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Abstract

This work addresses the implementation of a 3D finite element model (fem) allowing the evaluation of
the elastic properties of metallic thin films deposited on a substrate by magnetron sputtering. In par-
ticular, the Young’s modulus and the stress-strain relation in compression of Cu, Zr, amorphous CuZr
and multilayered Cu/Zr films are studied. First, the governing equations of elasticity augmented by
surface stress and surface stiffness theories are recalled in their analytical form, then the corresponding
finite element formulation is derived. The transport of sputtered particles through the gas phase flux
during sputtering is performed with the binary collision Monte Carlo program simtra. The simulation
of deposition, diffusion, nucleation and growth of the films is performed by the kinetic Monte Carlo code
nascam. Finally, the Young’s modulus obtained by the fem simulation is compared to experimental
results from the literature.

Notations

w A scalar or a function.
H Fourth-order tensor.
M Second-order tensor or a matrix.
v First-order tensor or a column vector.
v Voigt notation of a second-order tensor.
M1 : M2 Double dot product of two matrices or tensors.
H : M Double dot product of a fourth and second-order tensors.
v1 · v2 Standard dot product of two vectors.
v1 ⊗ v2 Tensor product of two vectors.
v1 × v2 Cross product of two vectors.
M · v Dot product of a tensor and a vector.
Mv Standard matrix-vector product.
v1v2 Standard vector-vector product.
∇v Gradient of a vector field.
∇ ·M Divergence of a tensor field.
M> Transpose of a tensor or a matrix.
v> Transpose of a column vector.
sym(M) Projection of M on the symmetric space.
A Application or differential operator.
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1.1 Objectives and Outline
The objective of this work is to study the implementation of a fast numerical model allowing the eval-
uation of the elastic properties of thin films deposited by plasma at low pressure. In particular, the
equivalent elastic modulus and the influence of the porosity, internal structure, deposited material and
number of layers are of interest. The thin film deposition has been simulated by the 3D kinetic Monte
Carlo code nascam developed at the University of Namur [1]. Atomistic models such as molecular dy-
namics are suitable for simulating the elementary processes responsible for mechanical properties of thin
films, but are typically complex and very demanding in computer resources. In this work, we propose the
use of Galerkin methods, which are based on the weak formulation of the partial differential equations
governing the physical phenomenon to be represented. In the so-called finite element method (fem), this
is achieved by a particular spatial discretization in the space dimensions, which is implemented by the
construction of a finite element mesh of the domain. The thin films of interest are metal structures com-
posed of a potentially large number of atoms in 3D that may be simulated individually in the structure, or
partially by the use of macro-atoms. Those macro-atoms represent a cluster of atoms and are considered
as a single particle in nascam, allowing for coarser meshes and therefore reduce the computation time of
the Monte Carlo algorithm. Finally, it is important to note that this work concerns the elastic properties
(Figure 1), meaning that plastic deformations, characterized by an irreversible change in the geometry
of the film, as well as the movement of dislocations, are not represented in the numerical model. Plastic
deformations occur when the material is subjected to stresses exceeding its yield strength, which can be
measured experimentally.

The fem is a powerful numerical tool that is well adapted at the macro or microscale. This method
has the advantage of being versatile in the range of problems it can solve. But, since the fem needs
the definition of a constitutive law and assumes the material to be continuous, it is not directly able
to simulate effects associated to attractive and repulsive forces related to energetic interatomic poten-
tials or related to thermal fluctuations, that are fundamental for simulating materials at the nanoscale.
Accordingly, the classical fem cannot be directly employed to simulate a nanoscale problem. However,
by employing suitable homogenization approaches, it is possible to define constitutive relationships that
include the influence of nanoscale phenomena, meaning that the fem can be suitably formulated in or-
der to account, at its continuum level, for effects deriving from nanoscale processes such as long-range
interactions. These fem formulations are called multiscale models. A summary of the main steps of our
work is presented in Figure 2.

Elastic region (this work)

Yield strength

Ultimate strength

Fracture

Strain ε

Stress σ

E =
dσ(ε)

dε

Figure 1: Example of a stress-strain curve σ(ε) for a one dimensional traction test with a ductile
material of Young’s modulus E. The part of the curve located before the yield strength is the elastic
region, where the deformations of the sample are reversible.
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• Outline

In Chapter 1, a literature review of some fem formulations and theories accounting for nanoscale phe-
nomenon is presented with their advantage and drawbacks. This summary is not an exhaustive list, but
aims at providing a global representation of different approaches that could have been used, in addition
to explain our principal motivation for choosing a method in particular.

In Chapter 2, the mathematical description of the linear elasticity (le) and the set/sst model based on
surface stress and surface tension is obtained by deriving a weak formulation of the constitutive equation
(the concept of weak formulation is detailed in Annex 6.1). Important ingredients of the fem such as
the interpolation functions or the boundary conditions are also discussed. Finally, a description of the
Saint Venant-Kirchhoff model (svk) for large deformations is presented.

In Chapter 3, different test cases are simulated in order to validate the fem algorithm thus implemented.
The first test case is the well-known cantilever beam where the ability of the code to represent nonlinear
deformations is assessed. The second case consists in the relaxation of a nanoplate under the effect
of surface tension. Finally, the third test case is a purely 3D case featuring an axial stress applied to
an infinite material containing a spherical cavity, this latter allows to highlight some particularities of
isoparametric and voxel-based meshes.

Preliminaries, governing equa-
tion, fem discretization and mesh.

Verification of the implementation
by solving different test-cases.

Simulation of atomic flux during
magnetron sputtering process.

Generation of the thin film
structure on a substrate.

Application of the code to thin films
and comparison with literature.

This code

This code

simtra

nascam

This code

1

2

3

4

5

A
pplications

T
heory

Figure 2: Presentation of the main steps for the realization of this work. The labels on the right feature
the numerical tool that has been used at each step. Note that the numbering of those steps is not related
to the numbers of the chapters in which they appear.
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In Chapter 4, the fem code is finally applied to thin films. We start with an introduction to the methods
employed for generating the sample in nascam, in particular, the energy and angular distributions of the
deposited particles are of primary interest. The second part of the chapter is dedicated to the comparison
of the elastic properties of Cu, Zr and CuZr monolayer thin film. The last part is dedicated to the study
of Cu/Zr multilayer thin films deposited either by a single cathode or by a double cathode configuration,
by analysing the influence of the number of layers in their elastic properties.

1.2 Introduction to Thin Films
Thin films are objects whose size are limited at the micro or nanoscale in one direction of space, this
dimension is referred as the thickness of the material. Typically, thin films can vary in thickness from
a few atomic layers to ten micrometers and modify the properties of the substrate on which they are
deposited. The main characteristic of thin films is that their physical and chemical properties can highly
differ from those of bulk materials in all their dimensions, and are determined by the thickness, geometry
and structure of the sample. Thin films are generally used to improve the surface properties of solids.
For instance, they may be used to modify the hardness, transmission, absorption, reflection, abrasion re-
sistance, permeation corrosion and electrical properties of bulk material surfaces. In addition, thin films
may be directly used in the fabrication of electrical devices such as batteries [2] or transistors [3]. The
manufacture of porous materials in the form of thin films allows to have a high surface-to-volume ratio,
in order to increase their ability to interact with the medium using small amounts of material, which is of
great interest for many applications [4]. For instance, in the development of chemical sensors thanks to
surface chemistry, or materials with low dielectric constant to increase signal propagation speed, reduce
power consumption, and reduce the crosstalk between adjacent conducting lines [5].

Elastic behavior is a macroscopic evidence of atomic bonding, and a result of atomic bond against
extension, compression and distortion. Hence the elastic behaviour of the film can be partially explained
by its nanostructure. A first intuition about the origin of the difference between macroscale and nanoscale
materials can be acquired by considering the surface-to-volume ratio of an object depending on its
characteristic size. For instance, a spherical particle depending on its radius:

A

V
= 3

4
4πr2

πr3 = 3
r

(1.1)

which shows that surface effects such as surface stress increase in importance when the size of the sphere
decreases. Physically, the fraction of atoms located at the surface of the object increases as its character-
istic dimension of this latter decreases. Moreover, thin film structures are typically made by depositing
the material onto a solid substrate and occur at elevated temperatures. As different materials have dif-
fering thermal expansion coefficients, potentially large thermal stresses are induced in the film materials
and the substrate during manufacture, and remain there while using the devices. Another source of
intrinsic stresses is the non-equilibrium growth processes leading to elastic or plastic deformations in
the film [6]. During the deposition by magnetron sputtering, the residual stress is associated with the
film-substrate lattice misfit, energetic-particle bombardment and deposition conditions such as working
pressure and substrate bias. Thereby, the mechanical properties of the film are highly dependent on the
substrate and the deposition process, and are of critical importance in the design of electronic systems.
For instance, microprocessors must sustain mechanical stresses due to thermal expansion, collision events
or friction. In particular, a microstructural feature is to provide resistance to friction and wear [6]. The
Stoney equation relates the substrate curvature to film stress, and has been extensively used to estimate
the residual stress state in metallic coatings:

σ = E

6(1− ν)

(
ts
tf

)2( 1
R
− 1
R0

)
(1.2)

where σ is the residual stress in the film, tf the film thickness, ts the substrate thickness, E the Young’s
modulus of the substrate and ν is the Poisson’s ratio of the substrate. R0 and R are respectively the radii
of curvature of the substrate before and after the film deposition. Due to typically high yield strengths,
thin films can support very high residual stresses [7].
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1.3 Review of FE Models
In order to represent the elastic properties of thin films, different theories deviating from the classical
Euler-Bernoulli theory and Hooke’s law have been proposed in the literature to represent the size de-
pendence of the mechanical properties of nanostructures. In this section, we summarize some of those
theories that are applicable in the context of the finite element method, and feature their advantages
and drawbacks. The considered theories are the surface stress theory, the couple stress theory and the
surface elasticity theory. Moreover, the non-local finite element method and the atomistic finite element
method are also presented.

• Atomistic Finite Element

The atomistic scale finite element method (afem) has been proposed in [8][9] in order to study the
mechanical properties of nanostructures and is based on the concept of potentials describing the inter-
action among atoms. The method uses a particular arrangement of overlapping elements to exploit the
concept of cutoff radius, typically used in molecular dynamics simulations, to represent the long-range
interactions between the atoms. Conversely to the classical fem, the afem is thus a non-local, but also
a nonlinear finite-element method. The key idea is to use the atoms as the nodes in the finite element
mesh and create overlapping elements which interact with each other by their shared nodes. The gov-
erning equation is established by looking for a minimum in the energy of the system. The afem has
been demonstrated as being a good alternative to molecular dynamics, providing similar results for the
test case presented in [8][9]. In the perspective of this work, the thin film material is given as a periodic
structure where the exact location of the atoms is not necessarily known. Moreover, the interatomic
potential is non-trivial to obtain, or possibly unknown. Finally, the very large number of atoms present
in some 3D structures may lead to high computational costs.

• Non-Local Finite Element

Similarly to the afem, the non-local elasticity theory aims at representing nanostructures by involving
the presence of non-local effects as additional body forces acting on material masses and depending on
their relative displacements [10]. As shown in Figure 3, the integral model of non-local finite element
method (nlfem) uses the following modified stress tensor

σ̄(x) =
∫

Ω
k
(
x,y

)
σ(y) dy (1.3)

which indicates that the stress component of a body at reference point depends on the strain field on the
entire domain. The function k is a positive scalar attenuation function called the kernel and acts as a
weight function for the non-local interactions. The nlfem faces the same problems as afem in the sense
that it requires an explicit knowledge of the interatomic potential in order to correctly define the kernel
function. Moreover, the integral form of the nlfem induces high computational costs in 3D. Indeed, the
local stress must be evaluated for each integration node of a finite element, and at each integration node
of the mesh located within a sphere of radius λ around the point on which the nonlocal stress σ̄(x) is
computed, where λ is the cutoff distance. It is important to note that a Gauss quadrature rule of order
p is exact for a polynomial of order 2p− 1. As the kernel function is not a polynomial, and because its
speed of variation in space depends on its characteristic range, the number of quadrature nodes must be
adapted to correctly integrate (1.3).

• Couple Stress Theory

The couple stress theory (cst) aims at taking into account the local translational motion of a point
within a material body in addition to the local rotation of that point by introducing a torque per unit
area. The general idea of this micro-elasticity theory is that the points of the continuum associated
with a microstructure of finite size can deform both macroscopically and microstructurally, producing
the scale effect described by a characteristic size parameter [11][12]. The cst thus introduces three
rotational degrees of freedom in the system of equations, which are related to displacement degrees of
freedom by Lagrange multipliers.
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In a physical context, cst theory can explain that some structures show a stiffening behavior in bending
whereas no change is observed in tensile experiments. However, cst is only able to predict a stiffening
effect when reducing the characteristic size of the material, and thus cannot be applied to every material.
In addition, the length scale parameter cannot be easily computed. Indeed, the only way to estimate
this parameter is via fitting to the experimental data [13].

• Surface Stress and Elasticity

As presented previously, the surface to volume ratio starts to increase drastically when the characteristic
size of the structure decreases, leading to a significant influence of surface effects. This particularity is
taken into account by the surface elasticity theory (set) and the surface stress theory (sst), which are
based on the fact that the nature of the chemical bond and the equilibrium interatomic distances on the
surface are different from that in the bulk [13][14]. In the set, the stiffness tensor of a finite element
located at the interface is augmented by a surface stiffness tensor taking into account the reduction in
the number of bonds. In the sst, residual stresses due to the deposition process or the surface tension
of the material are applied to the structure and modify the mechanical response. The advantage of set
is that this latter can explain softening or stiffening behavior, works for all structures irrespectively of
length and can sometimes be explained using very simple and intuitive arguments, as for example the
oxidation in normal conditions of the surface of the material [13]. The finite element formulation is given
under the assumption of quasi-static equilibrium and small strain as follows:

(
Kb + Ks

)
u = Ft − Fs (1.4)

where Kb is the conventional stiffness matrix of the bulk and Ks is the stiffness matrix of the surface,
whose intrinsic parameters can be found in the literature. Ft is the vector of applied stress and Fs is the
residual stress due to surface tension. It is important to note that the gravitational forces are neglected
for nanostructures [15]. In the context of porous thin film materials displaying a large surface to volume
ratio, and where the porous structure requires a fine mesh, the set and sst are good candidates for a
first finite element analysis. Consequently, the next chapter is dedicated to the mathematical description
of the model (1.4) as well as its finite element discretisation.

k(x, y)

• •
x y

x

Bar core domain Bar end

Figure 3: Sketch of the one-dimensional kernel function k(x, y) and of the bar end portions, denoting
the average distance beyond which the non-local interaction vanishes. The point x is the point at which
the stress is evaluated and y is the variable against which the integral is computed [16].
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Chapter 2

Finite Element Models
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2.1 Introduction
Continuum mechanics is used to study both the deformation of solids and the flow of fluids. This last
point leads to the well-known Navier-Stokes and Stokes equations, which are out of the scope of this
work. The case of solids can be expressed from the second Newton’s law of motion


∇ · σ + ρg = ρ

∂2u

∂t2
+ ν

∂u

∂t
in Ω

ε = 1
2

(
∇u+∇u> +∇u∇u>

)
in Ω

(2.1)

which is a system of three elliptic partial differential equations for the displacement. The Cauchy stress
tensor σ is a function of the strain, u = [u1 u2 u3] is the three-dimensional displacement field, g is
the gravitational acceleration, ρ is the density of the material, ν is an additional term introducing the
viscous damping of mechanical waves and ε is the strain tensor. In this work, the body force ρg can
be neglected thanks to the small size of the material. It is important to note that in the Eulerian
description, the differential operators are defined with respect to the deformed configuration. In the
Lagrangian configuration, the differential operators are defined with respect to the initial configuration.
Assuming small deformations, one can neglect the nonlinear terms

ε ' 1
2

(
∇u+∇u>

)
(2.2)

as the initial and the final configurations of the material are approximately the same. For a structure
without damping, the viscous term may be neglected. In the quasi-static approximation, the solution
does not depend on the time and the time derivatives may be removed from the equations. As discussed
previously, additional terms taking into account the different effects occurring in very small structures
due to their discrete nature are required to correctly predict the mechanical response. For instance,
the effect of surface elasticity. Finally, it is important to note that purely elastic deformations will be
considered, thereby dislocation motion leading to plastic deformations are not taken into account, this
assumption must be verified by the use of adequate plastic criteria.

