped wires are
then put on a wooden board with a grid and the area of the cross-section is estimated
by counting the squares enclosed within the wire (Figure 1.5, Ngomanda et al., 2012).
Nevertheless, the flexibility of the wire and the square counting may lead to
measurement errors.

The convex-concave method requires various measurements of all convex (spurs)
and concave parts (flutes) of the stem to finally model the trunk as an arrangement of
a cylindrical element and buttress elements (Figure 1.6; Dean and Roxburgh, 2006;
Henry et al., 2010). The simplification of the stem morphology may not be in
accordance with the real volume of this irregular part of the stem (Nolke et al., 2015).

The TLS method consists of scanning the tree from different points of view. In
tropical forests, this last method is mainly used to model the abovreground volume of
the trees. The volume is estimated by fitting geometrical primitives such as cylinders
on the resulting 3D point cloud of the scanned trees. The main approach for this fitting

10
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2018) or fitting free-form curves on the cross-sections (Gollob et al., 2020; Pfelfer
and Winterhalder, 2004) are alternatives to the conventional fitting process of
cylinders. Nevertheless, only the study of Nolke etal. (2015) used TLS data to address
the issue of the buttresses in the context of forest inventory measurements
(Figure 1.7).

Figure 1.6: Example of a convex-concave method with measurements of the
cylindrical and buttresses components (modified figure of Henry et al., 2010).
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Figure 1.7: The use of Terrestrial Laser Scanning (TLS) to measure irregularly
shaped tree stems (modified figure of Nolke et al., 2015).
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1.3.2 Model-based approaches

Instead of measuring the basal area at 1.3 m height of the irregular stems, models can

be used to estimate this basal area from other stem measurements (covariates) as the
diameter above the buttresses (DAB or more general: Dpom) and the Hpom. These
models can be empirical models (Ngomanda et al., 2012) or taper models (Cushman
et al., 2021, 2014). The former method will relate the basal area at 1.3m height to
covariates without assumptions on the form of the model. The dependency of the
model to the calibration data is high and should be only used in the range of the
calibration data.

In this latter method, Cushman et al. (2014) suggest measuring diameters of the upper
regular part of the stem (i.e. above the buttresses) to calibrate a taper model and project
that taper downward up to 1.3 m height (Figure 1.8). This approach of the taper model
method assumes that the equivalent regular diameter at 1.3m height is highly related
to above-ground biomass but this hypothesis was not tested with reference biomass
data. Based on 3D data, measuring only the regular part of the stems in not anymore
required and taper model could be fitted on cross-sections from the irregular part of
the stem as well to increase the consistency of the taper model.
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Figure 1.8: Example of a model based approach based on a taper model. Measured
taper data of the regular part of the stem with optical denrometer (points) and fitted
taper models (lines) for individual trees. Solid lines show the best-fit curves to the

measured data for each stem (solid), dashed lines show the taper curves obtained by
extrapolating from the 2010 diameter measurement for each tree using the best-fit

taper value for the stem, and dotted lines show the extrapolation from the 2010
diameter using the general model applied to that stem. The horizontal dashed line is
the standard height at 1.3 m (modified figure of Cushman et al., 2014).
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1.4. Research strategy
1.4.1. Research gaps and objectives

Conventional forest inventory measurement tools (graduated tape and caliper)
assume circularity in the cross-sections adding many challenges to the monitoring of
irregularly shaped tree stems (Clark, 2002; Cushman et al., 2014; Dean et al., 2003;
Metcalf et al., 2009; Muller-Landau et al., 2014; Talbot et al., 2014). First studies on
the use of 3D measurement tools such as TLS is showing great potential for improving
the monitoring of irregularly shaped stems (Nolke et al., 2015) and require further
investigations in the context of closed dense tropical forests.

Current tropical tree AGB models do not take into account the bias coming from the
calibration data that include irregularly shaped tree stems with nonstandard Hpom
(Cushman et al., 2014; Muller-Landau et al., 2014; Nolke et al., 2015). While the error
due to the AGB model choice is the largest source of error in AGB density estimates

magnitude of the ‘allometric’ error coming from nonstandard Hpom.

The nonstandard Hpom of a large proportion of emergent trees in the upper crown
layer leads to a systematic error in AGB stock estimates (Cushman et al., 2014).
Indeed, in tropical forests, the largest proportion of irregularly shaped tree stems is
usually encountered in these emergent trees (Nolke et al., 2015; Zhiyuan et al., 2013).
While these emergent trees account for a large fraction of tropical forest biomass
(Bastin et al., 2015; Lutz et al., 2012; Slik et al., 2013), the impact of nonstandard
Hpowm on plot biomass estimates requires further investigations (Cushman et al., 2014;
Muller-Landau et al., 2014).

The main bottom approach for investigating forest carbon fluxes is repeated
censuses of trees in plots. Current measurement procedures for irregularly shaped tree
stems as buttressed trees introduce systematic error in plot-level estimates of biomass
change. The Hpom of buttressed trees is often moved upwards as buttresses grow.
Because of the tree stems taper (diameter decreases with height), biomass growth in
buttressed individuals tends to be underestimated. Methods have been introduced to
correct biomass growth estimates in individual trees for measurement height increases
(Talbot et al., 2014); however, these methods change the distribution of Hpom over
time, introducing biases in plot-level estimates of biomass change. The magnitude of
this error is nevertheless difficult to apprehend since biomass production is not driven
by large trees (Ligot et al., 2018). Therefore, it remains unclear how the abundance of
trees with irregular stem bases could affect estimates of stand biomass productivity
and carbon capture.

13
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The general objective of the thesis is to improve the monitoring of large tropical
trees with stem irregularities by exploring advanced 3D measuring tools.

The specific objectives are 1) to identify effective nondestructive measurement tools
for measuring irregularly shaped stems at the tree level and the plot level, ii) to
propose an effective method to better take into account the singularities generated by
the irregularities of some stems in the monitoring of tropical forest biomass and
finally, iii) to assess the impact of a better consideration of the irregularly shaped
stems in the aboveground biomass stock and stock changes at the plot level.

1.4.2. Structure of the thesis

The conceptual framework of this thesis follows the conventional workflow to
estimate the aboveground growing stock volume or biomass of a forest with a special

focus, at each step of the workflow, on the issue of nonstandard points of measurement
(Figure 1.9).

Biomass model
Tree-level Field measurements == Biomass stocks

Sum over trees

\ 4
Biomass model/Conversion factors
Plot-level Field measurements = Biomass stocks

Sampling or model based approach
With or without remote sensing data

Superior-level
(stand, landscape, country, Biomass stocks Biomass changes
regional or global)

Figure 1.9: Conceptual framework of the thesis. Biomass changes are derived from
biomass stocks estimated at two different years (t,= n years after the year to).

In Chapter 2, we studied the original close-range terrestrial photogrammetric
approach (CRTP or also called structure-from-motion: SfM) to measure the basis of
the irregularly shaped stem of some tropical trees and assessed its impact in terms of
aboveground biomass estimates. Specifically, we developed the entire workflow to
extract cross-sections along the stems from the resulting 3D data of the CRTP
approach. We also disentangled the effects of Hpom in the development (fitting) of
AGB models and its impact on tree AGB estimates.
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Chapter 1: General introduction

This study was published in Methods in Ecology and Evolution, in an article entitled
‘Terrestrial photogrammetry: a non-destructive method for modelling irregularly
shaped tropical tree trunks’ (Bauwens et al., 2017).

In Chapter 3, we explored plot-level 3D measurement methods to have exhaustive
3D measurements of the trees within a focal area. The 3D methods studied are
terrestrial laser scanning (TLS) approaches and hand-held mobile laser scanning tool
(HMLYS) in forests close to our research lab in Belgium. This study was published in
Forests, in an article entitled ‘Forest Inventory with Terrestrial LiDAR: A
Comparison of Static and a Hand-Held Mobile Laser Scanning’ (Bauwens et al.,
2016). The forerunner results of this study were the first stage before going further in
the use of these technologies to measure in 3D all the stems in tropical forest plots.

In Chapter 4, we used the 3D measurement tools identified in Chapter 2 (CRTP)
and in Chapter 3 (TLS) to collect 3D data on 228 trees across 3 sites located
respectively in southeastern Cameroon (n=40), in northern Congo Republic (n=102)
and northern Democratic Republic of Congo (n=86). We analyzed the taper of these
trees with irregularities in the stem to harmonize the Hpowm at the standard height of
1.3 m. As in Chapter 2, we disentangled the effects of Hpom in the development
(fitting) of AGB models and its impact on tree AGB estimates. We finally analyzed
the effect of this harmonization for AGB stocks and stock change estimates at the plot
level. This study was published in Ecological Applications, in an article entitled: ‘A
3D approach to model the taper of irregular tree stems: making plots biomass
estimates comparable in tropical forests’ (Bauwens et al., 2021).

In Chapter 5, the main results and achievements of the thesis are summarized and
discussed. We discuss the perspective of the 3D measurement tools.
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3D stem modelling for improved tropical forest biomass & biomass changes estimates

2.1. Preamble

Biomass model
Tree-level Field measurements == Biomass stocks

In this chapter, we aimed to develop a new method based on terrestrial close-range
photogrammetry for measuring and modeling irregular stems. This approach is cheap
and easy to implement in the field as it only requires a camera and a graduated rod.
We validated the approach with destructive cross-section measurements along the
stem of three buttressed trees. To demonstrate the broader utility of this method, we
extended the validated approach to 43 additional trees belonging to two species: Celtis
mildbraedii (Ulmaceae) and Entandrophragma cylindricum (Meliaceae). Based on
the 3D models, we computed shape indices for each tree, and we analyzed the stem
morphology of the two species. Finally, we analyzed some standardized predictors for
the estimation of above-ground biomass.

This chapter is written in the following scientific peer-reviewed paper: Bauwens, S.,
Fayolle, A., Gourlet-Fleury, S., Ndjele, L. M., Mengal, C., & Lejeune, P. (2017).
Terrestrial photogrammetry: a non-destructive method for modelling irregularly
shaped tropical tree trunks. Methods in Ecology and Evolution, 8(4), 460-471.
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2.2. The scientific peer-reviewed paper

Methods in Ecology and Evolution 2017, 8, 460471 doi: 10.1111/2041-210X.12670

Terrestrial photogrammetry: a non-destructive method
for modelling irregularly shaped tropical tree trunks

Sébastien Bauwens'*, Adeline Fayolle', Sylvie Gourlet-Fleury?, Leopold Mianda Ndjele®,
Coralie Mengal* and Philippe Lejeune?

"TERRA Research Centre, Central African Forests, Gembloux Ago-Bio Tech Université de Liege, Passage des deportes 2,
5030 Gemblousx, Belgium; 2UPR Bsef, CIRAD, F-34398 Montpellier, France; *Département d’Ecologie et de Gestion des
ressources végétales, University of Kisangani, BP2012 Kisangani, Democratic Republic of Congo; and *BIOSE Research
Unit, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportes 2, 5030 Gembloux, Belgium

Summary

1. Irregularly shaped trees including trees with buttresses, flutes or stilt roots are frequent in tropical forests. The
lack of an international standard to measure the diameter of such trees leads to high uncertainties in biomass esti-
mation, tree growth and carbon budget monitoring.

2. In this study, we developed a new method based on terrestrial close-range photogrammetry for measuring
and modelling irregular stems. This approach is cheap and easy to implement in the field as it only requires a cam-
era and a graduated rod. We validated the approach with destructive cross-section measurements along the stem
of three buttressed trees. To demonstrate the broader utility of this method, we extended the validated approach
to 43 additional trees belonging to two species: Celtis mildbraedii (Ulmaceae) and Entandophragma cylindricum
(Meliaceae). Based on the three dimensional models, we computed shape indices for each tree, and we analysed
the stem morphology of the two species. Finally, we analysed some standardized predictors for the estimation of
above-ground biomass.

3. We found a high concordance between diameters derived from the photogrammetric process and destructive
diameter measurements along the stem for the three calibration trees. We found that C. mildbraedii develop
much stronger irregularities than E. cylindricum. We also identified a large intraspecific variation in trunk mor-
phology for E. cylindricum. The basal area at 1-3 m height (D,ea130) S€ems to be a more robust predictor for bio-
mass estimates (lowest Akaike information criterion and relative squared error) than diameter measured above
buttresses (DAB) or diameter al breast height estimated from available taper model. Finally, Dyea130 might be
estimated with a good precision [root mean square error (RMSE) < 5%] with linear model based on the field
measurements DAB and the perimeter of the convex hull of the buttresses at -3 m height (Deonyhuni30)-

4. In this study, we showed the high potential of the photogrammetry for measuring and modelling irregular
stems. Photogrammetry could then be used as a non-destructive measurement tool to produce correction factors
for standardizing the diameter of irregular stems at a reference height which is a key issue in tree growth monitor-
ing and biomass change estimation.

Key-words: above-ground biomass, buttress, diameter above the buttresses, permanent sample
plot, point of measurement, shape index, structure from motion, taper model, three dimensional
modelling, tropical forest

Introduction

Tropical forests are species-rich and structurally complex
ecosystems. Understanding the functioning of these ecosys-
tems and their role in the global carbon cycle requires detailed
and repeated tree measurements (Pan et al. 2011; Banin et al.
2014; Coomes, Burslem & Simonson 2014).

The most important and easiest variable to measure in the
field is trunk diameter at the base of the tree. At the tree level,
diameter is strongly related to the other descriptors of tree size

*Correspondence author. E-mail: bauwens.sebastien(@ gmail.com

such as total height (Feldpausch et al. 2011; Banin e al. 2012)
and crown dimensions (Antin ez «/. 2013). Diameter is thus a
key predictor to estimate stem and tree volume (Belyea 1931;
Nogueira, Nelson & Fearnside 2006; Fayolle ez al. 2013b) and
biomass (Chave et al. 2005, 2014). At the tree level, diameter is
a proxy of tree size, which is an important life-history trait that
determines the probability of regular fruiting (Plumptre 1995).
At the stand level, the distribution of diameters is used to
describe stand structure (Rondeux 1993) and recovery after
disturbance. Successive diameter measurements of trees in per-
manent sample plots enable the quantification of tree growth
(Swaine, Lieberman & Putz 1987; Clark & Clark 1999), wood
production (Banin et al. 2014) and forest-level carbon budgets

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society
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(Clark 2002; Pan et al. 2011; Coomes, Burslem & Simonson
2014).

MEASURING TREEDIAMETER

In permanent forest plots, tree diameter is repeatedly measured
at the same reference height (defining the ‘point of measure-
ment’, POM). The international standard for POM is ‘at breast
height’, and the corresponding diameter is called the diameter
at breast height (DBH, Belyea 1931). This breast height is gen-
erally defined as 1-3 m above ground level (Bruce & Schu-
macher 1950; Alder & Synnott 1992), but there are still local
variations (e.g. 4-5 ft in the USA and 1-5 min Belgium). In for-
est inventories, special recommendations have been made for
trees on slopes, leaning trees, forked trees and trees with local
deformation at breast height (Forbes & Meyer 1955; Cailliez
1980; Alder & Synnott 1992; Rondeux 1993; Condit 1998;
Picard & Gourlet-Fleury 2008). However, there is no standard-
ized protocol for irregularly shaped stems such as fluted or but-
tressed trees and trees with stilt roots, even though they are
abundant in tropical forests.

DEALING WITH TREE IRREGULARITIES

Handbooks and technical papers recommend moving the
POM above the buttresses or the stilts to reach a regular part
of the stem. In the case of buttressed trees, Alder & Synnott
(1992) recommended using a height of at least 1 m above but-
tresses so that the POM can remain the same for a decade or
more and does not require continual upward adjustment. In
some permanent sample plots, diameter measurements have
been moved up 30 cm above the buttresses (Cailliez 1980), as
in Marcd Island, Brazil (Thompson et al. 1992), or 50 cm
above the buttresses, as in Barro Colorado Island, Panama
(Condit 1998), and in the Amazonian plots of the RAINFOR
network (Phillips e7 al. 2015). Alternatively, focusing on tropi-
cal African forests where trees are known to achieve larger
diameters (Slik ez al. 2013) and show huge deformations at
breast height ( Letouzey 1982; Chapman, Kaufman & Chap-
man 1998), Picard & Gourlet-Fleury (2008) recommended fix-
ing the POM at a standardized height of 4.5 m for all trees
belonging to species that develop buttresses. This recommen-
dation was adopted in Mbaiki, Central African Republic
(Gourlet-Fleury et al. 2013), and in the Central African plots
of the DynAfFor network (www.dynaffor.org). In the case of
fluted trees, two contrasting options have been recommended:
either selection of the POM arbitrarily above the deformation
(Alder & Synnott 1992; Condit 1998) or measuring the perime-
ter of the convex hull of the stem at the standard 1-3 m height
(Phillips ez al. 2015).

THENEED FORASTANDARDIZED METHOD

The lack of a worldwide standard for measuring the reference
diameter for all morphological stem types may lead to substan-
tial misinterpretations, errors, and biases when estimating the
basal area (Clark 2002), above-ground biomass (Dean,

Modelling irregular trees with photogrammetry 461

Roxburgh & Mackey 2003; Muller-Landau er a/. 2014), tree
growth (Metcalf, Clark & Clark 2009) and the carbon budget
of tropical forests (Clark 2002; Cushman et al. 2014; Muller-
Landau er al. 2014). Buttressed stems represent up to 80% of
trees with a diameter of at least 100 cm in 20 ha in the south-
west of China (He ez al. 2012) and more than 70% of the emer-
gent trees studied in Bangladesh (Mehedi, Kundu & Chowd-
hury 2012). Irregularly shaped trees account for a large
proportion of uncertainty in the carbon budget of tropical for-
ests mainly because large trees contribute significantly to car-
bon stock (Slik et al. 2013; Bastin ez al. 2015).

MEASURING THE IRREGULAR PART OF THE TREE

To accurately measure the basal area and the volume of irregu-
lar stems, a variety of methods, including destructive and non-
destructive approaches, have been proposed. Destructive
methods have been used to develop allometric equations. The
irregular parts of stems are logged, and the cross-sections are
measured based on georeferenced photographs and digitaliza-
tion of the outline of the sections (Dean & Roxburgh 2006;
Fayolle et al. 2013a) or drawings on large sheets of paper
(Nogueira, Nelson & Fearnside 2006).

Non-destructive approaches include the wire method, the
convex—concave method and the terrestrial laser scanning
(TLS) method. The wire method uses two wires pressed against
the irregular stem to shape the cross-section. The shaped wires
are then put on a wooden board with a grid, and the area of
the cross-section is estimated by counting the squares enclosed
within the wire (Ngomanda et al. 2012). Nevertheless, the flexi-
bility of the wire and the square counting may lead to measure-
ment errors. The convex—concave method requires various
measurements of all convex (spurs) and concave parts (flutes)
of the stem to finally model the trunk as an arrangement of a
cylindrical element and buttress elements (Dean & Roxburgh
2006; Henry et al. 2010). The simplification of the stem mor-
phology may not always be in accordance with the real volume
of this irregular part (NGlke et al. 2015). The TLS method
requires scanning of the tree from different points of view. The
resulting three dimensional point cloud is then processed to
extract cross-sectional areas (NoOlke er al. 2015). The TLS
method is promising but expensive, and occlusion may hide
some parts of the irregularities. Instead of measuring the basal
area at 1.3 m height for the irregular trunks, Cushman et al.
(2014) proposed an alternative method based on the taper of
the trees. This taper curve method requires diameter measure-
ments of the regular part of the stem (i.e. above the buttresses)
to calibrate a taper model and project that taper downward up
to 1.3 m height (Cushman ez al. 2014). This last method
assumes that the equivalent regular diameter at 1-3 m height is
highly related to above-ground biomass but this hypothesis
has not been validated.

AIMS AND QUESTIONS

In this study, our main objective was to develop a non-destruc-
tive method for the three dimensional modelling of tree trunks
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suitable for large and irregularly shaped tropical tree trunks.
The approach is based on an automated close-range pho-
togrammetric process and was validated on three destructively
sampled trees. To demonstrate the broader utility of this
method, we extended the validated photogrammetric work-
flow to 43 additional trees belonging to two species. Thanks to
this approach, we achieved three specific objectives which are:
(1) to identify the stem morphology variation within a species;
(ii) to analyse the ontogenetic variation in stem morphology
for the two species; and finally (iii) to identify suitable stan-
dardized predictor for biomass estimates of buttressed trees.
To reach the last objective, we used biomass data from Fayolle
et al. (2013a, b). Based on the promising results of the pho-
togrammetric method, we developed practical recommenda-
tions at the end of the manuscript.

Materials and methods
THE CLOSE-RANGEPHOTOGRAMMETRIC APPROACH

Field measurements

The photogrammetric process was developed on three buttressed
trees: one Cynometra hankei (Fabaceae, Nganga) and two Celtis
mildbraedii (Ulmaceae, Ohia) located at the edge of the Yangambi
Reserve, in northern Democratic Republic of Congo (see Kearsley
et al. 2013 for site description). The approach was then extended to
43 additional trees over a large diameter range to demonstrate the
broader utility of this method for tree and forest monitoring. The 43
additional trees include 19 C. mildbraedii (Ulmaceae, Ohia) with a
diameter between 42 and 98 cm, and 24 Entandophragma cylindricum
(Meliaceae, Sapelli) with a diameter between 73 and 251 cm
(Table 1). All the trees were sampled in the Loundoungou perma-
nent sample plot situated in northern Republic of Congo and part of
the DynAfFor network (see Appendix S1, Supporting Information,
for the site description). These two species are both common in moist
Central African forests (Fayolle et al. 2014). The only criterion used
for the selection of the trees was the DBH class, such that trees with
lianas were also retained (Fig. S 2.1).

Before photographing the trees, we cleared small vegetation (stem
with DBH < 3 cm and leaves) and small lianas up to 2 m highin a
radius <2-5 m around the focal trees (Fig. S 2.2). For the three calibra-
tion trees, we used a digital SLR camera Nikon D90 with an 18- to
105-mm lens. We successively fixed the zoom lens with a tape at three
different focal lengths (25 mm, 35 mm and 50 mm). We manually
adjusted the aperture at F = 4-5-9, depending on the focal length, while
the other camera settings were kept automatic (focus, ISO and shutter
speed). At each focal length, we took a set of photographs all around
the tree following a similar image acquisition method as the ‘one panor-
ama each step” approach of Wenzel er al. (2013). At each footstep
around the tree, we took a set of photographs with high overlap (verti-
cal panorama) and cross-convergent images (Fig. SI12.3). The distance
from the tree varied between 1 and 3 m. We used two different viewing
heights for image acquisition: the head height (1.7 m) and 4 m using a
stick. Before taking the photographs, we placed a vertical graduated
rod beside the tree to later scale the three dimensional point cloud pro-
duced by the photogrammetric process. The same protocol was applied
in the field for the 43 additional trees, but a prime lens of 16 mm was
used instead of the 18- to 105-mm zoom lens, and panels of coded

targets were used instead of the graduvated rod (Fig. S 2.2). The coded
targets were used to automate the whole photogrammetric process
(more information below).

Motion stereo process

‘We used the motion stereo process to build the three dimensional struc-
ture of the stem. This phase encompasses three steps: the structure-
from-motion (SfM) reconstruction process (step 2, Fig. 1), the scaling
step (step 3, Fig. 1) and the dense multiview stereo (MVS) matching
(step 4, Fig. 1).

In SfM reconstruction, interior (internal geometry of the camera such
as the lens distortion model) and exterior (spatial location and direction
of images) orientation parameters were computed using a feature-detec-
tion-and-description algorithm and Bundle Block Adjustment proce-
dure (Barazzetti, Scaioni & Remondino 2010; Szeliski 2010). The end
product is a sparse point cloud of the stem with the location of the cam-
eras (Fig. 1, step 2). The sparse point cloud was then scaled using con-
trol points, which were manually placed on the graduated rod in all the
images where the rod was visible. For the 43 additional trees, the scaling
is based on the reference panel with coded targets which are automati-
cally detected (Fig. S 2.2). Finally, dense MVS matching was performed
to produce a three dimensional dense point cloud.

We used pHOTOSCAN Professional v1.0.4 (Agisoft LLC, St. Peters-
burg, Russia) for the photogrammetric workflow, in a computer with
an Intel Corei7-3930K (6 x 2 cores @3-2 Ghz- turbo @3-8 GHz) with
an AMD Radeon HD5450 graphics card and 32Go RAM (quad chan-
nels PC3-10700 @666 MHz CAS 9-9-9-24).

Post-processing of the three dimensional dense point cloud
ofthe stem

The post-processing phase aims to compute the cross-section of the
stem at various heights. Post-processing is divided into two steps: the
creation of the stem skeleton (step 5, Fig. 1) and the delineation of the
cross-sections (step 6, Fig. 1). The method for the post-processing
phase differed between the three calibration trees and the 43 additional
trees. A manual procedure was used for the calibration trees to ensure
the results were independent of the post-processing procedure, whereas
the dense point cloud of the 43 additional trees was post-processed with
3p RESHAPER V10.1.1 scripts. In both case, the methodological steps
were the same and are presented below.

To create the stem skeleton, we first defined the stem axis by connect-
ing the centres of 2-cm-thick slices distributed every 20 cm along the
z-axis. The contours of the slices were manually digitized using a Gis
software for the three calibration trees and automatically delineated for
the 43 additional trees (intersection between horizontal planes and a
mesh adjusted on the photogrammetric point cloud). The centre of
each slice was computed as the farthest location from the edges within
the polygon (Fig. S 2.4). This is specifically suited for irregular cross-
sections in comparison with other methods (geometrical centre or
barycentre) that may define a centre located outside the cross-section.

