
University of Liege
Faculty of applied sciences

Propagation of Uncertainties in
Pyrolysis Kinetic Parameters Using

Polynomial Chaos Methods

Graduation Studies conducted
for obtaining the Master’s degree
in Engineering Physics by
Martin LACROIX

Advisors:
Maarten Arnst
Joffrey Coheur

Academic year 2019-2020

Abstract

This master thesis addresses two challenges for the propagation of uncertainties related to
the pyrolysis process in thermal protection materials, which are the high computational
cost of numerical simulations and the correlation between input uncertainties. Due to
this high computational cost, classical techniques such as Monte Carlo simulations are
not applicable. In this respect, we propose exploring the so-called method of polynomial
chaos, which consists in using a set of orthogonal polynomials to build a cheaper surrogate
model from a limited number of runs of the reference model. First, some theoretical and
computational aspects of the polynomial chaos are presented in details, then different
test cases are considered in order to assess the relevance of the method in producing a
surrogate model for complex pyrolysis and thermal ablation processes. In summary, the
goal of this thesis is to successfully demonstrate the possibility of computing a cheap and
accurate surrogate model for complex pyrolysis processes in moderately high dimensions
when the uncertainties on the input parameters are correlated.

List of Abbreviations

ancova Analysis of covariance

anova Analysis of variance

gs Gram-Schmidt

lars Least angle regression

mc Monte Carlo

pca Principal component analysis

pce Polynomial chaos expansion

sd Standard deviation

sre Squared relative error

1

Acknowledgements

I would first like to thank my thesis advisor, Professor Arnst, for the useful advice, re-
marks and engagement through the learning process of this master thesis. He consistently
allowed this paper to be my own work, but steered me in the right the direction whenever
he thought I needed it.

I would also like to thank Joffrey Coheur who were involved in this research project,
answering the many questions I had. Without his help and participation, this work could
not have been successfully conducted.

Finally, I would like to thank my family, as well as the other engineers and students with
whom I spent these few years at the University of Liège. Evidently, they contributed to
my success and to make this experience unforgettable.

Martin Lacroix

2

Contents

1 Introduction 8
1.1 Atmospheric Entry . 9
1.2 Objectives . 10
1.3 Outline . 11

2 Polynomial Chaos Expansion 12
2.1 Introduction . 13
2.2 Polynomial Basis . 13

2.2.1 Independent Variables . 13
2.2.2 Dependent Variables . 15
2.2.3 Hyperbolic Truncation . 17

2.3 Computation of the Coefficients . 18
2.3.1 Spectral Projection . 18
2.3.2 Least Squares Regression . 19
2.3.3 Least Angle Regression . 20

2.4 Sensitivity Analysis . 22
2.4.1 Sobol Indices . 23
2.4.2 Shapley Indices . 25

2.5 Conclusion . 25

3 Integration Methods 27
3.1 Introduction . 28
3.2 Monte Carlo Integration . 28

3.2.1 Quasi-Monte Carlo . 29
3.2.2 Quadratic Resampling . 31

3.3 Quadrature Rules . 31
3.3.1 Recurrence Relations . 32
3.3.2 Approximate Fekete Points . 33
3.3.3 Embedded Positive Quadrature Rule 35

3.4 Conclusion . 36

4 Implementation Details 37
4.1 Introduction . 38
4.2 Polynomial basis Class . 39

3

4.3 Expansion Class . 41
4.4 Quadrature Rules . 43
4.5 Conclusion . 45

5 Application Examples 46
5.1 Introduction . 47
5.2 Ishigami Function . 47
5.3 One-Reaction Pyrolysis . 49

5.3.1 Inverse Problem . 50
5.3.2 Monte Carlo . 52
5.3.3 Quadrature Rule . 53
5.3.4 Decorrelation Methods . 54

5.4 Two-Reactions Pyrolysis . 57
5.4.1 Sparse Polynomial Chaos . 58

5.5 One-Dimensionnal Ablation . 60
5.5.1 Independent Parameters . 61
5.5.2 Correlated Parameters . 66
5.5.3 Extremal Parameters . 69

6 Conclusion 71
6.1 Summary . 72
6.2 Future Work . 73

7 Appendix 75
7.1 Finding z : A>z = 0 . 76
7.2 The Thin QR Factorization . 77
7.3 The Givens Rotation . 78
7.4 Rank Downgrade . 79
7.5 Update the Pseudo Inverse . 81