•y

x
z

xj

x = [x1 x2 x3]

Ω(t)

Figure 4: Configuration of a material continuum body of domain Ω ∈ IR3 in the Euclidean space at
time t. The points within this region are called particles or material points and their position xj in Ω is
described with the vector of coordinate x = [x1 x2 x3] sometime referred as x = [x y z] in the report.
This continuum body may deform with time.
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2.2 Building the Mesh

1 Preliminaries, governing equation,
fem discretization and mesh.

In the finite element method, the domain is first discretized in space by the use of a mesh, hence the
quality of the mesh is a critical parameter for the quality of the solution. Practically, the material is
discretized into an assembly of finite elements equipped with a number of nodes, two neighbour elements
share at least 3 nodes if the elements are tetrahedrons, and 4 if the elements are hexahedrons. In this
work, the elementary entities forming the mesh are the so-called 3D Lagrange elements containing (n+1)3

nodes, where n is the order of the element. Each element allows to compute elemental matrices that are
then assembled into a global matrix K representing the discretized equation (2.1). If e is the number of
elements in the mesh, Ke and be denote the element matrices and boundary condition vector:

K =
e⊕
e=0

Ke b =
e⊕
e=0

be (2.3)

Ultimately, the fem solution is obtained at each node of the mesh by solving a linear system of equations
Ku = b, and interpolated everywhere in the material by shape functions. The Lagrange elements use
the Lagrange polynomials [17] for their shape functions. A basis of Lagrange polynomials is defined by
its set of data points {pj} and its order n, the j-th polynomial of the set is equal to one at the j-th
point of the set and zero on the other points. In three dimensions, the shape function NI of a node is
the product of three Lagrange polynomials in each dimension, where I is the multi-index. For instance
I = [I1 I2 I3] denotes the shape function formed by the product of the I1-th Lagrange polynomial along
the first axis, the I2-th along the second axis and the I3-th along the third axis, one has then

NI(ξ) =
3∏
j=1

Ln[Ij ](ξj) ⇔ Lni (ξ) =
n+1∏
j=1
j 6=i

ξ − ξj
ξi − ξj

(2.4)

where Lni is the i-th Lagrange polynomial of the set and ξ = [ξ η ϕ] is the local coordinate vector.
Indeed, isoparametric finite elements are defined in their own reference frame with ξ ∈ [−1, 1]3 in three
dimensions. Moreover, the derivative of the i-th Lagrange polynomial is given by

dLni
dξ

(ξ) =
n+1∑
k=1
k 6=i

[
1

ξi − ξk

n+1∏
j=1

j 6=(i,k)

ξ − ξj
ξi − ξj

]
(2.5)

Once the elements of the mesh have been defined, it is necessary to establish the mapping between the
global space [x y z] of Ω and the local space [ξ η ϕ] of each element. For an element of j nodes, the
Jacobian matrix of this transformation is computed by

J =



∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ϕ

∂y

∂ϕ

∂z

∂ϕ

 =
j∑

j=1



∂Nj
∂ξ

xj
∂Nj
∂ξ

yj
∂Nj
∂ξ

zj

∂Nj
∂η

xj
∂Nj
∂η

yj
∂Nj
∂η

zj

∂Nj
∂ϕ

xj
∂Nj
∂ϕ

yj
∂Nj
∂ϕ

zj

 (2.6)
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Then, the partial derivatives of the shape functions with respect to the global coordinates in B are
obtained by inverting the previous matrix and applying the chain rule of derivation:

∂N
∂xj

= ∂N
∂ξ

J−1
1j + ∂N

∂η
J−1

2j + ∂N
∂ϕ

J−1
3j (2.7)

where x = [x y z] are the global coordinate variables. Finally, the integrals of the matrices in (2.14) are
performed over each element and assembled into the global matrix of the system. A suitable integration
method is the Gauss-Legendre quadrature, whose implementation is described in details in [18]. For an
integrable function f : Ω → IR3 where Ω denotes the domain of an element with respect to the global
coordinates, one can perform the integral in the local space Ω ′ = [−1, 1]3 as follows:∫

Ω
f(x) dx =

∫
Ω ′
f
[
x(ξ)

]
det J(ξ) dξ (2.8)

2.3 The SET/SST and LE Models
The set/sst model is based on the classical linear elastic (le) model, but where the stress tensor is
augmented by a surface stress tensor taking into account surface stiffness and surface tension. Let Ω be
the 3D medium composed of different isotropic sub-domains separated by the interfaces Γs. The external
boundary of the domain is denoted Γ and is decomposed into a first part Γu where Dirichlet boundary
conditions are imposed and a second part Γt where Neumann boundary conditions are imposed. The
strong formulation of the set/sst is obtained by the volume and surface equilibrium equations:

∇ · σ + ρg = ρ
∂2u

∂t2
in Ω (pde)

∇s · σs = 0 on Γs (pde)
σ · n = t on Γt (bc)
u = ū on Γu (bc)

(2.9)

where ū is the imposed displacement, ∇s is the surface gradient, n is the exterior normal to the domain
boundary Γt and t are the imposed surface traction. In the context of linear isotropic elasticity, the stress
tensor is a linear function of the strain ε and the surface stress tensor σs is given by the Shuttleworth
equation [19][15] for the surface:

σ = ∂U

∂ε
= D : ε = λI tr ε+ 2µε

σs = σ0 + ∂γ

∂εs
= Iτ0 + S : εs

(2.10)

where D is the fourth-order bulk stiffness tensor, S is the fourth-order surface stiffness tensor whose the
components can be obtained by atomistic simulations [15]. λ is the first Lamé parameter of the bulk, ν
is the second Lamé parameters of the bulk, U and γ are the strain energies of the bulk and the surface.
The residual surface stress when the material is not strained is σ0 and τ0 denotes the surface tension.
In infinitesimal strain theory [20], the nonlinear or second-order terms of the finite strain tensor are
neglected. Thus we have for the bulk and the surface in small deformation

ε = 1
2

(
∇u+∇u>

)
εs = PεP> = PεP

(2.11)

where P is the symmetric surface projection tensor described in Annex 6.1. The components of the bulk
and the surface stiffness tensors are given as in [19][21]. Where δ is the Kronecker delta, (λ, λs) and
(µ, µs) are the first and second Lamé parameters for an isotropic material:
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Hijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
Sijkl = λsPijPkl + µs

(
PikPjl + PilPjk

) (2.12)

The stress and strain tensors are given in tensorial notation as 3 × 3 matrices. Because the individual
subdomains are considered as isotropic materials, those tensors are symmetric, the number of independent
components reduces to 6 and can they be re-written under the Voigt notation (Annex 6.2).

σ =

σ11 σ12 σ31

σ21 σ22 σ23

σ31 σ23 σ33

 ε =

ε11 ε12 ε31

ε21 ε22 ε23

ε31 ε23 ε33

 (2.13)

• Finite-Element Formulation

The system of equations (2.9) is called the strong formulation because of the derivability requirements on
unknown field. In the so-called weak formulation, the problem is re-formulated such that the derivability
requirements is weakened. Indeed, the finite element method has been developed with the essential
property that whenever a smooth classical solution exists, it is also a solution of the weak form. In order
to solve this equation in complex domains, the space is discretized into the so-called finite-elements, and
the solution is approximated by a sum of shape functions multiplied by the corresponding nodal value
of the solution. The fem equation for linear elasticity with the set/sst model is

(
Kb + Ks

)
u + M d2u

dt2
= Fb + Ft − Fs (2.14)

where KB is the bulk stiffness matrix, Ks is the surface stiffness matrix, M is the mass matrix, FT is
the vector of external loads, FB is the vector of body forces, Fs is the vector of residual surface stress
and u is the vector of nodal displacements. The demonstration is detailed in the Annexes 6.1 and 6.2.
The different matrices appearing in the formulation are computed as follows:

Kb =
∫

Ω
BDbB>dx

Ks =
∫

Γs

BTDsT>B>dx

M =
∫

Ω
HH>ρ dx

Fb =
∫

Ω
Hρg dx

Ft =
∫

Γt

Ht dx

Fs =
∫

Γs

BTσ0 dx

(2.15)

It is important to note that Ks is symmetric but not positive-definite, meaning that K may loose its
positive definiteness for some value of surface parameters, leading to an unstable system. For an isotropic
material, the bulk stiffness tensor Db is given by

Db = E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0 1− 2ν
2 0 0

0 0 0 0 1− 2ν
2 0

0 0 0 0 0 1− 2ν
2


(2.16)

Similarly to the bulk stiffness tensor and if the surface is isotropic, Ds is the second-order surface stiffness
tensor of 36 components obtained by the independent components of the fourth-order tensor (2.12) by
exploiting its symmetry. This stiffness tensor is given by
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Ds =



S1111 S1122 S1133 S1112 S1123 S1113

S2211 S2222 S3322 S2212 S2223 S2213

S3311 S3322 S3333 S3312 S3323 S3313

S1211 S1222 S1233 S1212 S1223 S1213

S2311 S2322 S2333 S2312 S2323 S2313

S1311 S1322 S1333 S1312 S1323 S1313


(2.17)

which depends on P and the surface Lamé parameters previously defined. Because the projection tensors
are symmetric and the norm |n| is unitary, this tensor can be decomposed into an isotropic surface stiffness
tensor D̄s and two transition matrices such that Ds = TD̄sT> with the following form:

D̄s =


2µs + λs λs λs 0 0 0

λs 2µs + λs λs 0 0 0
λs λs 2µs + λs 0 0 0
0 0 0 µs 0 0
0 0 0 0 µs 0
0 0 0 0 0 µs

 (2.18)

The matrix H is the matrix of shape functions, which simply contains a vector of nodal shape func-
tions N for each dimension of space. Accordingly, the three directions (ux, uy, uz) = (u1, u2, u3) of the
displacement u are stored consecutively in a single vector. One can write

H =

N 0 0
0 N 0
0 0 N

 u =

u1
u2
u3

 (2.19)

The matrix B contains the derivatives of the nodal shape functions Nj(x) used for the discretization of
space, with j = 1 . . . j and j is the number of nodes in an element of the mesh. Accordingly, we define
the vector of N for each element, and its vector of nodal displacements as

B =



∂N
∂x

0 0 ∂N
∂y

0 ∂N
∂z

0 ∂N
∂y

0 ∂N
∂x

∂N
∂z

0

0 0 ∂N
∂z

0 ∂N
∂y

∂N
∂x


N =



N1

N2

N3
...
Nj


u =



u1
x
...
uj
x

u1
y
...
uj
z


(2.20)

Finally, T is the non-symmetric transition matrix representing the mapping between the bulk and surface
quantities in Voigt notation, this latter can be computed analytically from the property (6.18) and is
given as a function of the projection tensor:

T =



P 2
11 P 2

12 P 2
31 2P11P12 2P31P12 2P11P31

P 2
12 P 2

22 P 2
23 2P12P22 2P23P22 2P12P23

P 2
31 P 2

23 P 2
33 2P23P31 2P23P33 2P33P31

P11P12 P12P22 P31P23 P11P22 + P 2
12 P31P22 + P23P12 P31P12 + P11P23

P12P31 P23P22 P23P33 P22P31 + P12P23 P22P33 + P 2
23 P23P31 + P12P33

P11P31 P12P23 P33P31 P12P31 + P11P23 P31P23 + P33P12 P33P11 + P 2
31


The equation (2.14) discretized in space, but not in time as u is function of the time. There exist different
methods for the time discretization, which can be categorized either as explicit or implicit scheme.
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In the quasistatic approximation, the time derivative is neglected and the system can be solved in one
single step. A summary of the procedure is presented Figure 5. One may notice that the classical linear
elasticity model (le) is retrieved when Ks and Fs are zero.

2.4 Saint Venant–Kirchhoff Model
The Saint Venant–Kirchhoff model is an extension of the geometrically linear elastic material model
to the geometrically nonlinear regime. This model does not take into account surface effects and is
valid for linear elastic materials under large strain (in addition to small strains). Under the quasi-static
approximation and neglecting body forces, one can write

∇ · σ = 0 in Ω (pde)
σ · n = t on Γt (bc)
u = ū on Γu (bc)

(2.21)

In the finite strain theory, the complete description of the strain tensor is used, meaning that all the
quadratic terms in ε presented in (2.1) are taken into account. Moreover, the dependency of the spatial
domain Ω(u) in the displacement field is considered and the integration domain thus depends on the
variable on which the integration is performed in the variational formulation:

 ∇x · σ(x) = 0 in Ω(u)

ε = 1
2

(
∇xu+∇xu

> +∇xu∇xu
>
)

in Ω(u)
(2.22)

The notation ∇x indicates that the derivatives are performed with respect to the current configuration,
which is now significantly different from the initial configuration. In order to solve this system, the total
Lagrangian formulation is proposed. In this formulation, the integration is performed with respect to the
initial configuration, then alternative stress and strain measures are used in order to take info account
the evolution of Ω with the displacement:

Generate the fem mesh and N.

Integrate the matrices Kb Ks
and Ft Fs for each element.

Assemble the total matrix K
and the right-hand-side b.

Edit K and b for
boundary conditions.

Solve Ku = b with sparse
conjugate gradient algorithm.

Stress recovery algorithm
and plots the solution.