Based on the skeleton, cross-sections perpendicular to the stem axis
were then delineated. For the calibration trees, we digitized another set
of 2-cm-thick slices regularly distributed along the stem. For the 43
additional trees, the intersection between the mesh of the trunk and
planes perpendicular to the trunk axis was calculated. Finally, we com-
puted the area and perimeter of each cross-section, as well as the
perimeter of the convex hull, mimicking tape measurements around the
buttresses.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 460471
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Table 1. Characteristics of the three validation trees and the 34 of the 43 additional trees

DAB Hpas Trunk height Giso Darearno Dconvrutiizo

No. Tree no. Species (cm) (m) (m) (m?) (cm) (cm) Degai3o Dey

Tree C1 OHIA 86 46 A 075 977 1582 074 013

Tree C2 OHIA 52 4 27 039 709 963 0-56 033

Tree C3 NGANGA 7 34 17 0-54 83 1221 059 019
1 Tree 1 SAPELLI 1009 5 30 1.09 118-0 0.95 017 020
2 Tree2 OHIA 763 51 292 0-61 883 078 077 029
3 Tree 3 SAPELLI 124-1 9.7 43 213 164-8 126 0-67 /
4 Tree 4 OHIA 789 51 29 071 952 0-78 079 029
S Tree S SAPELLI 136-1 77 32 220 1673 1.36 0-62 025
6 Tree 6 OHIA 823 55 30 0.76 984 0-86 077 041
7 Tree 7 OHIA 57-1 2.9 18 0-31 628 0-68 032 025
8 Tree 8 SAPELLI 1352 65 45 2:42 1756 1.28 0-57 0-37
9 Tree 9 SAPELLI 174-9 4 33 3-68 2164 1.58 027 028
10 Tree 10 SAPELLI 134.9 4-5 25 2:05 1617 1-33 037 027
11 Tree 11 SAPELLI 689 2.05 245 0-42 733 0-59 0-05 027
12 Tree 12 SAPELLI 179-9 45 34 367 216:1 1.69 0-62 025
13 Tree 13 SAPELLI / 52 48 288 1916 1-69 0-49 /
14 Tree 14 SAPELLI / 7.7 274 338 207-6 213 033 /
15 Tree 15 OHIA / 38 295 0-66 91-6 0-83 073 /
16 Tree 16 OHIA 54.0 18 199 025 56-4 033 0-10 0-26
17 Tree 17 SAPELLI 113-6 58 27 1.51 138-6 1.17 0-52 0-24
18 Tree 18 SAPELLI 1272 46 264 1.72 148-1 1-33 045 024
19 Tree 19 SAPELLI 1043 37 4 116 1213 1.01 0.08 0-24
20 Tree 20 SAPELLI 1289 45 24 1.85 1534 1.20 032 026
21 Tree 21 SAPELLI 1224 78 21 215 165-6 1.23 072 031
22 Tree 22 OHIA 542 33 29-6 031 628 0-56 0-34 0-36
23 Tree 23 OHIA 39-8 2.15 24 0-14 41-8 0-14 0-18
24 Tree 24 SAPELLI 202-4 7.7 347 4.94 250-8 209 0-56 022
25 Tree 25 OHIA 74-1 35 26-5 0-54 82.7 0-62 073 0-34
26 Tree 26 OHIA 782 4.5 30 0-74 968 0-74 0-74 0-38
27 Tree 28 SAPELLI 126-1 4.5 284 1.67 1459 1.27 029 020
28 Tree 29 SAPELLI 104-0 199 28 0-92 108-5 093 0-03 015
29 Tree 30 SAPELLI 133-1 45 37 1.93 156-9 1.30 023 0-28
30 Tree 31 OHIA 786 38 28 041 727 079 0-69 0-08
31 Tree 32 OHIA 762 43 30 0-67 924 0-80 0-62 029
32 Tree 33 OHIA 63-5 46 21 0-40 71-6 0-61 0-49 023
33 Tree 34 OHIA 43.7 16 20 015 443 0-40 0-05 015
34 Tree 35 SAPELLI 114-.8 58 318 1.59 142-1 1.16 0-44 021

DAB, diameter above buttresses; Hpagp, height where the DAB was measured, that is 50 cm above buttresses; Trunk height, height of the stem up to
the first branch; Gy, basal area at 1.3 m height; Dyyea130, diameter at breast height estimated as the diameter of a circular disc with the same area as
G'130; Dconvinutinzo, diameter of a circular disc with the same perimeter as the perimeter measured around buttresses; Depa 130, Basal Area Deficit of
the cross-section at 1-3 m high; Dey, volume deficit. OHIA, Celtis mildbraedii (Ulmaceae); NGANGA, Cynometra hankei (Fabaceae); SAPELLI,
Entandophragma cylindricum (Meliaceae).

Variables measured in the field are italicized while the other variables were computed from the photogrammetric process. Trees in bold are the trees
used to validate the method (destructive measurements). The slash, “/”, means “no value“. The absence of valueis due to the limitation of the photo-

"

grammetric method for these trees. Trees in bold are the trees used to validate the method (destructive measurements). The slash, "/", means "no
value". The absence of value is due to the limitation of the photogrammetric method for these trees.

DESTRUCTIVEFIELD MEASUREMENTS

Before taking photographs on the three calibration trees, we marked
the position of some of the future destructive measurements on the
standing stem to further facilitate the validation. These trees were
then felled, and the stems were cut into successive 2 m-long logs.
The cross-section of each log, including the marked ones, was then
estimated with photographs (Dean, Roxburgh & Mackey 2003;
Nogueira, Nelson & Fearnside 2006; Fayolle et al. 2013a). To scale
and rectify those photographs, a 40 cm x 40 cm Plexiglas grid with
5 cm x 5 cm graduations was placed on the cross-section and pho-
tographs taken (Fig. S2.4). The first 2 m of the stem were discarded
because, for safety reasons, the buttresses were cut prior to felling.

We rectified the photographs of the destructive cross-sections by
applying a projective transformation using Gis software prior to man-
ual digitization (see Appendix S2 for method description and quality
assessment of this method). The destructive measurements on the
marks were used for the validation of the photogrammetric process.
Cross-sectional areas calculated from the three dimensional models
were thus compared to destructive measurements at the exact same

height.

DATAANALYSIS

To estimate the accuracy of measurements extracted from the three
dimensional models (photogrammetric measurements hereafter), the
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1) Image acquisition

l

2) Structure-from-Motion (SfM)
reconstruction process

l

3) Scaling the 3D spare pointcloud

[

4) Dense multiview stereo matching
(MVS)
|
¥

5) Stem skeleton creation

[

6) Cross-sections production and
measurement

Photogrammetry
process

Post-
processing

7) Stem morphology analysis

Fig. 1. Workflow of the non-destructive method for the three dimensional tree modelling suitable for large and irregularly shaped tropical trees. The
main steps are (1) acquisition of photographs all around the tree, (2) location of the photographs in the three dimensional space based on the struc-
ture-from-motion process (the blue squares in sub-Figure 2 corresponds to the photographs), (3) scaling the project with reference points and (4) gen-
erating a dense three dimensional point cloud of the stem. In the post-processing phase, the tree skeleton is computed (step 5) by slicing the point
cloud along the z-axis and estimating the centre of each cross-section. Then, measurements of cross-sections are carried out perpendicular to the
skeleton (step 6). Finally, in step 7, based on the cross-sectional measurements, the stem morphology is analysed by computing shape indices and fit-
ting taper curves. [Colour figure can be viewed at wileyonlinelibrary.com]

bias and the root means square error were first computed for the three available (Pulkkinen 2012). The Basal Area Deficit index (Dega,

validation trees. previously used for buttressed tropical trees in Dean 2003; Ngo-
manda er al. 2012; and Nolke er al. 2015) is defined as one
minus the ratio of the basal area of the cross-section over the

Description of the stem shape area of a circular disc with the same perimeter as the cross-sec-
tion (eqn 1):

BAporin ~ BAuey | (Dz.m )2
BA perim '

For the stem morphology analysis of the 43 additional trees, we con-
verted our photogrammetric measurements into diameters, since diam- Depa = 5 eqn 1
eter is more frequently used than basal area to quantify tree size in perim

forest sciences. The area and the perimeter of the cross-sections were . . . .
with BApeiim the area of a disc with the same perimeter as the

perimeter of the cross-section (in m?), BA,, the area of the cross-
section (in m?), and D,e and Dy, as defined above (in ¢cm). As a
result, Dega is equal to zero for a circular disc and tends to one as

converted into diameter by computing the diameter of a disc with the
same area (Dy,e,) and the same perimeter (Dperim), respectively. The
diameter of a disc with the same perimeter as the convex hull was also

computed (Dconyran)- . .
P (Dconyiiun) the cross-section becomes more irregular (Ngomanda er al. 2012).

According to Nolke ez al. (2015), a cross-section with a Degs <0-05
Shape indices. To better quantify the buttressed part of the 43 can be considered circular.
additional trees and to analyse ontogenetic variations, we focused The Volume Deficit (Dey) is defined as the proportion of the volume
on two common shape indices among the large number of indices of the buttressed part of the stem that is not considered when this part
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is assumed to be a cylinder with a diameter equal to the diameter above
the buttresses (DAB):

Vo (n/4) DAB?Hpap
- - k

Dey Vo Vs

eqn 2
with 73, the volume of the buttressed part of the stem (in m?), V.y; the
volume of a cylinder with diameter equal to DAB (in m?®), that is the
diameter at 50 cm above the buttresses (in m), and Hpag the measure-
ment height of DAB (in m). As a result, Dey is equal to zero for a cylin-
drical stem and Dey tends to one as the taper of the buttressed part
increases. We used the same DAB definition as Nolke ef al. (2015) to
ease comparison with their form index f, = Vy/Vey.

Based on the photogrammetric data, we finally studied an objective
method to determine the height of the highest buttress and the height of
DARB by defining a threshold based on the difference between Dy, and
Dconvinul-

Biomass predictors

To identify the most robust standardized predictor for biomass esti-
mates of buttressed trees, we studied the quality of the allometric
relationship between the total above-ground biomass and the fol-
lowing individual predictors: diameter at the standard height of
13 m based on the basal area measurement (D,rea130) and based on
the perimeter of the convex hull around the buttresses (Dconyermizo)
and the equivalent regular DBH deduced from taper model
(DBH,y).

We used Metcalf, Clark & Clark (2009)’s taper model to estimate the
equivalent regular DBH (DBH,,) as this model showed the best results
compared to four other taper models on 190 buttressed stems at Barro
Colorado Island, Panama (Cushman ez al. 2014). The model is:

D;, = DBH - e—bn(hrlﬁ)’ eqn 3

with D; the diameter (in cm) at height #;, (in m), DBH,q the equivalent
regular diameter at 1-3 m (in cm), and b, is a parameter. We fitted the
taper model with diameters measured above buttresses to deduce the
DBH,,. Two equivalent regular diameters at 1-3 m were deduced:
DBH,gan and DBHeggup. DBHegan is estimated by including all the
diameters measured above the buttresses, whereas DBHqg, is esti-
mated with a subset of the diameters between Hpag and 10 m high as
in the field protocol of Cushman ez al. (2014).

As no destructive measurements of biomass were done in the
Loundoungou permanent sample plot, the biomass data used to anal-
yse the predictors are a subset (n = 15) of Fayolle e al. (2013a, b) data
from south-east of Cameroon. We only selected the E. cylindricum
trees as this is the only species for which photogrammetric data were
available. We fitted the following allometric model to the biomass data:

Ln(AGB) = aLn(D) + bLn(D?), eqn 4

where AGB is the tree above-ground biomass (in Mg), D is one of the
size predictors mentioned in the previous section (in cm), and ¢ and b
are the model parameters. In order to correct for the systematic bias
induced by the log-transformation, when back-transforming the data,
we applied a first-order correction factor (CF), which was calculated as
follows (Baskerville 1972; Sprugel 1983).
CF = e(RSEZ/Z)A eqn S

Afterwards, we compared the biomass prediction of our species-
specific models with the multispecies models of Fayolle ez al. (2013a, b)
and Chaveet al. (2005, 2014).

Modelling irregular trees with photogrammetry 465

Finally, we studied the relationship between D130 and alternative
field measurements: DAB, Hpag and Deonvianiso in order to estimate
Darear3o indirectly. We fitted all possible combinations of the linear
model based on these three predictors and their interactions. We also
fitted power models (i.e. linear models on log-transformed data) with
the most relevant combination of the predictors, but these last fits did
not maintain normality in the residuals. The selection of the models
was performed with the leaps routine in the r software, and the final
model fitting was achieved with the package nlme. We applied a flexible
weight of the variance on the models in order to avoid heteroscedastic-
ity, and we added species effect on the residuals. The relative Root
mean square error (RMSE) was computed as the RMSE divided by the
mean diameter of the data set.

Results

THEPHOTOGRAMMETRIC PROCESS

We took an average of 188 photographs and spent ¢. 20 min
for each calibration tree and per focal length. During the StM
step (Fig. 1, step 2), we were able to orientate and locate the
photographs taken with the focal length of 25 mm, but the
reconstruction process failed for the set of photographs taken
with focal lengths 35 and 50 mm. The time needed for process-
ing was around 3 h and 30 min for each tree, with 2 h spent
for SfM, 20 min spent for pointing markers and other manual
interventions, and 1 h spent for MVS matching. The 20 min of
manual intervention was not necessary for the 43 additional
trees as they were photographed with coded targets. The result-
ing three dimensional point cloud was composed, for each tree,
of ~525 000 points at the ‘medium’-quality parameter setting
in the dense matching step. From the 43 trees photographed
for the morphological analysis 79% were successfully oriented
in the SfM step (i.e. 34 trees). The success rate might be
improved by restarting the SfM process on the first poor
results, but we wanted to limit manual intervention during the
photogrammetric process. The main factor that could explain
this first unsuccessful SfM process for some trees is the low dis-
tance between the operator and the tree during the images
acquisition (distance <1-5 m to avoid clearing small to medium
vegetation). The overlap between the images is then insufficient
to match them.

No significant bias in diameter estimation was noticed when
comparing cross-section measurements manually delineated
from the three dimensional point cloud and destructive refer-
ence measurements at the exact same height (rectified pho-
tograph of the marked cross-section; bias = 0-66 cm,
P =0-073,d.f. = 6). A slight bias is noticed between measure-
ments deduced from mesh and the destructives references
(bias = 0-86 cm, P = 0-02, d.f. = 6). Neverthcless, the refer-
ence measurements based on the rectified photograph have
also a limited precision and accuracy that might influence the
bias reported (Appendix S2).

STEMMORPHOLOGY VARIATION

To better quantify the buttressed part of the 34 remaining trees
and to analyse ontogenetic variations, we used two shape
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Fig. 2. Variation of the shape index DeBA (Basal Area Deficit) along the stem for 14 C. mildbraedii) and 20 E. cylindricum. The coloured lines cor-
respond to trees with contrasted diameters, and the black dots, as well as the intersection between the solid and dashed lines, indicate the position of
the diameter above buttresses (DAB). Cross-sections with a Depa below the 0-05 reference value are considered circular. [Colour figure can be viewed

at wileyonlinelibrary.com]

indices. The first shape index (the Basal Area Deficit: Dega)
strongly decreased along the stem in the first metres (i.c. the
buttressed part of the stem) in both species, but tended to stabi-
lize at 4-5 m height for C. mildbraedii and not before 8§ m for
E. cylindricum (Fig. 2). The trunk appeared to be much more
regular above 4-5 m for most C. mildbraedii trees though not
circular (Dega > 005, the reference value for circular cross-
section).

There was extensive intraspecific variation in the develop-
ment of irregularities along the stem. The intraspecific varia-
tion tended to be greater for E. eylindricum since some trees
could be considered circular (Degy < 0-05) from 1 m height
(trees 11 and 28, in red and green, respectively, in Fig. 2) while
others were greatly irregular up to 8 m height. This variation
was not fully attributable to tree size since the largest trees were
not necessarily the most irregular ones along the stem. For
instance, the large E. cylindricum tree 9 (in black, with a diame-
ter of 219 cm) was circular from 2-5 m height whereas some
smaller trees have strong irregularities up to 8 m.

The average Degp at the DAB height is 0-08, showing that
determining height of the DAB in the field is in accordance
with the height where the stems turn out to be more regular.
The choice of 3% threshold for the relative difference between

Dconyrun and Dy, seems (o be a good reference value to
objectively define the height of the highest buttress and
increased to 5% if the tree did not reach this threshold within
the 10 first metres of the stem (Table S 3.1). Finally, within the
34 trees with three dimensional data, four trees were left with-
out information on the DAB height due to obstruction by sur-
rounding vegetation.

When comparing tree size at 1-3 m (D,ea130) to stem irregu-
larities at 1-3 m (Degajso), we found that irregularities
increased with the diameter of the trees (Fig. 3). Celtis mild-
braedii trees tended to develop much stronger irregularities
than E. cylindricum trees for the same diameter at 1-3 m. The
development rate of irregularities (slope of the relationship
between Depa 130 and Dypeq130) Was almost six times larger for
C. mildbraedii than for E. cylindricum, showing the ontoge-
netic difference between these two irregularly shaped tree spe-
cies. The relationship between tree size and tree irregularities at
1-:3 m was weaker for E. cylindricum (R2 =0-34) than for
C. mildbraedii (R* = 0-88). This might be due to the great
intraspecific variation in tree irregularities within this species as
already identified along the stem (Fig. 2).

The second shape index, the Volume Deficit Index (Dey),
varied between 0-08 and 0-41 among the 31 additional trees for
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which the above buttress height (Hpap) was attained by the
three dimensional model (Table 1). We did not find any signifi-
cant difference in mean Dey between the two species
(P = 0-43.t = —0-80). The mean Dey value across all trees was
0-26 (£27%), which means that on average 26% of the volume
of the buttresses is not considered when the volume is esti-
mated as a cylinder with the diameter above buttresses (DAB).
The Dey increased with DAB, indicating that the taper of the
basal area of the buttressed part of the trunk increased with
tree size, and this was stronger for C. mildbraedii than for
E. cylindricum. The highest Dey value was observed for the
largest C. mildbraedii (Table 1).

STANDARDIZING THE HEIGHT OF DIAMETER
MEASUREMENTS

Among the biomass allometric models fitted on the 15 E. cylin-
dricum  from Cameroon (Fayolle et al. 2013a, b;
Appendix S3), the model providing the best fit on biomass data
was the m2 model with the predictor variable D,eq130 (lowest
Akaike information criterion (AIC) and relative squared error
(RSE), Table 2). The m1 model based on the predictor vari-
able DAB lost a high proportion of information compared to
m2 (lowest AICw). Models using estimated DBH,, from Met-
calf, Clark & Clark (2009) taper model (m4 and m5) improved
slightly the prediction of biomass compared to m1 as well as
the model m3 which required the measurement of the perime-
ter around the buttresses (Dconvirunizo)- These results based on
a low number of samples (n = 15) tend to show that building
biomass allometric equation with the variable D, cq130 might
reduce substantially the root mean square error of biomass
allometric model. Moreover, using this standardized variable
on existing allometric equation which were fitted with a mixed
of DBH and DAB seems to reduce the important bias encoun-
tered on biomass estimates of large trees (diameter > 100 cm,
Fig. 4).

The relationships between the D130 derived from the
three dimensional models and several field measurements are
shown in the Fig. 5. We found that D,..130 Was best explained
(lowest BIC) with the following variables: the combination of

and (Dconvmunizo = Hpap),  the

Dconvhullizo Hpas

T
1-0 1-5 2.0 25

Darea1 SO(m)

combination of DAB and Hpap (DAB : Hpap) and DAB
(model md1 of the Table S3.3). The best model with only two
variables was the model md5 with Dcopyrunze and DAB as
explanatory variables. No residual effect of species was found
for these two models. The relative RMSE of the models md1
and md5 are, respectively, 4-5% (absolute RMSE of 5-8 ¢cm)
and 4-6% (absolute RMSE of 59 cm), and the exponents of
the power model used for the residual variance are, respec-
tively, 0-793 and 0-719.

Discussion

In this study, we found a good agreement between diameters
derived from the three dimensional models and the destructive
measurements along the stem for the three validation trees.
Our results (RMSE <1 c¢m on tree diameter) were better than
the ones reported in a study on small trees in boreal forests
(RMSE = 2:39 cm, Liang et al. 2014). We therefore believe
that the non-destructive approach based on close-range terres-
trial photogrammetry developed in this study is an objective
and accurate method that can be used to measure large and
irregularly shaped tropical trees.

To illustrate the broader utility of our method, we applied
the whole photogrammetric process to 43 additional trees
belonging to two species. According to expectations, we found
that tree irregularities decreased along the stem; and that tree
irregularities at 1-3 m height increased with tree size with
greater irregularities for C. mildbraedii than for E. cylindricum.
The Basal Area Deficit in E. cylindricum trees was similar to
the 0-39 mean value of 102 buttressed trees measured in Gabon
(Ngomanda et al. 2012), while in C. mildbraedii, Dega was far
greater (0-52). We also identified a large intraspecific variation
in trunk morphology for E. cylindricum which can, for similar
diameters, be almost regular or show fully developed buttresses
(Letouzey 1982; Meunier, Moumbogou & Doucet 2015).

Since the research of Chave et al. (2005, 2014) on biomass
allometry, different studies aimed to improve the precision of
allometric equations by adding information on crowns (e.g.
mean radius of the crown or height of the crown) in their equa-
tion to reduce the high bias encountered on biomass estimates

of large trees (diameter > 100 cm, Antin et al. 2013;
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Table 2. Results of the regression analysis of the biomass allometric eqn (4)

Model Predictor D D D? Intercept AlC AlIC,, RSE d.f.
ml DAB * —0-8 0-0008 0-202 12
m2 Direarso HhE . * —151 1-0000 0-125 12
m3 Dconvitamzo wkx o wk -9:9 0-07 0-149 12
m4 DBHgan * . * -36 0-003 0-184 12
m5 DBHegsun wkx * w —57 0-009 0-171 12

AIC, Akaike information criterion; RSE, relative squared error.

AIC,, is the relative likelihood of the models.

The asterisks refer to the significativity of the parameter: ., 0-1 < P value < 0-05; *, 0-05 < P value < 0-01; **, 0-01 < P value < 0-001;
kP value < 0-001.

8 + + Prediction with DAB
- o Prediction with Daeat30
~ o
8 b + +t + o o
a -
- 1’\1‘\ + T g nl 2 -
h \/‘t—-—/ 5 e e
o + o @ .
§ +
%
o
$
$ - Model m1 of the study Model m2 of the study
o |
O
—~ o @
Q\i < 3 P
— o | S
g « @ .. et ” o
= a —__\"F“~_ £ B
) - .
: - S
5§ v : : :
Io)
o + +
o ¥
$ - Chave et al. (2005) model without height Fayolle et al. (2013) model (no height)
o |
©
Q-
X
o @
B ’ .
@ L N
o
o
&
g . :
$ B Chave et al. (2005) model with height Chave et al. (2014) model with height
T T ¥ T T T T T T T
50 100 150 200 250 50 100 150 200 250

Diameter Dyreat3o (M)

Fig. 4. Biomass error of different allometric models according to the diameter used. The model m1 is the model fitted with DAB, the model m2 is
the model fitted with D130, the Chave et al. (2005, 2014) model without height is the model for moist forest which is fitted with a mixed of DBH
and DAB data, the Fayolle ef al. (2013a, b) model is a local multispecies model which is fitted with a mixed of DBH and DAB data, the Chave et al.
(2005, 2014) model with height is the model for moist forest requiring the height in addition to diameter and basal wood density (also fitted with a
mixed of DBH and DAB data) and the Chave ez al. (2014) model with height is a model requiring the height in addition to diameter and basal wood
density (also fitted with a mixed of DBH and DAB data). The solid and dashed lines are local fitted lines (loess fitting with a span of 2/3), the solid line
is fitted on biomass data predicted with DAB (cross symbols) and the dashed line on biomass data predicted with D, .30 (square symbols). DAB,
diameter above buttresses. [Colour figure can be viewed at wileyonlinelibrary.com]
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Fig. 5. Relationships between the diameter of a disc with the same area as the basal area at 1-3 m height (D,eq130) and field measurements including
the diameter of the convex hull measured at 1-3 m height (Dconvextiunizo) around the buttresses (a); the height of the diameter above buttresses
(Hpasg) (b); and the diameter above buttresses (DAB) at a variable height (c).

Goodman, Phillips & Baker 2014; Ploton et al. 2016) . This
study shows that a higher accuracy on biomass estimates might
also be achieved by standardizing the diameter to Deq130 ON
the existing biomass allometric equations.

In addition, Dyea130 standard might be predicted with a
good precision (RMSE < 5%) by using statistical relation-
ships related to easily measurable variables such as DAB
and the perimeter of the convex hull of the buttresses at
1-3 m height, regardless of the species (this study, Ngo-
manda et al. 2012; Nolke et al. 2015). These are promising
results for the standardization of diameter measurement
height in permanent sample plot which is a key issue for tree
growth monitoring (Metcalf, Clark & Clark 2009) and bio-
mass estimation (Muller-Landau er al. 2014). The systematic
use of terrestrial photogrammetry and/or terrestrial LIDAR
scanning (Nolke ez al. 2015) in tree and forest monitoring
offers new opportunities to directly measure irregularly
shaped trees as well as to develop correction methods to
extract diameter measurements at any measurement height
(e.g. taper model in Appendix S3 and models relating
Direar30 With easily measurable variables). These correction
methods are needed for growth comparisons between trees,
within and between sites.

In comparison with terrestrial LIDAR scanning, close-range
photogrammetry combines a high mobility that reduces the
occlusion generated by stem irregularities and surrounding
vegetation, a low cost, a high portability, and a low acquisition
time, that places this approach as a new competitive tool for
measuring the base of the trunks. Nevertheless, as other terres-
trial remote sensing tools, low vegetation and lianas limit mea-
surements possibilities in dense forest as in the study site. In
this study, the photogrammetric process failed for 21% of the
photographed trees due to non optimal acquisition, as we
wanted to limit our impact on the vegetation surrounding the
focal trees. Moreover, measurements up to the top of the but-
tresses were not possible for four of the 34 remaining trees due
to the same problem. The actual technical limits of the tool are
the non 100% success of the SfM process, the high computer
processing time and the manual cleaning of the dense point
cloud. To ensure a high rate of success of the SfM reconstruc-
tion process, some recommendations are proposed in the next
section.

Recommendations

On the basis of our own experience as well as on a literature
review, we make the following additional suggestions to ensure
the success and quality of the photogrammetric process in
tropical forests. The automatic SfM process is the most critical
step in the overall photogrammetric process, and its correct
achievement is not guaranteed. The success of SfM is highly
related to (i) the quality of the camera gear and its lens distor-
tion model, (ii) the image acquisition protocol (angle view and
overlapping of the images), and (iii) the quality of the images
acquired which should not be blurred, under/overexposed or
backlighted.

