Reduced Order Modeling of Bladed Disks with Geometric and Contact Nonlinearities

E. Delhez, F. Nyssen, J.-C. Golinval, A. Batailly

8th International Conference on Advanced Computational Methods in Engineering

August 2022

Outline

Context

Single blade

Conclusion

- 1 Context
- 2 Single blade
- 3 Full bladed dis
- 4 Conclusion

Environmental constraints

Single blade Full bladed disk Conclusion

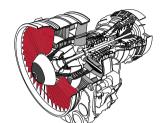
Context

By 2050...

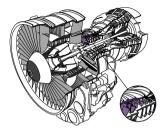
- ▶ 75% reduction in CO₂
- ▶ 90% reduction in NO×
- ▶ 65% reduction of noise

Context

Consequences on bladed disks design



Geometric nonlinearities



- Reducing clearances between the rotating blades and the casing
- Contact nonlinearities

Bladed disks dynamics fundamentally nonlinear

Numerical modeling

Full order model

$$\mathsf{M}\ddot{\mathsf{u}} + \mathsf{C}\dot{\mathsf{u}} + \mathsf{K}\mathsf{u} + \mathsf{g}_{\mathsf{nl}}(\mathsf{u}) = \mathsf{f}_{e}(t) + \mathsf{f}_{c}(\mathsf{u},\dot{\mathsf{u}})$$

Numerical modeling

Context

Single blade Full bladed dis

Full order model

$$\label{eq:mu} \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{\text{nl}}(\mathbf{u}) = \mathbf{f}_{e}(t) + \mathbf{f}_{c}(\mathbf{u},\dot{\mathbf{u}})$$

Reduced order model

$$ilde{\mathsf{M}}\ddot{\mathsf{q}} + ilde{\mathsf{C}}\dot{\mathsf{q}} + ilde{\mathsf{K}}\mathsf{q} + ilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q}) = ilde{\mathsf{f}}_{\mathsf{e}}(t) + ilde{\mathsf{f}}_{\mathsf{c}}(\mathsf{q},\dot{\mathsf{q}})$$

- ► Projection basis **Φ**?
- ightharpoonup Reduced nonlinear internal forces \tilde{g}_{nl} ?
- ► Treatment of contact in the reduced space $\tilde{f}_c(\mathbf{q},\dot{\mathbf{q}})$?

Objectives

Context

Single blade Full bladed dis Conclusion

Previous work¹

- Development of a methodology to study the contact interactions of a single rotating blade with geometric nonlinearities
- Validation on an industrial compressor blade model

Objectives

Context
Single blade

Previous work¹

- Development of a methodology to study the contact interactions of a single rotating blade with geometric nonlinearities
- Validation on an industrial compressor blade model

This presentation

- In-depth contact analyses to characterize the influence of geometric nonlinearities
- Generalization of the methodology to full bladed disks

- 1 Context
- 2 Single blade
- 3 Full bladed disk
- 4 Conclusion

Context

Single blade

Full bladed d

Methodology

Full order model

$$\label{eq:mu} \mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{\text{nl}}(\mathbf{u}) = \mathbf{f}_{\text{e}}(t) + \mathbf{f}_{\text{c}}(\mathbf{u},\dot{\mathbf{u}})$$

Reduced order model

$$ilde{\mathsf{M}}\ddot{\mathsf{q}} + ilde{\mathsf{C}}\dot{\mathsf{q}} + ilde{\mathsf{K}}\mathsf{q} + ilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q}) = ilde{\mathsf{f}}_{e}(t) + ilde{\mathsf{f}}_{c}(\mathsf{q},\dot{\mathsf{q}})$$

- ▶ Projection basis: Craig-Bampton modes and a selection of their modal derivatives²
- ▶ Reduced nonlinear internal forces: evaluation with the stiffness evaluation procedure (STEP)³
- ▶ Contact: explicit central finite difference time integration scheme with Lagrange multipliers⁴

²L. Wu et al. Proceedings of the 27th International Conference on Noise and Vibration Engineering. Leuven (Belgium), 2016.

³A. Muravyov et al. Computers & Structures (2003). doi: 10.1016/s0045-7949(03)00145-7.

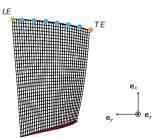
⁴N. J. Carpenter et al. International Journal for Numerical Methods in Engineering (1991). doi: 10.1002/nme.1620320107.