Figure 5: Flowchart of the fem algorithm for the set/sst model. In this work, a quasistatic case is
assumed and the effect of the body forces such as the weight of the thin film is neglected, leading to the
following simplifications: ∂2/∂t2 = 0 and Fb = 0. The algorithm for classical linear elasticity (le) is
identical to set/sst in the particular case Ks = 0 and Fs = 0.
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∫
Ω0

S : Ew dx =
∫

Γ0

w>t dx (2.23)

where S = D : E is the second Piola-Kirchhoff stress tensor for a simple Saint Venant-Kirchhoff material
and E is the Green-Lagrange strain tensor and Ew the equivalent virtual strain. Ω0 and Γ0 denote
the reference volume and surface Γt respectively. As the system is nonlinear, the finite element solu-
tion is recovered by a Newton-Raphson algorithm and the left-hand side of (2.23) must be linearized.
Consequently, the following linear system is solved iteratively until the right-hand side vanishes:

(
Kn + Kl

)
δu = Ft − Fx (2.24)

where Kn and Kl are linearized stiffness matrices, also called tangent stiffness matrices, δu is the
displacement increment, Ft is the surface traction vector and Fx is the vector of internal stresses in the
system. Thus the right-hand side represents the out-of-equilibrium forces. The total displacement at the
j-th iteration is given by uj = uj−1 + δuj . A more detailed description of the result (2.24) is presented
in the Annex 6.3. Practically, one can write

Kn =
∫

Ω0

BnDbB>n dx

Kl =
∫

Ω0

BlΣB>l dx

Ft =
∫

Γ0

Ht dx

Fx =
∫

Ω0

BnDbE dx
(2.25)

These matrices depend on the current state uj−1 of the structure. Consequently, one must update
the stiffness matrices and the internal stress at each iteration of the Newton-Raphson algorithm. The
matrices Db and H are the same as in the previous section, Bn is the nonlinear displacement-strain
matrix and is clearly different from B. The matrix Bl provides a linear relation between displacement
and strain. Practically, it can be shown that those matrices are given by

Bn =


F11

∂N
∂x

F12
∂N
∂y

F13
∂N
∂z

F11
∂N
∂y

+ F12
∂N
∂x

F12
∂N
∂z

+ F13
∂N
∂y

F13
∂N
∂x

+ F11
∂N
∂z

F21
∂N
∂x

F22
∂N
∂y

F23
∂N
∂z

F21
∂N
∂y

+ F22
∂N
∂x

F22
∂N
∂z

+ F23
∂N
∂y

F23
∂N
∂x

+ F21
∂N
∂z

F31
∂N
∂x

F32
∂N
∂y

F33
∂N
∂z

F31
∂N
∂y

+ F32
∂N
∂x

F32
∂N
∂z

+ F33
∂N
∂y

F33
∂N
∂x

+ F31
∂N
∂z



Bl =


∂N
∂x

0 0 ∂N
∂y

0 0 0 0 ∂N
∂z

0 ∂N
∂y

0 0 ∂N
∂x

∂N
∂z

0 0 0

0 0 ∂N
∂z

0 0 0 ∂N
∂y

∂N
∂x

0

 (2.26)

The matrix Σ contains the components of the second Piola-Kirchhoff stress tensor. By exploiting the
symmetry, these components can be computed in a 3 × 3 symmetric matrix S = DbE with the nodal
solution of the element in the previous iteration, one has then

Σ =



S11 0 0 S12 0 0 0 0 S31
0 S22 0 0 S12 S23 0 0 0
0 0 S33 0 0 0 S23 S31 0
S12 0 0 S22 0 0 0 0 S23
0 S12 0 0 S11 S31 0 0 0
0 S23 0 0 S31 S33 0 0 0
0 0 S23 0 0 0 S22 S12 0
0 0 S31 0 0 0 S12 S11 0
S31 0 0 S23 0 0 0 0 S33


(2.27)
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Finally, the Green-Lagrange strain is computed with the components of the deformation gradient tensor
F, relating the derivative with respect to the current coordinate x and the derivative with respect to the
reference coordinates X. The vector E denotes the Voigt notation of E. One can write

E = 1
2

(
F>F− I

)
F = I +∇Xu = ∇X(x)

(2.28)

Generate the fem mesh and N.

Set an initial solution u = 0
and partition the load P = t/n

Compute Ft using a part of
the applied load t ′ = kP.

Update F and E using the cur-
rent state of the solution u.

Compute Kn Kl and Fx for each
element, same for surface quantities.

Assemble the total matrix Kt
and the right-hand-side R.

Edit Kt and R for
boundary conditions.

Solve Ktδu=R with sparse conju-
gate gradient, then u ← u + δu.

|δu| < tol ?

k = n ?

Stress recovery algorithm
and plots the solution.

For k∈[1,N]

While j< max Yes

Yes

No : j+=1

No : k+=1

Figure 6: Flowchart of the finite element algorithm for the Saint Venant-Kirchhoff (svk) model. The
variable tol is the maximum tolerance of the Newton Raphson method, this latter is generally normalized
by a reference value in order to suppress the influence of the units on the convergence criterion. Generally,
if the iteration j = max is reached, the last load increment is cancelled and a smaller load increment is
used for the rest of the solving process.
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It is straightforward to show that the components of F in any finite element of the mesh can be easily
computed in a vector F using the matrix (2.26) obtained previously and the current state of the nodal
displacement vector by the following relation:

F =



F11
F22
F33
F12
F21
F23
F32
F31
F13


=



∂N/∂x 0 0
0 ∂N/∂y 0
0 0 ∂N/∂z

∂N/∂y 0 0
0 ∂N/∂x 0
0 ∂N/∂z 0
0 0 ∂N/∂y
0 0 ∂N/∂x

∂N/∂z 0 0



u1
u2
u3

+



1
1
1
0
0
0
0
0
0


= B>l u + 1 (2.29)

2.5 Boundary Conditions
The last step of the finite element algorithm is the resolution of a linear system of equations Ku = b
to be solved at each step of the svk model. In the set/sst model, one has simply K = Kb + Ks and
b = Ft − Fs. This system is solved by using the conjugate gradient method because this latter has
modest memory requirement in addition to be less computationally expensive for large sparse matrices.
The conjugate gradient method is an iterative solver for positive definite and symmetric matrices, which
means that K must remain symmetric after the application of the boundary conditions in order to use
this algorithm [22]. Moreover, 3D meshes tend to generate very large matrices where the number of
elements is significantly high, even when only non-zero entries are stored in the sparse matrix. Thereby,
in addition to the symmetry requirement for the conjugate gradient solver, the symmetry of K will be
exploited in order to reduce the memory required for its storage as only the upper-triangle and the
diagonal elements will be effectively stored in the matrix. That is, the following section is concerned
about maintaining the matrix symmetric during the process of applying the boundary conditions.

• Neumann and Dirichlet

Neumann boundary conditions concern the derivative of the unknown and are naturally taken into
account in the finite element formulation. Indeed, the vector F at the right-hand-side contains the
external applied loads σ · n denoting the derivative of the solution at the boundary of the domain.
However, the fourth equation of (2.9) is the Dirichlet boundary condition and concerns the value of the
unknown field, which must be enforced thereafter. For simplicity, consider the system

k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

k41 k42 k43 k44



u1

u2

u3

u4

 =


b1

b2

b3

b4

 (2.30)

Imposing the Dirichlet condition u3 = h on the third variable of this system can be achieved first by
setting the third row of K to zero, the diagonal element to one and the corresponding row of b to h. In
order to maintain the symmetry of K, one may modify the matrix by replacing the variable u3 by its
imposed value in each of the equations and move this constant on the right-hand-side:

k11 k12 0 k14

k21 k22 0 k24

0 0 1 0
k41 k42 0 k44



u1

u2

u3

u4

 =


b1 − k13h

b2 − k23h

h

b4 − k43h

 (2.31)
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• Periodic Conditions

Periodic boundary conditions are typically implemented for simulations involving a representative volume
element of an infinite system. Those conditions appear in two different cases. First, when one wants to
impose that two or more variables have equal values, for instance, one may impose ui = uj by performing
a change of variable in the linear system

ui −→ ∆uij = ui − uj (2.32)

then set this new variable to zero, as for the Dirichlet condition previously presented. This method has
the advantage of maintaining the symmetry of K. It is clear that the reverse case leads to the same
system with ∆uij = −∆uji. The procedure and the result for (i, j) = (2, 3) are


k11 0 k13 + k12 k14

0 1 0 0
k31 + k21 0 (k33 + k23) + (k32 + k22) k34 + k24

k41 0 k43 + k42 k44



u1

∆u23

u3

u4

 =


b1

0
b3 + b2
b4

 (2.33)

The second case is when one must impose that a set of linear combinations two variables must be equal.
This particular case is presented in Figure 7 when the strain field in the periodic structure is decomposed
into a global strain ∆u which must be constant along the transverse dimensions of the strained axis, and
a local fluctuation δu which must be equal for each paired nodes, one has{

u4 = δu14

u1 = ∆u14 + δu14

{
u3 = δu23

u2 = ∆u23 + δu23
(2.34)

with ∆u23 = ∆u14 in order to simulate an infinite periodic system along the corresponding dimension.
The procedure is similar to the one presented above, but limited to the change of variable without can-
cellation of the new variable, first for (i, j) = (2, 3), then repeat the operation for the second pair of
coupled nodes (i, j) = (1, 4), leading to the following system:

• •
∆u23

u3 u2δu23

• •
∆u14

u4 u1δu14

Figure 7: Example of periodic boundary conditions for the deformation of a representative elementary
volume of an infinite system. The shape of the deformed configuration must be compatible with a
periodic assembly of the same configuration in the considered dimensions. Meaning that the final width
of the structure must remain constant for any pair of nodes. This imposes that the change in width ∆uij
is equal for any pair (i, j) of coupled nodes.
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k11 k12 k13 + k12 k14

k21 k22 k23 + k22 k24

k31 + k21 k32 + k22 (k33 + k23) + (k32 + k22) k34 + k24

k41 k42 k43 + k42 k44



u1

∆u23

u3

u4

 =


b1

b2
b3 + b2
b4

 (2.35)


k11 k12 k13 + k12 k14 + k11

k21 k22 k23 + k22 k24 + k21

k31 + k21 k32 + k22 (k33 + k23) + (k32 + k22) (k34 + k24) + (k31 + k21)
k41 + k11 k42 + k12 (k43 + k42) + (k13 + k12) (k44 + k14) + (k41 + k11)




∆u14

∆u23

u3

u4

 =


b1

b2
b3 + b2
b4 + b1



Now that two unknowns of the system are expressed in terms of the new variables ∆u, the last step is to
enforce ∆u23 = ∆u14 using the algorithm (2.33) previously presented for the first and second equations
of the system, so with (i, j) = (2, 1) leading to the system (2.36). It is important to note that if K is
symmetric, positive definite and singular, the new matrix K ′ is still symmetric and semi-positive but
not singular if the boundary conditions are sufficient for suppressing the rigid body motions

K ′ =


(k11 + k21) + (k12 + k22) 0 (k13 + k12) + (k23 + k22) (k14 + k11) + (k24 + k21)

0 1 0 0
(k31 + k21) + (k32 + k22) 0 (k33 + k23) + (k32 + k22) (k34 + k24) + (k31 + k21)
(k41 + k11) + (k42 + k12) 0 (k43 + k42) + (k13 + k12) (k44 + k14) + (k41 + k11)



u ′ =


∆u14

∆u23 −∆u14

u3

u4

 b ′ =


b1 + b2

0
b3 + b2
b4 + b1

 (2.36)
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Chapter 3

Model Validation
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3.1 Cantilever Beam

2 Verification of the implementation
by solving different test-cases.

The cantilever beam is a very common verification test in finite element methods because it leads to
a nonlinear displacement field and can be easily approximated by an analytical solution in 2D under
the assumption of small deformations. This model is for instance used in convergence analysis. The
analytical solution is directly derived from the fundamental equation of elasticity:

d2u

dx2 = −M(x)
EI

= Px2

2EI (3.1)

where u(x) is the vertical displacement of the cantilever beam at a distance x from the free side, M(x)
is the momentum generated by the equally distributed linear load P and I is the momentum of inertia
of the cross section of the beam. Integrating this expression twice gives

du

dx
= Px3

6EI + C1

u = Px4

24EI + C1x+ C2

(3.2)

One can finally use the boundary conditions to obtain the integration constants. The left-side of the
beam is clamped such that u = 0 at x = L and the slope of the beam must be zero at this same position.
This solution is presented in Figure 10 with the numerical solution described further.


du

dx

(
x = L

)
= 0

u
(
x = L

)
= 0

⇔


C1 = −PL

3

6EI

C2 = PL4

8EI

(3.3)

δ

x = L

x

P in [N/m]

h

b

I = h3b

12

Figure 8: Representation of the cantilever beam for the flexion test case. The boundary conditions
at the clamped surface are ux = 0 on the whole surface, uy = 0 on the bottom side of the surface and
uz = 0 on the bottom corner such that the beam can change its volume and transverse stresses are not
generated due to the Poisson’s ratio.
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The vertical deflection δ at the end of the beam is simply obtained by u(x = 0). It is important to note
that this solution is correct under some approximations, for instance shear deformation that depend on
the depth and length of the beam are not taken into account. The horizontal displacement of the beam
is also neglected in small deformations. For an applied force of P = −10 kN/m on a beam of dimensions
L = 50 cm, b = 5 cm and h = 2 cm with ν = 0.28 and E = 210 GPa, one has

δ = PL4

8EI = −1.116 cm (3.4)

• Numerical Solution

The simulation is performed with the configuration presented in Figure 8. The elements composing
the mesh are second-order hexahedron because those elements provide a faster convergence to the exact
solution when this latter is not linear. The results of the finite element simulation are presented in Figure
9. As expected, the numerical solution converges to the analytical solution when the number of elements
in the mesh increases (Figure 10). If a quasi-static case in small strain is considered and Fb = 0 in
addition to S = 0 and τ0 = 0, the fem equation is (2.14) and reduces to the le model:

Kbu = Ft with t =
[
0 0 P/b

]
(3.5)

u3(x)

-1.12 -0.782 -0.559 -0.335 0 [cm]

Figure 9: fem solution δ for the bending of the cantilever beam. The mesh in the picture is composed
of 4 × 103 Lagrange hexahedron of order two. The parameters of the simulation are L = 50 cm, b = 5
cm and h = 2 cm with ν = 0.28, E = 210 GPa and t = [0 0 − 2]× 10−4 GPa.
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Nodes [-]

1.1160
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1.1170

1.1175

|δ
| [
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]

Cantilever beam

0 10 20 30 40 50
x [cm]

-1.00

-0.75

-0.50

-0.25

0.00

u
3
(x

) 
[c

m
]

Cantilever beam

FEM
Analytical

Figure 10: Displacement of the cantilever beam. The solution converges to the analytical solution (3.4)
when the number of nodes increases. The graph on the right shows that the analytical and fem solutions
are identical at any points along the length of the beam.
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3.2 Nanoplate Relaxation
A second test case in order to validate proposed fem code is similar to the one proposed in [23] with
the relaxation of a solid nanoplate under the effect of surface tension, similarly to liquid films. The
mechanical equilibrium of the system presented in Figure 11 can be analyzed by applying the principle
of virtual work. Because of the natural tendency for the film is to reduce its area as much as possible,
the force F is necessary to prevent the area from decreasing. If one move the wire to the right by a small
distance dx, the resulting mechanical work and the change in energy are

δW = F dx

δU = 2τ0Ldx
(3.6)

where Ldx is the variation of the area enclosed by the wire, τ0 is the energy per unit area of the free
surface also called surface tension. The factor 2 accounts for the fact that the film has two free surfaces,
one on the top and the other on the bottom. Equaling δW with δU leads to

F = 2τ0L (3.7)

• Analytical Solution

In the context of the relaxation of a nanoplate with two free surfaces due to the effect of surface tension,
an analytical solution for the displacement field can be obtained by solving the quasi-static equation
of motion, with the equivalent surface stress σ · n = −F/A along the x-axis, and Dirichlet boundary
conditions of zero displacement of the fixed surfaces. As the body forces are neglected and the shear
stress is prevented by the boundary conditions, the stress field is constant:

∂σ11

∂x
+ ∂σ12

∂y
+ ∂σ13

∂z
+ ρbx = ∂2ux

∂x

∂σ21

∂x
+ ∂σ22

∂y
+ ∂σ23

∂z
+ ρby = ∂2uy

∂y

∂σ31

∂x
+ ∂σ32

∂y
+ ∂σ33

∂z
+ ρbz = ∂2uz

∂z

⇔



∂σ11

∂x
= 0

∂σ22

∂y
= 0

∂σ33

∂z
= 0

(3.8)

L

L

F

y

x

uy = uz = 0

uy = uz = 0

u
x

=
u
y

=
u
z

=
0

uy = 0
uz = 0

τ0

τ0

F

A = Lh

ux = f(x)

h

z

x

Figure 11: Mechanical equilibrium of a liquid film on a wire. The height of the film is neglected and
only the right side of the film is able to move in the axial dimension. A is the surface area of the film,
τ0 is the surface tension and F is an applied force in the opposite direction.
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Table 1: Values of the surface tension as well as the first and second Lamé surface parameters for an
isotropic surface in different crystal orientations. Those results have been obtained using the embedded
atom method and reported in [24]. The surface bulk modulus is computed from (3.14).