CAMERA GEAR QUALITY

Low-cost uncalibrated consumer-grade digital cameras are
now commonly used (o build three dimensional models of well
illuminated objects as buildings or statues. The most obvious
examples are popular projects made and shared with the brow-
ser-based SfM  software pHoTOSYNTH® (Microsoft, photo-
synth.net). However, it must be kept in mind that successful
photogrammetric process and accurate results depend on the
image quality, consistency, and uniformity. The camera should
therefore have high-quality optics, a large sensor size and a
high autofocus speed in low-light environment.

We succeeded in the SfM step for the three calibration trees
with only the widest focal length (25 mm) because of the higher
overlap between images compared to longer focal lens. In addi-
tion to a wide focal lens, a fixed lens is also recommended
because of the better geometric stability than zoom lens (Shor-
tis et al. 2006). We thus recommend using a prime wide angle
lens (focal inferior to 35 mm). Otherwise, in compact cameras
with an optical zoom, no zooming (zoom of 1x) is recom-
mended as it is the widest angle and leads to a more stable prin-
cipal distance than other zooms (Labe & Forstner 2004).

IMAGE ACQUISITION PROTOCOL ANDLENS DISTORTION
MODEL

The first step of the photogrammetric process is the image
acquisition. The protocol to acquire images should follow the
suggestions of Wenzel er al. (2013) to take a panorama of the
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object of interest at each step, but cross-convergent images
should also be taken at each step (Fig. 52.3). Several angles of
view are also recommended (e.g. one set of images taken at
head height and another set taken above with a monopod for
instance). Adding reference points around the tree will also
increase the success of the automatic SfM process. We then
suggest using a coded target around the tree which will be auto-
matically detected and used as reference points for the SfM
process (Fig. $2.2).

As the forest is an extreme environment for the photogram-
metric process (low luminosity, backlight, movement of the
leaves and changing depth), any extra information that can
help the SfM step are important. We observed in several pho-
togrammetric projects that adding a precise lens distortion
model as an input to the SfM step leads to successful results,
though the SfM failed without lens distortion model. In order
to build the lens distortion model, self-calibration of the cam-
era is thus recommended: (i) before each image acquisition
with a certain focal length, if the focal length is modified during
the image acquisition campaign, or (ii) before an image acqui-
sition campaign when using a single prime lens. The self-cali-
bration of the camera means that we estimate intrinsic
parameters of the camera based on a set of images. The estima-
tion of these geometric characteristics, that is, the focal length
(f) of the lens, the coordinates of the centre of projection of the
image (xp, yp) and the radial lens distortion coefficients, is per-
formed automatically using a photogrammetric software
applications. The set of images should be capture in an illumi-
nated scene with textured and non-flat objects (e.g. a corner of
a messy desk) or on dedicated contrasted panel proposed by
the photogrammetric software such as a chess board. The
parameters of the camera should be the same as the parameters
used in the field, more specifically the zoom and focus of the
camera.

In this study, we were able to model the three dimensional
structure of the stem of tropical trees up to 12 m height. The
height limitation is due to the backlight of some images, and
the lower resolution and higher inclination of the images of the
upper part of the tree. Oblique images are not recommended in
the photogrammetric process because of the shift in depth
between two neighbouring pixels, which leads to a disparity
gradient (Wenzel et al. 2013). To model the upper part of the
trunk for volume or biomass estimations, the use of a large
telescopic pole to raise the camera up to the top of the trunk
would be needed or the use of a drone with protections around
the propellers to avoid contact with the branches.

IMAGE QUALITY

In photogrammetry, a good image is an image that is not
blurred, that is well exposed, and sharp. The use of automatic
settings (specifically, automatic aperture, shutter speed and
ISO) and automatic focus guarantees, on average, a good
image quality. The various settings of each photograph are
now well managed by the latest photogrammetric software.
Using autofocus during image acquisition results in a
change in the optical and geometrical property of the lens

between each image. According to Fraser & Al-Ajlouni (2006),
changing the focus does not have a significant effect on distor-
tion parameters. Libe & Forstner (2004) reported a significant
effect on camera calibration when changing focus in pho-
tographs closer than 0-5 m from the object. As photographs of
the trunk are taken at a distance further than 0-5 m in our pro-
tocol, we would recommend focusing each picture to ensure
sharpness. Finally, the diffuse light of an overcast day is recom-
mended compared to the direct light of a sunny day.

Authors’ contributions

S.B., AD., S.G.-F. and P.L. designed the study; S.B. and C.M. con-
ducted the fieldwork; S.B. and C.M. did most of the data analysis; S.B.,
A.D. and S.G.-F. wrote the manuscript and L.M.N. and P.L. super-
vised the research and reviewed the manuscript.

Acknowledgements

‘We thank the Center for International Forestry Research (CIFOR), Resources
and Synergies Development (RSD) and the University of Kisangani, through the
REFORCO project funded by the European Union, for their financial and logis-
tic support. We thank also the INERA Yangambi, who hosted this study in their
research area, and more specifically Henri Badjoko, for his assistance in the ficld-
work. We thank the DynAfFor team for their logistic support and their assistance
in the fieldwork in Congo and the CIB-Olam company, partner of the DynAfFor
project, who hosts the PSP of Loundoungou. Part of S. Bauwens time was sup-
ported with funds from Fonds Frangais pour I’'Environnement Mondial through
the DynAfFor Project and also with the fund from the World Bank throughout
the PreREDD+ Project. We also thank the ngo Nature + for their administrative
support.

Data accessibility

‘The original photogrammetric point clouds and the destructive sampling data are
available through ORBI (http://hdlhandle.net/2268/202113) .

References

Alder, D. & Synnott, T.J. (1992) Permanent Sample Plot Techniques for Mixed
Tropical Forest. Tropical forestry papers, Oxford Forestry Institute, Oxford,
UK. No. 25, 124 p.

Antin, C., Pélissier, R., Vincent, G. & Couteron, P. (2013) Crown allometries are
less responsive than stem allometry to tree size and habitat variations in an
Indian monsoon forest. Trees, 27, 1485-1495.

Banin, L., Feldpausch, T.R., Phillips, O.L. ef al. (2012) What controls tropical
forest archil ? Testing envi al, structural and floristic drivers. Glo-
bal Ecology and Biogeography, 21, 1179-1190.

Banin, L., Leis, S.L., Lopez-Gonzalez, G. et al. (2014} Tropical forest wood pro-
duction: a cross-continental comparison. Journal of Ecology, 102, 1025-1037.

Barazzetti, L., Scaioni, M. & Remondino, F. (2010) Orientation and 3D mod-
elling from markerless terrestrial images: combining accuracy with automa-
tion. The Photogrammetric Record, 25, 356-381.

Baskerville, G.L. (1972) Use of logarithmic regression in the estimation of plant
biomass. Canadian Journal of Forest Research, 2,49-53.

Bastin, J.F., Barbicr, N., Réjou-Méchain, M. et al. (2015) Seeing Central African
forests through their largest trees. Scientific Reports, 5, 13156.

Belyea, H.C. (1931) Forest Measurement. Wiley & Sons, New York, NY, USA;
Chapman & Hall, London, UK.

Bruce, D. & Schumacher, F.X. (1950) Forest Mensuration. McGraw-Hill Book
Co.,New York, NY, USA.

Cailliez, F. (1980) Forest Volume Estimation and Yield Prediction — Volume Esti-
mation. F.A.O, Forestry Paper 22/1, Rome, Italy, 98p.

Chapman, C.A., Kaufman, L. & Chapman, L.J. (1998) Buttress formation and
directional stress experienced during critical phases of tree development. Jour-
nal of Tropical Ecology, 14, 341-349.

Chave, J., Andalo, C., Brown, S. et al. (2005) Tree allometry and improved esti-
mation of carbon stocks and balance in tropical forests. Qecologia, 145, 87-99.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 460471

29



3D stem modelling for improved tropical forest biomass & biomass changes estimates

Chave, J., Rejou-Mechain, M., Burquez, A. et al. (2014) Improved allometric
models to estimate the aboveground biomass of tropical trees. Global Change
Biology, 20, 3177-3190.

Clark, D.A. (2002) Are tropical forests an important carbon sink? Reanalysis of
the long-term plot data. Ecological Applications, 12, 3-7.

Clark, D.A. & Clark, D.B. (1999) Assessing the growth nf trop!cal rain formt
trees: issues for forest modeling and ical A, 9,

Modelling irregular trees with photogrammetry 471

Meunier, Q., Moumbogou, C. & Doucet, J.-L. (2015) Les Arbres Utiles du Gabon.
Presses Agronomiques de Gembloux, Gembloux, Belgium.

Muller-Landau, H.C., Detto, M., Chisholm, R.A., Hubbell, S.P. & Condit, R
(2014) Detecting and projecting changes in forest biomass from plot data. For-
ests and Global Change (eds D.A. Coomes, D.F.R.P. Burslem & W.D. Simon-
son), pp. 381-416. Cambridge University Press, Cambridge, UK.

981-997.

Condit, R. (1998) Tropical Forest Census Plots: Methods and Results From Barro
Colorado Island, Panama and a Comparison With Other Plots. Springer-Verlag,
Berlin, Germany.

Coomes, D.A., Burslem, D.F. & Simonson, W.D. (2014) Forests and Global
Change. Cambridge University Press, Cambrige, UK.

Cushman, K.C., Muller-Landau, H.C., Condit, R.S. & Hubbell, S.P. (2014)
Improving estimates of biomass change in buttressed trees using tree taper
models. Methods in Ecology and Evolution, 5, 573-582.

Dean, C. (2003) Calculation of wood volume and stem taper using terrestrial sin-
gle image close-range photogrammetry and contemporary software tools.
Silva Fennica, 37, 359-380.

Dean, C. & Roxburgh, S. (2006) Improving visualisation of mature, high-carbon
sequestering forests. Forest Biometry, Modelling and Information Sciences, 1,
48-69.

Dean, C., Roxburgh, S. & Mackey, B.G. (2003) Growth modelling of Eucalyptus
regnans for carbon accounting at the landscape scale. Modelling Forest Systems
(eds A. Amaro, D. Reed & P. Soares), pp. 27-39. CABI, Cambrige, UK.

Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N. & Lejeune, P. (2013a) Tree
allometry in Central Africa: testing the validity of pantropical multi-species
allometric equations for estimating biomass and carbon stocks. Forest Ecology
and Management, 305, 29-37.

Fayolle, A, Rondeux, J., Doucet, J.-L., Emst, G., Bouissou, C., Quevauvillers,
S., Bourland, N., Feteke, F. & Lejeune, P. (2013b) Réviser les tarifs de cubage
pour mieux gérer les foréts du Cameroun. Bois et Foréts des Tropiques, 317,
35-49.

Fayolle, A., Picard, N., Doucet, J.-L., Swaine, M., Bayol, N., Bénédet, F. &
Gourlet-Fleury, S. (2014) A new insight in the structure, composition and
functioning of central African moist forests. Forest Ecology and Management,
329, 195-205.

Feldpausch, T.R., Banin, L., Phillips. e al. (2011) Height-diameter allometry of
tropical forest trees. Biogeosciences, 8, 1081-1106.

Forbes, R.D. & Meyer, A.B. (1955) Forestry Handbook. Ronald Press Company,
New York, NY, USA.

Fraser, C.S. & Al-Ajlouni, S. (2006) Zoom-dependent camera calibration in digi-
tal close-range photogrammetry. Photogrammetric Engineering & Remote
Sensing, 72, 1017-1026.

Goodman, R.C., Phillips, O.L. & Baker, T.R. (2014) The unportancs of crown
dimensions to improve tropical tree biomass logic i
24, 680-698.

Gourlet-Fleury, S., Mortier, F., Fayolle, A., Baya, F., Ouedraogo, D., Benedet,
F. & Picard, N. (2013) Tropical forest recovery from logging: a 24 year silvicul-
tural experiment from Central Africa. Philosophical Transactions of the Royal
Society of London B: Biological Sciences, 368,20120302.

He, Z., Tang, Y., Deng, X. & Cao, M. (2012) Buttress trees in a 20-hectare tropi-
cal dipterocarp rainforest in Xishuangbanna, SW China. Journal of Plant Ecol-
ogy, 6,187-192.

Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R.
Bernoux, M. & Saint-Andre, L. (2010) Wood density, phytomass variations
within and among trees, and allometric equations in a tropical rainft of

N da, A., Mavouroulou, Q. M., Obiang, N.L.E., Iponga, D.M., Mavoun-
gou, J.-F., Lepengue, N., Picard, N. & Mbatchi, B. (2012) Derivation of diam-
eter measurements for buttressed trees, an example from Gabon. Journal of
Tropical Ecology, 28, 299-302.

Nogueira, EM., Nelson, B.W. & Fearnside, P.M. (2006} Volume and biomass of
trees in central Amazonia: influence of irregularly shaped and hollow trunks.
Forest Ecology and Management, 227, 14-21.

Nolke, N., Fehrmann, L., I Nengah, S.J., Tiryana, T., Seidel, D. & Kleinn, C.
(2015) On the geometry and allometry of big-buttressed trees —a challenge for
forest monitoring: new insights from 3D-modeling with terrestrial laser scan-
ning. iForest-Biogeosciences and Forestry, 8, 574-581.

Pan, Y., Birdsey, R.A., Fang, J. et al. (2011) A large and persistent carbon sink in
the world’s forests. Science, 333, 988-993.

Phillips, O.L., Baker, T.R., Brienen, R. & Feldpausch, T.R. (2015) Field manual
Jfor plot establishment and remeasurement. http://www.rainfor.org/en/manuals.

Picard, N. & Gourlet-Fleury, S. (2008) Manuel de Référence Pour L'installation
de Dispositifs P en Forét de P Dans le Bassin du Congo.
COMIFAC, Yaounde, Cameroon.

Ploton, P., Barbier, N., Takoudjou Momo, S. et al. (2016) Closing a gap in tropi-
cal forest biomass estimation: taking crown mass variation into account in
pantropical allometries. Biogeosciences, 13, 1571-1585.

Plumptre, A.J. (1995) The importance of “seed trees” for the natural regeneration
of selectively logged tropical forest. The Commonwealth Forestry Review, 25,
3-258.

Pulkkinen, M. (2012) On non-ircularity of tree stem cross-sections: effect of
diameter selection on cross-section area estimation, Bitterlich sampling and
stem volume estimation in Scots pine. Sifva Fennica, 46, 747-986.

Rondeux, J. (1993) La Mesure des Arbres et des Peuplements Forestiers. Les
presses agronomiques de Gembloux, Gembloux, Belgium.

Shortis, M.R., Bellman, C.J., Robson, S., Johnston, G.J. & Johnson, G.W.
(2006) Stability of zoom and fixed lenses used with digital SLR cameras. Pro-
ceedings of the ISPRS Commission V Symposium of Image Engineering and
Vision Metrology, Citeseer, pp. 285-290.

Slik, J.W., Paoli, G., McGuire, K. et al. (2013) Large trees drive forest above-
ground biomass variation in moist lowland forests across the tropics. Global
Ecology and Biogeography, 22,1261-1271.

Sprugel, D.G. (1983) Correcting for bias in log-transformed allometric equations.
Ecology, 64, 209-210.

Swaine, M.D., Lieberman, D. & Putz, F.E. (1987) The dynamics of tree popula-
tions in tropical forest: a review. Journal of Tropical Ecology, 3, 359-366.

Szeliski, R. (2010) Computer Vision: Algorithms and Applications. Springer-Ver-
lag, London Limited, London, UK.

Thompson, J., Proctor, J., Viana, V., Milliken, W., Ratter, J.A. & Scott, D.A.
(1992) Ecological studies on a lowland evergreen rain forest on Maraca Island,
Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry.
Journal of Ecology, 80, 689-703.

‘Wenzel, K., Rothermel, M., Fritsch, D. & Haala, N. (2013) Image acquisition and
model selection for multi-view stereo. ISPRS-International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 1,251-258.

Received 31 May 2016; accepted 12 September 2016

Africa. Forest Ecology and Management, 260, 1375-1388.

Kearsley, E., de Haulleville, T., Hufkens. et al. (2013) Conventional tree height-
diameter relationships significantly overestimate aboveground carbon stocks
in the Central Congo Basin. Nature communications, 4, 2269.

Libe, T. & Forstner, W. (2004) Geometric stability of low-cost digital consumer
cameras. Proceedings of the 20th ISPRS Congress, Istanbul, Turkey, pp. 528—
535.

Letouzey, R. (1982) Manuel de Botanigque Tropicale — Afrigue Tropicale: Tome 1.
Centre Technique Forestier Tropical, Nogent sur Marne, France.

Liang, X., Jaakkola, A., Wang, Y., Hyyppd, J., Honkavaara, E., Liu, J. & Kaarti-
nen, H. (2014) The use of a hand-held camera for individual tree 3D Mapping
in forest sample plots. Remote Sensing, 6, 6587-6603.

Mehedi, M.A_H., Kundu, C. & Chowdhury, M.Q. (2012) Patterns of tree but-
tressing at Lawachara National Park, Bangladesh. Jowrnal of Forestry
Research, 23, 461-466.

Metcalf, CJ.E., Clark, J.S. & Clark, D.A. (2009) Tree growth inference and pre-
diction when the point of measurement changes: modelling around buttresses
in tropical forests. Journal of Tropical Ecology, 25, 1-12.

Handling Editor: Sean McMahon

Supporting Information

Additional Supporting Information may be found online in the support-
ing information tab for this article:

Appendix S1. Description of the Loundoungou site (Republic of
Congo).

Appendix S2. Methodology and validation of the photogrammetric
process.

Appendix S3. POM definition, formatting biomass data and Dyeq130-
field variable relationships.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 460471

30



Chapter 2: 3D measurements of irregulary shaped stems

31



-level

MR
AR

3D stem measurements at the plot






3D stem modelling for improved tropical forest biomass & biomass changes estimates

3.1. Preamble

Plot-level | fje|d measurements Biomass stocks

In this chapter, we assessed the potential of the 3D measurement tools that are
terrestrial laser scanning (TLS) and hand-held mobile laser scanning (HMLS) to scan
all the trees within an area at once. The research was led in forests close to our research
lab in Belgium. Having all the trees 3D scanned in the plot allows the use of other
allometries and conversion factors than conventional tree-level AGB models. We
focused the study on the first step of the workflow starting at the plot level. The
forerunner results of this study were the first stage before going further in the use of
these technologies to measure in 3D all the stems in tropical forest plots.

This chapter is written in the following scientific peer-reviewed paper: Bauwens, S.,
Bartholomeus, H., Calders, K., & Lejeune, P. (2016). Forest inventory with terrestrial
LiDAR: A comparison of static and hand-held mobile laser scanning. Forests, 7(6),
127.
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3.2. The scientific peer-reviewed paper

[ forests MPy

Article

Forest Inventory with Terrestrial LiDAR: A
Comparison of Static and Hand-Held Mobile
Laser Scanning

Sébastien Bauwens '-*-*, Harm Bartholomeus 2-*-*, Kim Calders >* and Philippe Lejeune °

L TERRA Research Unit, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2,

Gembloux 5030, Belgium
Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Droevendaalsesteeg 3,
Wageningen 6708 PB, The Netherlands
Earth Observations, Climate and Optical Group, National Physical Laboratory, Hampton Road, Teddington,
Middlesex TW11 OLW, UK; kim.calders@npl.co.uk
4 Department of Geography, University College London, Gower Street, London WC1E 6BT, UK
BIOSE Research Unit, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2,
Gembloux 5030, Belgium; p.lejeune@ulg.ac.be
*  Correspondence: sebastien.bauwens@ulg.ac.be (5.B.); harm.bartholomeus@wur.nl (H.B.);
Tel.: + 32-81-62-26-42 (S.B.); +31-317-48-17-92 (H.B.)
1t These authors contributed equally to this work.
Academic Editors: Juha Hyypp4, Xinlian Liang and Eetu Puttonen
Received: 16 April 2016; Accepted: 6 June 2016; Published: 21 June 2016

Abstract: The application of static terrestrial laser scanning (TLS) in forest inventories is becoming
more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract
forest attributes. The use of a mobile laser scanner (MLS) would reduce this occlusion. In this study,
we assessed and compared a hand-held mobile laser scanner (HMLS) with two TLS approaches
(single scan: SS, and multi scan: MS) for the estimation of several forest parameters in a wide range
of forest types and structures. We found that SS is competitive to extract the ground surface of
forest plots, while MS gives the best result to describe the upper part of the canopy. The whole
cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm) with the HMLS leading
to the best results for DBH estimates (bias of —0.08 cm and RMSE of 1.11 ¢cm), compared to no
fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness
and non-circular cross-section may explain the negative bias encountered for all of the scanning
approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger
scale and in a time-efficient manner.

Keywords: forestry; terrestrial laser scanning; hand-held mobile laser scanning; HMLS; TLS; SLAM;
digital elevation model; stem mapping

1. Introduction

Forests provide various ecosystem services, such as carbon storage, maintaining biodiversity, and
wood production. Information on the current state and recent changes of forests are important basics
for forest managers, policy-makers, conservation planners, and forest scientists. Forest inventories
are the main tool used to describe the structure and quantify the forest resources. For large areas, the
traditional approach is a statistical inventory of the forest, which results in the establishment of sample
plots. Forest information deduced from parameters collected in the plots is then summarized for each
stratum of the area inventoried.
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Field parameters in sample plots are traditionally limited to the measurement methods available or
the efficiency and the accuracy with which the measurement can be taken [1]. The tree parameters most
frequently measured and used are diameter at breast height (DBH) of all trees and a sample of heights
as they are strongly related to stem volume and above-ground biomass of the tree. Other tree attributes,
such as the location, tree height, and height of the first living branch may also be recorded but are
often not measured for every tree on sample plots because these measurements are labor-intensive [2].
An automated, instrument-based technique having the potential to augment conventional manual
techniques would be of great interest, particularly in terms of objectivity and repeatability of results
and time saving [3].

In remote sensing, the emergence of Light Detection and Ranging (LiDAR) in the late 1990s
provided new insights to assess forest structure and the three-dimensional distribution of plant
canopies at the plot level and regional scales. LiIDAR is an active remote sensing method that can
accurately measure distances by transmitting laser energy and analyzing the returned energy. LIDAR
can be operated from spaceborne, airborne, or terrestrial platforms, with each platform serving specific
forest inventory needs. Static terrestrial laser scanning (TLS), also known as ground-based LiDAR,
offers the capacity to retrieve the 3D vegetation structure with millimeter accuracy [4].

The interest on TLS as a tool for forest plot measurement started in the past decade. The first
reports based on this technique were published in 2003 [5-7] and 2004 [8-11]. The objective of these
early studies was to explore the TLS potential for basic field measurements, such as measuring DBH
and tree height [2]. Other variables of tree structure (e.g., crown, stem, or whole tree dimensions)
can be observed and measured in the TLS data by time-consuming manual interpretation [10,12,13],
although semiautomatic algorithms have been developed with various degrees of success [14-19].
Recently, a promising fully-automatic processing for volume estimates at the plot level has been
proposed by Raumonen [20]. Data describing specific characteristics of individual trees can also be
summarized to describe characteristics at the plot level, as stem density [10], the overall volume of
biomass [18-21], or the fuel capacity in a forest [22]. Stand parameters can also be directly computed
from TLS data as basal area [23], gap fraction [24,25], and Leaf Area Index (LAI ) [26]. In addition to
algorithms improvements for extracting forest attributes of TLS data, the acquisition protocol should
also be optimized in the plot.

The occlusion effect occurring in TLS data is one of the main limitations of the use of this tool
in forestry. Occlusion is the fact that some stems, branches, twigs, and leaves, or parts of it, may not
be scanned as they are hidden by elements closer to the scanner. This is inherent to the static nature
of TLS. To tackle the occlusion effect, the plot can be scanned with multiple scans (MS) instead of
one single scan (SS) in the center of the plot or a statistical methods can be used [23-27]. The former
solution, the MS approach, requires pre-scan preparations (setting up the plot and target placement).
The targets are then used as tie-points between the single scan data during the co-registration process.
The pre-scan preparations in the field for the multi-scan approach reduce the cost-effectiveness of
this technology, whereas the statistical approach is limited to a few stand parameters, such as basal
area estimations.

Laser scanners have recently been placed on moving ground platforms and designated as mobile
laser scanners (MLS). MLS systems typically combine a laser scanner with an inertial measurement
unit (IMU) and Global Navigation Satellite System (GNSS), making it analogous to airborne laser
scanning (ALS). The quality of the final data (registered point cloud) is then related to the precision and
accuracy of the three components, as well as the synchronization of these components. The accuracy
of the MLS data are usually inferior to registered multi-scan TLS data [28]. For instance, MLS mounted
on a car was reported to have an elevation accuracy of around 3.5 cm and a planimetric accuracy of
2.5 cm [29]. The advantage of MLS is the reduction of the occlusion effects, as well as increasing the
areas scanned. The introduction of MLS in tree measurement started in early 2010 [30,31]. These first
studies focused on sparse urban trees scanned from a MLS mounted on car. To our knowledge, no
MLS study were conducted in forest environment before 2013 [32]. The limitation of the use of MLS in
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forest areas is probably due to the low GNSS signal detection under forest cover leading to too low
accuracy. Moreover, the use of a moving platform limits the use in forest ecosystems, since mounting
the devices on a car, quad, or all-terrain vehicle may still not allow spatially-continuous mapping, nor
does it correspond well with the non-destructive nature of LIDAR data acquisition. To encompass the
moving limitation of MLS, the Finnish Geodetic Institute created a backpack mounted laser scanner [33]
leading to the concept of personal laser scanning (PLS). An updated version of their PLS was tested in
a forest environment, but the lack of proper satellite visibility during the field measurements led to
less accurate platform positions, which also undermined the heading angle estimates [28].

Recently, a hand-held mobile laser scanning (HMLS) system was introduced by Bosse et al. [34],
using the movement of the operator as a platform. This system (further described in the materials
section) tackles some drawbacks of the traditional TLS setup, since the movement through the plot
results in a theoretically unlimited number of scan-positions, which minimizes occlusion effects.
Unlike MLS, forest cover is no longer a limitation, as HMLS does not need satellite positioning (GNSS).
To assure good portability of the instruments concessions are made on the quality of the LiDAR
module, resulting in a limited range (20-30 m) and lower accuracy (3 cm). A first study was carried out
by Ryding et al. [35] to study the potential of HMLS for forest surveys. Their study, which is conducted
in a restricted forest area dominated by hash and with small trees (DBH mean < 10 cm), showed first
promising results in using this technology.