4

List of Figures

2 Two dimensional hyperbolic truncation sets of order 7 for different value
of q. The two axes represent the exponents of the random variables in the
system. 17

3 Beta distribution expanded in terms of an exponential distribution on the
left. Gamma distribution expanded in terms of a uniform distribution on
the right. 18

4 Comparison between Halton, Sobol, R-sequences of quasi-random num-
bers and a pseudo-random uniform distribution on the unit square in two
dimensions. 30

5 Approximate Fekete points on the unit square and a triangle using rescaled
Legendre polynomials, the original set of points is a uniform sampling. . 34

6 Abstract representation of the pce related classes implemented in Pybitup. 38
7 Example of compact homogeneous block representation of an arbitrary

third order polynomial basis of two variables. The zero coefficients are not
explicitly stored. 39

8 Fictive coefficient matrix stored in an Expansion class related to a pce
discretized in two deterministic dimension: the time and the position. . . 42

9 Error of a pce using Legendre polynomials, for the Ishigami function. The
coefficients are computed by a Gauss-Legendre quadrature rule. 48

10 Overview of the correlation between different input parameters in the one-
reaction pyrolysis test case computed by Metropolis-Hastings algorithm. . 51

11 Markov chains generated by Metropolis-Hastings algorithm to obtain the
distribution of the random parameters in the one-reaction pyrolysis test
case. 51

12 Mean error of a 3rd order pce computed by a mc integration with different
number of points for the one-reaction pyrolysis test case. 52

13 Mean error of a pce computed by a mc integration of 2 × 105 points at
different orders for the one-reaction pyrolysis test case. 52

14 Range containing 98% of the outputs around the mean for a 4th order
pce computed by mc integration on the left, and its standard deviation
on the right. The reference curve is the gas production of the one-reaction
pyrolysis test case. 53

15 Mean error of a 3rd order pce computed by an embedded quadrature rule
with different number of points for the the one-reaction pyrolysis test case. 53

5

16 Range containing 98% of the outputs around the mean for a 3rd order pce
computed by an embedded quadrature rule on the left, and its standard
deviation on the right. The reference curve is the gas production of the
one-reaction pyrolysis test case. 54

17 Overview of the correlation betweenA and E on the left, their parametrized
image at the middle, and their whitened image by pca on the right. . . . 55

18 Mean error of a pce computed by a Gauss-Hermite quadrature rule at
different orders for the one-reaction pyrolysis test case. 56

19 Range containing 98% of the outputs around the mean for a 6th order pce
computed by a Gauss-Hermite quadrature on the left, and its standard
deviation on the right. The reference curve is the gas production in the
one-reaction pyrolysis test case. 56

20 Overview of the correlation between different parameters in the two-reaction
pyrolysis test case computed by Metropolis-Hastings algorithm. 57

21 Number of polynomials in the orthogonal basis as a function of the order
and the hyperbolic q-norm truncation for a 8-dimensional pce. 58

22 Mean error of a 4th order pce computed by mc integration and a large
number of integration points for different q-norm hyperbolic truncation
schemes. 59

23 Maximum error of a 4th order pce with a hyperbolic truncation of q = 0.7.
The polynomials are first selected by the lars algorithm and the resulting
coefficients are updated by a least squares regression for a better accuracy. 59

24 Range containing 98% of the outputs around the mean for a 4th order pce
computed by lars on the left, and its standard deviation on the right.
The reference curve is the gas production of the two-reaction pyrolysis test
case. 60

25 Progressive decomposition of the theoretical ablative virgin composite into
a pyrolysis char due to the inflow heat flux at its surface. 60

26 Overview of the input parameter distributions for the one-dimensional ab-
lation test case. We first consider the random variables as statistically
independent. 61

27 Maximum error of a pce computed by a mc integration of 2× 104 points,
and an embedded quadrature rule extracted from this mc sample at dif-
ferent orders. The reference solution is the one-dimensional ablation test
case. 62

28 Char recession depth of the one-dimensional ablation test case after 1 min
as a function of n, A and E. The other parameters are fixed at their mean
value. 63

29 Maximum error of a 3rd order pce computed by an embedded quadra-
ture rule of 1e3 integration points for the char recession depth in the
one-dimensional ablation test case. The coloured dots correspond to the
integration points projected in a two dimensional space. 64