Aluminum λs [J/m2] µs [J/m2] τ0 [J/m2] Ks [J/m2]

Face [100] 3.494 -5.425 0.569 -7.356
Face [111] 6.851 -0.376 0.91 6.099

It is important to note that the effect of surface stiffness tensor S is neglected in the analytical solution.
As the applied stress on the right side of the plate is enforced, the axial stress along the x-axis is deduced
from the boundary condition at x = L. Using the relation (3.7) for expressing the stress field as a
function of the surface tension, one can write

σ11 = −F
A

= −2τ0
h

(3.9)

As presented in a previous chapter, the constitutive model for the elastic deformation of an isotropic
material is given by the generalized Hook’s law and leads to the following stress-strain relation, where
the strain field along the y-axis and the z-axis are zero due the Dirichlet conditions:

ε11 = 1
E

[
σ11 − ν

(
σ22 + σ33

)]
ε22 = 1

E

[
σ22 − ν

(
σ11 + σ33

)]
= 0

ε33 = 1
E

[
σ33 − ν

(
σ11 + σ22

)]
= 0

(3.10)

The two last equations form a system of two equations and two unknowns as σ11 is known, and can thus
be solved independently. The strain field ε11 is then obtained by injecting the stress σ22 and σ33 into
the equation of the system, leading to

σ22 = σ33 = ν(1 + ν)
1− ν2 σ11

ε11 = σ11

E

[
1− 2ν

2(1 + ν)
1− ν2

]
ux(x) = ε11x

(3.11)

The test case is presented with Al as the bulk material with E = 70 GPa, ν = 0.33 and the surface
tension τ0 = 0.91 J/m2 referenced in [25][26]. For a nanoplate of dimensions L = 10 µm and thickness
h = 10 nm, the strain field and the maximum displacement at the right side of the nanoplate are

ε11 = −1.755× 10−3

ux(L) = −17.55 nm
(3.12)

• Numerical Solution

For the fem simulation, the situation previously presented is reproduced. That is, the Dirichlet boundary
conditions and the nanoplate dimensions are the same as in Figure 11. In the fem formulation of the
problem (2.14), the time derivatives are set to zero as we want to compute the steady-state solution, the
body forces Fb are also neglected due to the length scale of the plate.

26



Finally, the applied forces Ft are set to zero such that only the surface tension Fs participate to the
deformation of the nanoplate through its two free surfaces at the top and at the bottom. As a reminder,
the equation to be solved in this situation is given by the set/sst (2.14) and reduces to

(
Kb + Ks

)
u = −Fs (3.13)

The Lamé parameters for the free surfaces as well as the surface tensions are given in Table 1 for two
different crystal orientations [100] and [111]. The effect of the surface stiffness matrix Ks is compared to
the solution where this latter is neglected is either to strengthen or weaken the overall material stiffness
depending on the value of the surface bulk modulus [27] defined by

Ks = λs + 2µs (3.14)

The results for the different configurations are presented in Figure 12 and Figure 13. It can be seen
that the analytical solution derived in (3.12) is correctly represented by the fem code. In addition, the
effect of the surface stiffness tends to make the overall structure stiffer when Ks is positive, or weaken
the structure when Ks is negative as expected from the literature.

u1(x)

-17.5 -12.3 -5.26 0 [nm]

u1(x)

-17.3 -12.1 -5.2 0 [nm]

Figure 12: fem solution for the nanoplate of L = 10 µm and h = 10 nm with surface tensions, using
ν = 0.33 and E = 70 GPa. The image on the left has been obtained with the parameters relative to Al
[111] while setting the surface stiffness tensor to zero, leading to the analytical result (3.12). The image
on the right has been obtained using Al [111] and taking into account the surface stiffness.

u1(x)

-11 -7.68 -3.29 0 [nm]

u1(x)

-11.1 -7.79 -3.34 0 [nm]

Figure 13: fem solution ux for the nanoplate of L = 10 µm and h = 10 nm with surface tensions,
using ν = 0.33 and E = 70 GPa. The image on the left has been obtained with the parameters relative
to Al [100] while setting the surface stiffness tensor to zero, leading to the analytical result when taking
the value of τ0 = 0.569 J/m2 instead of the one relative to Al [111]. The image on the right has been
obtained using Al [100] and taking into account the surface stiffness.

27



Furthermore, these results show the minor importance of surface tension and surface stiffness for our
idealized nanoplate. Some insights on the importance of surface effects can be obtained by comparing
the solution computed for different scales, and relate them to the surface-to-volume ratio (Figure 14).
Clearly, the axial strain generated in a solid by surface tension seems to be negligible when A/V < 1
nm as the strain in the plate will be roughly less than 1 %. The change in the material overall stiffness
due to the surface stress tensor is small when A/V < 1 nm and accounts for less than 7 % of the strain
reduction for the Al [111]. It is important to note that high surface-to-volume ratio may be reached by
materials displaying a high porosity and surface roughness, thereby the characteristic dimension of the
material alone is not sufficient for characterizing the importance of surface effects.

3.3 Spherical Cavity
Analyzing 3D problems in an analytical way is much more difficult than 2D problems, thus the number of
problems for which exact solutions can be obtained is very limited. For instance, the stress distribution of
a two-dimensional plate with a circular cavity is determined only by its size and its boundary conditions,
but in the case of a three-dimensional space, the stress field also depends on the Poisson’s ratio of the
object. For a spherical cavity existing in an infinite object under a uniform tensile stress, the non-zero
components of the stress tensor on the surface of the cavity, including the maximum stress, has been
computed in [28] and are given by the following equations:

σϕϕ = t3

[
27− 15ν
2(7− 5ν) −

15
7− 5ν cos2 θ

]
σθθ = t3

[
−3(1− 5ν)
2(7− 5ν) −

15
7− 5ν cos2 θ

] (3.15)

where t3 is the non-zero component of the surface traction applied to the top and bottom faces of the
domain. The resulting stress field is presented in Figure 15 for a cross section in the plane (y, z) as the
solution is independent on ϕ. The stress tensor at the surface of the cavity in Cartesian coordinate is
then obtained by applying the transformation tensor R to σ in spherical coordinates:

R =

sin θ cos θ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

 ⇔ σ ′ = RσR> (3.16)

The finite element solution is presented in Figure 16, this latter is in good agreement with the analytical
model. However, the analytical solution assumes an infinite domain while the finite element solution has
been conducted on a finite domain twice larger than the cavity radius.
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Figure 14: fem solution for the Al [111] nanoplate as a function of the surface-to-volume ratio. The
image on the left gives the strain due to surface tension when Ks = 0. The image on the right shows the
relative change in strain between the case Ks = 0 and the case Ks 6= 0.
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Secondly, it is important to note that the voxel-based shape of the mesh is not optimal, leading to
geometrical singularities at the corner between two elements of the free surface. Thereby, the maximum
stress in the domain, located at the geometrical singularities, does not converge to a finite value as the
stress concentration at those points is theoretically infinite.
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Spherical cavity

Figure 15: Axial stress field σ33 as a function of the angle θ at the surface of a spherical cavity of radius
r = 56 nm in the (y, z) plane. The bulk domain of E = 70 GPa and ν = 0.33 is submitted to an external
stress t = [0 0 1] GPa applied at the top surface while the bottom surface is fixed along the z-axis.

-0.09 -0.686 1.73 2.51 [GPa] -1.04 -0.038 1.29 2.29 [GPa]

Figure 16: Middle cut along the (y, z) plane in the finite element solution σ33 for a spherical cavity of
radius 56 nm in a 8× 106 nm3 block of aluminum under an external stress t = [0 0 1] GPa. The image
on the left is the solution using le and the image on the right is obtained with set/sst using the surface
stiffness and surface tension of Al [111] presented in Table 1 around the cavity.
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This nonphysical behaviour deteriorates the quality of the approximation close to the singularities.
Finally, as the surface tension tends to reduce the size of the free surface, and thus the size of the cavity,
this latter acts against the applied external stress t and reduce the maximum stress in the structure. In
this example, the surface stiffness increases the overall stiffness as the surface bulk modulus Ks of the
Aluminum oriented at [111] is positive.

3.4 Conclusion
In this chapter, we presented different analytical solutions against which the numerical solutions obtained
by our fem code have been compared. We have shown that the numerical simulations correctly represent
the relaxation of the nanostructure due to surface tensions as well as the stiffening or weakening of the
overall material due to the surface elasticity. Moreover, we have shown that those effects are only relevant
for some nanosized structures as surface effects becomes negligible compared to the bulk properties when
the surface-to-volume ratio decreases. For instance, the nanoplate displays the following surface-to-
volume ratio, which shows that the fraction of atoms located at the surface of the object increases as its
characteristic size decreases:

A

V
= 2(L2 + 2hL)

L2h
= 2(L+ h)

Lh
(3.17)

Furthermore, we have shown that the fem code is able to represent the nonlinear displacement of a
cantilever beam using second-order Lagrange elements. In addition, the convergence of the numerical
solution to the analytical solution has been verified by an iterative refinement of the mesh. In the last
test case, a nanosized 3D structure under an externally applied stress field has been simulated with a
spherical cavity and compared to the analytical predictions for the stress field around the cavity. Despite
of the global agreement between the finite elements and the analytical solutions, we have shown that the
use of a voxel-based mesh produces staircase artefacts which lead to an infinite stress concentration at
the geometrical singularities. Thereby, the convergence of the stress at those points is not assessed. This
information brings its importance in the next chapter where voxel-based meshes are used to compute the
mechanical properties of thin films with a high level of porosity. Indeed, the use of isoparametric meshes
is advised, but non-trivial to automatize when the structure displays 3D and complex random patters.

• Limitations of the Code

Before using the fem algorithm for simulating thin films, it is important to summarise the assumptions
considered and the limitations of the code. The set/sst model presented in (2.14) and in the literature
is based on the infinitesimal strain linear elasticity. This theory assumes that the reference configuration
is similar to the deformed configuration, meaning that the strain generated by the applied load must be
small. This assumption allows to neglect the quadratic terms in the strain tensor ε and the variation
of the integration domain Ω with the displacement. The mechanical properties obtained with the fem
formulation (2.14) are thus the ones of the reference configuration and are independent of the strain.
This behaviour is not correct when the material is significantly deformed.

The svk model does not suffer from this hypothesis. Indeed, the nonlinear terms of the strain tensor as
well as the change of geometry are accounted. However, individual finite elements may enter in contact
during the deformation due to the complex shape of highly porous films. This situation cannot yet be
represented by the code as the algorithm is not able to manage friction and contacts between the mesh
and itself. In order to prevent the different elements from interpenetrating, additional algorithms such as
the penalty method or Lagrange multipliers must be implemented. A second limitation is the dependence
of the boundary condition to the strain state. Indeed, the applied stress on the material must adapt to
the deformation and internal rotations occurring at the surface of the film. For instance, when a finite
element moves from the top surface to the interior under the action of the surface traction at the top of
the structure, leading to additional nonlinear terms in the right-hand-side Ft of the equation (6.32).
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Finally, the set/sst theory has been presented in the literature for small strain and has not yet been
extended to large strain. Thereby, we will consider the svk for the case of large strain, and use this
algorithm to get an insight on the validity domain of set/sst. Newton-Raphson iterative technique is a
two-phases method used to find the root of a function or a linear system of equations. This method has
the advantage of being simple to implement in multiple dimensions and large systems such as nonlinear
fem. However, its convergence to the actual solution is not guaranteed as the Newton-Raphson method
converges to the closest local minimum, which may not be the global minimum. Thereby the starting
point must be close enough to the solution in order to ensure convergence. Moreover, the method fails
to represent inflexion points in the stress-strain relation. To overcome those issues, more elaborated
methods such as the spherical arc-length or the normal plane arc-length may be implemented. With
arc-length methods, the load-level parameter is no longer incremented by the user, but becomes a new
unknown in the algorithm. Since a new unknown is introduced in the system, a new equation is required.
The two latter methods allow the correct representation of inflexion points thanks to their adaptive in-
crements (Figure 17).

peq po p

λeq

λ

∆λ

∆po δp

∆p

Predictor Corr.

Exact solution

Newton-Raphson
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Figure 17: Example of Newton-Raphson and spherical arc-length iterative refinement of the solution
in one dimension. λ is the load, ∆λ represents the load increment, δλ is the corrected load increment by
spherical arc-length, p is the displacement, ∆p is the displacement increment and δp is the correction of
the displacement during one step of Newton-Raphson or spherical arc-length algorithm.
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Chapter 4

Applications on Thin Films

32



4.1 Introduction
This chapter is dedicated to the application of the fem code developed in this work on different thin film
structures: pure copper, zirconium and binary CuZr or Cu/Zr films. First, a review of the literature about
the elastic properties of such thin films fabricated by physical vapor deposition is presented. Moreover,
experimental measurements obtained at the Nuclear Reaction Analysis Research Unit (larn) within the
framework of Nanolaminates fnrs-pdr project are presented. The second step is the generation of the
films with the use of simtra and nascam. Replicas of the films obtained by the larn are studied in
addition to pure Cu, Zr and very porous Cu films. Once the thin film layer has been generated, the
structure is converted into a fem mesh and submitted to vertical compression tests. Finally, the last
step is the comparison of our numerical results with experimental measurements.