In this study, our main objective was to assess and compare the HMLS and TLS approaches for
the estimation of several forest parameters in a wide range of forest types and structures. The influence
of topography and forest structure was also analyzed. The same LiDAR scanning protocols were
applied in all the plots, one protocol for the HMLS and two protocols for the TLS (the single or the
multi-scan approach).

2. Materials and Methods

2.1. Instrumentation

For the static TLS data acquisition a FARO Focus 3D 120 (FARO, 250 Technology Park Lake
Mary, FL 32746, United States) is used. This scanner uses phase-shift-based LIDAR technology to
measure the XYZ locations of objects and further returns the intensity of the returned LIDAR beam
(905 nm wavelength and a beam divergence of 0.19 mrad). The FARO scanner has a maximum range
of 120 m and can collect 9.76 x 10° points per second with an accuracy of 2 mm at 10 m. Its lightweight
(5.2 kg) construction, small size (24 cm x 20 cm x 10 cm) and short scanning time (e.g., 3 min without
photograph with 1/5th of the full resolution) make it very appropriate for forest studies. The mixed
pixels and range/intensity cross-talk effects, which limit the accuracy of phased-shifted based LiDAR
at the edge of objects, were limited by enabling the “Clear Sky” and “Clear Contour” FARO filters in
the hardware, as well as using the “ghost points” filter in the FARO Scene software. For each plot
several FARO scans are done (see description further on), which are co-registered using 12 white
spheres with a diameter of 19.5 cm that are placed within the plot.

As HMLS, we used the ZEB1, which consists of a 2D laser scanner (905 nm wavelength and a
beam divergence of approximately 7 mrad), combined with an inertial measurement unit (IMU). These
are both mounted on top of a spring, itself mounted on a hand grip [34]. The laser specifications cite a
30 m measurement range, but this is unlikely to be achieved outdoors (due to ambient solar radiation),
and a survey swath of up to 15-20 m around the instrument is more realistic [36]. The hand-held part
of the scanner (0.7 kg) is linked to a data logger carried in a backpack (3.6 kg). As the user carries
the ZEB1 and walks through the environment, the scanner head swings back and forth creating a 3D
scanning field with data being captured at the speed of movement. The scanner is a time-of-flight laser
with a rate of 43,200 points/s (40 lines/s with a laser pulse interval of 0.25°) and a field of view of 270°
horizontally and approximately 120° vertically. No additional information about the intensity of the
returned signal is collected.
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ZEB1 uses the Simultaneous Localization and Mapping (SLAM) algorithm to locate the scanner in
an unknown environment and to register the whole 3D point clouds, relying on both the IMU data and
feature detection algorithms. Optimal functioning of the alignment algorithm occurs in environments
with well-distributed static unique surface features all around the sensor, providing consistent laser
returns to facilitate convergence in the processing algorithms [36].

Processing of the raw ZEB1 data to a consistent 3D point cloud has to be done through an online
processing service offered by GeoSLAM, for which processing charges need to be paid. The total
processing cost depends on the length of the walked track. Following the manufacturer, the final 3D
point cloud product has a scan range noise (accuracy) at 10 m of 30 mm in an indoor environment and
50 mm in bright light environments.

2.2. Study Area

The study area is located in the south of Belgium, close to the town of Vencimont, which is part of
the Ardenne natural region. In the surroundings a large variety of forest types occur, ranging from
young production forests to old growth forest. The area has an average elevation of approximately
200 meters and is characterized by gentle hills, with elevation differences of approximately 100 meters.
The climate is temperate maritime, with cool summers and moderate winters, and precipitation in all
seasons (Koppen: Cfb). Ten plots were laid out during the leaf-on period in varying forest types, forest
structure, and covering different slope classes (Figure 1, Table 1 and Figure S1). The plots were selected
in such a way that the maximum variation in forest types (broadleaved, coniferous, and mixed), tree
density (NHA from 113 to 1344 trees/ha), and terrain properties (flat to steep) was achieved.

Netherland [

 Belgium ’~ DE

=M Q.
France Y

0 250 500 1.000
- — Vleters|

Figure 1. Overview of the study area, with the locations of the plots (IR orthoimage with contour

interval of 20 m of elevation).
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Table 1. Plot description based on field inventory data.

Forest Slope Stand . . NHA (N) GHA Diin—Dmax
Plot Type (%) Structure Main Species Under-story (trees ha™1) (m? ha™1) (cm)

. Carpinus betulus

1 B 325 Coppice and Betula spp. 1 835 (59) 46.2 10-135

2 B 11 Even-aged Fagus sylvatica 0 113 (8) 29.8 44-68

3 B 1.2 Uneven-aged  Fagus syloatica 1 127 (9) 28.6 14-80

4 c 169  Even-aged Pseudotsiuga 1 113 (8) 329 51-68

menziesii

5 C 28.7 Even-aged Picea abies 0 410(29) 26.3 23-36

6 M 249 Evencaged ~ S4e7cus spp. and 2 439 (31) 20.0 11-40
Pinus sylvestris

7 B 5.1 Uneven-aged  Fagus sylvatica 1 283(20) 33.5 10-82

8 C 6.2 Even-aged Picea abies 0 1344 (95) 75.5 1044

9 C 6.0 Even-aged Picea abies 0 594 (42) 458 21-46

10 B 10.5 Uneven-aged  Fagus sylvatica 1 424 (30) 30.0 10-79

Forest type, B: broadleaves, C: Coniferous, M: mixed. Understory, 0: no understory, 1: light understory, 2: dense
understory; NHA is the number of trees (DBIT > 10 cm) per hectare and N is the number of trees in the plot.
GHA is the basal area per hectare. Dyin—Dmax shows the diameter of the thickest and smallest tree in the plot
with a minimum DBH threshold of 10 cm.

2.3. Data Collection

According to the results of Trochta et al. [37] in mixed natural forests dominated by beech, with
MS (using two to four scan positions) 90% of the trees are detected (i.e., 50% of the cross-section at
1.3 m of height is visible) at a distance of 10-15 m of the scanners. This rate decrease to 80% when
the SS setup is used. National forest inventory concentric plots have a maximum radius of less than
20 m and usually around 15 m for diameter at breast height (DBH) measurements. Following this
information, and according to the objectives of the study, the plots were laid out with a radius of 15 m.
From the center points, poles were placed in the cardinal directions to indicate the locations for the
FARO scanner. The directions were measured using a compass and the distance to the center of the
plot is determined with the ultrasound instrument VERTEX IV. Locations in between the cardinal
points were indicated with secondary poles, to simplify the ZEB1 data acquisition.

The TLS scanner was placed at the center of each plot and at the four cardinal points (Figure 2).
If the cardinal point was too close to a tree included in the plot (distance less than 1 meter for instance)
or just behind a tree, the scanner was slightly moved to a position where occlusion was less an issue.
Full hemispherical scans with a point spacing of 0.045 degrees were done (1/5th of the full resolution)
for a total of 28.4 million points per scan. Twelve spheres were set up within the plot as targets for
co-registering the five scans.

A fixed pattern was followed for the HMLS data acquisition, which is shown in Figure 2. Scanning
started in the south location. The scanning path is designed to have (1) a good distribution of the
scanning positions (the plot is crossed four times and the path assures that the plot border is scanned
at least once); (2) a pattern which reduces scanner range noise; and (3) avoids problems associated with
drift, which can occur if the SLAM algorithm does not result in a good alignment. To prevent this, the
path ends at the starting point (closing the loop), crosses the path several times (local loops) and some
border sections are covered twice. For both scanning methods the time of data acquisition is recorded.

The reference field measurement was conducted at the same moment as the LiDAR scanning.
The data collected were species, DBH, and tree position (azimuth and distance from the plot center) of
all the trees with a diameter >10 cm which are inside the 15 m radius plot.
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Figure 2. Locations of the TLS and the spheres (left) and walking pattern for the HMLS data acquisitions
(starting in red and ending in dark blue) (right).

2.4. LiDAR Data Pre-Processing

The raw LiDAR data from the two scanners are processed to three point cloud datasets, which
are used for further analysis and the extraction of forest parameters. The first dataset consists of the
single TLS scan at the central position only. This implies that trees are, per definition, only observed
from one direction and that occlusion will have a large influence on the derived forest parameters.
This SS dataset will further be referred to as “FARO1”. For the second dataset, the five TLS scans
are co-registered using the white spheres within the Scene software [38]. This dataset will further be
referred to as “FARO5”. Resulting point clouds are used as the basis for the alighment of the FARO
and ZEB1 data. ZEB1 raw data were uploaded to the GeoSLAM server, where the processing to a
registered point cloud is done.

In order to ease the comparison of the registered point clouds and allow analysis at tree level, the
ZEB1 point cloud is rotated and translated to the FARO5 data. First, a rough alignment was done by
selecting corresponding points and using the align function in CloudCompare [39]. If no corresponding
point were found, the ZEB1 was manually moved and rotated to match the FARO point cloud. These
steps resulted in a rough alignment with an accuracy of approximately 5-20 cm. To improve the
alignment, the Hybrid Multi-Station Adjustment (HMSA) in RiScan Pro 2.0 [40], was used. The HMSA
algorithm modifies the orientation and position of each dataset in several iterations to calculate the best
overall fit, for which point cloud features like planes and meshes are used. First, digital terrain models
(DTMs) with different resolutions (FAROS5: 50 cm; ZEB1: 50 cm and 10 cm) are computed. The FARO
and ZEB1 DTMs are then aligned automatically in the HMSA process, thus aligning the point clouds
as well. The final alignment was visually checked by making cross-sections of the point cloud data.
For satisfactory results multiple (3 to 7) subsequent MSA runs were needed. This procedure is not
required if the ZEB1 is used in an operational setting, as long as data only have to be collected at the
plot level. Since the ZEB1 is not equipped with an internal GPS system, geo-rectification of the data
would require additional processing steps, like placing artificial targets of which the location is known.

2.5. Scanning Completeness of the Trees

First, the completeness of the stem point cloud is compared between the three scanning methods:
FAROI1, FAROS5, and ZEB1. The analysis is carried out on the top plan view with a sliced point cloud
at a height of 125-135 cm above the terrain. Thus, cross-sections of the stems appear as a partial
or full ring. Depending on the degree of ring closure, cross sections are classified into five quality
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classes: (1) <25%; (2) 25%-50%; (3) 50%—75%; (4) >75%; and (5) whole cross-section. A sixth class, “Not
detected”, is used for trees located on the stem map from field measurements and which does not
have a cross-section in the LIDAR slice. In addition to the comparison of the quality of the stem point
cloud between the scanning methods, we analyzed the influence of the stand characteristics and the
terrain on the completeness of the point clouds. To test the significant effect of these environmental
variables, we studied the relationship between the completeness of the cross-sections (proportion of
closure) and the plots and terrain variables reported in the Table 1. The significance of the factors was
determined by using linear mixed-effects models with, as a random factor, the plot ID (function Ime
from the library nlme of the R software). As the dependent variable corresponds to a proportion of
closure class, we fist converted it to a quantitative variable by replacing the class by the mid-class
proportion value. Then, we applied an angular transformation (Equation (1)) in order to guarantee
appropriate application conditions in the case of linear regressions [41]:

Y’ = 2aresinVY 1)

where Y’ represents the transformed variable, and Y, the original one (i.e., the closure proportion of the
cross section).

2.6. Extraction of Forest Parameters from the Point Clouds

The extraction of forest parameters was done with the open source software Computree using the
algorithms from the ONF-ENSAM plugin [19]. The main steps used from this plugin are (1) terrain
extraction and generation of rasters (a DTM and canopy height model: CHM) with a resolution
which depends of the topography: 50 cm for flat plots and 10 cm for plots on slopes; (2) clustering of
points; (3) creation of virtual logs; (4) skeletonization; and (5) stem mapping and DBH computation.
The outputs of this process are a DTM, CHM, stem map, and DBH estimates. An interpolation and
smoothing process was applied to the DTM to fill the pixels with missing values.

2.7. Analysis

Next, the comparison of the stem maps computed with Computree and the outcomes of the
field inventory were compared in terms of the number of trees correctly detected (producer’s
accuracy) and falsely detected trees (commission error), as well as differences in tree location between
scanning methods.

The DTM and CHM outputs were analyzed and the derived DBH values for the FARO1, FARO5,
and ZEB1 datasets were compared to field measurements. The root mean square error (RMSE) and
bias between the LiDAR DBH and the field DBH were calculated.

The significance of plot level factors (stand structure, understory, number of trees per hectare
(NHA), and basal area per hectare (GHA)), the slope and tree level factors (species, DBH, and bark
roughness class of the species) on the quality of DBH estimates (difference between LiDAR DBH and
field DBH) was tested by using a linear mixed-effects models with, as a random factor, the plot ID.

3. Results

3.1. Data Collection

The different scanning setups show large differences in the time which is needed to acquire and
process the point cloud data. Positioning the spheres in the plot for registering the scans of the MS
method is time consuming compared to the other measurements methods (40 min compared to 6 min
for the FARO scanner and 11 min for ZEB1 (Table 2)). Setting up the plot and scanning from five
locations with the TLS (FAROS5) takes three times longer than scanning with ZEB1. The SS method and
scanning with ZEB1 take less time than field measurements.
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Table 2. Acquisition and processing time for the different scanning setups (5S: FARO1, MS: FARO5,
and HMLS: ZEB1).

FARO1 FARO5 ZEB1 Field
Measurements

Fieldwork

Setting up 6 min 40 min 11 min .

Scan(s) 4-6 min 35 min 13 min 20-45 min

Total 10 min 1h 15 min 24 min 32 min
Processing data *

Registering 5 min 37 min 20 min

Computree 4 min 47 min 1h 26 min
Total 9 min 1h 24 min 1 h 46 min 10 min

The setting up line in the table refers to the preparation of the scanner for FAROJ, to the installation of the spheres
and the preparation of the scanner for the FARO5 and to the preparation of the scanner and the initialization
of the IMU for the ZEBI. Field measurements were measurement of the DBH with tape and determining the
position of the trees (azimuth and distance). *the processing of the data is done by an experienced person.
The registration time of the ZEB1 scans only includes the processing at the GeoSLAM server.

3.2. TLS Pre-Processing

The registration of the five scans (FARO5) was done with a minimum precision of 4 mm for
the ten plots (i.e., the average difference of the spheres positions between the scans in the final point
cloud is less than 4 mm). The automatic co-registration of the ZEB1 scans gave satisfactory results
for eight of the ten plots, although the exact precision cannot be determined. From the ZEB1 point
cloud alone it could be determined that the automatic co-registration did not succeed for plot 2 and
the quality of the registration of the plot 6 was not good enough for stem measurements. Plot 2 has a
low number of trees, which hinders the object recognition in the SLAM algorithm, leading to a “slip”
of the object recognition algorithm which results in a clearly different pattern than we walked. Plot 6
has a higher stem density, but also a dense understory with moving leaves. This understory might
affect the co-registration of the ZEB1 scan too, which resulted in slight offsets of the points at the stems
and presence of many double stems in the point cloud. Therefore, further analysis does not include
plots 2 and 6.

3.3. Visual Comparison

Due to the limited range of the ZEB1, the laser does not reach most of the treetops and the point
density in the upper canopy is rather low. A higher proportion of the points are located to the lower
height level in the ZEB1 point clouds compare the TLS one. This higher proportion of points in
the lower part of the plots with ZEB1 is due to the higher beam divergence of the ZEB1 and to the
oscillating movement of the 2D scanner, which is in favor of horizontal scanning.

A comparison between the FARO5 and ZEB1 setup shows that the point clouds acquired with
the ZEB1 is much noisier. Nevertheless, the points of the ZEB1 slice appear to be within and outside
the stem and the density of points around the trunk follows a Gaussian shape with a mode located
in the outline of the cross section (Figure 3). Indeed, the point density modes of the ZEB1 chart bar
(5 mm in width) in transects of the transversal slice of the trunk match with the modes of FARO5
(red and yellow dashed lines). Fitting cylinders to the trunk should, therefore, result in the same
diameters using the two technologies.
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Figure 3. Comparison of a 1.3 m height slice of the point cloud (thickness of 10 cm) of one Picea abies
stem scanned with the hand-held mobile laser scanning ZEB1 and with the multiscan method (FARO5).
From the left, we have the top view of the slices, the 3D density graph of the slices, histograms of
transects within the slices with bins of 5 mm (red dotted line are transects following the x axis and the
yellow dotted line are transects following the y axis) and, finally, on the right, we have an overlay of
the ZEB1 slice and the FAROS slice.

3.4. The Success of Scanning Trees

In the eight plots studied, the number of trees detected from the LiDAR scans compared to
the field inventory data shows that all the trees (DBH > 10 cm) were detected with the FARO5 and
ZEB1 scanning method, whereas 17% of the trees are not detected when using a single scan (FARO1)
(Figure 4). Due to the high number of scan positions with the ZEBI, this method results in the best
spatial cover throughout the plot. As a result, the percentage of trees for which more than half of
the cross-section is scanned is 1%, 79%, and 93% respectively for FARO1, FAROS5, and ZEB1 setups
(Figure 4). The whole cross-section is scanned for no trees with FARO1, for 42% of the trees with
FAROS, and for 91% of the trees with ZEB1. The observations of the cross-section at 1.3 m height further
showed that two trees were measured twice during the field survey in the dense plot 8, indicating that
errors may also occur in field inventories.

100% - 1%
90%
0, 4
80% B Whole
70%
oo 61% m>75%
50% 50 % -75%
40% - 25%-50%
30% - m<25%
20% E Notd d
10% - 15% ot detecte
6% &
0% s T ]
FARO1 FAROS ZEB1

Figure 4. Percentage of the cross-section closure between the three different scanning methods
according to the visual interpretation of the point cloud slices at 1.3 m height (thickness of 10 cm) of
the eight plots.
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The influence of stand factors and the slope for scanning trees are different for the scanning
methods. The main significant factor affecting the proportion of the trees scanned for FAROL1 is the
slope. For FAROG, the only significant factor is the combination of NHA and GHA (NHA x GHA)
whereas for ZEB1, the understory is the only significant factor (the coefficient of the random effect
of the plots is limited and the p-values are, respectively, 0.00, 0.01, and 0.01 for FARO1, FAROS5, and
ZEB1 models).

3.5. Extraction of Forest Parameters

3.5.1. DTM and CHM Comparison

By subtracting the DTM rasters between the different scanning methods, no observable bias is
noticed, but for plots on a slope (plots 1 and 4), there are local pixel differences when comparing
the FARO1 DTM with the FARO5 DTM (Figure 5). These differences are mainly between —1 m and
1 m, with some deviations up to —3.6 m and 3.5 m and outliers up to 12 m (plot 1) or 18 m (plot 4).
The DTM differences between FARO1 and FAROS5 have much larger variation for the sloping plots
(plots 1-5), compared to the flat plots (plots 7-10) (Figure 5). As we do not have the same difference
between the DTM of FAROS5 and ZEBI, the local DTM divergence of FARO1 would mainly be the
result of the scanning setup which engenders large occluded area. Refining parameters (e.g., reducing
the resolution from 10 cm to 50 cm) for the DTM generation may reduce these local differences. DTMs
generated from FAROS and ZEB1 are similar with only a slight bias (less than 20 cm) for the DTM
difference of plot 4 (Figure 5). The high herbaceous strata in plot 4 may explain this higher variation
between FARO5 and ZEB1 DTMs.
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Figure 5. DTM differences comparing different scan setups. The bias is generally low, but slope and
understory leads to variation in the generated DTMs (note that the y-axis scale is different for the
two graphs).

The CHM differences between the setups are shown for each plot in Figure 6. The FARO1 setup
is not suitable for studying the canopy top for plots of 15 m radius. Based on Figure 7, with FARO1
a reliable canopy height analysis might be done for a plot of maximum 5 m radius. For FAROI, the
mean canopy height is on average underestimated by 3.1 m (Figure 6 and Table 3) and the CHM is
highly variable compared to the other setups (high coefficient of variation: CV in Table 3). The CHM
derived from ZEB1 data never reaches a height of 25 m, which is the range limit of the ZEB1 LiDAR
scanner (Table 3). Moreover, an important part of the lasers does not overpass 15 to 20 m (Table 3
and Figure 7¢,d). This range limitation explains the important differences noticed for the plots 3, 4, 8,
and 9 (Figure 6 and Table 3). In plot 4, the stand is a mature even-aged stand of Douglas (Pseudotsuga

44



Chapter 3: 3D stem measurements at the plot-level

Forests 2016, 7,127

110f17

menziesii) with crowns starting at a height of 2025 m and total heights reaching 40-45 m, which explain
the high CHM difference (up to 40 m) noticed in the Figure 6.
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Figure 6. CHM differences comparing different scan setups.
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Figure 7. CHM illustration of two plots with the three different scanning methods.

Table 3. The maximum, mean, and coefficient of variation (standard deviation/mean) of the CHM

heights of the different scanning setups.

Plot FARO1 FARO5 ZEB1
Max (m) Mean (m) CV (%) Max (m) Mean (m) CV (%) Max (m) Mean (m)  CV (%)
1 226 14.1 34 29.5 17.4 17 22.1 14.9 17
3 32.8 19.0 40 33.5 245 17 24.0 14.0 34
4 40.4 299 38 459 33.0 39 24.6 15.8 29
5 30.6 17.5 46 30.4 18.9 26 21.9 153 32
7 26.1 17.5 43 29.0 20.1 21 21.3 15.2 29
8 333 23.5 31 333 25.3 15 21.0 12.6 50
9 32.0 21.0 43 30.7 229 23 22.3 12.7 52
10 257 10.4 46 28.6 15.9 38 21.7 12.2 32

Only pixels with a height of more than 2 m were used to compute the mean and the standard deviation.
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3.5.2. Stem Mapping and DBH Estimation

Processing the point clouds of FARO1, FARO5 and ZEB1 with Computree results in an average
true tree detection rate (producer’s accuracy for trees with DBH > 10 cm) of, respectively, 78% + 18%,
93% =+ 8%, and 90% =+ 12%, and an average percentage of false trees (commission error) of 21% + 18%,
22% + 21%, and 31% + 24%. The average difference between stem locations of FARO5-FARO1,
FAROS5-ZEBI is, respectively, 2.8 + 14 cm and 4.2 + 7.5 cm. So, deformations, from drift or bad
registration of the ZEB1 point clouds, are not observed in the eight plots.

In comparison to field DBH measurements, the FAROS5 and ZEB1 setups show similar reliable
DBH estimates, with a bias lower than —0.2 cm and a RMSE lower than 1.5 cm (Figure 8, Table 4). DBH
of almost all correctly-detected trees is determined with an accuracy of <3 cm (respectively 96% and
98% of the trees scanned for FAROS and ZEB1). These rates decrease to, respectively, 78% and 73%
for an accuracy <1 cm. The bias and the RMSE of FARO1 is much higher compared to the two other
setups with a relative RMSE of 13.4%, while it is less than 5% for the others setups. The FAROL1 setup
results in a clearly worse performance of the DBH determination showing that the circle-fitting used in
our method is not able to deal with incomplete scanning of tree stems, where the algorithm has no
problem estimating DBH with the “noisy” data from ZEBI.

Table 4. Summary statistics of DBH fitting of all the trees detected by each setup. The root mean square
error (RMSE) in percentage is the RMSE divided by the mean DBH.

Setup Bias RMSE (cm) RMSE (%)
FARO1 —-1.17 3.73 13.4
FAROS5 —-0.17 13 4.7

ZEB1 —0.08 1.11 41

Depending of the scanning method, one or two factors at the tree level have a significant effect on
DBH estimates: the bark-roughness of the species (smooth or rough) and the size of the tree (DBH).
For FARO1, only the bark-roughness has a highly significant effect on the accuracy of DBH estimates,
with a higher negative bias for species with rough bark (p = 0.00016). For FAROS, the size of the
tree and the bark roughness with the mean slope of the plot have a significant effect on the accuracy
of DBH estimates (p = 0.0001). Finally, with ZEBI, both tree level factors have a significant effect
on the accuracy of DBH estimates (p = 2.2 x 1071¢), but the random factor plot is also significant
(p =27 x 1075). The significance of the factor plot may hide the influence of another variable as the
registration quality with the SLAM algorithm. Nevertheless, the Figure 8 shows the high relationship
between DBH accuracy and size of the trees for ZEBI.
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Figure 8. On the left, scatterplots of the DBH measured with the tape versus the DBH derived from
the different LIDAR data of all the trees detected. The dashed line shows the 1:1 line and the solid line
the trend-line. On the right, the diameter difference between DBH estimates from LiDAR and DBH
measured in the field with a tape (the y scale of the residual plot of FARO 1 is different to the other
residual plots). The solid grey curve is composed of local fitted lines (LOESS fitting with a span of
2/3) for the species classified as smooth bark species and the long dashed red curve shows local fitted
lines for the rough bark species. The y values of the horizontal dotted lines are, respectively, 3 cm and
—3 cm, which are threshold values discussed in the results.

4. Discussion

The SS method has on average a tree detection rate of 80% in all boreal and temperate forest types
(Table S1). With SS, scanning trees at 1.3 m height in sloping terrain is more difficult as branches above
1.3 m height of the surrounding trees occlude the stems of the trees of the lower part of the plot and
low vegetation (under 1.3 m height) occlude the stems of the upper part of the plot. The MS method
increases the tree detection rate to more than 95% for plots with an area of less than 0.15 ha. The use of
a HMLS allows a better tree detection rate than MS TLS and with a very competitive acquisition time.
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The HMLS combined with SLAM algorithms have a better registration accuracy in forest environments
compared to the traditional MLS registering process, which uses GNSS data. Nevertheless, the high
beam divergence of the HMLS reduces the penetration of the laser through the understory compared
to the scanner used in TLS.