Test case

Single blade

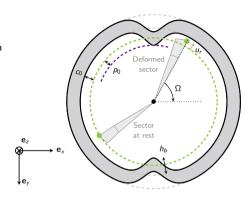
Contact simulations

- ► NASA rotor 37 blade (transonic compressor blade) clamped at its root⁵
- Open and industrial test case
- ▶ 8 boundary nodes distributed between *LE* and *TE* (contact interface)
- ► Reduction basis: 189 modes = 24 static modes + 15 fixed interface linear normal modes + 150 modal derivatives



Contact scenario

- ightharpoonup Blade rotating at a constant speed Ω around e_z
- ▶ Direct contact with rigid casing sliding friction
- Contact initiated by deformation of the casing with two lobes
- No aerodynamic loading, no gyroscopic or centrifugal effects, no thermal effects

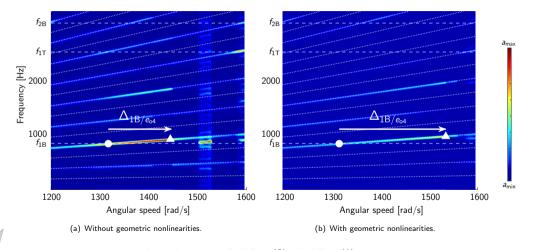


ACOMEN 202

Contact simulations

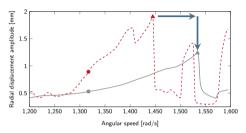
Interaction maps of the radial displacement at LE

Interaction between the first bending mode (1B) and the fourth engine order (e_{04})



▶ Interaction maps, predicted linear (●) and nonlinear (▲) resonances.

Nonlinear frequency response curve



▶ NFRC without (- -) and with (—) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- ► Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions
 - Additional contact stiffening

COMEN 2022

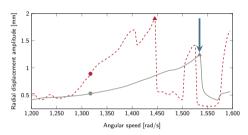
Context

Single blade

Contact simulations

Conclusion

Nonlinear frequency response curve



▶ NFRC without (- -) and with (—) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- ► Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions?
 - Additional contact stiffening

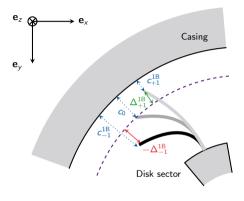
Clearance consumption

Definition

Evolution of the clearance between the blade and the casing when the blade vibrates along 1 mode

$$\Delta(\delta) = c_0 - c(\delta)$$

Possible key parameter for the design of blades subjected to contact interactions⁶



Context
Single blade

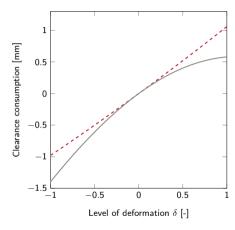
Methodology

Contact simulations

Conclusion

Clearance consumption

- Reduced clearance consumption with geometric nonlinearities
- Justify that the blade with geometric nonlinearities features lower vibration response to contact
- ▶ Linear model valid for $\delta \in [-0.25, 0.2]$



▶ Clearance consumption at LE without (--) and with (--) geometric nonlinearities.

COMEN 2022

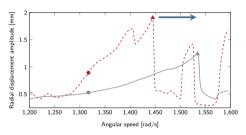
ontext

Single blade

Contact simulations

Conclusion

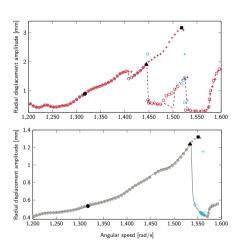
Nonlinear frequency response curve



▶ NFRC without (- -) and with (---) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions
 - Additional contact stiffening?

Nonlinear frequency response curve with continuation



▶ NFRC without (- -/--) and with continuation (+/ 0). without geometric nonlinearities (above) and with geometric nonlinearities (below).

Numerical procedure

- ► NFRC built with a sequential continuation procedure
- ► Upward (+) and downward (0) angular speed sweeps

- ► Without continuation, nonlinear resonance (■) not correctly captured
- Contact stiffening similar with and without geometric nonlinearities

Single blad

Full bladed disk

Methodology Verification witho contact

. . .