4.2 Literature Review
An important step for the validation of numerical models is the comparison with results from the liter-
ature. This section provides a brief review of different papers concerning the mechanical properties of
copper, zirconium and amorphous CuZr films obtained by experimental measurements. Like all mate-
rials, the structure of thin films is divided into amorphous and polycrystalline structure depending on
the preparation conditions as well as the material nature. Deposition techniques may also be divided
in two categories: physical and chemical depositions [29]. In the first category, one finds the magnetron
sputtering (ms) and other physical vapor deposition techniques. Direct current magnetron sputtering
(dcms) uses a gaseous plasma, which is generated and confined into a vacuum chamber containing the
material to be deposited, called the target (Figure 18). The electrons present in the gas are accelerated
away from the cathode by causing collisions with nearby atoms of the gas, causing an ionization of this
latter. The ions are then accelerated towards the negatively charged cathode. The collision of these
energetic ions with the target ejects the metal atoms that are ultimately deposited on the substrate
material, forming a metallic film. Similarly, the high-power impulse magnetron sputtering (hpims) uses
an extremely high power density in short impulses, leading to a high degree of ionisation of the sput-
tered metal, which result in a higher density of deposited films compared to conventional dcms films [30].

Figure 18: Illustrative example of mag-
netron target with a common rectangular
geometry. Due to the magnetic field, the
electrons are only trapped within a spe-
cific region of the target where most of the
sputtering process occurs, leading to a dis-
tinctive racetrack region where the target
is worn down. The target image is taken
from here © University of Cambridge.

• Copper Films

Elastic properties of copper thin films fabricated by different deposition methods have been reported in
[31] and summarized in Table 2. Clearly, these results demonstrated that films deposited using hpims
assisted by an additional magnetic field exhibit significantly smoother surface, denser microstructure,
higher hardness and Young’s modulus than for the classical dcms and hpidms due to the high energetic
bombardment during the growing process and intense surface diffusion [31]. The reduced Young’s mod-
ulus of the samples was estimated by nanoindentation (Figure 19). A nanoindentation test allows to
measure the stiffness S of the contact between the indenter and the film, which can be used to calculate
the reduced Young’s modulus, this latter can be related to the Young’s modulus by
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Table 2: Values of reduced Young’s modulus Er measured by nanoindentation and absolute Young’s
modulus E obtained by different equations, for a copper thin films of thickness 800 nm with a silicon
substrate. hpims∗ denotes the hpims with an additional magnetic field [31].

Deposition Er [GPa] E (4.1) [GPa] E (4.2) [GPa] E (4.3) [GPa]

dcms 117.9± 6.4 119.6 102.2 78.9
hpims 126.6± 7.4 129.5 109.7 85.2
hpims∗ 142.6± 8.6 148.2 128.4 98.5

1
Er

= 1
E ′

+ 1− ν2

Ei

E ′ = E

1− ν2 +
(

Es
1− ν2 −

E

1− ν2

)
h

t

(4.1)

where Er is the reduced Young’s modulus, Es and νs are the Young’s modulus and Poisson’s ratio of
the substrate, E and ν are the Young’s modulus and Poisson’s ratio of the specimen and Ei is the
Young’s modulus of the indenter, h is the indentation depth and t is the total thickness of the film
[32]. Additional studies investigated the mechanical and structural properties of Cu thin films of 800 nm
in thickness, deposited by dcms and hpims operated with single ultra-short pulses, with and without
additional magnetic field on a silicon substrate [31]. A second way to estimate the Young’s modulus of
the sample is by using the maximum load divided by the contact stiffness:

4
π

Pmax

S2 = H

E2

H = κP 3
max

9Wp2

(4.2)

where κ = 0.0408 for a three-sided diamond Berkovich indenter, Pmax is the maximum applied loadWp is
the plastic work given by the area encompassed between the loading and unloading curves [32]. Finally,
a third method for estimating E is the use of the work of indentation method

Wtot −We

Wtot
= 1− 5H

E
(4.3)
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Figure 19: Schematic representation of load-displacement curve (where F is the applied force and h
the indentation depth) in nanoindentation testing on the left. Schematic representation of cross section
through the indentation of a material sample on the right. Image taken from [33].
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where Wtot is the total work of indentation given by the area under the loading curve, and We is the
elastic work given by the area under the unloading curve [32]. The increase of Young’s modulus for
hpims methods can be partially explained by a reduction of the surface roughness which influences the
measurement by nanoindentation process.

• Zirconium Films

Amorphous CuZr metallic glass thin films have been studied in [34] for various concentrations of copper.
In particular, we are interested in the elastic properties of the film in the case of a pure Zr sample, as
the influence of the Cu concentration will be discussed in a further paragraph. The films have been
deposited by a magnetron dual cathode (dc) physical vapor deposition process at 0.5 Pa, this technique
allows an easy control of the composition of the sample by varying the relative intensities applied to
both pure Cu and Zr targets. The Young’s modulus of the pure Zr sample was measured at 102± 8 GPa
by nanoindentation experiments. A similar study has been conducted in [35] on CuZr samples with a
thickness of about 5 µm in dual cathodes at a deposition pressure of 0.355 Pa, the results are presented
in Figure 20. It can be observed that the Young’s modulus changes between amorphous and partially
or totally crystalline structures, an hypothesis given in [35] concerning the cause of this behaviour is
the combined effect of solid solution and grain size refinement. However, the increase of E with the Cu
content in the amorphous region may be explained by the global reduction of the interatomic distance
as well as an increase of the strength of the chemical bonds. Indeed, if one assumes that

E = kr
∂

∂r

(
1
r2
∂U

∂r

)
(4.4)

where U is the interatomic potential, r the interatomic distance and k is a constant parameter [36], it
is evident that small interatomic distances lead to a higher Young’s modulus. In the particular case of
an almost-pure Zirconium thin film, the Young’s modulus is estimated at 107± 10 GPa. As a compari-
son with macroscopic materials, the Young’s modulus of bulk zirconium is referred as 94.5 GPa in [37]
and 98 GPa in [38], which means that a reduction in size may improve the stiffness of the Zr material.
Additional results reported in [39] are presented in Table 3, where the mechanical properties of Cu, Zr,
CuZr and multilayer CuZr/Zr glass coatings have been measured by nanoindentation technique.
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Figure 20: Young’s modulus in compression of binary CuZr thin films as a function of the concentration
of copper in the material. The amorphous configurations are roughly obtained between 25 and 75 % of
copper. The graph is reproduced from [35] with permission from Elsevier.
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Table 3: Experimental Young’s modulus in compression of Cu, Zr, Cu45Zr55 monolayer thin films and
Cu45Zr55/Zr multilayer thin films deposited by dcms. The parameter h gives the average thickness of
each individual layer in nm. The results reported here are obtained from [39].

Paper Material h [nm] Thickness [µm] E [GPa] Error [GPa]

[39]

Cu − 1 111.6 5.8
Zr − 1 120.6 2.9

CuZr − 1 104.3 1.2

CuZr/Zr 95 1 109.4 1.9
CuZr/Zr 40 1 102.6 1.2
CuZr/Zr 9 1 100.1 1

• Binary CuZr Films

It can be seen that most of the Zr-based binary films have a Young’s modulus between 95 and 118
GPa. As stated in [35], this value tends to increase with the Cu content in the case of an amorphous
film. A study in [40] produced thin film and ribbon of two compositions of CuZr metallic glass. The
values of elastic modulus for Cu50Zr50 are 88.5 and 109.5 GPa, while for Cu64Zr36 samples, the values
are measured at 106.7 and 114.3 GPa for ribbon and thin films respectively. The result is contradictory
with the expectations as thin film metal glasses should contain more free volume than ribbons and thus,
should display a lower elastic modulus. This may be explained by a different arrangement of atoms and
molecules in the solid. A second study conducted on metallic glass coating from the binary ZrCu system
using a physical vapor deposition process [34] also reported an increase of the Young’s modulus with the
content of Cu (Figure 21). This latter has been measured by nanoindentation, however, the variation
of E is globally less significant than the one reported in [35]. A summary of different results from the
literature is presented in Table 4. Multilayered ZrCu/Cu thin films were fabricated and tested in [41] for
different layer thickness, the results are presented in Table 5. It is important to note that the mechanical
properties have been evaluated by a tensile test.
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Figure 21: Young’s modulus in compression of binary CuZr thin films of 5 µm thickness deposited by
dcms at 0.5 Pa for different concentration of copper. An amorphous material is obtained in the region
between 30 and 90 % of Cu content. Adapted from [34] with permission from Elsevier
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Table 4: Summary of atomic density of copper, Young’s modulus in compression of the film with an
estimation of the measurement errors, thickness of the film, deposition process and pressure conditions
for different amorphous CuZr composites obtained in the literature.

Paper Process P [Pa] Thickness [µm] Cu [%] E [GPa] Error [GPa]

[34]

dcms 0.5 6.2 33.3 99 3.6
dcms 0.5 5.8 40.1 102 8.8
dcms 0.5 4.3 48.9 95 9.7
dcms 0.5 4.4 51.7 101 12.2
dcms 0.5 4 59.1 106 6.9
dcms 0.5 4.4 65.9 102 12.4

[40] dcms 0.3 ∼ 0.8 3 ∼ 4 50 109 1.6
dcms 0.3 ∼ 0.8 3 ∼ 4 64 114 2.2

[35]

dcms 0.355 5 25.6 88 10
dcms 0.355 5 31.6 87 10
dcms 0.355 5 37.9 94 10
dcms 0.355 5 46.6 99 10
dcms 0.355 5 51.5 104 10
dcms 0.355 5 55.5 109 10
dcms 0.355 5 60 125 10
dcms 0.355 5 66.6 115 10

[42]

dcms 0.533 2 31 100 −
dcms 0.533 2 40 105 −
dcms 0.533 2 46 107 −
dcms 0.533 2 51 110 −
dcms 0.533 2 55 114 −
dcms 0.533 2 62 118 −

Table 5: Experimental Young’s modulus in compression of Zr50Cu50/Cu multilayer films (mltf) and
monolithic CuZr film (tfmg) as a function of the thickness h of the layers composing the film. The films
were deposited on a 10 µm thick Cu foils using dcms [41].

Paper Type h [nm] Thickness [µm] E [GPa] Error [GPa]

[41]

tfmg − 1 99 −
mltf 10 1 96 19
mltf 25 1 91 17
mltf 50 1 84 17
mltf 100 1 111 7
mltf 150 1 96 1
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Table 6: Young’s modulus in compression of Cu/Zr multilayer and monolithic films for different com-
positions deposited by dc magnetron sputtering. The parameter h denotes the thickness of each layer
composing the film. CuxZry is an amorphous material containing x % copper and y % zirconium.

Source Material Name h [nm] Thickness [nm] E [GPa] Error [GPa]

larn

Cu 20112403 − − 148.2 13
Cu60Zr40 19052802 − 594 111.6 6.2
Cu40Zr60 19052803 − 425 88.1 5.1
Cu/Zr 20112501 11.6 465 135.15 15.5

Cu60Zr40

Cu40Zr60
20112602

223 446 148 25
154 616 151 23
63 630 128 20
38 760 144 23
20 800 140 11.1
19 950 148 19
10 800 136 9.5

• LARN Measurements

Zirconium and copper sputtering targets with 99.9 % purity have been used for thin film deposition by
the larn. The thin films were fabricated by magnetron sputtering at 0.67 Pa either in single-cathode
(sc) and dual-cathode (dc) mode using a semi-industrial chamber of about one cubic meter of d&m
vacuum system (Figure 23). The film is deposited on a silicon or stainless steel substrate. Finally,
the target-substrate distance was kept between 13 and 42 cm and each target was pre-sputtered for
removing any surface impurities. It has been reported that Cu60Zr40 and Cu40Zr60 are fully amorphous
thin films due to absence of crystalline pattern, while Cu/Zr films display fully crystalline Zr layers
with an amorphous line where the CuZr composition is growth. The resulting measurements of Young’s
modulus by nanoindentation are presented in Table 6. E measured by the larn is the instrumental
elastic modulus estimated from the reduced Young’s modulus by

1
Er

= 1− ν2

E
+ 1− ν2

i

Ei
(4.5)

4.3 Simulation of the Film

3 Simulation of atomic flux during
magnetron sputtering process.

The software used to simulate the metal flux during the magnetron sputtering is the Monte-Carlo code
simtra. The particles are generated with initial position, energy and direction from a target surface,
then their movement is tracked until they cross a physical surface. A flow chart describing the main
steps of the code is presented in Figure 22. The initial energy probability density function ρ̄e of the
sputtered atoms can be simulated using srim or a Thompson distribution [43]. In this work, the latter
was used to simulate the Cu and Zr depositions on the substrate:
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ρ̄e(E) dE = E
(
E + Us

)2m−3
dE (4.6)

where Us is the surface binding energy. For magnetron sputtering, the ion energy is low and the value
of m is set equal to zero [43]. Finally, the initial angular probability density function ρ̄a is described by
the built-in function with its default parameters (c1 = 1 and cj = 0 for j 6= 1).

ρ̄a(cos θ) =
5∑
j=0

cj(cos θ)j (4.7)

The sputtering process takes place in an the d&m coater presented in Figure 23, the vacuum chamber
contains an argon gas at 0.67 Pa. Once the simulation of the particle flux is completed, the output data
from simtra are post-processed to estimate analytical expressions for the energy and angular distribu-
tions of the incident particles on the substrate. This may be achieved by a simple polynomial regression
if E and θ are the unique variables of the problem. If other parameters are considered, more advanced
techniques such as the polynomial chaos expansion (pce) allow to obtain an accurate surrogate model.
The energy distribution is the function ρe defining the probability density function of a sputtered parti-
cle having particular energy E while reaching the substrate in an argon gas of pressure P . The angular
distribution ρa defines the probability density function of a sputtered particle reaching the substrate
with an angle θ in an argon gas of pressure P . The number of particles N in the given direction (θ, ϕ)
obtained by simtra is proportional to

Generate the particle

Compute the free path length.

Boundary conditions and
implement geometry.

Intersection with
a surface before

collision ?
Deposition.

Describe collision
scatting angle
and compute
new velocity.

No
Yes

Figure 22: Flow chart showing the important step in the calculation of a deposition profile, energy
and angular distributions on a substrate by magnetron sputtering, with the Monte Carlo model used in
simtra. The flow chart is reproduced from [43].
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dN(θ, ϕ) = ρ(θ, ϕ) sin(θ) dθ dϕ (4.8)

and the density of particles is given by dN/ sin θ. In order to improve the analytical approximation, it is
important to note that the pressure and energy dependencies of the distributions are exponential, which
are not easily represented by a series of polynomials. Performing the change of variables{

P → q with q = lnP
E → ε with ε = lnE

⇔

{
ρe(P,E) → ρe(q, ε)
ρa(P, θ) → ρa(q, θ)

(4.9)

allows the work with new functions whose the behaviours are close to a polynomial, thus allowing to
provide an accurate surrogate model while keeping the order of the polynomials at an acceptable level.
An example of results is presented for a particular pressure in the Annex 6.5.