For plots with an area of less than 0.10 ha, SS and MS TLS methods, as well as HMLS using
SLAM algorithms, produce suitable DTMs. The SS approach can then be used for DTM production
in traditional forest inventory plots in order to combine it with ALS data. The ability of TLS to
directly measure the height of the canopy top is limited because of occlusion. Due to the limited
range and the high beam divergence of the HMLS it is also not possible to get reliable information of
the canopy top. HMLS with a higher range and a lower beam divergence still needs to be tested for
canopy top description. Otherwise, the combination of TLS data with aerial information as ALS or
photogrammetric point cloud will offer a unique complete 3D description of the forest structure.

Comparing SS and MS DBH estimates with the same scanner show that partial information of
the cross section of the trees limits the accuracy and the precision of the DBH estimates (Table S1).
Moreover, the roughness of the bark seems to have influence in the accuracy of TLS DBH estimates
based on circle fitting, as Brolly and Kiraly [42] noticed. The low precision of the HMLS scanner and
the use of the SLAM algorithm for the registration do not impact the global accuracy and precision
of DBH estimates. Nevertheless, with the HMLS, the DBH accuracy may be significantly influenced
by the quality of the SLAM registration in the plot and the size of the tree. The influence of this
last factor is also noticed by Ryding et al. [35]. The roughness of the bark also seems to have an
influence. The high completeness of the cross-section scanned with HMLS could also reintroduce other
methods for estimating the basal area of the cross-section, such a polygons [43], free-form curves [44],
or mesh adjustment.

The high influence of the size of the tree for DBH estimates of completely-scanned trunks (which
is the case for trees scanned with MS TLS and HMLS) might be explained by two factors. First, the
larger the tree, the more irregular the shape of the base of the trunk is and the rougher the bark is. The
irregularities at the base of the trunk might induce an overestimation of the diameter measured with
the tape as the tape measures the convex hull of the cross-section. On the other hand, least square circle
fitting on irregular cross-sections, as well as on a tree with rough bark, will induce lower diameter
estimation than tape measurement as the concave parts of the irregular cross section and of the bark
weight in the circle fitting. Secondly, the smaller the tree, the higher the chances that the tree will have
low branches and having other small trees with low branches surrounding it. These low branches
will have an influence in the least square circle fitting by inducing an overestimation of the diameter.
Due to its high beam divergence, the HMLS is more sensitive to these small branches than the MS
TLS approach.

The algorithms used to extract DBH still need improvements at two levels: the estimation of
the breast height (1.3 m) and filtering the false trees detected. The challenging issues of these two
points are not often discussed in the forestry TLS literature, whereas some other studies also show
a high proportion of false trees (11% in [14], 12% in [45], 0%~1.4% in [42], 1%—2% in [46], 6% in [47],
and 14.4% in [28]). Results which are influenced by the DBH threshold chosen in their studies. In
forestry, the ground level (height = 0 m) is defined as the highest point of the ground around the tree.
The algorithms used to extract the DBH do not always use this definition. The comparison with field
measurement could then be more difficult if the breast height is not marked on the trunk for comparing
the point of measurement prior to the analysis of the DBH estimates. In this study we adjusted the
theoretical height of the algorithm to be, on average, in accordance with the point measurement used
in the field.

The use of PLS, such as HMLS, for scanning the forest is promising for the description of the 3D
structure of the forest. These scanners will be able to scan larger areas than TLS. The registering success
is still a challenging issue when the SLAM algorithm is used with the HMLS data as 20% of the plots
were not registered properly and DBH estimates of the remaining plots were also influenced by the
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quality of the registration (significance of the random effect of the plots). In addition to improvements
in the registering process, a scanner with a higher range and a lower beam divergence will increase the
quality of scanning forest with HMLS. With the current equipment it is not possible to scan the top of
canopy and determine tree height, which would be important to estimate, e.g., timber volume and
biomass accurately.

5. Conclusions

The use of a human operator as a mobile platform for laser scanning will significantly reduce the
actual limitation for acquisition of 3D laser data in forests. The recent progress in automatic registration
of scans and the reduction of the weight of the scanners has taken laser scanning to an operational
level to retrieve the 3D structure of the forest and for forest monitoring. When acquisition speed is
most important, Single Scan TLS is fastest, but the analysis of these data shows that a large number
of trees remains undetected and the partial scanning of the trees results in low usability. HMLS is
faster than Multi Scan TLS and yields better results for a number of tree parameters (DBH and tree
detection). However, due to the limited range of the ZEB1 used in this study, the canopy is poorly
described, resulting in a low usability of HMLS for heights above 15-20 m. With HMLS, almost the
entire section at breast height of all of the trees is scanned, which will reintroduce other methods than
circle or cylinder fitting to estimate basal area and volumes at the stand level. The actual challenging
issue are processing scanner data at the plot or stand level. Automatic tree detection still needs to
be improved and the volume estimates of the trees processed at the stand level need to be validated.
Relating these data to other remote sensing data will offer new, accurate field data to upscale forest
parameters, such as basal area or stand volume.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/7/6/127,
Figure S1: Images of the 10 forest plots studied, Table S1: Summary of experimental design, scanner settings,
and methodologies of previous studies on automatic stem detection and DBH extraction from TLS data for
forest inventory.
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4.1. Preamble

Biomass model
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In this chapter, we aimed to better include the specificities of the irregularly shaped
stems into the entire workflow for estimating the aboveground biomass and biomass
change in tropical forests. We used the technologies tested in the previous chapters to
measure and model irregularly shaped stems.

This chapter is written in the following scientific peer-reviewed paper: Bauwens, S.,
Ploton, P., Fayolle, A., Ligot, G., Loumeto, J. J., Lejeune, P., & Gourlet-Fleury, S.
(2021). A 3D approach to model the taper of irregular tree stems: making plots
biomass estimates comparable in tropical forests. Ecological Applications, 31(8),
e02451.
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Ecological Applications, 31(8), 2021, e02451
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A 3D approach to model the taper of irregular tree stems: making
plots biomass estimates comparable in tropical forests
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Abstract. In tropical forests, the high proportion of trees showing irregularities at the stem
base complicates forest monitoring. For example, in the presence of buttresses, the height of the
point of measurement (Hpownm) of the stem diameter (Dpowm) is raised from 1.3 m, the standard
breast height, up to a regular part of the stem. While Dpop is the most important predictor for
tree aboveground biomass (AGB) estimates, the lack of harmonized Hpoy for irregular trees in
forest inventory increases the uncertainty in plot-level AGB stock and stock change estimates.
In this study, we gathered an original non-destructive three-dimensional (3D) data set collected
with terrestrial laser scanning and close range terrestrial photogrammetry tools in three sites in
central Africa. For the 228 irregularly shaped stems sampled, we developed a set of taper mod-
els to harmonize Hpowm by predicting the equivalent diameter at breast height (DBH’) from a
Dpom measured at any height. We analyzed the effect of using DBH’ on tree-level and plot-
level AGB estimates. To do so, we used destructive AGB data for 140 trees and forest inventory
data from eight 1-ha plots in the Republic of Congo. Our results showed that our best simple
taper model predicts DBH' with a relative mean absolute error of 3.7% (R* = 0.98) over a wide
Dpom range of 17-249 cm. Based on destructive AGB data, we found that the AGB allometric
model calibrated with harmonized Hpoy data was more accurate than the conventional local
and pantropical models. At the plot level, the comparison of AGB stock estimates with and
without Hpoy harmonization showed an increasing divergence with the increasing share of
irregular stems (up to —15%). The harmonization procedure developed in this study could be
implemented as a standard practice for AGB monitoring in tropical forests as no additional for-
est inventory measurements is required. This would probably lead to important revisions of the
AGB stock estimates in regions having a large number of irregular tree stems and increase their
carbon sink estimates. The growing use of three-dimensional (3D) data offers new opportunities
to extend our approach and further develop general taper models in other tropical regions.

Key words:  allometric aboveground biomass model; biomass changes; buttresses; close-range terrestrial
photogrammetry; point of measurement of stem diameter; stem profile; structure from motion; taper; terres-
trial laser scanning.

aboveground biomass (AGB, Fig. 1). Tree biomass esti-

INTRODUCTIO
NTRODUCTION mates are then summed at the plot scale and the result-

Tropical forests play a key role in the terrestrial global
carbon cycle (Pan et al. 2011), but their estimated con-
tribution and response to global environmental changes
are still subject to a high degree of uncertainty (Mitch-
ard et al. 2013, 2014, Phillips and Lewis 2014).

Estimates of forest carbon stocks are mainly based on
indirect tree-level biomass estimates, using allometric
models to convert forest inventory data into

Manuscript received 11 December 2020; revised 11 March
2021; accepted 6 April 2021; final version received 31 August
2021. Corresponding Editor: Yude J. Pan.

© E-mail: Bauwens.sebastien@gmail.com

ing plots biomass estimates are then upscaled to larger
areas (e.g., a landscape, a region, a country) using
design- or model-based inference approaches, with or
without ancillary data (Gibbs et al. 2007, McRoberts
2010, McRoberts et al. 2010, Clark and Kellner 2012).

It has been demonstrated that the propagation of
errors from tree measurements to large-scale carbon
stock estimates largely depends on the choice of the
AGB allometric model (Chave et al. 2004, Zhao et al.
2012, Molto et al. 2013, Chen et al. 2016). In the tropics,
general (multispecies) AGB models are most commonly
used to predict tree AGB (Brown ct al. 1989, Overman
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T1c. 1. Conventional (left) and original (right) workflows for plot-level aboveground biomass (AGB) stock and stock change

estimates. In the original workflow, the height (Hponm) of the measured Dpoy 1s harmonized at breast height (i.e., 1.3 m) and the
resulting equivalent diameter at breast height (DBH') is computed with a taper model before estimating tree AGB of the trees with
irregular stems in the forest inventory plots. The taper model and the AGB model used in this study are based on three-dimensional
(3D) data and destructive data, respectively. In the original workflow, the AGB model has DBH as one of its predictors (i.e., Dpom
for regular stems and DBH’ for irregular stems). The performances of the AGB model from the original workflow are tested in this
study and the plot-level AGB stock and stock change estimates of the two workflows are compared. Other variables: p, wood den-

sity; TH, total tree height.

et al. 1994, Higuchi et al. 1998, Chave et al. 2005, 2014,
Nogueira et al. 2008, Fayolle et al. 2013, 2018). General
allometric models typically use tree diameter (Dpom)
measured at the point of measurement (POM), which is
either the 1.3-m reference height or above any deforma-
tion, total tree height (TH), and species average wood
basic density (p) as predictors.

When developing AGB models, an important step of
model diagnosis consists of assessing how model error
varies with change in fitted or predictor values. The
pantropical AGB model of Chave et al. (2014), which is
the most widely used model, shows a clear error pattern
with trec biomass, with a large AGB overestimation for
small trees and an underestimation for large trees
(>20 Mg, Fig. 2 in Chave et al. 2014). Using the publicly
available data set of Chave et al. (2014), it can be shown
that the error shows a similar structure with tree diame-
ter, with a positive mean relative error for trees with
diameter <140 cm (mean = 14%, median = 7%, and
n =3,988) and, a negative mean relative error for the
trees larger than 140 cm (mean = —14%, median =
—16%, n =16 and a maximum diameter of 212 cm).
This systematic underestimation of AGB for large trees
has been found in independent studies using this
pantropical model or a similar AGB model functional
form (i.e., a power model based on the compound

variable p x D*pom X TH) in Amazonia (Goodman et
al. 2014, Gonzalez de Tanago et al. 2018, Lau et al.
2019) and central Africa (Ploton et al. 2016, Bauwens et
al. 2017). A hypothesis to explain this bias is that varia-
tion in crown-diameter allometry, either across sampling
sites (Goodman et al. 2014) or during tree ontogeny
(Ploton et al. 2016), is not fully captured by the model’s
predictors (i.c., Dpom, TH, and p) while it influences tree
allometry. Another hypothesis for the underestimation
of large tree AGB is that such trees often present defor-
mations (e.g., buttresses) at the standard breast height
(i.e., 1.3 m) so that the measured diameter (Dpon) 1S
taken higher and is systematically lower than the cquiva-
lent diameter at breast height because of stem taper.
Bauwens et al. (2017) developed a method based on 3D
data to harmonize the height (Hpoym) of the measured
Dpom by computing the equivalent diameter at breast
height (DBH’), which is defined as the diameter of a cir-
cle having the same area as the measured basal area at
1.3 m height. Using destructive biomass data from
Cameroon, the authors demonstrated that using DBH’
instead of Dpoy in a published AGB model reduced the
AGB underestimation for large trees with an irregular
stem (Fig. 4 in Bauwens et al. 2017). This last method
has operational perspectives as DBH’ could be estimated
from correction models previously fitted on 3D data
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without requiring additional measurements in forest
inventories.

Across 97 1-ha forest inventory plots in central Africa
(from a subsample of Ploton et al. 2020), Hponm values
greater than 1.3 m represent 9% + 9% (mean + standard
deviation) of the trees with Dpgoy < 70 cm and this pro-
portion rises to 55% + 31% for trees with Dpon > 70

cm, suggesting that trees with irregular stem base domi-

nate among large tropical trees in this region. Since large
trees disproportionally contribute to AGB stocks (Lutz
et al. 2012, Slik et al. 2013, Bastin et al. 2015), any sys-
tematic errors in AGB prediction induced by the use of
non-standard Hpom would have an important influence
on plot AGB estimates and associated uncertainties
(Cushman et al. 2014, Muller-Landau et al. 2014). The
influence of this error pattern on the changes of the bio-
mass stock over time is less easy to apprehend since bio-
mass production is not driven by large trees (Ligot et al.
2018). Therefore, it remains unclear how the abundance
of trees with irregular stem bases could affect estimates
of stand biomass productivity and carbon capture. In all
cases, the conversion of Dpoy to DBH’, whether using
taper models (Cushman et al. 2014, Bauwens et al.
2017) or empirical statistical models (Ngomanda et al.
2012, Bauwens et al. 2017), has the potential to improve
plot AGB estimates and their comparison (among plots
and over time). The use of a taper model compared to
empirical statistical models has the advantage to be less
sensitive to field protocol for measuring the diameter of
trees with irregularities at the standard height (e.g. of
field protocols: Dpony measured 30 or 50 cm, 1 m, or
even more above the buttresses).

In this study, we developed a correction procedure
aiming to harmonize the Hpopm by estimating DBH', the
equivalent diameter at the standard breast height
(1.3 m), for irregular tree stems and assess its effect on
biomass estimates at the tree and plot level. Specifically,
we (1) used 3D tree data to develop a general taper
model that predicts DBH' from information available in
conventional forest inventories. Then we (2) used
destructive AGB data to assess the potential fit improve-
ment in allometric models by using DBH’ in the AGB
predictors instead of Dponm. We also assessed the predic-
tion error of the pantropical AGB model when using
DBH' instead of Dpoyy in the model. Last, we (3) used
forest inventory data to evaluate the effect of the Hpoym
harmonization on biomass stocks and stock changes at
the plot level, considering our local AGB model fitted
with DBH' as the reference.

MATERIAL AND METHODS

The taper study sites

We collected 3D data on 228 trees, distributed in three
sites in central Africa. A total of 40 trees were sampled
in the first site in Cameroon (14°6.867' N, 14°33.133' E)
using terrestrial laser scanning (TLS), 102 trees were

3D TAPER AND TROPICAL FOREST BIOMASS

Article €02451; page 3

sampled in the second site in the Republic of Congo
(2°22.520' N, 17°4.771' E) using close-range terrestrial
photogrammetry (CRTP), and 86 trees were sampled in
the third site in the Democratic Republic of Congo
(0°12.057" N, 25°20.580' E) using TLS (Appendix S1:
Table S1). We recorded the tree species, the Hpopy, and
the Dpom of each sampled tree. Hpoy was measured
using a laser rangefinder device (VERTEX IV) and
Dpoym Was measured with a tape or, if the height of mea-
surement was too high (Hpom > 4.5 m), in the lab by
automatically extracting Dpoy at the required measured
Hpom with the 3D data from TLS or CRTP. Before col-
lecting 3D data of the trees, we cleared the small vegeta-
tion (stem with diameter <5 cm and leaves) and small
lianas up to 2 m high in a radius <2.5 m around the
focal trees.

We selected 11 abundant focal species with potential
stem irregularities and for each of them, we sampled at
least five trees spanning a diameter range as wide as pos-
sible. To expand our analysis to a large variety of stem
shapes, we also selected less abundant species with con-
trasted stem irregularities and species with more regular
stems. For the analyses, we defined a categorical variable
called “species” that separately includes the focal species,
two other species with more than five trees measured
and having contrasted shapes (Emien, Alstonia boonei
De Wild with its potential fluted trunk and Iroko, Mili-
cia excelsa (Welw.) C.C. Berg with its more regular
shape), and a group containing the species with fewer
than five trees (totaling 32 trees). The variable species
thus contains 14 categories (11 focal species, two other
species with more than five trees, and one group of other
species with 31 trees, Appendix S1: Table S1).

Post-processing of 3D point clouds

We extracted trunk metrics of the 3D point clouds
obtained from TLS and CRTP by following the work-
flow detailed in Bauwens et al. (2017). The outputs are
cross-sections realized every 10 cm along the stem axis
up to 1 m above the Hpoy of each tree. For each cross-
section (Fig. 2), we extracted (1) diameter of a theoreti-
cal circle with area equal to the real area of the cross-
section at that height / (Dyrea s, in m), (2) the convex hull
length that imitates a tape tight around the stem, express
in equivalent diameter (Dconviun,s in m), and (3) the
perimeter expressed in equivalent diameter of a circle
with the same perimeter(Dperim, 5 in m).

Taper profiles of irregularly shaped tree stems

Most taper models require total tree height to express
height in relative terms. Tree height is, however, difficult
to measure in tropical forests and subject to large mea-
surement uncertainties due to a frequently high, dense,
and multi-layered canopy. This variable, hence, is not
systematically available in forest inventory data sets. We
therefore tested a variety of taper models (Appendix Sl1:
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Deonvhull1zo
-’\ Dperim 130

HPOM

F1G. 2. Main attributes used in the taper models. The cross
section extracted from the 3D data at the standard breast height
(1.3 m) is indicated with all the types of measurements used in
the study.

Table S2) that do not require total tree height as an
explicative variable and that rely on few parameters to
ease further analyses. Based on the best Akaike Informa-
tion Criterion (AIC =2k —2In(L)), the Root Mean

o~ 2
Square Error (RMSE = \/l/n - Y (Dareaik — Darear ) )

and the simplicity of the model, we finally selected the
following model:

D h([
oLty )]
POM

Dureu,l =

with Dyrea s, the equivalent diameter of the cross-section
area / at the height /; (in m); Dpoy, the diameter mea-
sured in the field (50 cm above the buttresses or above
other local deformations; in m); /;, the height / above the
ground and along the stem at which D, is predicted
(in m); Hpom, the height of measurement of Dpom (in
m); and a, the taper parameter.

Prediction of the taper parameter

After identifying the taper model that fits the best at
the tree level, we generalized Eq. 1 to predict the most
reliable equivalent diameter (DBH') for any trec mea-
sured in forest inventories (Eq. 2). We used different
covariates that would potentially explain individual vari-
ations of the taper parameter ;. These covariates are
the species and the site (both categorical covariates) and
quantitative trunk metrics based on measured (or easily
measurable) variables in forest inventories: Dpon,
Hpom, Deonvhunizo, buttresses convex taper (bct), slen-
derness coefficients (4:d, h:d, hd., h:dcz), hardiness
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coefficient (hdn), and the deficit basal area index
(DeBA) (definitions in Appendix S1: Table S3).

When fitting the general taper model, we took into
account the hierarchical structure of the data, which
relies on the multiple stem measurements realized
along each sample tree. We grouped these within-tree
observations (/) into upper hierarchy levels: tree (k),
species (j), and site (i) (several trees per species and
per site). Within-tree observations are likely to be cor-
related with the correlation as a function of distances
between measurements (Tasissa and Burkhart 1998).
This violates the assumption of independence required
to apply the nonlinear least squares method, resulting
in unbiased parameter estimates but biased and incon-
sistent estimates of their variance (West et al. 1984).
Mixed-effects models allow autocorrelation to be at
least partly accounted for by including random effects
(Burkhart and Tomé 2012). The random effects are
assumed to follow a multivariate normal distribution
with a mean of zero and a positive-definite variance-
covariance matrix. In addition to the mixed-effect
approach, the reduction of the correlations among
within-tree observations was taken into account with
the first-order continuous autoregressive structure. Eq.
1 thus became

i jk
Dromijichi

Qij ke
H POMij k

Diyrea ikl = + Eijki (2)

with

aiji =By +b1i+b1ij+b1ijk) +BrDpomijk + Bl deijg
+Bah: 7, +PBsSPi_X + B Deonvhulliz0i k
+ B, Site_X + ...+, X, 3)

Darea ijii 18 the equivalent diameter of the cross-section
area at height / for tree k belonging to species j in site i,
a;;« is the taper model parameter for tree k belonging to
species j in site i. p = (fy,..., B,,) are the fixed effects (gen-
eral parameters), b, ; is the site-level random effect, b; ;;
is the species within site-level random effect and by ;4 is
the tree within the species and site and e, is the within-
group residual error. Sp; X and Site_X are dummy
covariates. The random effect b; , is assumed to be inde-
pendent for different i, b ;; is assumed to be indepen-
dent for different 7, j and independent of by ;, by ; is
assumed to be independent for different 7, j, k and inde-
pendent of b; ;; as well as independent of b; ;. The &,
are assumed to be independent for different i, j, k, / and
independent of the random effects. The vector of tree
random effects and the vector of within-tree residual
error terms (g;) are both assumed to be multivariate nor-
mally distributed (Lejeune et al. 2009). The variance—co-
variance matrix of the within-tree error terms (R;) was
modeled through a first-order autoregressive correlation
structure (Eq. 4) and an exponential function of the
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variance covariate (Eq. 5), which provided the best fit

Q)

corr(egut, egut) = pyea! = plis ]

Var (gju) = o2exp (285, vigea) ®)
where 8 is a vector of variance parameters for each level
of the stratification variable S (the species in the study)
and vy, is a vector of variance covariates.

We tested the different fixed-effects covariates in the
nested models using a stepwise backward approach
and we evaluated the significance of a fixed parameter
by using conditional t-tests (Pinheiro and Bates 2006).
We compared the models fitted by maximum likeli-
hood with a different number of fixed parameters by
means of likelihood ratio tests including, in the final
stage, models with the variance function and the auto-
correlation structure. All models were also evaluated
based on the distribution of the residuals, the RMSE,
the RMSE of the cross-sections at 1.3 m only

(RMSE,130 = \/(l/nk)zrllk (BareaISO,k - Darea130,k)2)
and the AIC. In the case of the general taper models
(Egs. 2, 3), we also included the mean absolute error
(MAE =(1 /”)Z'ﬂﬁl,k — Dyz|) as it is less sensitive to
large individual errors than RMSE. Relative RMSE and
MAE were computed by dividing them with the mean
tree diameter Dpoy of the data set. We finally selected
the best models based on all covariates and on covariates
commonly available in forest inventory data. Nonlinear
mixed effects models were fitted with the nlme package
in the R statistical environment (Pinheiro et al. 2012).

Effect of the Hpoar harmonization

Tree-level AGB estimates.—In order to assess the rele-
vance of the Hpon harmonization in biomass predic-
tion, we compared the performance of AGB allometric
models using as the main predictor, alternatively Dpom
(with Hpoym > 1.3 m) or DBH, the harmonized diameter
at breast height (i.e., Dpoy for trees with Hpoym =1.3 m
or DBH/, the equivalent DBH for trees with Hpoy > 1.3
m). For this analysis, we used destructive measurements
available for 140 trees (Appendix S1: Table S4) sampled
in northern Congo in the frame of the PREREDD+ pro-
ject (Fayolle et al. 2018) in a site close (18 km) to the sec-
ond site of the taper study. Note that the basal area was
indirectly measured on each stump by photographing
the cross-sections of the stump covered with a graduated
Plexiglas. The images were then orthorectified and the
stump cross-sections were digitized in a GIS software
allowing an accurate estimate of the stump area (Fayolle
et al. 2013, Bauwens and Fayolle 2014, Bauwens ct al.
2017). For trees with Hpoym higher than the breast
height, the equivalent diameter at breast height (DBH')
was thus computed by back-transforming the log(DBH')
from the linear interpolation of the couple of points
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IOg(Darea_smmp) - log(Hclump) and log(DP()M) - log(HP()M)
In this destructive biomass data set, DBH’ is thus inter-
polated and not estimated from a taper model and could
then be assumed as a measurement.

Using the destructive biomass data set, we tested (1)
the assumption that using the DBH instead of Dpoy in
the pantropical allometric model developed by Chave et
al. (2014) reduced the negative bias encountered on large
trees and (2) compared the quality of local biomass
models fits based on Dpon or DBH.

The pantropical model tested here is the model 4 in
Chave et al. (2014), mpan in Table 1. For local biomass
models, we used the same functional form fitted on the
destructive biomass data set using either Dpoys (here-
after mpoc.ppom) or DBH (hereafter myoc.ppa) as the
tree diameter predictor (Table 1).

The relevance of each of AGB estimates from the
four approaches (i.e., AGBpan.orom, AGBpaN.DBH,
AGBLoc.prom, and AGB;oc.psr) Was assessed by the
mean error

<% x §1 (AGB, - AGB,-))

the mean relative error

1 i AGB; — AGB;
n = AGB;

and using a ¢ test to gauge the presence of bias. The per-
formances of the local AGB models (i.e., mroc-prom
and mroc.ppH) Were also assessed with their respective
AIC.