Conclusio

- 1 Context
- 2 Single blade
- 3 Full bladed disk
- 4 Conclusion

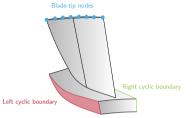
Generalization of the methodology with CMS techniques

Full bladed disk

$$\mathsf{M}\ddot{\mathsf{u}} + \mathsf{C}\dot{\mathsf{u}} + \mathsf{K}\mathsf{u} + \mathsf{g}_{\mathsf{nl}}(\mathsf{u}) = \mathsf{f}_{e}(t) + \mathsf{f}_{c}(\mathsf{u},\dot{\mathsf{u}})$$

Reduced order model

$$\tilde{\mathsf{M}}\ddot{\mathsf{q}} + \tilde{\mathsf{C}}\dot{\mathsf{q}} + \tilde{\mathsf{K}}\mathsf{q} + \frac{\tilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q})}{\tilde{\mathsf{g}}_{\mathsf{nl}}(\mathsf{q})} = \tilde{\mathsf{f}}_{\mathsf{e}}(t) + \frac{\tilde{\mathsf{f}}_{\mathsf{c}}(\mathsf{q},\dot{\mathsf{q}})}{\mathsf{q}}$$



Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary

Generalization of the methodology with CMS techniques

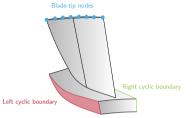
Full bladed disk Methodology

Full order model

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{\mathsf{nl}}(\mathbf{u}) = \mathbf{f}_{e}(t) + \mathbf{f}_{c}(\mathbf{u},\dot{\mathbf{u}})$$

Reduced order model

luced order model
$$\tilde{\mathsf{M}}\ddot{\mathbf{q}} + \tilde{\mathsf{C}}\dot{\mathbf{q}} + \tilde{\mathsf{K}}\mathbf{q} + \tilde{\mathsf{g}}_{\mathsf{nl}}(\mathbf{q}) = \tilde{\mathsf{f}}_{\mathsf{e}}(t) + \tilde{\mathsf{f}}_{\mathsf{c}}(\mathbf{q},\dot{\mathbf{q}}) \quad \longleftarrow \quad$$



- ▶ Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary
- Reduced nonlinear internal forces: STEP, assumption of linear coupling between the sectors

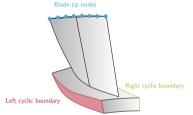
Generalization of the methodology with CMS techniques

Full order model

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} + \mathbf{g}_{\mathsf{nl}}(\mathbf{u}) = \mathbf{f}_{\mathsf{e}}(t) + \mathbf{f}_{\mathsf{c}}(\mathbf{u},\dot{\mathbf{u}})$$

Reduced order model

duced order model
$$\tilde{\mathbf{M}}\ddot{\mathbf{q}} + \tilde{\mathbf{C}}\dot{\mathbf{q}} + \tilde{\mathbf{K}}\mathbf{q} + \tilde{\mathbf{g}}_{\mathsf{nl}}(\mathbf{q}) = \tilde{\mathbf{f}}_{\mathsf{e}}(t) + \tilde{\mathbf{f}}_{\mathsf{c}}(\mathbf{q},\dot{\mathbf{q}})$$



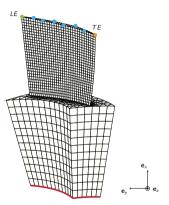
- ▶ Projection basis: for each sector, Craig-Bampton modes and a selection of their modal derivatives + second reduction of the cyclic boundary
- Reduced nonlinear internal forces: STEP, assumption of linear coupling between the sectors
- Contact: explicit central finite difference time integration scheme with Lagrange multipliers

COMEN 2022

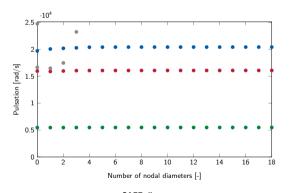
ontext ingle blade

Full bladed disk

Verification without contact



- ▶ NASA rotor 37 bladed disk with 36 sectors
- ▶ 133,605 degrees-of-freedom per sector
- Sectors clamped at disk lower surface



▶ SAFE diagram.

COMEN 2022

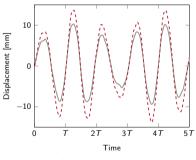
Context

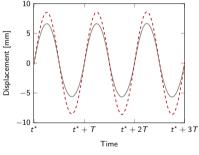
Full bladed disk

Verification without contact

Verification without contact

- ▶ Reduction basis: per sector, 3 static modes (LE) + 10 fixed interface linear normal modes + 10 modal derivatives + 3 modes for the second projection (total: 972 modes)
- ▶ Blade excited by a harmonic excitation of amplitude A = 400 N and pulsation $\omega = 4.500$ rad/s in the \mathbf{e}_{τ} direction





(a) Transient regime.