• NASCAM Simulation

4 Generation of the thin films
structure on a substrate.

M1 M2

M3 M4

y

x

z

ϕ

θ

•

Figure 23: Schematic of the d&m coater used for the deposition, the magnetrons are noted M . In the
sc mode, the substrate of 2 × 2 cm2 is placed perpendicular to M2 at 8 cm from the target, with the
other magnetrons deactivated. In the dc mode, the substrate is placed horizontally between M3 and
M4 at the same distance from the middle plane joining the center of the two targets, with the other
magnetrons deactivated. The image on the right represents the angle of a particle with respect to the
place of the substrate, the angular distribution is the distribution of the particle angle θ while reaching
the substrate for all value of the ϕ.
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Table 7: Characteristics and name of the different thin film samples generated by nascam using the
energy and angular distributions obtained from simtra in Annex 6.5. The composite sample is Cu50Zr50
and adc means that the film has been generated in dual cathode mode, but by alternating between the
left and right cathodes for sputtering the Cu and Zr layers, one at a time.

Sample Method Composition Porosity [%] h [nm] Thickness [nm]

A1 − Cu ∼ 0 − 64
A2 − Cu 50 − 44
A3 dc Cu 14 − 25

B dc Zr 12 − 32
C dc CuZr 14 − 49
D1 sc Cu/Zr 20 11 430
D2 adc Cu/Zr 30 12 489

To simulate the time evolution of atoms deposited on the substrate, the software nascam, developed by
the larn is used. This software uses the so-called specific kinetic Monte Carlo event approach, where
only a predefined set of events is allowed to occur during the growth of the film, and the rates of these
events are used as an input. nascam is equipped of different plugins allowing to perform multiple pre-
or post-processing of the thin film. In particular, the mechanical fem plugging was implemented in this
work. In nascam, the angular and energy distributions obtained by simtra are given as input data to
the code. The incident energy is taken from the energy distribution of the incident atoms and the impact
parameter is calculated taking into account the trajectory of the projectile and the initial position of
the target. The energy of an incident atom is then selected stochastically in accordance with its energy
distribution. If X is a continuous uniform random variable in the sample space Ω ∈ [0, 1] and x̄ is a
realisation of this random variable, the energy E of an incident atom is computed by

x̄ =
∫ E

0
ρe(x) dx

(∫ ∞
0

ρe(x) dx
)−1

(4.10)

Similarly to the literature review, copper, zirconium, CuZr and multilayered Cu/Zr films have been gen-
erated by nascam and their elastic properties are studied. These samples are named by a letter and
their topological characteristics are presented in Table 7.

• Generation of the Mesh

A layer is defined as the structure obtained by a single sputtering process, and composed of a single
chemical species (Cu or Zr) or molecule (CuZr). The output file from nascam contains a list of atoms
with their coordinates, the index of the layer and the filling fraction. This last parameter gives the
volume fraction of the atom in their corresponding finite element. The mesh is a parallelepiped domain
subdivided into equally sized Lagrange hexahedrons. When the total filling fraction of the j-th element
fj is such that fj > fm, this latter is considered as composed of the most prominent component. Con-
versely, the element is considered as a pore if fj < fm.

5 Application of the code to thin films
and comparison with literature.
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Table 8: Table of bulk parameters for the fem code. The elastic properties of pure bulk copper and
zirconium are retrieved from [37], the lattice constant and elastic properties of the binary CuZr alloy
have been obtained by molecular dynamics simulations in [44].

Material E [GPa] ν [-] λ [GPa] µ [GPa] a [nm]

Cu 130 0.34 103 48.5 0.36
Zr 94.5 0.34 74.9 35.2 0.51
CuZr 127.4 0.3 73.5 49 0.319
Cu/Zr 130/94.5 0.34 103/74.9 48.5/35.2 0.34

Table 9: Values of the surface tension as well as the first and second Lamé surface parameters for an
isotropic surface [111] of copper. Those results have been obtained with the embedded atom method
and reported for relaxed and unrelaxed surfaces in [45][46]. It is important to note that the additional
relaxations of atoms at the crystal surface due to strain has a profound effect on the results.

Cu [111] λs [J/m2] µs [J/m2] τ0 [J/m2] Ks [J/m2]

[45] Relaxed -2.243 0.144 1.241 -1.955
[45] Unrelaxed -4.646 -1.265 1.241 -7.158
[46] Relaxed 1.49 -1.06 1.12 -0.63
[46] Unrelaxed 1.2 -1.21 1.13 -1.22

4.4 Numerical Results
In this section, the elastic properties of the different representative elementary volumes of thin films
presented in Table 7 are evaluated in compression. In the following simulations, the finite elements
composed of copper and zirconium have the mechanical properties of bulk Cu and Zr with Young’s
modulus and Poisson’s ratio retrieved from [37] and presented in Table 8. For the monolithic CuZr film,
copper and zirconium atoms are assigned to the same layer in nascam and must share the mechanical
properties of the CuZr alloy, these properties have been estimated by molecular dynamics in [44]. Finally,
the lattice constant of the CuZr structure is given by a = 0.319 nm. The multilayered Cu/Zr films
being composed of pure Cu and Zr layers, each layer displays the properties of its respective chemical
component. However, the lattice constant of the whole structure is fixed to a = 0.34 nm. The surface
Lamé parameters for an isotropic copper surface are given in Table 9. An important remark is that
different papers report different values for the surface parameters of copper. Consequently, these results
may lead to qualitative conclusions rather than precise numerical results [46]. For all samples, the
material is assumed to be at equilibrium so that the residual stresses due to surface tension are zero.
The external stress is applied at the top surface of the sample along the z-axis, the top surface as well
as the substrate are forced to remain flat during the deformation, the overall Young’s modulus E along
the z-axis is simply obtained by

ε33 = (L−∆L)/L
E = σ33/ε33

(4.11)

where σ33 is the applied stress at the top surface, L is the initial thickness of the sample, ∆L is the
vertical displacement of the top surface and ε33 is the global strain of the material along the z-direction.
Two cases of Dirichlet conditions are studied:
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The first case where an overall transverse strain of the film is prevented, and the second case where an
overall transverse a strain is allowed. Indeed, an important consideration is the influence of the substrate
on the film properties. In our samples, only some atoms of the substrate in contact with the film are
represented, meaning that the substrate has q very weak influence on the measured quantities by the
fem code. It is thus interesting to study a second case where the substrate is much stiffer than the film
and prevents transverse strain.

• Samples A1 and A2

Those two first samples have not been generated by the distributions in Annex 6.5 but aim at studying
the influence of the pore structure on the mechanical response of the film as well as the influence
of surface stiffness. An overview of the porosity of the sample A2 is presented in Figure 24. This
particular configuration has a significant influence on the mechanical response of the structure, as it will
be demonstrated later. In order to complete the description of the material porosity, the normalized
density of A1 and A2 is presented in Figures 25 as a function of the deposition time. The film porosity
is thus obtained by p = 1 − ρ/ρ0 at the end of the simulation. Clearly, the sample A1 is expected to
display a Young’s modulus close to the bulk material if the substrate is not taken into account, as its
surface-to-volume ratio is close to A/V = 1.5× 10−2 nm−1, which lies in the region of negligible surface
effects according to Figure 14. The sample A2 is expected to display a Young’s modulus significantly
smaller than its bulk counterpart due to its high porosity, but also due to its internal structure. Indeed,
the rule of mixtures [47] states that

f = V1

V1 + V2
⇔


Eu = fE1 + (1− f)E2

El = f

(
f

E1
+ 1− f

E2

)−1 (4.12)

where E1 and V1 are the Young’s modulus and volume of the first material and E2 and V2 are the Young’s
modulus and volume of the second material in the composite. Eu is the upper bound of the Young’s
modulus in the direction parallel to the fibers and El is the lower bound of the Young’s modulus in the
direction perpendicular to the fibers, which tends to zero when the Young’s modulus of one material
(namely, the pores) tends to zero.
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Figure 24: Structural porosity of the copper thin film A2. The coloured dots feature the presence of
an empty space in the film while the colour tone represents the pore concentration in the y-dimension.
Deep blue indicates that the pore has a small extent in the y-dimension and yellow indicates that the
pore has an extent over the total depth of the film.
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For a same porosity, the orientation of the slats in Figure 24 will influence the overall Young’s modulus.
The von Mises stress (4.13) in the sample A2 with the set/sst is presented in Figure 26. This measure
may be used to assess the validity of the elastic behaviour of the material using the von Mises criteria,
where σvm is compared to the yield stress. As expected, σvm reaches a very high value at some precise
location in the structure, where a few finite elements are connecting different pores. It is clear that
plasticity, caused by a breaking and a reforming of bonds between chemical elements, will occur at those
locations first. The Young’s moduli of both samples are presented in Table 10. As expected, the sample
A1 displays the modulus of the bulk material. Moreover, it can be observed that the influence of surface
effect is negligible for A1. The sample A2 displays an increased dependency in the surface stiffness
compared to A1 due to the increased surface-to-volume ratio generated by the porosity.

σvm =
√

1
2

[(
σ11 − σ22

)2 +
(
σ22 − σ33

)2 +
(
σ33 − σ11

)2]+ 3
(
σ2

12 + σ2
23 + σ2

31
)

(4.13)
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Figure 25: Normalized density of the films as a function of the simulation time of the deposition process.
The graph on the left features the sample A1 displaying a low porosity, the image on the right features
the sample A2 displaying a high porosity as shown in Figure 24.
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Figure 26: Von Mises stresses averaged over each finite element for the sample A2 under a compressive
load of 0.1 GPa at the top surface. The sample is assumed to be at equilibrium such that there is no
residual stress Fs = 0. The set/sst Algorithm 5 with relaxed surface elasticity (first line in Table 9)
have been used. Finally, the overall transverse strain of the material is prevented.
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The dependence of the Young’s modulus in vertical compression on the angle of the slats in the sample
A2 can be understood by the torque generated at the base of the slat due to the applied vertical stress,
leading to high stress concentration. For instance, one may simulate different nanostructures of 50 %
porosity, displaying copper slats of different angles with respect to the horizontal plane as shown in
Figure 27, and compare their overall Young’s modulus. Clearly, it can be observed that decreasing the
angle of the slats decreases the overall Young’s modulus of the structure.

Once the elastic properties in vertical compression of the films has been computed under the small strain
assumptions, it is important to get insights on the validity domain of the solution. Indeed, the obtained
values of E are instantaneous values of the undeformed geometry, and are likely to change with the de-
formation of the film. Meaning that the Young’s modulus is a function of the strain, even in the elastic
domain. The svk Algorithm 6 is now used to compute the solution under the finite strain theory, and
compared to the infinitesimal strain theory in Figure 28 while neglecting surface stiffness effects. It can
first be observed that the elastic behavior of the sample A1 remains close to its linear approximation
for an overall strain that is much larger that for the sample A2. This is due to the bending and torques
generated in the structure due to the porosity.
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Figure 27: Young’s modulus in compression along the z-axis of a slat sample with 50 % porosity. The
material is periodic and its structure is composed of several columns of copper oriented at different angles
with respect to the z-axis. It can be observed that the nanostructure of the film has a serious influence
on its elastic properties while the porosity remains unchanged.
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Figure 28: Comparison of the stress-strain relations in compression along the z-axis when transverse
strain is prevented. In the le model, the material is linear and E is constant. The svk model takes into
account the nonlinear terms of the strain tensor and the geometry changes in the structure, thus leading
to a nonlinear stress-strain relation.
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A second important parameter is the limitation of the algorithm due to collisions between the mesh and
itself, or high mesh distortion. As explained in a previous chapter, the deformations of some porous
structure may lead to contact between the different elements, which should be taken into account in the
algorithm in order to further deform the films. Otherwise, at some critical strain, the elements start to
interpenetrate and the finite strain algorithm fails at converging to the correct solution.

• Samples B, C and A3

Those three samples represent thin films of Zr, CuZr and Cu generated by dcms. Due to the lack of liter-
ature about the surface stiffness of Zirconium or CuZr, those samples are simulated with the bulk elastic
parameters only (Figure 10), so by a vertical compression test with the le Algorithm 5. A comparison
between le and svk algorithms is presented in Figure 29. It can be observed that the le approximation
remains close to the nonlinear solution until 4 % of vertical strain. The relatively high Young’s moduli
of A3 compared to A2 is explained by the lower porosity of A3. Indeed, the distribution of the pores in
B, C and A3 is relatively uniform and the effect of internal torques is reduced. Due to the difference in
the bulk properties of Cu, Zr and CuZr materials, the three films display a different mechanical response.
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Figure 29: Comparison of the stress-strain relations in compression along the z-axis when transverse
strain is prevented. In the le model, the material is linear and E is constant. The svk model takes into
account the nonlinear terms of the strain tensor and the geometry changes in the structure, thus leading
to a nonlinear stress-strain relation.
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Figure 30: Normalized density of the films as a function of the simulation time of the deposition process.
The graph on the left features the sample D1 and the image on the right features the sample D2.
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• Samples D1 and D2

The two last samples feature multilayered Cu/Zr thin films or 40 layers, D1 has been generated in sc
mode while D2 has been generated in dc mode by alternating between the left and right cathodes re-
spectively for deposition of the Cu and Zr layers. The evolution of the porosity of the films is presented
in Figure 30. Clearly, the porosity increases with the thickness of the film and the dc mode generates a
higher porosity than the sc mode. The Young’s modulus of the films is expected to decreases when the
porosity increases. An overview of the layer structure is presented in Figures 31 and 32. In sc mode, the
original composition of the film is preserved during the sputtering process. For the dc case, a significant
change in the structure of the film occurs between 200 and 489 nm, leading to increased surface roughness
at the top of the film and a progressive loss of the layered structure. Finally, a measure of the overall
Young’s modulus of D1 and D2 is presented in Table 10.
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Figure 31: Number of atoms of copper and zirconium with respect to the thickness of the thin film
deposited by a single cathode. The layered-structure is maintained during the deposition process and
the number of atoms slowly decreases when the number of layers increases.
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Figure 32: Number of atoms of copper and zirconium with respect to the thickness of the thin film
deposited by dual cathodes. The layered-structure is maintained during the first part of the deposition
process, but the clear distinction between the layers gradually disappears after 200 nm.
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The Young’s moduli of D1 and D2 as a function of the number of layers are presented in Figure 33.
The multilayered thin films contain a large number of atoms and lead to very high computational costs.
Consequently, the resolution of the fem mesh is decreased in order to save memory. For this simulation,
a finite element may contain up to 8 chemical species and the value of the maximum filling fraction fm
may play an important role in the fem results. An analysis of the influence of fm is presented in Figure
34. Increasing fm will increase the number of empty elements and thus decrease the density of the fem
representation of the film, leading to a decrease in stiffness. Conversely, decreasing fm will increase the
density of the model.

4.5 Comparison with Literature
Experimental calculation of the Young’s modulus may suffer from several errors inherent to the mea-
surement tools and measurement conditions. Moreover, the surface roughness plays an important role
in the measured properties of the film. Additional uncertainties are generated on the estimated property
by the influence of the substrate. Indeed, it has been shown in Table 2 that different formulas lead to
different results when trying to estimate the Young’s modulus of the film on a substrate. Numerical
calculation of the Young’s modulus inevitably suffers from approximations of the mathematical model
and continuum idealization of the matter, but also of the numerical tools used to solve the equations.
For instance, the quality of the mesh is a crucial parameter for the quality of the solution.
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Figure 33: Young’s modulus in compression of the multilayered thin films as a function of the number
of layers. The quantity E∗(h) denotes the Young’s modulus of the sample measured when a transverse
strain of the film is prevented by the substrate, as a function of the thickness h of the film.