Plot-level estimates of AGB stock and stock change.—
Finally, we assessed the impact of the Hpom harmo-
nization at the 1-ha plot scale using eight permanent
sampling plots located in the second site in the north
of the Republic of Congo (see Panzou et al. 2018,
Forni et al. 2019 for further details of the site). For
this assessment, we compared the plot AGB estimates
from the four approaches: Pan-Dpon, Pan-DBH, Loc-
Dpom, and Loc-DBH (Table 1). For the two
approaches requiring DBH, we first estimated the
equivalent DBH (i.c., DBH’) of the trees with Hpopn >
1.3 m. Then, we estimated the height of each tree in
the plots using height-diameter allometry models cali-
brated on the destructive biomass data set. Two dis-
tinct height-diameter models were fitted and used
depending on whether the approach required Dpom
(TH-Dpom model) or DBH (TH-DBH model) as pre-
dictor. We then estimated total plot AGB by summing
tree-level AGB estimates derived from the four
approaches. The plot AGB estimated with the myoc.
pey model was used as the reference, and compared
with the three other sets of AGB estimates.
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TaBLE 1. Aboveground biomass (AGB) models retrieved from
the literature (mpan) or fitted in this study (mo0c.ppom and
Myoc-DBH)-

S. BAUWENS ET AL.

Model and

approach Equation

MMPAN 0.976
Pan-Dpom AGBpan_prom = 0.673 x (p x Doy x TH)
Pan-DBH  AGBpan_ppu = 0.673 x (p x DBH2 x TH)"”"*

mMLoc-DPOM Lots
Loc-Dpovt AGBroc-prom = 0.043 x (p x D3y x TH)

MLOC-DBH Loo1
Loc-DBH  AGBroc-pei = 0.049 x (p x DBH? x TH) "

Notes: Model predictors are the basic wood density (p, in
glem?), the total height of the tree (TH, in m) and, the reference
stem diameter measured at 1.3 m or above any deformation
(Dpowm, in cm) or the diameter at breast height (DBH, in cm),
which includes a mix of Dpoy for trees measured at 1.3 m
height and the equivalent diameter at breast height (DBH', in
cm) for diameter Dpoy measured above any deformation
(Hpom > 1.3 m).

Following the same procedure, we assessed the effect
of Hpom harmonization on plot AGB stock changes
using inventory data collected 4 yr after the first census.

REsuLTs

Variability in the stem profile

We first fitted the taper model (Eq. 1) to each tree sep-
arately and thus obtained one taper parameter a; for
each of the 228 trees. The values of the taper parameter
a were normally distributed around a mean of
—0.123 £ 0.049 (Appendix S1: Fig. S1). The RMSE of

IROKOq n =
owoM {n =17
TALI{n =14
AVODIRE{ n =8

SAPELLI{n =18
AYOUS {n =13

P
—{d__F+—
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the predicted diameters was 3.8 cm for trees with a
Dpowm ranging from 17 cm to 249 cm.

There was a high intraspecific variation in « for most
species (Fig. 3 and Appendix S1: Fig. S2) except Sapelli
(E. cylindricum), Iroko (M. excelsa), and Emien (4. boo-
nei). An interspecific variation of a was also noticed,
with Iroko (highest mean value, ¢ = —0.062) and Ako
(lowest mean value, ¢ = —0.180) being the species for
which a deviated the most from the average. A virtual
Iroko (resp. Ako) tree with Dpoym = 100 cm  and
Hpom = 3.3 m (Hpom frequently encountered for these
species, see Appendix S1: Table S1), would have a DBH’
of 106 cm (resp. 118 cm). Note the average difference
between Dpoy and DBH' on the 228 trees is —12 cm.

Toward a general taper model

After assessing the potential of Eq. 1 to fit the taper of
each of the 228 trees with 3D data, we generalized the
model by fitting Eq. 2 using all the cross-sections of the
228 trees in one single model. We tested many covariates
in Eq. 3 to accommodate for individual variations of the
taper parameter a;;. Among all the fixed covariates
tested, /:d, (P = 0.003, F = 8.6) and /:d® (P = 0.0004,
F = 12.7) were found to be significant and kept in model
ml (RMSE = 6.9 cm, MAE = 3.7 cm, mean error =
—0.9 cm, Table 2). To obtain an operational taper model
that can be applied in any forest inventory plot in central
Africa, despite their significance we removed some
covariates such as Deonvhunizo and metrics related to
Deonyhunizo (€.g., :d,), leading to the model m2 with
only Dpowm as significant covariate (P < 0.001, F = 15.2,
Table 2). The parameters of the selected covariates for

| —{F _}
; ——{To ]

—— o I}

—— 1O

|7

» 1 1
& EMEN(n=11 . Le pITF o+ .
& PADOUK {n =26 —— %
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Taper parameter a of Eq. 1

FiG. 3.

Taper parameter a of each taper model fitted at the tree-level (Eq. 1) and grouped by species. Solid and dotted vertical

red lines represent the mean and the mean + SD of a across all species, respectively.
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TaBLi 2. Goodness of fit of the general taper models (Eq. 2) with different fixed covariates used to predict the taper parameter
Aij k-

RMSE (cm) MAE (cm) Mean error (cm)
Models Fixed covariates All 1.3 All 13 All 1.3 df
ml a~ hd, + hd? 7.0 (7.0%) 7.0 (7.6%) 37(B.7%)  4.2(4.5%) —0.9 (-0.9%) —0.9 (-0.9%) 21
m2 a ~ Drom 7.8 (7.8%) 8.0@8.7%)  40(40%)  4.7(5.1%) -1.5(-1.5%) —1.5(-1.6%) 20

Notes: The root mean square error (RMSE), the mean absolute error (MAE), and the mean error were computed over all the
cross-sections as well as for cross-sections at a 1.3 m height only. The model m1 requires A:d, covariate (definitions in Appendix S1:
Table $3), which is based on Dgonyiaiise, @ variable not routinely measured in forest inventory. For model m2, before the selection
of the significant covariates in the fitting process, we only selected covariates that are based on conventional measurements in forest

inventories.

TaBLE 3. General fixed parameters for the two general taper
models of the Table 2.

Parameter Covariate ml m2
B1 (Intercept) -0.129 —-0.156
B2 Drom 0.048
B3 hid, 0.014
Ba h:d? —-0.004

Note: The parameters correspond to the equation

aye = B1 + bri + b1y + b1ix) + P(Drom) + Pa(rd,) + Ba:d®)
(Eq. 3).

ml and m2 are provided in Table 3. In comparison to
the taper model fitted on individual trees (see section
“Variability in the stem profile”, RMSE = 3.8 cm), using
a general taper model increased the RMSE by 3.2-4 cm
depending on the model, resulting in RMSE values of 7
and 7.8 cm for m1 and m2, respectively (Table 2, Fig. 4).

The inclusion of the correlation structure (Eq. 4) in
the final step of the model selection removed almost all
the correlations (Appendix S1: Figs. S4, S5). Conse-
quently, the number of significant covariates was
reduced and overfitting avoided. Nevertheless, we addi-
tionally tested the site effect at the species level, for the
three species having balanced sampling between second
and third sites, namely Dabema, Ohia, and Padouk
(Appendix S1: Fig. S2b). The Student ¢ test performed
on the taper parameter did not reveal any significant site
effect for these three species, with, respectively, P = 0.06
(df =10.2), P = 0.4 (df = 18.7), and P = 0.8 (df = 9.9).
In addition, using nonlinear mixed models fitted for
each species separately and including the site, 4:d,, and
h:d? as covariates provided the same results. We also fur-
ther investigated the species effect and found that includ-
ing Deonvaunizo (or derived metrics as /#:d.) can
compensate, in addition to other metrics, the absence of
the species covariate and even outperform models
including the species factor in terms of RMSE and Bias
(results not shown).

The estimated equivalent diameter DBH’ with the
models m1 and m2 have an RMSE of 7 cm and 8 cm,
respectively (Table 2). DBH’ predicted with model m1
do not show any important bias (mean error = —0.9 cm)
and, following Pifieiro et al. (2008), the comparison of

observed vs. predicted DBH' lead to a coefficient of
determination of 0.98 with no significant deviance to the
line 1:1 (Table 2 and Appendix S1: Fig. S6A). The
DBH’ predicted with model m2 are, on average, slightly
underestimated (mean error = —1.5cm) and more
specifically for very large trees (Table 2, Appendix S1:
Fig. S6B).

Effect of Hpoar harmonization on tree-level AGB
estimates

Based on the destructive data available for 140 trees,
we compared the prediction error associated with the
use of DBH and Dpgy in AGB models following four
approaches (Pan-Dponr, Pan-DBH, Loc-Dpoy, and
Loc-DBH, Table 4). The mean prediction error for
AGBpaN-pPOM CStimates was slightly different from zero
across all trees sizes (mean = —0.348 Mg, P = 0.017)
and significantly different from zero for large trees (i.e.,
Dpom = 70 cm, mean = —1.430 Mg, P = 0.009, Table 4
and Appendix S1: Fig. S7). The relative error was posi-
tive for all the four approaches with a mean relative error
of almost 10% for AGBpan.prH. The unbalanced num-
bers of trees along the diameter range lead to a positive
mean relative error for all the four approaches. Indeed,
this positive mean relative error was mostly driven by
the high number of trees with Dpoy < 70 cm, which
had an overall systematic positive error (Table 4 and
Appendix S1: Fig. S7).

When fitting local AGB models, we found that tree
AGB was better predicted by the model myocper
(AIC = —504) than by M1.oC-DPOM (AIC = —379) with
lower mean errors occurring across all trees sizes
(Table 4 and Appendix S1: Fig. S7). The Akaike weights
(AICw) of these models were, respectively, 0.002 and
0.998, meaning that the local AGB model fitted with
DBH is 0.998/0.002 = 499 times more likely to be the
best model in terms of Kullback-Leibler discrepancy
than the model fitted with Dpon (Wagenmakers and Far-
rell 2004). We thus considered the myoc.ppy model as
our reference model in the plot-level analysis. Note that
the AIC (and AICw) of TH-DBH and TH-Dpoy models
are 836 (0.72) and 838 (0.28) respectively. Allometry rela-
tionships relating either AGB or TH to the tree diameter
thus show better fits with DBH than with Dpop.
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FiG. 4. Equivalent diameters Dy, ; along the stem. D, ; is predicted from (1) the taper models fitted on each tree separately
(green curves) and (2) the general model m1 fitted on all trees (orange curves). Curves represent Dy, ; predictions from the two
approaches for five individual trees from species showing contrasted stem shapes. Ayous (Triplochiton scleroxylon) and Fromager
(Ceiba pentendra) are species with well-developed buttresses. Sapelli (Entandrophragma cylindricum) is known to develop irregulari-
ties at the base of the stem with sometimes buttresses. Emien (Alstonia boonei) is a fluted species and Iroko (Milicia excelsa) has a
more circular stem with some irregularities at the base of the stem for the largest individuals. On the right, the cross-sections of the
five trees for two reference heights: the breast height (1.3 m) and the height of the point of measurement (Hpowm) of the reference
diameter (Dpoym) located 50 cm above the irregularities. The sizes of the cross-sections are proportional within trees but not among
trees.

TaBLE 4. Prediction error of the four approaches tested to tree-level AGB estimates with destructive AGB measurements available

for 140 trees.

AGB prediction Mean error (Mg) Mean relative error (%) MAE (Mg)
approach All sizes Dpoy > 70 cm All sizes Dpoym > 70 cm All sizes Dpoy = 70 cm
PAN-Dpom —0.35% —1.430%* 6.2%% —5.7% 0.87 2.56
PAN-DBH 0.016™ —0.120™ 9.8k 3.0 0.83 241
LOC-Dpom 0.074" 0.250"° 4.4% 1.3% 0.85 2.49
LOC-DBH 0.019" 0.111™ 4.0% 3m 0.82 241

Notes: The significance of a bias in the mean error was assessed with ¢ test (*** for P < 0.001, ** for P < 0.01, * for P < 0.05,

and ns for not significant). MAE is the mean absolute error.

Effect of H poar harmonization on plot-level AGB stock
and stock change estimates

First, we used the taper model m2 to estimate the
DBH’ of trees with a raised POM in the forest inventory
data. Then we predicted tree AGB with the reference
model (i.e., myoc.ppn) and summed AGB for all trees
within a plot. We found, AGB stocks to equal
401 £+ 96 Mg/ha on average (+£SD) and, the annual
AGB stock changes to 6.2 + 0.8 Mg-ha™.yr™! on aver-
age (£SD). The average contribution of large trees
(Dpom = 70 cm) to AGB stock and stock changes were
46% =+ 13% and 26% =+ 7%, respectively. For very large
trees (Dpom > 140 cm), these contributions decreased to
20% =+ 13% and 7% + 3% (Appendix S1: Fig. S8).

Using Dpom to estimate tree AGB (i.e., Loc-Dpom
and Pan-Dpom approaches) led to an underestimation of

AGB stocks at the plot level in comparison with the refer-
ence approach. The magnitude of this underestimation
increased with the proportion of (large) trees with trunk
irrcgularitics (Fig. SA and Appendix S1: Figs. S9, S10).
Depending on the approach used with Dpgyy, the underesti-
mation reached —10% to —15% in the plots with the highest
abundance of trees with Hpoy superior to 1.3 m height.
The estimates of AGB stock changes obtained when
using approaches with Dpoy were not, on average, sig-
nificantly different from those obtained with the refer-
ence approach (P = 0.052 and P = 0.745 for Loc-Dpom
and Pan-Dpoyw, respectively). For some plots, deviations
between the two estimates were, however, larger than
5%, and tended to be increasingly negative as the plot
basal area contribution of trees with Hpon superior to
1.3 m height increased (Fig. 5B). This negative deviation
disappeared when using DBH (i.e., Pan-DBH, the
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Fic. 5. The 1-ha plot-scale relative difference on AGB stock
and stock change between the reference approach Loc-DBH
and approaches using Dpon (Loc-Dpoym and Pan-Dpoy) or the
pantropical approach with DBH (Pan-DBH). The basal area
was computed with DBH; stock was measured as Mg/ha. The
stock change estimates are based on a 4-yr-interval remeasure-
ment; stock change as measured as Mg-ha™'-yr='.

horizontal orange line in Fig. 5B). However, using Pan-
DBH approach led to an average positive deviation of
2.2% (P < 0.001) compare to estimates derived from the
reference AGB model.

DiscussioN
The taper of irregularly shaped stems well captured by a
simple taper model

In this study, we developed general taper models hav-
ing RMSEs ranging from 7% to 7.8% for trees with
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different types of stem irregularities (Table 2). These
RMSE values are similar to the range of values (4.9—
8.5%) obtained with species-specific taper models pre-
dicting tree diameter of the lower stem part of more reg-
ularly shaped boreal conifers species (Garber and
Maguire 2003, Lejeune et al. 2009). Here, our data set
mainly combined irregular tree stems from three sites in
central Africa, including several species and notably cov-
ering a large range of diameters (Dpoym = 17-249 cm).
Our results thus suggest that simple taper models can be
developed and be yet performant, even on mixes of trop-
ical species with contrasted stem irregularities.

An improved AGB allometry when using equivalent
diameter at breast height

We could expect that for trees with irregularities such
as buttresses, using an equivalent diameter at breast
height would have added noise to the relationship
between stem lateral size (diameter, circumference or
basal area) and tree AGB. Nevertheless, we found that
power AGB models calibrated with DBH (i.e., Dpom for
trees with regular stems and DBH’ for irregular stems)
was more accurate than the same model using the con-
ventional Dpoy of all the trees, confirming the results
obtained by Bauwens et al. (2017) for one species. The
improvement brought by DBH over Dpom should be
further studied in other sites and forest types as the dis-
tribution of the model error vs. sampled tree size might
not show the same pattern as the one observed in our
study (sec Fayolle ct al. 2018 for cxamples of various
AGB error pattern according to sites). Moreover, using
DBH to improve the goodness of fit of other types of
AGB models than the power model on the product p X
D? x TH, should be further studied to ensure that DBH
is a reliable predictor for trec AGB estimates of any trop-
ical trees. More complex general allometries with non-
power models or power models with more than one
entry have been shown to provide better fits (Picard et
al. 2015, Fayolle ct al. 2018) and could be investigated
with DBH.

Hpoar harmonization to mitigate AGB estimation bias
induced by the widely used pantropical AGB model

Using the equivalent diameter at breast height (DBH')
in the published pantropical AGB model mpax reduced
the negative bias on AGB estimates for large irregularly
shaped tree stems (Chave ct al. 2014). The reduction of
this “allometric bias” has been earlier demonstrated on a
smaller data set from Cameroon (Bauwens et al. 2017).
At the plot level, using DBH' removed the increasing
negative AGB prediction error observed with the
increasing abundance of irrcgular tree stems. By remov-
ing this error pattern, the Hpoyn harmonization renders
AGB estimates comparable between plots with different
shares of irregular tree stems. However, the harmoniza-
tion led to a systematic positive deviation of plot-level
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AGB estimates of about 2% when compared to estimates
obtained from our reference AGB model (Fig. 5). This
systematic deviation is probably due to the high number
of small trees within plots (D < 70 cm), for which the
systematic overestimation of AGB is more important
when using the pantropical AGB model whatever the type
of diameter used (Pan-Dpoy or Pan-DBH, see Table 4
and the local maxima in the loess curves in Appendix S1:
Fig. S7B). The systematic overestimation of AGB for
small trees could be avoided by segmenting the AGB
power model (Picard et al. 2015). Therefore, in absence of
an AGB model fitted with DBH’, using the published
pantropical AGB model of Chave et al. (2014) with DBH’
is an efficient way to correct for plot-level AGB estimation
bias associated with nonstandard Hpowm, and the overall
small positive bias of 2% resulting from this estimation
approach could be corrected a posteriori.

A higher AGB growth for trees with Hpppr > 1.3 m when
taking into account the Hpg s in AGB estimates

The displacement of the Hpop over time, because of
the height growth of the buttresses, adds an additional
source of uncertainty on tree growth (Cushman et al.
2014, Muller-Landau et al. 2014, Talbot et al. 2014).
Different correction procedures can be used to account
for this uncertainty on tree growth estimates and the
choice of the appropriate correction procedure depends
on the objective of the analysis, in particular, whether it
focuses on among-plot or within-plot AGB changes
(Cushman et al. 2014, Talbot et al. 2014). Nevertheless,
the derivative of the AGB model (mpan OT M1 oc.pBH) 1S
higher when considering the equivalent diameter at
breast height DBH’ for trees with raised POM (see the
slopes of the curves from myoc.ppn in Appendix S1:
Fig. S11). Therefore, tree AGB change between two cen-
suses will be higher when using DBH’ than a corrected
Dpon, Whatever the growth correction procedure. Har-
monizing the Hpoym Would thus limit this growth under-
estimation. To prevent Hpon changes over time due to
the buttress development, an alternative long-term solu-
tion would be to set a new standard height that remains
above buttresses during the whole ontogeny of individu-
als belonging to species known to develop buttresses.
Following this reasoning, Picard and Gourlet-Fleury
(2008) recommended setting the Hpoy at a standardized
height of 4.5 m for all trees of such species. The develop-
ment of new AGB models including this higher standard
POM height for these species would then be necessary
(Muller-Landau et al. 2014).

Reducing uncertainty on plot-level AGB stock change
estimates

At the plot level, AGB stock changes are mainly dri-
ven by the small trees (Ligot et al. 2018), and the diver-
gences in AGB stock changes based on our reference
model and the pantropical model are mainly coming
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from trees with Dpom < 70 cm (Appendix S1: Figs. S9,
$10). The local positive bias for small trees in AGB
power model on the product p x D* x TH should be fur-
ther investigated (Picard et al. 2015) in order to reduce
as much as possible the AGB stock change uncertainty
of small trees. In addition, for AGB stock changes com-
parison among plots, controlling the Hpon Vvariation is
required. Reducing the stock changes uncertainty from
the two uncertainty sources described in this section
would increase the overall carbon sink of structurally
intact tropical forests for example. Note the analysis pre-
sented here looks at AGB stock change over a relatively
short period (4 yr). The difference in AGB stock change
estimates with and without harmonizing Hpoy may
show a different pattern over longer monitoring periods
(higher negative trend or a positive trend) because of the
change in Hpop distribution within a plot through time
and the higher probability of mortality events including
large trees with Hponm > 1.3 m.

Perspectives for improved AGB estimation

The Hpom distribution within forest inventory plots
should be accounted for to avoid any local/regional
AGB negative bias associated with spatial variation in
the abundance of irregular tree stems. Hpowm should thus
be measured and reported in forest inventories, but also
in destructive AGB data sets (Muller-Landau et al.
2014). For instance, the absence of the Hpgy informa-
tion, or any tree morphological characteristics besides
Dpom, TH, and p, in the pantropical data set used by
Chave et al. (2014), strongly limits the investigations on
the error source.

In this study, we have shown that a simple, multi-
specific taper model could be used to mitigate tree-level
AGB estimation bias and its propagation to plot level.
Since 3D data on tropical trees are becoming more avail-
able using TLS technology and the emergence of data-
bases with thousands of trees already scanned and
processed across the globe (e.g., Verbeeck et al. 2019),
we believe there is an unprecedented opportunity to
refine general taper models, or even develop species-
specific models for the most important species. Indeed,
while tropical forests are hyper-diverse, only a handful
of “hyperdominant” species constitute the majority of
the biomass stock (Bastin et al. 2015). Following the
procedure presented here, general or specific taper mod-
els could be easily integrated into automatic biomass
estimation routines, such as in the BIOMASS R package
(Ré&jou-Méchain et al. 2017), to correct tree diameters
from Hpowy variation. The data required for this correc-
tion, Hpom and Dpoy, Is already available in many for-
est inventories and this correction procedure could thus
be performed with no additional burden on AGB model
end users. Furthermore, we could reduce the uncertainty
related to Hpom harmonization by measuring, in addi-
tion to the Hpom and Dpoy, the circumference around
the stem irregularities at the reference 1.3 m height (the
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equivalent t0 Deonyiunize in this study) in forest inven-
tory plots. Indeed, the models having this additional
measurement have better performances to estimate
DBH' as demonstrated here and earlier (Ngomanda et
al. 2012, Bauwens et al. 2017).

CONCLUSION

We showed that harmonizing tree diameter measure-
ment height with taper models can reduce biomass under-
estimation for large trees by allometric models, and this
correction can have large (up to 15%) implications for
plot-level biomass estimates. Reducing biases in biomass
estimates among tropical forest plots is important to
improve our understanding and monitoring of the global
carbon budget and has direct implications on the calibra-
tion/validation of space-borne biomass models.
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5.1. The major findings

The main objective of our thesis was to improve the monitoring of large tropical
trees with stem irregularities by exploring direct 3D measuring tools and a model-
based approach for broader uses.

5.1.1 The effectiveness of direct 3D measuring tools in tropical
forests

The low-cost close-range terrestrial photogrammetric approach (CRTP) is an
effective 3D measurement tool for irregularly shaped stems encountered in tropical
forests. The main limitations of CRTP are the maximum height reached (10-13 m,
Bauwens et al., 2017; Fang and Strimbu, 2017) and the light conditions that might
limit the success of the 3D point cloud generation. Besides good camera quality and
wide-angle lens, adding artificial targets is highly recommended to help the SfM
process and increase the success of tree stem point cloud generation. Good field
protocol and camera gear increase the success of point cloud generation from around
30-40% to 70-80% of the sampled trees (Bauwens et al., 2017; Cushman et al., 2021).

Personal laser scanning, as the handheld mobile laser scanning (HMLS), gives new
insight for direct 3D measurements at the plot and tree scales. HMLS could remove
some limitations of the more conventional static terrestrial laser scanning (TLS) tools
in the tropical dense forest since walking with HMLS through the plot results in a
theoretically unlimited number of scan positions. The occlusion effect (part of the
stems not scanned due to the surrounding vegetation) is then reduced. The lower
spatial precision of the resulting point cloud of this type of device compared to
conventional TLS is compensated by a lower occlusion rate, an important issue in the
case of stems with irregularities.

In the case of TLS point cloud, the issue of occluded stem parts is solved by fitting
geometrical primitives as a cylinder that completes the occluded parts. This modelling
approach is not adapted for irregular shapes. Meshing (Bauwens et al., 2017; Nolke
et al., 2015; Takoudjou et al., 2018) or fitting free-form curves (Gollob et al., 2020;
Pfeifer and Winterhalder, 2004) are alternative modelling methods in this latter case.
Nevertheless, these alternative methods require a low level of occlusion which is
hardly obtained with conventional tropical TLS plot setups (Martin-Ducup et al.,
2021; Tao etal., 2021; Wilkes et al., 2017). The HMLS reduces significantly occluded
parts of the stems. Nevertheless, the quality of the HMLS point cloud for accurate
reconstruction of the cross-section of irregular stems needs to be tested as well as the
effect of the dense undergrowth encountered in tropical forests on the overall
consistency of the HMLS point cloud.
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5.1.2 The model-based approach to overcome the current limits of
3D measuring tools

A simple taper model fitted on 3D data significantly improves the monitoring of
tropical forest biomass. We first showed that harmonizing the height of stem diameter
measurement (Hpom) in tree biomass data used for fitting AGB models improves the
relationship and removes allometric negative bias for large trees. We then found an
increasing negative difference between conventional plot AGB estimates and
corrected AGB estimates with the increasing share of irregularly shaped stems within
the plot (up to -15%). Harmonizing Hpowm in forest inventory plots data before using
AGB models allows comparing plot AGB stocks by removing the negative error trend.

Additionally, we noticed that i) the stem basis taper more slowly in trees with larger
diameters (the taper is lower in large tree diameter than lower ones) and, ii) due to the
taper, the AGB growth of trees with Hrom > 1.3 m was previously underestimated
both on trees with a constant Hpom and those with an arise Hpom over time
(Figure 5.1).

80

Tree type
Hpom=1.3m
Hpow > 1.3 m

Estimated AGB using DBH' (Mg)
N y
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Figure 5.1: The increasing AGB of two virtual trees with the same Dpom according
to the increasing size of the tree diameters Dpom over time. The first virtual tree has
a constant 1.3m Hpowm, Drowm is then equal to the so-called diameter at breast height,
DBH (dark blue-green) and, the second virtual tree has its POM raised through the
time (light green). For this later virtual tree, the equivalent diameter at breast height
(DBH’) is 12 % higher than Dpowm (slope of the linear regression DBH’-Dpom without
intercept fitted on the trees with Hpom>1.3m of the Congolese plots of the study in
chapter 4). AGB estimates are based on the same Dpowm corrected (DBH’) AGB
model and with a basic wood density of 0.57 g.m™ for both (Supplementary
information of Bauwens et al., 2021). The tree with Hpom >1.3 has a higher AGB
growth than the tree with Hpom = 1.3 for the same DPOM (e.g., Dpom = 150 cm).
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5.2. The perspectives

5.2.1 Which 3D measurement tool in which case for permanent
forest inventory plots?

Some considerations in field data acquisition

A minimum standard in the field data acquisition protocol is required to ensure
optimal 3D measurements of the trees and data interoperability between campaigns
(Wilkes et al., 2017). The field data acquisition protocol will first depend on the scale
(tree-level vs plot-level), but the temptation would lead scientists and field operators
to try to optimize their fieldwork by directly working at the plot level to increase the
number of individuals measured at once and getting more area-based data to answer
to forestry and ecological questions. Nevertheless, tree-level field data acquisition
protocol is still recommended to ensure the best 3D modelling of the tree, more
specifically for irregularly shaped tree stems.

