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PRINCIPLES OF AERIAL SURVEYS
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 Standard survey method

Two (or more) observers in aircraft flying at low altitude (300 ft) and 

high speed (~180 km/h) following systematic sample strips

→ Real time on-sight count

200m 200m

Animals

Flight path
Area to survey

Sample strips
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THE USE OF ON-BOARD CAMERAS
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 Real time on-sight count: not an easy task…

→ Population estimates not precise due mainly to 

short observation time (~5 s)

 How to reduce such bias?

→ Using on-board cameras that replace observers

Figure from Lamprey et al. (2020) [1]

Precise counts

More coherent 
population estimates

Large volume of data to process

→ Time-consuming manual processing (few 

seconds to several minutes)
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DEEP LEARNING FOR DATA PROCESSING
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 How to automate image processing?

→ Promising avenue: Deep Learning using Convolutional Neural 

Networks (CNN)

 Protected area managers’ expectations?

→ At least: Model that filters out non-animal images (i.e. >90%)

→ At best: Model that gives precise counts and identification

All images

Animal images

CNN

All images

Counts and 

identification

CNN

 

Are we there yet?
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ACHIEVEMENTS
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 Semi-automated methods [2,3,4]

Images

Counts and 

identification

CNN

 

 Nearly-automated methods [5]

 Weakly-supervised methods [6]

 Counting with density maps [7,8]

Annotations

T
raining

→ Towards the “at least” expectation

→ Towards the “at best” expectation

→ Towards freedom from costly annotations

→ Towards precise counts of close-by animals
Human 

verification
How to reach a fully automatic system?
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REDUCING THE FALSE POSITIVES
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 Mainly caused by the natural heterogeneity of African 

landscapes

 Accentuated for dense herds and close-by animals

Figure from Delplanque et al. (2022) [4]
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INCREASING THE PRECISION OF CLOSE-BY ANIMALS
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 CNN Anchor-based object detectors (e.g. Faster-RCNN, RetinaNet)

Good performances for isolated mammals and 

sparse herds[3,4,5] 
Drop in performances for dense herds and 

close-by individuals[4,5]

[5]

[4][3] [5]
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MANAGING DOUBLE COUNTING
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Image footprint

Animal

 Required to provide counts at the transect level
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STUDY AREA AND DATASET
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 Ennedi Natural and Cultural Reserve (Chad)

 914 images of 24MP containing challenging livestock groups

• 3,741 camels

• 1,227 donkeys

• 17,839 sheep and goats (a.k.a. shoats)

 Two Nikon D5000 SLR on a Cessna 182

• Sahelo-Saharan desertic landscape

• Vital resource for local semi-nomadic livestock

 Point annotations

• Oblique position

• Image capture when group > 10 individuals

• Split in train/validation/test set (70-10-20)
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OUR POINT-BASED CNN : “HERDNET”
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Encoder

(DLA-34)
Decoder

Deep features

Input patch Localization map

3 x 512 x 512

1 x 256 x 256

4 x 16 x 16

Local maxima 

extraction

3 x 512 x 512

 Compared to 2 other approaches

 Anchor-based CNN: Faster-RCNN[9] (baseline for localization)

 Density-based CNN: adapted DLA-34[10] (baseline for counting)
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HARD NEGATIVE PATCH MINING

11

 Principle: harvest hard negatives on full training images after 

a first training step and then use the patches that contain 

them for a second training step

→ Hard negatives = detections with high confidence score

→ Objective: reducing the number of false positives 

generated by background heterogeneity  

Inference

1st Training

1st Model

+

2nd Training

Final 

Model
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LOCALIZATION PERFORMANCE
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Approach Faster-RCNN HerdNet HerdNet + HNP

Recall 65.2% 77.7% 70.2%

Precision 28.9% 51.6% 77.5%

F1 score 40.0% 62.0% 73.6%

Processing time 5.0 sec. 3.6 sec. 3.6 sec.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝐹1 𝑠𝑐𝑜𝑟𝑒 =

2 × 𝑟 × 𝑝

𝑟 + 𝑝

LOCALIZATION
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COUNTING PERFORMANCE
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MAE = 33.7

RMSE = 48.0

MAE = 15.9

RMSE = 30.4

MAE = 14.8

RMSE = 21.4

Faster-RCNN DLA-34 HerdNet HerdNet + HNP

𝑀𝐴𝐸𝑎 =
1

𝑁
 

𝑖=1

𝑁

 𝐶𝑖 − 𝐶𝑖 𝑅𝑀𝑆𝐸𝑏 =
1

𝑁
 

𝑖=1

𝑁

 𝐶𝑖 − 𝐶𝑖
2

COUNTING

aMean Absolute Error

bRoot Mean Square Error
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MAE = 6.1

RMSE = 9.8



IDENTIFICATION PERFORMANCE
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Faster-RCNN

MAE 7.0 6.5 22.5

RMSE 9.7 9.2 37.0

DLA-34

MAE 3.6 1.6 15.2

RMSE 6.5 3.3 27.8

Camel Donkey Shoat

N 753 239 3,579

HerdNet + HNP

MAE 2.6 2.5 7.0

RMSE 4.8 4.6 10.7
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Faster-RCNN DLA-34 HerdNet + HNP



CONCLUSION & FUTURE WORK
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On-sight
count

In-image
count

CNN
count

Towards fully 
automatic system

 

CNN
count

Point-based CNN: 
HerdNet

Hard Negative Patch 
Mining

Will be addressed in future work

False positives1

Close-by animals2

Double counts3

Evaluation of model robustness+
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