0.2 0.4 0.6 0.8
fM [-]

50

75

100

125

150

E
 [G

P
a]

Sample D1

0.2 0.4 0.6 0.8
fM [-]

25

50

75

100

125

150

E
 [G

P
a]

Sample D2

Figure 34: Young’s modulus in vertical compression as a function of the filling fraction for the multi-
layered Cu/Zr films. The overall transverse strain of the film is prevented in this simulation.
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Table 10: Overall Young’s modulus in compression of the different films presented in Table 7 obtained
by fem simulation. The quantity E∗ denotes the Young’s modulus of the sample measured when a
transverse strain of the film is prevented by the substrate.

Model le set/sst

Modulus E [GPa] E∗ [GPa] E [GPa] E∗ [GPa]

A1 130 200 129.8 200
A2 7.9 8 7 7.8
A3 99.2 136.5 99 134.6

B 74.2 103 − −
C 95.1 118 − −
D1 99.2 145 − −
D2 78.4 104.5 − −

When the size of the sample increases, further approximations must be considered, such as the use of
a representative elementary volume. All those errors lead to differences in the measured properties be-
tween experimental and numerical tests, but also between two experimental or numerical tests. Hence
the importance of performing a comparative study between different sources of data. The compression
Young’s modulus of the film A3 measured by fem is E = 99.2 GPa when the substrate is not considered
and may reach the upper bound of E = 136.5 GPa when the substrate prevents an overall strain of the
film in the transverse direction. This value lies in the range obtained from the literature in Tables 2 and
3 as well as in Figures 20 and 21. However, it is important to note that the thickness of A3 is only 25
nm while experimental values have been measured on films with a thickness of the order of 1 µm. The
Young’s modulus of B is estimated at E ∈ [74.2, 103], this value is lower than the one obtained in the
literature from Table 3 as well as Figures 21 and 20.
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Figure 35: Comparison between experimental results (exp) obtained in the literature for pure Cu thin
films, and numerical results (num) obtained in this work by nascam. The horizontal axis denotes the
source of the measurement, so the reference of the article or the name of the sample. The vertical axis
denotes the Young’s modulus evaluated in compression.
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This may be explained by different elastic properties of Zr at the nanoscale or a different porosity of
the films. Indeed, our numerical results are highly dependent on the input parameters used for the
finite elements of the mesh. Moreover, additional effects related to interatomic potential may lead to
non-negligible strengthening of the Zr films, which are not taken into account in our fem equations. The
monolithic Cu50Zr50 film C has a compression Young’s modulus estimated between 95.1 and 118 GPa.
This value lies in the range obtained in the literature for amorphous films of thickness between 2 and
5 µm from Tables 3, 4, 5 and Figures 20, 21. Those elastic properties are also in agreement with the
experimental results from the larn in Table 6 measured for Cu60Zr40 and Cu40Zr60 thin films.
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Figure 36: Comparison between experimental results (exp) obtained in the literature for amorphous
CuZr thin films, and numerical results (num) obtained in this work by nascam. The horizontal axis
denotes the source of the measurement, so the reference of the article or the name of the sample. The
vertical axis denotes the Young’s modulus evaluated in compression. The number in % indicates the Cu
content of the composite thin film.
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Figure 37: Comparison between experimental results obtained in the literature (exp) for multilayered
Cu/Zr thin films, and numerical results (num) obtained in this work by nascam. The horizontal axis
denotes the source of the measurement, so the reference of the article or the name of the sample. The
vertical axis denotes the Young’s modulus evaluated in compression. The length given in nm indicates
the average thickness of each layer.
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It is important to note that the thickness of C used for the fem simulation is significantly lower than
the films measured experimentally. The Young’s modulus obtained for the multilayered films D1 and
D2 lies in the range E ∈ [99.2, 145] GPa in sc mode and E ∈ [78.4, 104.5] GPa in dc mode. The
Young’s modulus measured in sc mode is close to the one obtained experimentally in the literature for
Zr50Cu50/Cu multilayers. However, the measurements from the larn on a Cu/Zr thin film with similar
thickness of (135.5 ± 15.5 GPa with 465 nm thickness) suggest that the fem results underestimate the
actual stiffness of the film. This may be due to the approximated geometry of the mesh or different
phenomena occurring at the nanoscale that are not represented in our fem model. Finally, the nascam
representation of the thin film uses the same lattice constant for the whole structure, this hypothesis
may not be satisfied in real thin films composed of different layers of pure metals. A summary of this
comparison is given in Figures 35, 36 and 37.
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Chapter 5

Conclusion and Perspectives
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5.1 Conclusion
In this work, three fem models have been used to evaluate the elastic properties of Cu, Zr, CuZr and
multilayered Cu/Zr thin films in compression. In particular, the stress-strain relation and the Young’s
modulus of the overall structure were measured. Those thin films have been generated with the help of
simtra and nascam for simulating the growth of the film by magnetron sputtering on a solid substrate.
The fem algorithm and the generation of the mesh are implemented in the form of a plugin for nascam.
Specifically, the different fem models are the followings:

• Classical linear elasticity (le).
• Surface elasticity and surface stress theory (set/sst).
• Saint Venant-Kirchhoff material (svk).

Our numerical results were compared to experimental data presented in the literature, and compared to
experimental measurements from the larn. From this study, it can be concluded that our fem model
allows to retrieve elastic properties which are in accordance with experimental results, in addition to
allows a study of the impact of the substrate on the behaviour of the film. Furthermore, the numerical
analysis allows a study of the effects of different hypothetical porous microstructures (such as the sample
A2) on the properties of the film. It should be noted that our numerical results tend to suggest a lower
value of the Young’s modulus than the one measured by nanoindentation on thicker zirconium films. In-
deed, the thin films studied in the literature present structural differences with the films fabricated in the
larn or those simulated by nascam. In addition, the measurement errors inherent from experimental
tests and the approximations of mathematical models are also responsible for the differences observed
between the results.

The numerical simulation of thin films with a thickness superior to 25 nm and a porosity of approx-
imately 15 % shows that the effect of surface stiffness by the set/sst model does not significantly
impact the elastic properties of the film. The contribution from surface stiffness become important for
structures displaying a higher surface-to-volume ratio, for instance, on highly porous films or very small
nanostructures. Moreover, the effect of the nonlinearity generated by the deformation of the structure
(represented in the svk model) becomes significant for axial deformations of the order of 10 % for bulk
materials, 4 % for weakly porous films and 1 % for highly porous films with a structure similar to A2. In
multilayered Cu/Zr films, the cases of sc and dc magnetron sputtering were represented by the samples
D1 and D2 respectively. We have shown that the films generated in dc mode displays a higher porosity
than in sc mode in addition to gradually losing the clear distinction between the different layers of Cu
and Zr. The thin film thus obtained shows a lower Young’s modulus than in sc mode due to the high
stress concentration close to the pores. Finally, it has been observed that the Young’s modulus tends to
decrease with the number of layers, but may reach a relatively stable value for a large number of layers
as this latter only decreases by a value of approximately 3 % between the 20-th and the 40-th layers.

5.2 Perspectives
In this section, we propose some perspectives for the improvement of the numerical model. In finite
element methods, the quality of the mesh is an essential parameter for the quality of the solution and
the stability of the algorithm. It has been shown that voxel-based meshes may display mathematical
singularities where the elements are forming sharp angles with their neighbours. A possible perspective
is thus the improvement of the mesh representing the film in order to accurately model the pores by the
exploiting the isoparametric Lagrange elements implemented in this work. However, such meshes are
non-trivial to generate for complex materials and thus require additional efforts.

An important part of the limitations of numerical algorithms is the computational cost. For instance,
the number of finite elements used in the mesh, the format used to store the fem matrices or the method
used for solving the linear systems highly impact the performances of the code. As porous materials
require a sufficiently fine mesh whose characteristic size is driven by the characteristic size of the pores,
some films may become difficult to simulate accurately. Thereby, further optimisation of the code such
as the use of multithreaded algorithms or gpu based libraries may be considered as a perspective.
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Finally, it may be interesting to compare the results obtained with different numerical models. For
instance, the couple stress theory or the afem may be investigated and compared to the set/sst or
the svk models for identical thin films of very small thickness. Moreover, minor modifications of the
algorithm may be proposed for taking into account the local composition of larger composite materials
when the characteristic size of the finite elements is much larger than the lattice constant. For instance,
when each finite element composing the mesh contain different chemical components in different propor-
tions. Another possible extension of the algorithm is the consideration of internal contact between the
elements, such feature may allow a better simulation of the deformation in highly porous films where
relative displacements and rotations lead to physical contacts between the mesh and itself. However,
depending on the yield strength of the material, self-contact phenomena may actually occur beyond the
elastic domain, which was out of the scope of this work.
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Chapter 6

Appendix
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6.1 Weak Formulation
When they exist, the solutions to partial differential equations belong to a Sobolev space, which are
vector spaces containing the set of functions with weak derivative up to some order. In the finite element
method, one wants to work with the so-called weak formulation of the problem using the concept of weak
derivative. Let f be a locally integrable function in a domain Ω, if the following definition

f, F ∈ L1
loc(Ω) :

∫
Ω
f
∂kg

∂xk
dx =

∫
Ω
Fg dx (6.1)

holds for all infinitely differentiable function g ∈ C∞c (Ω), we say that F is the weak derivative of order
k of the function f in this domain [17][48]. It is clear that if a function is differentiable in the classical
sense, so if g ∈ Ck for k ∈ IN ∪ {∞}, the weak derivative is the same as the classical one. Now let A be
a partial differential operator, if the function u is sufficiently differentiable in the classical sense, then it
is called a classical solution only if this latter satisfies the following relation:

Au = f (6.2)

for some functions f ∈ IRk. On the contrary, a weak solution to this partial differential equation is a
function for which the derivatives may not all exist but still satisfy the equation in some precisely definite
way. In that case, u does not need to be sufficiently differentiable to make Au meaningful in the classical
sense, but instead is meaningful in the weak sense [48].

• Surface Gradient

Before deriving the weak formulation of the problem (2.9), it is important to remind some properties of
the surface gradient [49]. A second-order tensor A and a vector v can be decomposed into a tangential
part and a normal part with respect to a surface:

{
v = vn + vs

A = An + As
⇔

{
vs = Pv
As = PAP

(6.3)

where the surface projection tensor P is represented by a symmetric matrix. Those relations are used in
order to derive the weak form of the initial problem with respect to the strain related to the bulk only.
Furthermore, when v is differentiable, the surface gradient is given with P as follows, where n is the
outward normal to the surface on which the gradient is computed:

P = I− n⊗ n
∇sv = ∇v−

(
n · ∇v

)
n = P · ∇v

(6.4)

• The SET and SST Models

The weak form of the system (2.9) can be derived first by summing the two partial differential equations,
multiplying both sides by a smooth vector field w = [w1 w2 w3] also called test function, which is part
of the finite-dimensional subspace, and integrate over the domain:

∫
Ω
w>
(
∇ · σ

)
dx +

∫
Γs

w>
(
∇s · σs

)
dx =

∫
Ω
w>ρ

∂2u

∂t2
dx−

∫
Ω
w>ρg dx (6.5)

The divergence theorem states that the density within Ω change only by having it flow through its
boundary Γ. Exploiting the property that the stress tensor σ = σ> is symmetric, one can rewrite the
two first terms in the integrals using the relations
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∇ ·
(
w>σ

)
= w>

(
∇ · σ

)
+ σ : ∇w

∇s ·
(
w>σs

)
= w>

(
∇s · σs

)
+ σs : ∇sw

(6.6)

where the last term denotes the double dot product between two tensors. The second relation is derived
for the surface gradient thanks to the relation (6.4) stating that ∇s = P ·∇. Injecting these two relations
into the equilibrium equation (6.5) leads to∫

Ω
∇ ·
(
w>σ

)
dx−

∫
Ω
σ : ∇w dx +

∫
Γs

∇s ·
(
w>σs

)
dx

−
∫

Γs

σs : ∇sw dx =
∫

Ω
w>ρ

∂2u

∂t2
dx−

∫
Ω
w>ρg dx

(6.7)

Furthermore, the third term in the integral is the surface divergence of the dot product between the test
function and the surface stress tensor. This latter can be rewritten in terms of the projection ws of w
on the surface using the symmetry of P and the identity P2 = P [49]. Indeed, the projection tensor P
acts as the identity for quantities already projected on the surface:

∇s ·
(
w>σs

)
= ∇s ·

(
w>PσsP

)
= ∇s ·

(
w>s σsP

)
= ∇s ·

(
w>s σs

)
(6.8)

The Stokes theorem states that the integral of a function over Γ is equal to the integral of its exterior
derivative over the whole domain. Taking into account (6.8) and applying this theorem to the first and
second terms of (6.7) leads to ∫

Ω
∇ ·
(
w>σ

)
dx =

∫
Γ
w>
(
σ · n

)
dx∫

Γs

∇s ·
(
w>s σs

)
dx =

∫
ϕ

w>s
(
σs ·m

)
dx

(6.9)

where ϕ denotes the one-dimensional boundary of the free surface between two sub-domains, n is the
unit outward normal to the two-dimensional boundary Γ. In case the interface Γs is closed, the second
equation is zero. For an open interface, m is the unit outward normal to ϕ and tangent to Γs with σs ·m
being an applied force on ϕ [19][49]. Replacing this into (6.7) gives∫

Γ
w>
(
σ · n

)
dx−

∫
Ω
σ : ∇w dx +

∫
ϕ

w>s
(
σs ·m

)
dx

−
∫

Γs

σs : ∇sw dx =
∫

Ω
w>ρ

∂2u

∂t2
dx−

∫
Ω
w>ρg dx

(6.10)

The two terms featuring a double dot product with the gradient of the test function can be rewritten
with by defining a virtual bulk and a surface strain tensor, thanks to their symmetry property:

σ : ∇w = σ : 1
2
(
∇w +∇w>

)
= σ : εw

σs : ∇sw = σs : (P∇wP) = σs : εs
w

(6.11)

where εw is nothing but the equivalent of the strain tensor ε defined in (2.11), but with the test function
instead of the displacement field. One may then rewrite (6.10) in a simpler way by injecting the relations
(6.11) into the equilibrium equation:∫

Γ
w>
(
σ · n

)
dx−

∫
Ω
σ : εw dx +

∫
ϕ

w>s
(
σs ·m

)
dx

−
∫

Γs

σs : εs
w dx =

∫
Ω
w>ρ

∂2u

∂t2
dx−

∫
Ω
w>ρg dx

(6.12)
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Finally, one may notice that σ · n = t is the surface traction on the domain boundary, which is imposed
on Γt and is zero on Γu due to the boundary conditions. In the same way, the applied force σs ·m on ϕ
will be noted f . Rearranging the terms in (6.12) leads to

∫
Ω
σ : εw dx +

∫
Γs

σs : εs
w dx +

∫
Ω
w>ρ

∂2u

∂t2
dx

=
∫

Ω
w>ρg dx +

∫
Γt

w>t dx +
∫
ϕ

w>s f dx
(6.13)

One now needs a constitutive relation relating the stress tensors with their conjugate strain. As we are
working in the framework of linear elasticity, one may inject the relations (2.10) into (6.13) to write

∫
Ω
εw : D : ε dx +

∫
Γs

ε s
w : S : εs dx +

∫
Ω
w>ρ

∂2u

∂t2
dx

=
∫

Ω
w>ρg dx +

∫
Γt

w>t dx +
∫
ϕ

w>s f dx−
∫

Γs

εs
w : σ0 dx

(6.14)

and the weak formulation in term of bulk strain is given by applying the back-projection (2.11) on the
surface strain. It is important to note that the integration domains are not constant as this latter will
change in time due to the deformation of the material, meaning that the integration must be conducted
in the current domain instead of the reference domain.