(b) Steady-state regime.

▶ Reference linear (--) and nonlinear (--) solutions, reduced order model nonlinear solution (--).

OMEN 2022

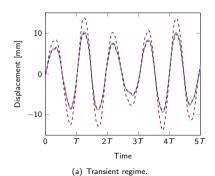
Context
Single blade

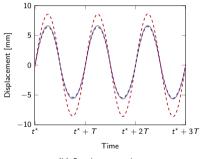
Full bladed disk

Verification without contact

Verification without contact

- ▶ Reduction basis: per sector, 3 static modes (LE) + 10 fixed interface linear normal modes + 10 modal derivatives + 3 modes for the second projection (total: 972 modes)
- ▶ Blade excited by a harmonic excitation of amplitude A = 400 N and pulsation $\omega = 4.500$ rad/s in the \mathbf{e}_{τ} direction



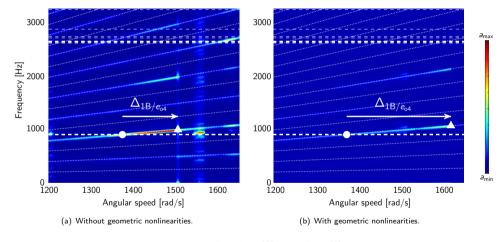


(b) Steady-state regime.

▶ Reference linear (--) and nonlinear (--) solutions, reduced order model nonlinear solution (--).

Full bladed disk Contact simulations

Interaction maps of the radial displacement at LE



▶ Interaction maps, predicted linear (●) and nonlinear (▲) resonances.

COMEN 2022

ontext

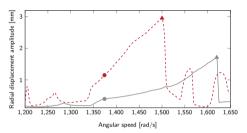
Full bladed disk

Methodology

Contact simulations

Conclusi

Nonlinear frequency response curve



▶ NFRC without (- -) and with (—) geometric nonlinearities, predicted linear (●) and nonlinear (▲) resonances.

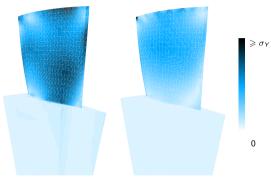
- Contact stiffening
- Amplitude jumps
- Influence of geometric nonlinearities
 - Smoother interactions (see clearance consumption analysis)
 - 'Additional contact stiffening' (continuation procedure required for accurate quantification)

ACOMEN 2022 Context Single blade Full bladed disk Methodology

Contact simulations

Conclusio

Von Mises stress fields



- (a) Without geometric nonline (b) With geometric nonlineariearities.
 - ▶ Von Mises stress fields at the resonance.

Comparison

- Zones of maximal stresses not at the same locations
- Non-negligible stresses in the disk for the case without geometric nonlinearities
- Smaller stresses predicted with geometric nonlinearities (in line with predicted displacements)

Outline

Single blade

Conclusion

- 1 Context
- 2 Single blade
- 3 Full bladed disl
- 4 Conclusion

Conclusion

- Methodology to study the rubbing interactions of full bladed disks with geometric nonlinearities
 - Projection basis: Craig-Bampton reduction basis and selection of their modal derivatives + second reduction of cyclic boundary
 - Geometric nonlinearities: STEP
 - Contact nonlinearities: Lagrange multipliers
- ▶ Reduced order models are an efficient alternative to full order models
- ► Influence of geometric nonlinearities not negligible
- Parametric reduced order models can be built to account for gyroscopic and centrifugal effects
- Methodology also compatible with the introduction of mistuning

Conclusion

Conclusion

- Methodology to study the rubbing interactions of full bladed disks with geometric nonlinearities
 - Projection basis: Craig-Bampton reduction basis and selection of their modal derivatives + second reduction of cyclic boundary
 - Geometric nonlinearities: STEP
 - Contact nonlinearities: Lagrange multipliers
- ▶ Reduced order models are an efficient alternative to full order models
- Influence of geometric nonlinearities not negligible
- Parametric reduced order models can be built to account for gyroscopic and centrifugal effects
- Methodology also compatible with the introduction of mistuning

Thank you for your attention