6

30 Range containing 98% of the gas blowing rate and the recession depths
around the mean for a 4th order pce computed by an embedded quadrature
rule of 3 × 103 points on the left, and their standard deviation on the
right. The reference curve is the reference solution of the one-dimensional
ablation test case. 65

31 Mean of the temperature profile in the material obtained with a 4th or-
der pce computed by an embedded quadrature rule of 3 × 103 points.
The coloured surface is the reference solution and the white dots are the
response of the pce at the probes. 65

32 Standard deviation of the temperature profile in the material obtained
with a 4th order pce computed by an embedded quadrature rule of 3×103

integration points. 66
33 Overview of the correlation between different input parameters of the one-

dimensional ablation test case obtained from a posterior distribution. . . 66
34 Maximum error of a 3rd order pce computed by an embedded quadrature

rule and mc integration for different number of points. The reference
solution is the one-dimensional ablation test case. 67

35 Range containing 98% of the gas blowing rate and recession depths around
the mean for a 4th order pce computed by a positive embedded quadrature
rule of 3× 103 integration points and 20 iterations of the lars algorithm.
The reference curves are the reference solutions of the one-dimensional
ablation test case. 68

36 Standard deviation of the temperature profile in the material obtained
with a 4th order pce computed by a positive embedded quadrature rule
of 3× 103 integration points and 20 iterations of the lars algorithm. . . 68

37 Correlation between the natural logarithm of the Arrhenius pre-exponential
factor and the activation energy for the one-dimensional ablation test case
obtained by a Bayesian posterior. 69

38 Outputs of the one-dimensional ablation test case for extremal values of
the Arrhenius pre-exponential factor and the activation energy of the first
reaction. 70

7

Chapter 1

Introduction

8

1.1 Atmospheric Entry
Atmospheric entry is the phase during which a natural or artificial object enters the
atmosphere of a planet and reaches layers dense enough to cause mechanical and thermal
effects. Since entering an atmosphere from space at high velocity will cause very high
levels of heating, the heat shield is intended to protect the spacecraft during this critical
phase. As soon as the atmosphere becomes denser, the high kinetic energy of the vehicle is
dissipated into thermal energy, bringing the temperature of its surface to several thousand
degrees (Figure 1).

Figure 1: Artist rendering of Dragon
capsule re-entry. The pica-x heat shield
is based on a variant of a phenolic im-
pregnated carbon ablator material de-
signed to protect the spacecraft during
atmospheric entry. The Dragon cap-
sule entered the Earth’s atmosphere at
around 7 km/s, heating the exterior of
the shield to up to 1850 degrees Celsius.
However, just a few inches of the pica-x
material keeps the interior of the capsule
at room temperature [1].

Multiple approaches for the thermal protection of spacecraft are currently in use, for
instance, passive or active cooling of spacecraft surfaces. In this thesis, we focus on the
so-called thermal ablative heat shields. The main working principle of an ablative heat
shield is to lift the shock layer gas away from the shield surface thanks to the reinjec-
tion of gases from physical or chemical decomposition, opposing the convection of hot
gases in the boundary layer. This blocking process significantly reduces the heat flow and
the transfer of gases to the wall. In particular, the pyrolysis is a process of chemically
decomposing organic materials at elevated temperatures in the absence of oxygen, and
simultaneously involves the change of physical state and chemical composition. A part
of the material turns into gas and migrates to the surface, participating in the blocking
process. In addition to the blocking process, another important propriety of ablative
materials is their low thermal conductivity as well as their ability to absorb much higher
heat fluxes than non-ablative materials.

The objective of uncertainty analysis is to investigate and mitigate the effect of uncer-
tainties on the quantity of interest. Evidently, thermal protection systems involve a large
number of physical properties whose impact on the behaviour of the shield can be more
or less significant. Regarding the fact that many of these parameters are not known
exactly, it is important to evaluate the effects of their uncertainties on the predictions of
the behaviour of the shield. For instance, the different possible values of the parameters
can be propagated through a numerical model to obtain the corresponding production of
gas by the ablative material, providing a better understanding of the uncertainty on the
output. Consequently, such analysis allows the assessment of the reliability of the shield,
reducing the need for high security margin in its conception.