∫
Ω
εw : D : ε dx +

∫
Γs

(
PεwP

)
: S :

(
PεP

)
dx +

∫
Ω
w>ρ

∂2u

∂t2
dx

=
∫

Ω
w>ρg dx +

∫
Γt

w>t dx +
∫
ϕ

w>Pf dx−
∫

Γs

(
PεwP

)
: σ0 dx

(6.15)

6.2 FEM Formulation of SET/SST
In order to derive the finite-element formulation of the equation (6.15), one may define the partial
derivative-matrix operator ∂. Different conventions exist concerning the order of the components of the
Voigt vectors, in this work, they are defined as follows:

σ =


σ11
σ22
σ33
σ12
σ23
σ31

 ε =


ε11
ε22
ε33
γ12
γ23
γ31

 ∂> =



∂

∂x
0 0 ∂

∂y
0 ∂

∂z

0 ∂

∂y
0 ∂

∂x

∂

∂z
0

0 0 ∂

∂z
0 ∂

∂y

∂

∂x

 (6.16)

where γij = 2εij is the shear strain, and the displacement field is noted u = [u1 u2 u3] = [ux uy uz] in the
three spatial dimensions (x, y, z) for readability reason. Using the Voigt notation, the relation between
the stress, the strain and the displacement become ε = 1

2

(
∇u+∇u>

)
σ = D : ε

⇔

{
ε = ∂u

σ = Dbε = Db
(
∂u
) (6.17)

where Db is the second-order stiffness tensor of 36 components obtained by exploiting the different
symmetries of D. In addition, one can define the transition matrix T representing the mapping between
the bulk and surface quantities in Voigt notation [23] such that the following relation holds:
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εs : σs =
(
PεP

)
: σs = ε>Tσs

⇔ εs = T>ε
(6.18)

Injecting the new notations derived in (6.17) and (6.18) allows to rewrite the weak form (6.15) in standard
matrix-vector form as follows. A summary of the different matrices is given at the end of the subsection.
Note that this equation is not yet discretized in space, one has

∫
Ω

(∂w)>Db
(
∂u
)
dx +

∫
Γs

(∂w)>TDsT>
(
∂u
)
dx +

∫
Ω
w>ρ

∂2u

∂t2
dx

=
∫

Ω
w>ρg dx +

∫
Γt

w>t dx +
∫
ϕ

w>Pf dx−
∫

Γs

(
∂w
)>Tσ0 dx

(6.19)

The integration domain Ω is now discretized into a series of finite elements limited to their respective
subdomains Ω ′ forming the finite element mesh. In each element, the displacement field as well as the
test function are approximated by a sum of nodal values, defined at the nodes of the elements, weighted
by their respective shape functions over the element:

u(x, t) = H>(x) u(t)
w(x, t) = H>(x) w(t)

(6.20)

In three dimensions, the matrix H is a 3j×3 matrix containing the shape function vectors N. The nodal
unknowns are stored in 3j × 1 vectors, where j is the number of nodes in the element. According to
this discretization, the strain tensor for the displacement field and the virtual strain tensor for the test
function in (6.19) can be written as the following matrix-vector form

ε = ∂u = ∂H>u = B>u (6.21)

where the partial differential operator ∂ is applied to the matrix of shape functions only, because the
vector of unknown nodal displacement u and nodal test functions w are not a function of (x, y, z).
Injecting this decomposition into (6.19), which will now refer to an integration over the discretized
domain by assembling the different contributions of the finite elements, allows to derive the space-
discretized equation of the problem. As the vector of nodal unknown are not functions of the position,
they can be placed out of the integrals. Finally, this formulation is valid for any smooth test function,
this latter can thus be simplified from the equation, leading to

∫
Ω

BDbB>dx u +
∫

Γs

BTDsT>B>dx u +
∫

Ω
HH>ρ dx d2u

dt2

=
∫

Ω
Hρg dx +

∫
Γt

Ht dx +
∫
ϕ

HPf dx−
∫

Γs

BTσ0 dx
(6.22)

Note that the shape functions in B which are not related to the considered surface Γ are suppressed by
the projection matrix T. In order to simplify the notations, we define the bulk stiffness matrix KB and
the surface stiffness matrix Ks, as well as the mass matrix M in the left-hand side. In the right-hand side,
we define the vector of external loads FT, the vector of body forces Fb, the vector of surface-boundary
traction Fϕ and the vector of residual surface stress Fs such that (6.22) becomes

(
Kb + Ks

)
u + M d2u

dt2
= Fb + Ft + Fϕ − Fs

⇔ Ku + M d2u
dt2

= F
(6.23)
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6.3 FEM Formulation of SVK
In the total Lagrangian formulation, the stress and strain measures in the current configuration are
computed with respect to the initial configuration, as well as the derivatives and integrals. However, the
equation (2.23) in finite strain elasticity is nonlinear with respect to the displacement:

K(u,w) = f(w) (6.24)

and cannot be directly written as Ku = b. The next step is then the linearization of K(u,w) by perform-
ing a first-order Taylor approximation of the stiffness matrix. Introducing the incremental displacement
δu as the new variable, one can follow the procedure described in [50] to derive

L
[
K(u,w)

]
(δu) =

∫
Ω0

(
δS : Ew + S : δEw

)
dx (6.25)

where δS is the stress increment and δEw is an equivalent to the increment of strain written in term of
the test function. For a Saint-Venant-Kirchhoff material, the stress-strain relation is linear with respect
to the increment of stress and one has δS = D : δE. Moreover, the increment of Lagrangian strain and
its equivalent test function [51] can be obtained as follows:

Ew = sym
(
∇w> +∇w>∇u

)
δE = sym

(
∇δu> +∇δu>∇u

)
δEw = sym

(
∇w>∇δu

) (6.26)

where the notations sym(A) = (A+A>)/2 and ∇ = ∇X have been used for readability reason. Because
those strain tensors as well as the second Piola-Kirchhoff stress tensor are symmetric, one can introduce
the Voigt notation and write the tensors in term of vectors:

S = DE =


S11
S22
S33
S12
S23
S31

 E =


E11
E22
E33
2E12
2E23
2E31



Ew = ∂nw

δE = ∂n δu

δS = D δE

(6.27)

Where ∂n is the nonlinear differential operator and function of the total displacement u which is known
and taken as the solution obtained in the previous step, so at the reference configuration for the first
step of the algorithm. The stiffness tensor Db is equivalent to the le tensor, one has

δS : Ew = E>wDb δE = (∂nw)>Db (∂nδu)
S : δEw = (∂lw)>Σ (∂lδu)

(6.28)

Using the finite element discretization for the test function w = H>w and the increment of displacement
δu = H>δu, where H is the matrix of shape functions, allows the writing of the relations (6.28) into a
purely vector form. For an element of the mesh, one has

δS : Ew = w>BnDbB>n δu
S : δEw = w>BlΣB>l δu

(6.29)

where Bl is a linear matrix of shape function derivatives, which is independent of the total displacement,
and Bn is the nonlinear matrix of shape function derivatives that involves the deformation gradient
tensor at computed the previous step.
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These matrices are given in the equation (2.26). The linearized relation (6.25) can be written in terms of
the product of the vector of nodal values of the shape functions and incremental displacements, with a
so-called tangent stiffness matrix Kt(u) representing the derivative of the nonlinear strain-displacement
at u, finally leading to

L
[
K(u,w)

]
(δu) =

∫
Ω0

w>BnDbB>n δu dx +
∫

Ω0

w>BlΣB>l δu dx

= w>
(
Kn + Kl

)
δu = w>Kt δu

(6.30)

In order to solve the system (2.23), the Newton-Raphson algorithm is used to converge to the correct
solution by minimizing a residual R representing the out-of-equilibrium stresses. At each iteration, the
residual is computed by taking the difference between the external applied forces and the internal forces
at the current configuration:

w>R =
∫

Γ0

w>t dx−
∫

Ω0

S : Ew dx

= w>
∫

Γ0

Ht dx−w>
∫

Ω0

BnDbE dx

= w>
(
Ft − Fx

)
(6.31)

The Newton Raphson algorithm is then used to find a solution for a vanishing residual stress R. As
the Newton Raphson algorithm will converge to the closest local minima, which may not be the global
minima, it is important that the starting point is close enough from the correct solution. To this end, the
load t is generally partitioned into several load increments, and the algorithm will find an equilibrium
solution for each of these increments until the total load is reached.

w>Ktδu = w>R ⇔ Ktδu = Ft − Fx (6.32)

Ultimately, the second Piola Kirchhoff stress tensor can be projected into the current configuration in
order to recover the Cauchy stress. It is important to note that only the displacement has an accurate
and continuous value over the domain thanks to the shape functions, thus evaluating the stress at the
nodes may lead to catastrophic results. Practically, the stress is only known on average and will be
averaged over an element from its values computed at the Gauss nodes.

σ = 1
det(F)FSF> (6.33)

6.4 Surface Integration
In order to compute the projection tensor P = I−n⊗n to a surface of a general hexahedron element, one
first need to compute the outward normal to this surface in global coordinates. Which can be obtained
by defining the following mapping vectors of the Jacobian:

v>ξ =
[
∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

]
= row1

(
J)

v>η =
[
∂x

∂η

∂y

∂η

∂z

∂η

]
= row2

(
J)

v>ϕ =
[
∂x

∂ϕ

∂y

∂ϕ

∂z

∂ϕ

]
= row3

(
J)

(6.34)

Then, we compute the two director vectors denoting the orientations of the surface area element in the
global space, which can be expressed by the Gram-Schmidt orthogonalization [52][53]. One has first
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v = vϕ −
(
vϕ · vη

)
vη for face ξ = ±1

v = vξ −
(
vξ · vϕ

)
vϕ for face η = ±1

v = vη −
(
vη · vξ

)
vξ for face ϕ = ±1

(6.35)

The second director vector is taken from (6.34) depending on the face considered. The change of surface
area due to the mapping [x y z]→ [ξ η ϕ] as well as the unit outward normal are computed by

J = |v× vϕ| n = ±
(
v× vϕ

)
J−1 face ξ = ±1

J = |v× vξ| n = ±
(
v× vξ

)
J−1 face η = ±1

J = |v× vη| n = ±
(
v× vη

)
J−1 face ϕ = ±1

(6.36)

The integrals in Ks and Fs defined on the free surfaces of the element can thus be computed using the
appropriate quadrature rule whose nodes are located at the surface considered with the equation (6.38).
It is important to note that the external traction Ft is not directly linked to the 3D elements as in the
case of surface effects. Thereby, one can alternatively define an independent 2D quadrangle Lagrange
element of k nodes and perform the integration. The mapping [x y z] → [ξ η] between the global 3D
space and the local 2D space of the new quadrangle element leads to


v>1 =

[
∂x

∂ξ

∂y

∂ξ

∂z

∂ξ

]
v>2 =

[
∂x

∂η

∂y

∂η

∂z

∂η

] ⇔


J = |v1 × v2|

n = v1 × v2

|v1 × v2|
(6.37)

where the vectors v1 and v2 are obtained similarly to (2.6) using the 2D shape functions and the
corresponding k nodes of the quadrangle. Their cross product is normal to this surface and its norm
gives the surface change of the transformation. Consequently, the surface integral on Γ defined in a 3D
space can be computed in the local 2D space Γ ′ = [−1, 1]2 as follows:∫

Γ
f(x) dx =

∫
Γ ′
f
[
x(ξ)

]
J(ξ) dξ (6.38)

6.5 Energy and Angular Distributions
In this annex, the analytical distributions obtained from simtra simulations are explicitly given at the
particular pressure P = 0.67 Pa with a polynomial expansion of order 5. Practically, it is preferable to use
the full surrogate model given in matrix form by the pce code implemented in Python, in order to avoid
further rounding errors, or possibly increase the order of the expansion when needed, the distributions
given here are thus for information purpose only. As a reminder, we use

E → ε with ε = lnE (6.39)

ρe(ε) = exp
(

0.01889− 7.834 ε+ 8.434 ε2 − 4.507 ε3 + 1.086 ε4 − 0.0981 ε5
)

ρa(θ) = exp
(

0.483− 1.151 θ + 4.574 θ2 − 15.104 θ3 + 14.932 θ4 − 5.014 θ5
) (6.40)
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Figure 38: Comparison between the pce surrogate model of order 5 and the simulation data obtained
by simtra for Cu sputtered by sc magnetron sputtering at P = 0.67 Pa. The corresponding expression
for the energy and angular distributions are given in (6.40).

ρe(ε) = exp
(

0.5217− 11.182 ε+ 10.6343 ε2 − 5.1663 ε3 + 1.181 ε4 − 0.1041 ε5
)

ρa(θ) = exp
(

0.05252− 1.61824 θ + 8.4999 θ2 − 18.89 θ3 + 17.001 θ4 − 5.5983 θ5
) (6.41)
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Figure 39: Comparison between the pce surrogate model of order 5 and the simulation data obtained
by simtra for Cu sputtered by dc magnetron sputtering at P = 0.67 Pa. The corresponding expression
for the energy and angular distributions are given in (6.41).

ρe(ε) = exp
(
− 0.2647− 7.121 ε+ 8.3068 ε2 − 4.7338 ε3 + 1.2109 ε4 − 0.1159 ε5

)
ρa(θ) = exp

(
0.5723− 1.1874 θ + 4 θ2 − 14.223 θ3 + 14.0497 θ4 − 4.709 θ5

) (6.42)
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Figure 40: Comparison between the pce surrogate model of order 5 and the simulation data obtained
by simtra for Zr sputtered by sc magnetron sputtering at P = 0.67 Pa. The corresponding expression
for the energy and angular distributions are given in (6.42).

ρe(ε) = exp
(

0.5108− 13.8933 ε+ 17.4114 ε2 − 10.1527 ε3 + 2.656 ε4 − 0.2577 ε5
)

ρa(θ) = exp
(
− 0.05174− 0.668 θ + 3.653 θ2 − 9.548 θ3 + 10.008 θ4 − 3.8256 θ5

) (6.43)
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Figure 41: Comparison between the pce surrogate model of order 5 and the simulation data obtained by
simtra for Zr sputtered by the dc magnetron sputtering at P = 0.67 Pa. The corresponding expression
for the energy and angular distributions are given in (6.43).
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