Close-range terrestrial photogrammetry the low-cost approach

The use of close-range terrestrial photogrammetry will still be an important tree-
level 3D measurement tool for irregular stems despite its range limit (Bauwens et al.,
2021; Cushman et al., 2021). Indeed, its low cost and ease of use remove some current
limits encountered in 3D measurement tools (Table 5.1). Multicopter UAV
(unmanned aerial vehicle also known as drone) is an alternative to overcome the
height limitation. Nevertheless, surrounding vegetation must be removed before
flights and might be a limitation for studies within PSP.

TLS for the 3D description of the whole aboveground part of the trees (crown
included)

TLS has been used with success in close dense tropical forests but often requires
cleaning the surrounding vegetation to limit the occlusion of the laser pulses oriented
to the focal tree and to ensure the visibility of the artificial target between the different
locations of the scanner around the tree (Bauwens et al., 2021; Lau et al., 2019;
Takoudjou et al., 2018). The artificial targets are used to co-register (align or merge)
the pointclouds from the different scan locations. The time-of-flight TLS technology
is recommended for scanning the leaf-on crown part as this type of device has a better
signal-to-noise ratio (Table 5.1). Inversely, phase-shift (v.s. time of flight) technology
has greater ranging ambiguity when intercepting multiple objects within the footprint
of a single laser beam (i.e. a higher point cloud noise in branches and leaves areas,
Bauwens et al., 2016; Calders et al., 2020). The cost of such device is decreasing but
remains high and the need for artificial targets to co-register the scans reduces its
effectiveness in the field (Bauwens et al., 2016). The time-of-flight TLS technology
is nevertheless the gold standard for modelling the whole woody aboveground volume
of a tree.
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Personal laser scanning the most effective 3D measurement tool at the plot/stand
level

We would recommend further research on the use of personal laser scanning (PLS),
as the HMLS tested in chapter 3 in the context of tropical forests. Since our forerunner
study, numerous study showed the great potential of PLS in temperate and boreal
forests at the plot level (Balenovi¢ et al., 2021; Gollob et al., 2020; Jurjevié et al.,
2020), but are still note tested in tropical forests to our knowledge. These tools have
wider operational perspectives than TLS by significantly reducing the field
acquisition time and reducing the occlusion effect. The lower precision of the point
clouds from PLS compared to TLS could be compensated by a higher number of stems
scanned. Since our study, new devices are available and remove some limitations
noticed with the ZEB1 device tested in the study of chapter 3. For example, the range
of the laser (mainly coming from the VLP puck series) are now up to 100-200 m and
the beam divergence is 3 mrad compared to 1.7x14 mrad for ZEB1(Balenovi¢ et al.,
2021; Gollob et al., 2020; Jurjevic et al., 2020).

Table 5.1: Advantages of the 3D measurement tools. CRTP: Close-range
photogrammetry; TLS-TOF: Terrestrial laser scanning using the time-of-flight
technology; TLS-PS: Terrestrial laser scanning using the phase-shift technology;
PLS: Personal mobile laser scanning such as hand-held laser scanning.

Tree modelling

Acquisition Reduced ) Point cloud Pre-processing
Tool Range . . Price . - stem stem
time occlusion precision time Crown
lower part upper part
CRTP - + +++ +++ ++ --- +++ -- --
TLSTOF  +++ - + -- +++ -- 4+ ++ ++
TLS PS ++ - + - ++ -- * [t ++ +
PLS +/++ +++ +++ -- + + +++ +++

*Due to the high probability of occlusion in the case of irregularly shaped tree stem
Prospects for exploiting these new 3D data in tropical forest monitoring

A new metric standard might emerge from these measurement tools as the volume
of the five first meters of the stem instead of the traditional DBH or Dpowm as well as
crown metrics. New allometric models including these measurements/metrics could
then be used to estimate total stem volume or aboveground biomass with perhaps a

scanning acquisition could be recommended to model the total aboveground volume
and convert it into biomass using weighted basic wood density (Gonzalez de Tanago
et al., 2018; Takoudjou et al., 2018). The high uncertainty and bias from the current
pantropical allometric biomass model and the issue of the non-standard point of
measurement of the diameter could thus be bypassed.
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5.2.2 The close-range 3D measurement tools in operational
Precision Forestry

Precision forestry leverages advanced technology sensing and analytical tools to
support site-specific economic, environmental, and sustainable decision-making for
the forestry sector (Bare and Dean, 2001; Moskal et al., 2009). The current main close-
range 3D measurement tools such as terrestrial laser scanning, mobile laser scanning,
personal laser scanning (e.g.: HMLS) or close-range terrestrial photogrammetry
should be first seen as a precise scientific measurement tools. Operational uses of
these tools in the forestry sector are still limited and absent in tropical forestry.
Nevertheless, new smartphone devices combining SfM process with a build-in low-

five meters of the stems with a root mean square error of around 9 to 13 % and a bias
of -2% (Gollob et al., 2021; Mokro$ et al., 2021). In tropical forestry, the next
generation of such device could be used, for example, to measure the diameter of
standing irregularly shaped tree stems inventoried for logging but having a diameter
above the buttresses close to the minimum logging diameter allowed by the law or the
forest management plan. Measurements with such device will avoid a posteriori (after
logging) check in the case of a Hpom not reachable by hand. A scaling allometric
model could also be used to estimates the total stem volume based on the scanned
volume of the first meters of the stem.

(b) (©)

Figure 5.2: 3D measurement of stems with a smartphone using sfm process and
build-in low-range LiDAR system. Screenshot of three applications built for 3D data
acquisition: (a) 3D Scanner App. (b) Polycam. (c) SiteScape (Figure from Gollob et
al., 2021).
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5.2.3 The model-based approaches to overcome the current limits
of 3D measuring tools

The model-based approaches (versus direct 3D measurements) have broader uses
by using its on historical and current forest inventory data. The use of a taper model
compared to empirical statistical models (Ngomanda et al., 2012) has the advantage
to be less sensitive to field protocol for measuring the diameter of trees with
irregularities at the standard height (e.g. of field protocols: Dpom measured 30 or 50
cm, 1 m, or even more above the buttresses). Moreover, simple multispecies taper
models can be developed and be performant, even on mixes of tropical species with
contrasted stem irregularities. The main improvements for taper model would be to
test additional covariates related to functional traits of the irregularly shaped tree
stems. For example, Cushman et al. (2021) show the significant effect of average
species basic wood density on the parameter of their taper model. Nevertheless, the
correlation between the covariates as well as between the cross-section measurements
should be carefully considered to avoid overfitting effect and then keeping covariates
that may appear statistically significant. Among the functional traits, the geometry of
the cross-sections could also be further tested.

Following the model-based approach studied in this research, general or specific
taper models could be easily integrated into automatic biomass estimation routines,
such as in the BIOMASS R package (Ré&jou-Méchain et al., 2017), to correct tree
diameters from Hpom variation. The data required for this correction, Hrom and Dpowm,
is already available in many forest inventories and this correction procedure could
thus be performed with no additional burden on AGB model end-users. Furthermore,
we could reduce the uncertainty related to Hpom harmonization by measuring, in
addition to the Hpom and Dpowm, the circumference around the stem irregularities at the
reference 1.3 m height in forest inventory plots. Indeed, the models having this
additional measurement have better performances to estimate DBH’ (Ngomanda et al.
2012, Bauwens et al. 2017, 2021).

The error propagation from field forest inventory measurements and AGB
destructive data to plot biomass stock and stock change estimates should be further
investigated as well. Indeed, the better allometric relationship between AGB and
DBH’ than AGB and Dpowm should be tested on other contrasted sites.

The tropical forest biomass stocks are underestimated in forest inventory plots with
a high proportion of irregularly shaped tree stems and, additionally, the current remote
sensing AGB models systematically underestimate the AGB stocks of most tropical
forests. A caution on the use of such estimates in the context of IPCC reports should
then be noticed and the sampling of tropical forest inventory plots should be improved.

Independently of the irregularly shaped tree stems problematic, research on
allometric biomass models should be pursued to minimize biases in the range of
variables and model predictions. For example, we have highlighted the problem of
overestimating the AGB of small trees (DBH < 70 cm) when using the widely used
pantropical geometrical power model with a local maximal relative AGB error around
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25 cm of diameter. Picard et al. (2015b) already noticed this an error size-dependant
allometry with a diameter breakpoint in allometry at also 25 cm. This issue has an
important impact on plot AGB changes estimates and thus on the CO> fluxes related
to it as small trees weight significantly in these biomass changes. Research in AGB
allometry should then continue to focus on the size and ontogenic dependence of AGB
allometry (Picard et al., 2015b; Pilli et al., 2006).
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5.3. Practical recommendation for measuring
irregularly shaped tree stems in permanent forest
inventory plots

In the context of biomass monitoring of tropical forests, the gold standard would be
to scan the whole forest plots, including regular and irregular tree stems. The main
advantage would be to reduce the error propagation in plot biomass stock and stock
change estimates by removing the current issues on AGB allometric model errors,
including the non-standard point of measurement in the case of irregular stems.
Currently, in complex multilayered tropical forests, such an approach consists in co-
registering multiple TLS scans obtained over a systematic sampling grid covering an
entire plot (Wilkes et al., 2017). However, this approach generates additional
uncertainties, such as large zones of occlusion and co-registration errors (Demol et
al., 2022) compared to the tree-centered scanning protocol. Unreliable tree volume
estimations may result from QSM algorithms or other 3D modelling methods (Stovall
et al., 2018) and more specifically for trees with irregularly shaped stem. In our
opinion, the 1 ha plot size traditionally inventoried in tropical forest and scanned in
once (Martin-Ducup et al., 2021; Wilkes et al., 2017) should be subdivided in
subsample area which are independently scanned and personal mobile laser scanning
should be considered to reduce the occlusion on the irregular stems. The processing
workflow of plot TLS data still require numerous manual checks in different
intermediate processing results (Martin-Ducup et al., 2021) and high technical skills.
Note that scanning a 1 ha plot typically takes a team of 3 people between 3 and 8 days

Tree-centered approaches have more effective operational results to better consider
irregularly shaped tree stems in forest monitoring. The different tree-level approaches
differ in the level of complexity of the data acquisition and processing (Figure 5.3).

The first approach to consider the non-standard measurement height of the diameter
use the conventional forest inventory tree measurements Hpom and Dpowm into a taper
model to predict the equivalent diameter at breast height (DBH’, Bauwens et al. 2021
and Cushman et al. 2021). The equivalent diameter is then used with an allometric
biomass model calibrated on breast-height diameter measurements: AGB-DBH’
allometric model (Approach A.I with the resulting AGB estimates 2 in Figure 5.3.,
Bauwens et al., 2021). In the absence of such an allometric model, the current existing
allometric models, AGB-Dpowm allometric model, as the Chave et al. 2014 allometric
model will be used with the estimated DBH’ instead of Dpom to reduce the magnitude
of the systematic error in aboveground biomass estimates for this type of trees
(Approach A.I with the resulting GB estimates 1 in Figure 5.3, see chapter 4).
Additionally, measuring the convex hull of the stem at 1.3 m height (Dconvhutiizo) by
stretching the diameter tape at this height would guarantee a higher precision. DBH’
is then predicted with a taper model including Dconvhuiiz0 as covariate. Fixing the Hpom
at 4.5 m as recommended by Picard et Gourlet-Fleury (2008) would also increase the
precision of the predicted DBH’ by removing the Hpom effect in the parameter of the
taper model.
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In the second approach (approach B), The basal area at 1.3m height is directly
measured by using Close Range Terrestrial Photogrammetry (CRTP) or another laser
scanning tool (TLS, PLS, or next generation of smartphone with built-in LiDAR
sensor). The equivalent breast height diameter (DBH’) is then deduced and used in
either current AGB-Dpowm allometric model (AGB estimate 1 in Figure 5.3) or AGB-
DBH’ allometric model (AGB estimate 2 in Figure 5.3).

Measuring irregularly shaped tree stems in forest inventory plot

_-V -

Conventional tree measurements Breast height tree-level

Dpoms CRTP/scanning data TLS data
Deomr Heoms &
Deomr Heom b Hpom=4,5m, | l
convhull130 Dconv e
L J Point cloud processing of the stem Point cloud processing

Taper model cross-section at 1,3m of height of the tree
Equivalent diameter at breast height (DBH’) Aboveground volume

AGB-Dpqy allometric AGB-DBH’ allometric Scaling allometry &
model model conversion factor

Aboveground biomass 1 Aboveground biomass 2 Aboveground biomass 3

Increasing tree-level accuracy

Figure 5.3: Tree-centered approaches to manage the issue of irregularly shaped tree
stems in aboveground biomass monitoring in tropical forest inventory plots. The
approach A is based on conventional tree measurements and, optionally, with an
additional measurement: Dconvhuitizo (the equivalent diameter of the convex hull at
1.3m height, see text for further details) int the case of A.Il and A.IIl. AGB-Dpom
allometric model is the current conventional allometric model requiring the stem

diameter Dpowm as one predictor in the model. AGB-DBH’ model is as model
calibrated on DBH or equivalent DBH measurement instead of Dpom. The approach
B is based on close-range terrestrial photogrammetry (CRTP) or other scanning
methods to extract the DBH’ of the focal tree. In C, the whole tree is scanned with
TLS and the whole aboveground woody volume is modelled and converted into
aboveground biomass using conversion factor based on basic wood density. The
accuracy of the aboveground biomass estimates increases from the approach 4 to C.

In the approach C, the whole tree is scanned with TLS, the current gold standard 3D
measurement tool in that case (Table 5.1). The TLS point cloud is then processed and
modelled to get the aboveground woody volume (Du et al., 2019; Hackenberg et al.,
2015; Raumonen et al., 2013; Trochta et al., 2017). This woody volume is then scaled
(extrapolated) if some woody parts are not modelled due to the limitation of the TLS
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measurements (e.g., small branches (diameter inferior to 5 — 7 cm) and leaves). The
woody volume is then converted into biomass using basic wood density model
(Demol et al., 2021; Momo et al., 2020). This third approach should be applied on all
the trees superior to a definite diameter threshold whatever the morphology of the
stem (e.g.: 70 cm). Focusing on only some large buttressed trees will lead to
inconsistent pot-level biomass estimates as some trees of similar diameter size would
be estimated by an AGB allometric model and other by this third approach. The mix
of different approaches for biomass estimate of trees with similar diameters may lead
to a biased sampling strategy as predictions with AGB allometric models are reliable

The approach 4 does not require highly qualified personnel in the field. Compared
to current forest inventory campaign, the extra time required to measure an irregular
shaped stems is not very significant if a ladder was already used in the field, i.e. less
than five extra minutes per tree. Extra time and one highly qualified personnel are
nevertheless required to develop taper models with 3D data and to standardize AGB
model from existing destructive data. In the opposite, the approach C would require
one highly skilled personnel for field data acquisition and for processing the data of
each field measurement campaigns. Two additional persons will be required for the
field campaigns to carry the equipment and for preparing the scan and target locations.
The time required to scan one tree with stem irregularities is around one hour
(Bauwens, personal comment) and the human assisted processing time for 3D
modelling is around one hour per tree (Martin-Ducup et al., 2021). In the approach B,
less than 20 min would be required to takes the images of one stem and, the required
human assisted processing time would also be around 20 minutes to clean the
pointcloud and to extract the cross-section area at 1.3 m height. We strongly
recommend processing the images of the approach B during the field campaign to start
over if the SfM process of the images failed.

Finally, the approach C or scanning the whole plot would be suggested in specific

measurements and plot biomass estimates for remote sensing AGB model calibration.
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Appendix 1 — Supplementary information of scientific
paper of chapter 2: Terrestrial photogrammetry: a non-
destructive method for modelling irregularly shaped
tropical tree trunks

ST 1: Description of the Loundoungou site (Republic of Congo).
The methodology was extended to 34 trees located in one of 400 ha of the two

DynAfFor Permament Sample Plots (PSP) of Loundoungou. The PSP are in the
logging concession of CIB in the north of the Republic of Congo (Figure S1).
Following Koppen—Geiger classification, the region is in the Am-type tropical
rainforest climate. Annual rainfall is between 1365 mm per year and 1685 mm per
year following the two closest weather stations (Gillet, 2013). There is one dry season
between December and February (monthly precipitation inferior to 60 mm).
Temperatures are high and constant throughout the year with a minimum of 24.2 +
0.4 °C in July and a maximum of 25.5 £0.6 °C in March. The altitude in Loundoungou
PSP’s varies from 395 m to 470m and the soil is mainly a Xanthic Acrisol (Freycon,
2014). Vegetation in the region of Loundoungou is characterized by a moist forest of
transition between evergreen forest and semi-deciduous forests and with fragments of

swamp forest (Fayolle et al., 2014a, 2014b).
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Fig. S1. Location of the two adjacent DynAfFor Permanent Sample of Loundoungou in the North of
the Republic of Congo (Vegetation map source: Fayolle et al. (2014a)).

References:

La mise a jour automatique des citations est désactivée. Pour voir la bibliographie,
cliquez sur Actualiser dans l'onglet Zotero.

SI 2: Methodology and validation of the photogrammetric

process.

Additional information on the photogrammetric methodology: image

acquisition in the field
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- -
Fig. S2.1: Focal buttressed trees with surrounding vegetation that limits the photogrammetric process.
The white panel is a panel with coded targets which are automatically detected by the photogrammetric
software Photoscan.

coded targets were positioned in the four cardinal points to add artificial tie-points in the photogrammetric
process. The panel from the south was used as the metric reference (one vertical line of the coded target
was considered as the z axis). The distance between the highest coded targets of the reference panel and
the ground was measured to deduce the height of the coded targets.
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S -

Fig. S2.4: Cross sections of irregular stems. A: Rectified image overlapped with the digitized contour
of the cross section. The rectification of the image is a projective transformation based on the 40 cm x
40 cm Plexiglas grid with 5 cm x 5 cm graduations positioned on the cross section; B: Center computed
by extracting the farthest location within the polygon (red in the cross sections).

Quality analysis of the destructive validation method

A comparison between two perpendicular lengths (diameters) measured with a tape
in the field and the measurement of the same distance on the rectified image was
carried out to estimate the accuracy of the destructive method. The distances measured
on the rectified images were within the precision of the tape used for distance
measurement (bias of -0.47 cm and RMSE of 0.92 cm). The destructive method was
found to be consistent as a reference for the quality evaluation of the 3D model.
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Results of the calibration trees
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Fig. S2.5. A. Cross sections along the stem of the three calibration trees. B. Diameter variation along
the stem, with the diameter expressed as the diameter of a circular disc with the same area as the basal
area of the cross section (Darea). Black points were measured from the cross section digitized on
rectified images of log sections (destructive samples).
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Fig. S2.6. Diameter variation along the stem of the three trees studied, according to different
diameter measurement methods: diameters deduced from the area of the cross sections (Darea), and
diameters estimated with the convex hull of the cross sections (DconvHull). The fractional basal area
deficit is also displayed with height (DeBA). Black dots represent the position of the reference diameter
DAB. Cross sections with a DeBA below the 0.05 reference value (horizontal dotted line) is considered
as a circular cross section. Cross sections along the stem are also illustrated.
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SI 3: POM definition, formatting biomass data and D130 (ie
DBH’)-field variable relationships

Quantitative definition of the point of measurement (POM)

The relative difference between Dconviun and Dareai30 decreases with the height of the
buttressed trees. The threshold of 3% for the relative difference between Dconvrun and
Darea130 leads to a mean height of 23 cm under the highest buttress measured in the
field and with a mean Dega of 0.07 (93% of the trees reached this threshold). The
threshold of 2% leads to a similar height than the buttress height (mean difference of
9 cm) with a mean Dega of 0.05, but only 72 % of the trees reached this last threshold.
The 5 % threshold is encountered for all the trees and on average, Degais equal to
0.12.

Table S3.1: Definition of the POM by varying the threshold: ie varying the relative difference between
the DconvHull and Dareat30 to: 1%, 2%, 3%, 4%, 5%, 7%, 10%. Depa1so is the Depa at 1.3 m height, Depabut
is the Depa encounterd just above the highest buttress, Depapom is the DeBA at the point of measurement
of the DAB, Desai, is the Depa at the height where difference between Dconvhunl and Darea130 is 1 %, Hbut
is the height of the highest buttress (m), HDAB is the height where DAB is measured, dHi is the
difference between Hbut (measured in the field) and the height where difference between Dconvhun and
Darea is 1 %.

Celtis mildbraedii Entandophragma cylindricum Both species
n Min-max Mean CV(%) n Min-max mean CV(%) n Min-max Mean CV (%)
DeBA130 13 0.05-0.79 0.50 58 16 0.03-0.72 0.35 62 29 0.03-0.79 0.42 62
DeBAbut 13 0.04-0.54 0.17 94 16 0.01-0.25 0.08 88 29 0.01-0.54 0.12 102
DeBAPOM 13 0.05-0.22 0.11 60 16 0.01-0.13 0.06 68 29 0.01-0.22 0.08 70

DeBA1l 1 0.54-0.54 0.54 NA 8 0.02-0.04 0.02 30 9 0.02-0.54 0.08 214
DeBA2 7 0.04-0.15 0.06 73 14 0.03-0.11 0.05 40 21 0.03-0.15 0.05 56
DeBA3 12 0.05-0.14 0.07 35 15 0.05-0.11 0.07 21 27 0.05-0.14 0.07 28
DeBA4 12 0.06-0.17 0.10 35 16 0.07-0.25 0.10 46 28 0.06-0.25 0.10 41
DeBA5 13 0.09-0.2 0.12 28 16 0.08-0.21 0.12 29 29 0.08-0.21 0.12 28
DeBA7 13 0.12-0.18 0.14 13 16 0.12-0.29 0.15 27 29 0.12-0.29 0.15 23
DeBA10 13 0.15-0.57 0.23 48 16 0.12-031 0.21 20 29 0.12-0.57 0.22 36
Hbut 13 1-5 3.2 44 16 1.6-7.2 4.2 42 29 1-7.2 3.7 45
HDAB 13 1.6-5.5 3.7 37 16 2.0-7.8 5.0 36 29 16-78 4.4 39
dH1 1 1.6-1.6 1.60 NA 8 -0.7-22 053 165 9 -0.7-22 0.64 137
dH2 7 -0.7-1.4 0.63 116 14 -1.4-14 -019 -382 21 -1.4-14 0.09 935
dH3 12 -09-14 0.36 187 15 -18-03 -0.71 -91 27 -1.8-1.4 -0.23 -360
dH4 12 -1.1-13 -0.04 -1456 16 -2--0.1 -094 -63 28 -2-13 -0.55 -134
dH5 13 -12-14 -008 -9%1 16 -2.1-04 -117 -45 29 -21-14 -0.68 -122
dH7 13 -14-06 -045 -122 16 -25-0.7 -148 -41 29 -25-06 -1.02 -76

dH10 13 -18-02 -083 63 16 -28-1 -190 -33 29 -28-0.2 -1.42 -55
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Analysis on the best tree size predictor
Formatting the biomass data

The analysis of the standardized predictors is based on the biomass measurements
of 15 Entandophragma cylindricum from the Fayolle et al. (2013) dataset. The
equivalent diameter to the basal area and the perimeter of the convex hull at 1.3 m
high (respectively Dareaizo and Deonviuiiizo) were not measured for the trees with
buttresses at 1.3m height, but these measurements were available at the stump height
(mean stump height: 99 cm). The cross sections of the stumps were photographed with
a plexiglas grid of 5 cm x 5 cm graduations as we performed to validate our
photogrammetric cross sections measurements (data S2). Darea130 and Deonviuiizo of the
biomass trees were estimated on the basis of the stump measurements and the
modified taper model of Metcalf et al., 2009 (equation SI 3.1).

D; = (D130 — DAB) - e b2(hi=13) L pAB (Eq. SI3.1)

with D; the equivalent diameter (Dara Of Dconviun) (in cm) at height 4; of the
buttressed part of the stem (in m), D130 the equivalent diameter at 1.3 m height in cm
(Darea130 or Deonviuniizo) (in cm), DAB, the diameter above the buttresses and b; is a
parameter.

The modified taper model of Metcalf et al. (2009) does not intend to be a taper
model for the whole stem, but a model to estimate Dagear30 and Deonviunizo on the basis
of the stump measurements of the 15 Entandophragma cylindricum with biomass
measurements (Fig. S3.1).

The parameter b, has been estimated with the 34 photogrammetrics data from Congo
by fitting a nonlinear mixed-effects model with the species as fixed effect and the
individual trees as random factor (package nlme of R). With the Dae. photogrammetric
dataset, we found a significant effect of the species for the parameter b, (C.
mildbraedii has an intercept with p=0 and E. cylindricum with p= 107) and a
considerable intraspecific variation (Fig. S3.2). The same procedure was performed
with the Deonviun data.

As the estimation of the parameter b, for Darea data is significantly different for the
two species, we only analyzed the relationship between b, and the measurable
parameters DAB, HDAB and Dconviiuiiizo for Entandophragama cylindricum. The
variation of b, was best explained by a model mb3 that includes the equivalent
diameter of the convex hull around the buttresses at 1.3 height (Dconvimueizo) and the
height where DAB is measured (HDAB). As the convex hull around the buttresses at
1.3 height was not measured but estimated for the reference biomass trees, we
preferred to use the model mb5 with only one variable which was measured: HDAB.
mb5 is the second model with the lowest AIC and all the coefficient significantly
different to zero. The same procedure was performed with the Dconyirun data.
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C. mildbraedii E. cylindricum

2.5
Modified Metcalf et al. (2009) model
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(fitted on upper part of the stem)
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Fig S3.1. Taper data from the 3D models for the 14 C. mildbraedii and 20 E. cylindricum trees. The
modified taper model of Metcalf et al. (2009) was fitted with Darea of the buttressed part of the stem (dark
pink dashed lines) and the taper model of Metcalf et al. (2009) was fitted with a subset of Darea data above
buttresses, between Hpas and 8 m (orange dashed lines) following the field protocol of Cushman et al.
(2014) for the trees highlighted in Fig. 2. Black dots correspond to the position of the diameter above
buttresses (DAB) as well as the intersection between the solid and dotted lines.