9

1.2 Objectives
It is clear that the proper functioning of the heat shield is one of the most important
factors in the success of the atmospheric entry of the spacecraft. Numerical simulations of
thermal protection systems require the development of models for the chemical reactions
occurring in the material at elevated temperatures, such as the degradation of the ma-
terial caused by pyrolysis process. However, models typically used for the production of
pyrolysis gases are highly empirical and require the determination of several parameters
[2]. The identification is based on experiments performed on small samples of the ablative
material composing the thermal shield. Previous work performed the inference on the
parameters using optimization algorithms [3], or using Bayesian inference methods such
as Metropolis-Hastings algorithms [4][5], or more recently gradient-based methods for the
sampling of the probability density function. Those algorithms were implemented in the
Bayesian inference and uncertainty propagation toolbox Pybitup, a software developed
by J. Coheur in the Computational and Stochastic Modelling research unit at the Uni-
versity of Liège.

Building on these previous studies, this work intends to propagate the uncertainties in-
ferred for the input parameters through numerical models and to develop further the
uncertainty propagation component of Pybitup. Indeed, as statistical studies typically
require the runs of a large number of numerical simulations to estimate statistical mo-
ments or to analyse the effect of the input parameters on the output, uncertainty prop-
agation is facing several challenges, among which is the large computation time required
for such simulations. In order to reduce this computational cost, we propose to use
the method of polynomial chaos, consisting of building a cheaper surrogate model of a
stochastic system by using polynomial approximations of the input-to-output map. In
fact, pce methods are already widely used in computational and aerospace engineering
[6][7]. However, in applications, most often, labeled probability density functions, such
as Gaussian probability density functions, are assigned to uncertain input parameters,
and the uncertain input parameters are assumed to be statistically independent of each
other. In contrast, here, we intend to assign a Bayesian posterior inferred from exper-
imental data to the uncertain input parameters. Such a Bayesian posterior is typically
non-Gaussian and entails statistical dependence between the uncertain input variables.
Thereby, the surrogate model must take into account the the non-Gaussiannity and the
statistical dependence of its input variables.

Significant work has already been conducted on the computation of a pce for independent
random variables in low dimensions [8]. However, classical pce methods may struggle
to perform efficiently when the number of dimensions becomes high, and different im-
provements have recently been proposed in the literature to help remedy this problem.
In addition, classical pce methods assume a stochastic independence between the input
variables, and consequently, lose their reliability when the variables are highly correlated.
The first part of this thesis is therefore devoted to a literature review of recent methods
developed to compute a pce for high dimensional problems with arbitrary, non-Gaussian
and multivariate probability density functions. The second part of this work is the im-
plementation of a pce library in Pybitup and the use the algorithm thus implemented
to construct a surrogate model for different test cases.

10

1.3 Outline
• Chapter 2 provides theoretical aspects of the pce, first by introducing the concept of

orthogonal polynomials as well as different methods to compute an orthogonal basis
according to an arbitrary inner product. In the second part, we present some standard
and advanced algorithms to compute the coefficients of the pce. In the last part, some
interesting post processing techniques such as the computation of sensitivity indices
are discussed.

• Chapter 3 first focuses on Monte Carlo integration methods and highlights their ad-
vantages for the estimation of high dimensional integrals. Some variance reduction
techniques such as the use of low discrepancy sequences are then explored in order
to improve the convergence of the method. The second part of the chapter provides
different algorithms for computing a quadrature rule in low and moderately high di-
mensions.

• Chapter 4 gives a general overview of the structure of the code Pybitup and describes
the two main classes implemented for the storage and the computation of the pce. We
give additional details about the homogeneous block representation of the polynomials
as well as some important algorithms.

• Chapter 5 is dedicated to the application of the methodology to different test cases. A
first introductory example aims to assess the efficiency of the code for simple problems
by comparing the output of the pce to analytical solutions. Afterwards, a larger scale
application is conducted in order to compare the different algorithms thus implemented
as well as to conduct statistical studies with the surrogate model.

11

Chapter 2

Polynomial Chaos Expansion

12

2.1 Introduction
The polynomial chaos is a method that enables a fast construction of surrogate models
that can be efficiently used for uncertainty quantification of a model output when there
is probabilistic uncertainty in the input parameters. The pce consists of expanding the
function in terms of a series of orthogonal polynomials weighted by some coefficients. Let
X be a random vector with values in the sample space Ω and let Y = y(X), where y is a
square integrable function defined on Ω. In addition, let {Pj(x)} be a set of orthogonal
polynomials in Ω with respect to the probability density function of X, the pce reads

y(x) =
∞∑
j=1

yjPj(x), (2.1)

where the yj are weighting coefficients obtained, for instance, by projecting y onto the
polynomials. Originally, the generalized pce was introduced in [8] by generalizing the
Cameron–Martin theorem to various continuous and discrete distributions using orthog-
onal polynomials from the so-called Askey-scheme. However, the method has notable
limitations such as the assumption of stochastic independence between the input param-
eters or the exponential increase of the computational cost for high dimensional problems.
Recently, generalizations towards arbitrary distributions resulted in the arbitrary or data-
driven pce [9]. These techniques are still under active development, but are particularly
relevant when one has an inaccurate knowledge of the statistical distributions in play.

One of the main challenges when constructing a pce is the computation of the coeffi-
cients. Nowadays, orthogonal polynomials and their associated quadrature rule can be
obtained for various distributions using a three term recurrence relation [10], and the
computation of the integrals involved in spectral projections or least squares methods
are straightforward, provided the number of random variables remains small. However,
many problems involve high dimensional data, consequently, the sparse pce constructed
by adaptive algorithms based on least angle regression have been proposed to reduce the
complexity of the surrogate model in high dimensions [11].

2.2 Polynomial Basis
An orthogonal polynomial basis in the real vector space of domain Ω equipped with the
inner product 〈·, ·〉 is defined as the set of polynomials such that

〈Pj, Pi〉 =
∫

Ω
Pj(x)Pi(x) dµ(x) = ||Pj||2 δij, (2.2)

where dµ(x) = fX(x) dx and fX is a probability density function of X. Furthermore,
all the orthogonal polynomials generated by Pybitup are normalized according to their
inner product so that ||Pj|| = 1 ∀ j.

2.2.1 Independent Variables

A basis of orthogonal polynomials of d independent variables can be constructed by
tensor product of the one-dimensional orthogonal bases {P k

j (xk)} relative to each of the
variables xk considered, namely

13

{Pj(x)} =
d⊗

k=1
{P k

j (xk)}. (2.3)

Defining the multi-index matrix I, where each column corresponds to a variable in the
model, and each element indicates the index of a one-dimensional polynomial in the
basis related to its variable. Each row thus corresponds to a particular combination of
one-dimensional polynomials related to different variables. The tensor product is

Pj(x) =
d∏

k=1
P k

Ijk
(xk) (2.4)

and the joint weight function is the product of each individual weight functions f kX(xk)
relative to their corresponding variable, one has then

fX(x) =
d∏

k=1
f kX(xk). (2.5)

For instance, assume one wants to perform a tensor product of the two following one-
dimensional polynomial bases of two independent variables:

x =
[
x1, x2

]
with {Pj(x)} = {P 1

j (x1)} ⊗ {P 2
j (x2)}. (2.6)

If each basis contains two polynomials, the multi-index matrix as well as the three firsts
polynomials of the resulting two-dimensional basis are given by

I =

1 1
1 2
2 1
2 2

 ⇔

P1(x) = P 1

1 (x1)P 2
1 (x2),

P2(x) = P 1
1 (x1)P 2

2 (x2),
P3(x) = P 1

2 (x1)P 2
1 (x2).

(2.7)

Full tensor product bases of high dimensions may contain a large number of polynomials,
some truncation techniques are thus explored in future sections. In the following, we
will describe the so-called three term recurrence relationship for constructing orthogonal
bases. Indeed, provided the distribution is univariate, any set of polynomials forming an
orthogonal basis satisfies the relation

Pj+1(x) = (x− aj)Pj(x)− bjPj−1(x), (2.8)

where the recurrence coefficients ai and bi are strictly positive and given by

aj = 〈xPj, Pj〉
〈Pj, Pj〉

, bj = 〈Pj, Pj〉
〈Pj−1, Pj−1〉

. (2.9)

In addition, the second equation allows a recursive computation of the L2-norms:

||Pj||2 = 〈Pj, Pj〉 = bj 〈Pj−1, Pj−1〉 . (2.10)

These coefficients have been tabulated for a number of weight functions in the Wiener-
Askey scheme [12]. Since one wants the first polynomial to be zero order, the first elements
in the relation are P1(x) = 1 and b1 = 1.