Biodiversity and ecosystem services in tropical forests: the role of forest allocations

(a) (b)
©  Entandophragma cylindricum
204 ~ © Celtis mildbraedii 2 G

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 25 3.0
Darea130 (m) DconvHull130 (m)

(c) (@)

T T T T T T T T T

0.5 1.0 1.5 20 2 4 6 8 10
DAB (m) HDAB (m)

Fig. S3.5: Scatterplot between the taper parameter bz for Darea estimates and (a) the equivalent diameter
of the basal area at 1.3 m height: Dareal30, (b) the equivalent diameter of the convex hull around the
buttresses at 1.3 m height: DconvHull130, (c) the diameter above the buttresses: DAB, and (d) the height
of measurement of the DAB: HDAB. The horizontal blue dashed line, at y= 1.473, is the mean value of
b2 for Celtis mildbraedii and the magenta dashed line, at y= 0.831, is the mean value of b2 for

Entandophragama cylindricum.

Table S3.2: AIC values for alternative models for among-tree variation in taper parameter of all the
20 E. Cylindricum with photogrammetric measurements. The column “all param. P < 00.5” specifies if
all the coefficients of the parameters of the models were statistically significant.

Variables All
Models AIC df param.
Species DAB | HDAB | DconvHullizo P<0.05
mb1l X X X 7.80 5
mb2 X X 11.28 4
mb3 X X 7.11 4 X
mb4 X X 9.63 4
mb5 X 10.61 3
mb6 X 23.74 3
mb7 X 10.86 3
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Relationships between Dareal30 and easy to measure field variables
Table S3.3: BIC values for the best models find with the leaps package of R.

Model

r of DconvHuliz30:  DconvHull130: DconvHuli130:

variables Dconviuizzo DAB Hpas  DAB HDAB  DAB:Hpas DAB:HDAB BIC  R%adj
md1 3 X X X -78.7 0.987
md2 4 X X X X -76.0  0.987
md3 4 X X X X -75.3  0.987
md4 4 X X X X 752 0.987
md5 2 X X -74.3 0.984
md6 5 X X X X X -73.7  0.987
md7 5 X X X X X -73.3  0.987
mads 5 X X X X X 725  0.987
md9 3 X X X -71.5  0.984
md10 6 X X X X X X 712 0.987
md11 3 X X X 711 0.984
md12 6 X X X X X X -70.7  0.987
md13 6 X X X X X X -70.2  0.987
md14 7 X X X X X X X -67.7  0.987
md15 2 X X 619 0.977
md16 2 X X 59.1  0.975
md17 1 X 51.3  0.966
md18 1 X -31.5  0.938
md19 1 X 0.2 0841
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Appendix 2 - Sup[;]lementary information of the
scientific lpaper of chapter 3: Forest Inventory with
Terrestrial LIDAR: A Comparison of Static and a Hand-
Held Mobile Laser Scanning

Plot 1: Coppice of hornbeam
and birch

» .

Plot 2: Even-aged of Beech

Plot 3: Uneven-aged of beech Plot 4: Even-aged of douglas

L
Y

Plot 6: Even-aged of oak and

Plot 5: Even-aged of spruce .
pine

104



Plot 7: Uneven-aged o beech

Plot 9: Even-aged of spruce Plot 10: Uneven-aged of beech

No images

Figure SI. Images of the 10 forests plots studied.



Biodiversity and ecosystem services in tropical forests: the role of forest allocations

Table S1. Summary of Experimental design, scanner settings and methodologies of previous studies on automatic stem detection
and DBH extraction from TLS data for forest inventory. The number of trees in bracket in the column Tree is the number of
trees used for DBH comparison (m = measured). The tree forest types are broadleaves (B), coniferous (C) and mixed (M). The
shape of the plots is in bracket in the column Size (r: rectangle, s: square and c: circle). NHA is the number of trees per hectare.
Mode is the scanning method (MS: multiscan, SS: single scan, PLS: personal mobile laser scanning and HMLS: hand-held
mobile laser scanning). Occl. is the rate of trees detected without occlusion and Occl. + missed is the proportion of trees
automatically detected.
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Plot Tr Forest Detection DBH
Study ° ee ores Terrain Size (ha) NHA Mode Occl+ i RMSE
(n) (n) Type Process Occl. . Process Bias (cm)
Missed (cm)
Simonse et al., 1 28 C / 012 () 233 AMS Filter + 2D—S_11c_eHo1_1gh / 93 13 .m_c1rcle 17 /
2003 transform + fitting circle fitting
Thies and 50 o SS . / 22 : e -0.75 348
Spiecker, 2004 1 (11 m) B (UEA) Slope (41%) 0.09 (s) 555.6 —5 MS Simonse et al. [6] method / 0 Circle fitting 032 32
Manual
Hopkinson et al., 2D-Slice betweene 1 and 7 m extraction and
2004 2 138 C&B / 0.12 (s) 465-661 5Ms +manual detection 971 ! cylinder fitting / /
(1.25 & 1.75m)
Bienert etal, 2006 | 65 / / / s YclusteratlImefiting o, 40, 1.3 m circle 09 15
circle fitting
Bienert et al., Similar to [48] + point
2007 2 547 M&B 007 (c) / S5 density raster analysis / 74 / / /
hilly/ SS 97.5 Similar to [48]  -0.67-1.58 1.8-3.25
Maas et al., 2008 82 B(1C) flat 0.07 (c.) 212-410 Similar to [14] / ) ) ) o
1 slope 3 MS / 1.5
Murphy, 2008 9 220 C (EA) Flat 0.04 (c.) / 2MS Similar to [14] 93 93 Similar to [48] -0.6
Strahler et al., 1 102 C (EA) / 0.79 (c) 130 s I‘%ased on t}}e range and / 402 / / /
2008 intensity signal return
81 723 Smgifi;gde -038 42
Brolly and Kiraly, 2D-Slice clustering + Single N
2009 ! 213 M / 0-28(c) 73 S8 circle fitting 81 723  Mullycircle -16 34
fitting
81 62.9  Cylinder fitting 0.5 7
/ / Hough -16 23
transform
Tansey et al., 1 8m C Flat 0.05 (t.) 1131 4AMS XY cluster at 1.3 m + Hough / Cyhndetj lgast 34 36
2009 transform detection square fitting
/ / Circle lgaét 17 19
square fitting
1.3 m circle
18 958  C(EA) Flat 01 (r) 207-570 55 Similar to 14 68 % fittingor
Murphy et al., 340 diameter profile 0319 /
2010 ( m) 5MS 100 99 i :
15 C (EA) Flat 0.03-0.13 (c.) 153-326 - N Similar to 14 86 82
) ) ) 2MS 99 98
Antonarakis, 2 261 B p (1Co) / 049 (s) 255-2340 5MS Similar to Hopkinson 80 (100 / Cylinder fitting ~ 0.3-0.4 /
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1.3 Circle fitting
Othmani et al., 17 / Co & EA / 007 (c) 56-3600 ss Clustering + flletrmg + fitting 00,6 +c9r. w1t}t1 local 80% /
2011 circle linear diam. <5 cm
profile
Lovelletal, 2011 2 157 c Flat 013 & 124477 ss intensity thresholds + /58 / /
0.79 (c.) maximum intensity value
local 3D point density +
Liang et al., 2012 9 / 0.03 (c.) 509-1432 SS flatness (eigenvalue) + / 73 / /
vertical distribution
o . . 0.74-
SS Similar to [53] / 73.4  Cylinder fitting 0.35 241
Liang et al., 2013 5 128 CorM / 0.03 (c.) 605-1210 Similar to 1531+ .
4Mss imilar to [33] + new / 953  Cylinder fiting 047  0.9-1.9
registration method
P hel et al Slight sl SS Similar to Forsman and / 84-85 +C1rc1e ftl;tllng 1 -0.07-0.51 12'35;
uescheletal, 149 B &C 1BALSOPE 5 (6) 579-1032 Alme, 2005 (neighboring (rcor. with loca -
2013 (6&11%) 6 MS difference in range image) / / linear diam. 0—-0.32 0-64-
5 5 profile) ) 1.15
Trochta et al. SS 88 / / / /
s X 07 —_— M 1
2013 8 / / / 0.03-0.07 (p) / 4MS anua 94 / / / /
Schilling et al., Hough transform with disc +
2014 18 995 Bp / 0.07 (c.) 452-1160 >3 MS clustering + row filtering / / / /
Mengesha et al., 7 268 Slope 538-707 3 MS L. / 80.7 / /
.07 (c. 1 14
2014 9 388 as%-25%) 07 (@) 468637 3MS Stmilar to [14] / 86.2 / / /
Liang et al., 2014 1 46 C Slope (15%) 0.2 (r) 250 PLS Similar to [54] for MSS 96 82.6  Cylinder fitting 1.1 5.06
Ryding et al., 3MS / / Cylinder fitting 0.5 15
2005 3 171 / 001(s) (7007900 — - Manual ; ;
331 B&C(C Flat & SS 83 75 -1.16 3.26
This study 10 (o, a 007 (c) 113-1344 _ 5MS Similar to [19] 995 928 Similarto[19]  -0.17 116
(202m) EA & UEA) slope E—
HMLS 99.5 89 -0.05 1.07
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Appendix 3 - Su

plementar
scientific paper of clinapter 3: Ay 3

information of the
D approach to model

the taper of irregular tree stems: making plots biomass

estimates comparable in tropical forests

Table S1: Characteristics of the species sampled for the 3D scanning (terrestrial photogrammetry or terrestrial laser
scanning) in the three sites including the vernacular and scientific names, the number of trees (n), the mean and the
range of the diameters (DBH', Dconvhull130, DPOM) and the height of measurement of the DPOM (HPOM). Bolded
lines are the focal species. Apart from focal species, species with more than 5 sampled trees have the number of trees

n in bold.
n° . . Dareal30 (cm) DconvHull130 (cm) Drom (cm) Hrom (cm)
site Site Ver. name S¢. name " Mean Range Mean Range Mean Range Mean Range
1 ALP  ALEP Desbordesia glaucescens 1 34 [34-34] 119 [119-119] 32 [32:32] 158 [158-158]
1 ALP  AYOUS Triplochiton scleroxylon 13 166 [78-229] 335 [224-462] 138 66-203] 644 [400-983]
I ALP  BETE Mansonia altissima 2 62 [61-64] 171 [169-172] 60 [57-63] 229 [190-269]
I ALP  CELTISSP Celis sp. 2 78 [53-103] 232 [177-286] 69 [43-95] 552 [379-725]
1 ALP  DABEMA f;;ﬁi‘;‘fj;j;‘“""“’" 2 138 [123-153] 322 [302-342] 13 [103-123] 711 [597-824]
I ALP  FRAKE Terminalia superba 4 17 [98-137] 316 [292-376] 93 [77-105] 588 [470-791]
I ALP  FROMAGER Ceiba pentendra 3 194 [170-238] 394 [360-421] 166 [156-186] 793 [702-957]
1 ALP  ILOMBA Pycanthus angolensis 1 115 [115-115] 216 [216-216] 102 [102-102] 540 [540-540]
1 ALP  IROKO Milicia excelsa 6 108 [87-129] 219 [190-257] 101 [81-123] 412 [282-529]
I ALP  LONGHI Gambeya sp. 1 91 [91-91] 199 [199-199] 85 [85-85] 260 [260-260]
I ALP  MVANA Hylodendron gabunense 2 79 [51-107) 244 [171-318] 69 [43-96] 383 [288-478]
I ALP  OHIA Celiis mildbraedii 1 71 [71-71] 186 [186-186] 54 [54-54] 461 [461-461]
1 ALP  OKAN Cylicodiscus gabunensis 1 124 [124-124] 226 [226-226] 119 [119-119] 253 [253-253]
I ALP  PADOUK Pterocarpus soyauxii 1 58 [58-58] 160 [160-160] 58 [58-58] 237 [237-237]
2 CIB  DABEMA :}Z’Lf;‘:“:,’;‘,’s”""‘ 20 110 126-249] 187 [27-454] 91 [25-157] 506 [178-925]
2 CIB  OHIA Celtis mildbraedii 15 7 [42-103] 110 [45-191] 68 [40-90] 371 [144-529]
2 CIB  OWOM Manilkara mabokeensis 17 78 [44-136] 81 [44-151] 75 [44-115] 203 [128-503]
2 CIB  PADOUK Prerocarpus soyauxii 18 65 [19-137) 89 [19-275] 57 [19-95] 362 [126-748]
2 CIB  SAPELLI f;;::;f;"::’"g'"" 18 148 [73-205] 180 [75-267] 126 [69-180] 494 [199-914]
2 CIB  TALI Erythrophleum ivorense 14 100 [74-135] 109 [76-143] 92 [71-123] 383 [224-550]
3 BIA  ACAJOU Khaya anthotheca 1 62 [62-62] 64 [64-64] 61 [61-61] 147 [147-147]
3 BIA AKO Antiaris toxicarpa 8 64 [23-115] 78 [23-190] 54 [23-94] 296 [126-649]
3 BIA  ALOMBI Julbernardia seretii 13 74 [17-124] 92 [17-204] 64 [17-102] 289 [127-557]
3 BIA AVODIRE Turraeanthus africanus 8 52 [38-71] 54 [39-75] 51 [38-69] 147 [129-201]
3 BIA  BOKONGOLA Pieleopsis hylodendron 1 44 [44-44] 45 [45-45] 44 [44-44] 127 [127-127]
3 BIA  DABEMA Zﬁif;‘fﬂf””"” 6 103 [58-137] 196 [73-307] 84 [55-113] 453 [169-603]
3 BIA EMIEN Alstonia boonei 1 73 [34-115] 110 [39-174] 62 [31-96] 578 [190-1170]
3 BIA  ESSESSANGE Ricinodendron heudelotii 1 113 [113-113] 120 [120-120] 112 [112-112] 164 [164-164]
3 BIA  EVEUS Klainedoxa gabonensis 1 47 [47-47) 57 [57-57] 44 [44-44] 176 [176-176]
3 BIA  IROKO Milicia excelsa 1 77 [77-77) 77 [77-77] 77 [77-77] 212 [212212]
3 BIA  KOSIPO i:‘l’;‘iz‘[;'e ‘:"h"’g’”” 2 143 [142-144] 208 [173-242] 122 [112-132] 398 [237-558]
3 BIA  KOTIBE Zf;zizg:" 1 72 [72-72] 91 [91-91] 52 [52-52] 582 [582-582]
3 BIA  LONGHI I‘ﬂ’(”(fu‘r‘z’;’i’l’;"’ 1 34 [34-34] 39 [39-39] 33 [33-33] 191 [191-191]
3 BIA  LUBOKO Parkia filicoidea 2 90 [71-109] 157 [74-241] 85 [69-101] 324 [193-455]
3 BIA OHIA Celtis mildbraedii 10 68 136-126] 91 [41-256] 59 135-91] 383 [133-897]
3 BIA  OLOVONGO Zanthoxylum gilletii 1 115 [115-115] 133 [133-133] 96 [96-96] 510 [510-510]
3 BIA  OSOMZO :Zm‘l‘li"c':mm 8 40 [26-53] 45 [26-66] 36 [25-49] 219 [138-364]
3 BIA  PADOUK Prerocarpus soyauxii 7 69 38-120] 99 [38-282] 65 38-98] 242 [129-568]
3 BIA  PENTACLETHRA  Pentaclethra macrophylla 1 41 [41-41] 41 [41-41] 38 [38-38] 191 [191-191]
3 BIA  STERCULIAt Sterculia tragacantha 1 47 [47-47) 53 [53-53] 43 [43-43] 420 [420-420]
3 BIA  TOLA Prioria balsamifera 1 140 [140-140] 140 [140-140] 139 [139-139] 135 [135-135]
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Table S2: Taper models tested on irregular stems. The model selected as the
reference model m in the study corresponds to Eq. 4.

Model | Formula

Comments

Eq.
SI1

Log(Darea,) = a- (log (H;) —log (Hpoy) ) + log (Dpom)

Linear adjustment on the log-transformed
variables Darea;i and height (Hi). The line is
forced to Cross the point
(log(Hrom),log(Drom)).

Eq.
SI2

A
— 32)Dprea,i = Dref —-K-(Li—-H

1) DArea,i = (B+H))
L

POM)
(B=H poy )*K

With, b = &)K.y - Dyer (B — Hpgy)  Prom
Dpom

A segmented equation with a rational
function for the butt region of the stem and
a linear function for the rest of the stem.
The intersection between the two segments
is the point (Hpom, Drom) and the
derivatives of the two equations are equals
in this point. The vertical asymptote is
located at x=-B and the slope of the linear
equation is K (i.e. the taper of the regular
part of the trunk and expressed in m/m).

Eq.
SI3

Dpom (Hpom + d)
H+d)

DArea A=

An homographic function ((ax+b)/(cx+d) )
with a=0 and c=1 and going through the
point (Hpom,Drom).

Eq.
SI4

Dpou Hi"

a
Hpom

DArea P

The back-transformed equation of the log
model Eq. SI1.
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Table S3: Trunk metrics tested to predict the taper parameter a of the selected
taper model (Eq. 2 and 3). The coefficients are unitless and have the advantage
to include two measurements in one variable.

Trunk metric Formula Comments

We did not subtract the reference
height of 1.3 m to Hpom in the
denominator as it would lead to a

bet division by zero for trees with Hpom =
Buttresses convex taper _ (Deonvhuit1zo = Dpom) |13 m. A convex hull almost
- (Hpom) cylindrical at the stem base will have

a bct close to zero and more the
convex hull is conic more the value of
the coefficient will be higher.

For the same Hpom, the
coefficient  decrease  with

Hpou ) X
h:d = D higher Dpom while for the same
pPoM Drom, the coefficient increase
with higher Hpom.
H The coefficient decrease or
2 POM .
h:d* = —— increase less strongly than h:d.
Dpom
Slenderness coefficients For the same Hpom, the
coefficient  decrease  with
h:d. = M higher Dconviunizo while for the
" DeonwHull 130 same Deonvhuli130, the
coefficient increase with higher
Hpowm.
H The coefficient decrease or
2 POM .
h:d.* = increase less strongly than h:dc.

2
Dcoanull 130

D Coefficient based on the hardiness

Hardiness coefficient hdn = y—rom coefficient concept of Vallet et al.
Hpoum (2007).

, 2 | Desa is equal to zero for a circular

DBH > disc and tends to one as the cross-

section becomes more irregular

Deficit basal area index | Deg, = 1 — <
(Ngomanda et al., 2012)

Dperim 130
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Figure S1: Distribution of the taper parameter a of the model based on Eq. 1. The
null hypothesis of a distribution not normally distributed is rejected from the Shapiro—
Wilk test.
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factor(Essence2)
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Figure S2: Taper parameter ‘a’ of the model m (Eq. 1) among the species and
sites (panel a). The vertical red line is the mean of ‘a’ for all sites and species
and the vertical dotted lines are the standard deviation around the mean ‘a’.
Among the three common species of sampling Site BIA and CIB (panel b), no
significant difference appears in the taper parameter (P=0.06, df=10.2 for
Dabema; P=0.4, df=18.7 for Ohia and, P=0.8, df=9.9 for Padouk).
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Figure S3: Estimated Random effects of different covariates in Eq. SI4 (or
Eq. 2) adjusted without fixed effects. A loess smoother is included in the scatter
plots of the continuous covariates to aid in visualizing possible trends.
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Figure S4: Empirical correlations against distance classes between
height sections along the stem base for the four different runs of Eq2:

A. a nonlinear mixed-effects model run with no fixed effect, one random
effect on tree, no variance weights and no correlation structure;

B. nonlinear mixed-effects model run with fixed effects and two nested
random effects, no variance weights and no correlation structure;

C. nonlinear mixed-effects model run with fixed effects and two nested
random effects, with variance weights and no correlation structure;

D. nonlinear mixed-effects model run with fixed effects and two nested
random effects, with variance weights and an autoregressive correlation
structure of order one.

Estimates of the parameters for each run were obtained using the method of
maximum likelihood. Dashed lines represent the 95% confidence intervals
under the null hypothesis HO: Autocorrelation is null.
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Normalized residuals

Opredicted value

Figure S5: Residuals of the four different runs of models based on Eq.2.

A. a nonlinear mixed-effects model run with no fixed effect, one random
effect on tree, no variance weights and no correlation structure;

B. nonlinear mixed-effects model run with fixed effects and two nested
random effects, no variance weights and no correlation structure;

C. nonlinear mixed-effects model run with fixed effects and two nested
random effects, with variance weights and no correlation structure;

D. nonlinear mixed-effects model run with fixed effects and two random
effects, with variance weights and an autoregressive correlation structure of
order one.

Estimates of the parameters for each run were obtained using the method of
maximum likelihood. Note that the 99 percentile of the diameters Darea in the
dataset is 2.2 meters.
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Figure S6: Comparison of the equivalent diameter at breast height (DBH”) observed
versus predicted for the model m1 (A) and m2 (B). The green dots are the five sample

trees displayed in Fig. 4.
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Table S4: Characteristics of destructively sampled species, including
vernacular and scientific names, number (n) of sampled trees, mean and the
range of the diameters (DBH/DBH’ and Drowm), the height of measurement of
the Drom (Hrowm), the total height (TH) and the basic wood density (p).

DEH/DBH’ Drom (cm) Hpom (cm) TH (m) p (g/em’) 1
Ver. name |Sc. Name n (em)

Mean| Range |Mean| Range |Mean| Range |Mean| Range | Mean Range
Angueuk  |Ongokea gore 1| 36 | /36367 | 36 |[36-36] | 130 | [130-130] | 24 | [24-24] | 0.684 | [0.684-0.684]
Assas Macaranga spp 7| 38 | [15-547 | 37 | [15-537 | 152 | [130-236] | 27 | [18-36] | 0.359 |[0.314-0.423]
Ayous Triplochiton scleroxylon | 8 | 92 |[25-215]| 88 |[25-208]| 274 | [130-597] | 39 | [24-53] | 0.369 | [0.315-0.43]
Diana AF | Celtis adolfi-friderici 9| 44 |[18-74) | 43 | [18-70] | 147 | [130-230] | 31 |[20-37] | 0.594][0.544-0.666]
Ebom Anonidium mannii 7| 43 | 19727 | 43 | [19-727 | 130 | [130-1307 | 20 | [0-27] | 0.321 |[0.292-0.357]
Fraké Terminalia superba 9| s6 |[17-120]| 50 |[17-100]| 248 | [130-591] | 32 |[18-48] | 0.446|[0.379-0.499]
Tlomba Pycnanthus angolensis 8| 48 |[15-88] | 47 | [15-88] | 137 | [130-188] | 27 | [13-38] | 0.406 |[0.349-0.441]
Iroko Milicia excelsa 3| 72 | [58-93] | 70 |[54-91] | 178 | [130-214] | 38 | [32-42] | 0.59 |[0.537-0.626]
Limbali Gilbertiodendron dewevrei (30| 50 |[12-154]| 50 |[12-154]| 130 | [130-130] | 31 |[14-46] |0.673 | [0.62-0.731]
Mubala Pentaclethra macrophylla | 8 | 52 |[20-107]| 52 |[20-106]| 158 | [130-251] | 29 |[15-44] | 0.75 |[0.692-0.828]
Mukulungu |Autranella congolensis 6| 118 |[63-200]| 118 |[63-200]| 145 | [130-201] | 45 | [39-50] | 0.75 [[0.703-0.827]
Niové Staudtia kamerunensis 8| 54 |[13-119]| 54 |[13-119]| 130 | [130-130] | 33 | [15-47] | 0.627 |[0.499-0.729]
Olen Irvingia grandifolia 8| 58 |[10-140]| 56 |[10-134]| 189 | [130-3007 | 30 | [0-51] | 0.756 |[0.677-0.797]
Otungui Polyalthia suaveolens 6| 33 | [14-50] | 33 | [14-50] | 130 | [130-130] | 28 | [14-39] | 0.604 |[0.541-0.649]
Padouk Pterocarpus soyauxii 11\ 53 |[18-110]| 48 |[18-101]| 229 | [110-600] | 30 | [17-41] | 0.588 |[0.496-0.661]
Sapelli f}’,‘li.‘:,gi’:fmh’“g”’“ 11| 80 |f15-176]| 76 |[15-169)| 198 | [130-600) | 38 | [15-527 | 0.531 | 0.488-0.598]
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Figure S7: AGB predictions error from the two approaches with the
Pantropical model mpan (A) and the two approaches with the local models
mroc-ppom and mroc-peH (B) on 140 trees from Congo. Tree AGB predictions
and associated errors were computed using Drom (pink) or DBH (orange) as
the diameter predictor in the Pantropical model. Local AGB models were fitted
with Drom for the model mroc-prom and with DBH for mroc-psn. Tree AGB
predictions and associated errors were computed using Drom (blue) or DBH
(green) as the diameter predictor for respectively mroc-ppom and mroc-bsH.
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Figure S8: Characteristics of the eight forest inventory plots ordered by
increasing contribution of trees with Hrom > 1.3 m to total plot basal area.
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Figure S9: Relatives error of the three alternative approaches in comparison
to the reference approach(i.e., Loc-DBH). In red, the results of the paired tree-
level t-test at the plot level and in grey, the t-test results per diameter class. The
colors of the border of the bars are related to the approach: Orange, for the
model Loc-DBH; Blue, for the model Loc-Drom and; Pink, for the model Pan-
Drowm.
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classes for AGB estimates with the three alternative approaches compare to the
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Figure S11: The increasing AGB of two virtual trees with the same Drom
according to the increasing size of the tree diameters Drom over time. The first
virtual tree has a constant POM at 1.3m height, Drom is then equal to the
diameter at breast height, DBH (dark blue- green) and, the second virtual tree
have its POM raised through the time (light green). For this later virtual tree,
the equivalent diameter at breast height (DBH’) is 12 % higher than Dprom
(slope of the linear regression DBH’-Dprom without intercept fitted on the trees
with Hrom>1.3m of the Congolese plots of this study). The AGB are estimated
with the mLoc-DBH model with a basic wood density of 0.57 g.m™ for both.