14

2.2.2 Dependent Variables

When the variables are dependent, the joint weight function can no longer be considered
as the product of independent one-dimensional weight functions and the formulation
presented previously is not valid. The most straightforward way to deal with variable
dependencies is to use the Gram-Schmidt orthogonalization [13][14]. This procedure takes
a non-orthogonal set of linearly independent functions and constructs an orthogonal basis
over an arbitrary domain with respect to an arbitrary weight function. Given an original
set of linearly independent functions {Bi(x)}, the orthogonal basis {Pi(x)} is computed
iteratively by

Pi(x) = Bi(x)−
i−1∑
j=1

〈Bi, Pj〉
〈Pj, Pj〉

Pj(x). (2.11)

It turns out that the classical gs algorithm suffers from numerical instability, round-off
errors can accumulate and destroy orthogonality of the resulting vectors. Indeed, if an
error is made in computing P2(x) so that 〈P1, P2〉 = ε is non-zero, this error will not be
corrected in any of the computations that follows. Thereby, the modified gs is proposed
to help remedy this issue [15]. The idea is to treat the vectors simultaneously rather than
sequentially in order to suffer from round-off instability at a significantly less degree.
Both methods are presented in Algorithms 1 and 2.

Algorithm 1: Classical GS

Compute {bi} = {Bi(x)}

for i = 1 : n do
ai = bi

for j = 1 : i− 1 do
ai = ai − 〈pj,bi〉pj

end
pi = ai/

√
〈ai, ai〉

end

Output {pi} = {Pi(x)}

Algorithm 2: Modified GS

Compute {bi} = {Bi(x)}

for i = 1 : n do
ai = bi

end

for i = 1 : n do
pi = ai/

√
〈ai, ai〉

for j = i+ 1 : n do
aj = aj − 〈pi, aj〉pi

end
end

Output {pi} = {Pi(x)}

15

The gs procedure can also be interpreted as a matrix factorization known as the QR
factorization [16]. Let {bj} be a discrete polynomial basis of column vectors obtained
by storing the response of the Bj(x) at a discrete set of points {xj}, and {pj} the
corresponding orthonormal basis resulting from gs process evaluated at the same set of
points, one can assemble the two following matrices:

B =
[
b1 b2 . . . bn

]
,

Q =
[
p1 p2 . . . pn

]
.

(2.12)

Since {pj} forms an orthonormal basis, Q is an orthogonal matrix. Consequently, the gs
orthogonalization can be rewritten into an equivalent matrix form

B = QR, (2.13)

where R is an upper triangular matrix whose coefficients are

R =

r11 r12 . . . r1n
0 r22 . . . r2n
...
0 0 . . . rnn

 ⇔

 rij = 〈pi,bj〉 if i ≤ j,

rij = 0 if i > j.
(2.14)

This relation allows the use of optimized libraries such as Numpy to perform the QR
factorization and obtain an orthonormal basis from the resulting matrices. To this end,
assume one dispose of a quadrature rule {xj, wj} for the computation of the inner products
involved in the equation (2.11), one can compute the Vandermonde matrix A and the
diagonal weight matrix by

A : Aij = Bj(xi),
W = diag (w) ,

(2.15)

where w is the vector of quadrature weights. Under this assumption that the quadrature
rule forms a proper discrete l 2-norm on the span of A, namely

m∑
j=1

wjP
2(xj) > 0 ∀ P ∈ {Pi(x)}, (2.16)

the columns of the Vandermonde matrix weighted by w are linearly independent [14] and
there is a unique QR factorization such that

W1/2A = QR (2.17)

and is effectively performing the operation (2.11). One has then

Pj(x) =
j∑
i=1

Bi(x)(R−1)ij. (2.18)

16

2.2.3 Hyperbolic Truncation

The exponential increase of the number of polynomials in tensor product bases may
become computationally expensive in high dimensions. This issue can be first addressed
by truncating the basis and selecting the polynomials according to the q-norm of their
multi-index vectors [17]. The q-norm is defined as

||Ij||q =
[

d∑
k=1

(
Ijk
)q]1/q

, (2.19)

where d is the dimension of the polynomials. Unlike adaptive algorithms selecting relevant
polynomials according to their correlation with the reference model, hyperbolic truncation
schemes allow one to reduce the number of coefficients to be computed in a pce without
evaluating the response of the function to be expanded. The truncation scheme of order
p consists of selecting the polynomial basis

{Pj(x)} : ||Ij||q ≤ p, (2.20)

with q > 0. Decreasing q favours low-order interactions, which may be more significant
than higher order interaction in the model of interest. An example of different q-norm
based truncations in two dimensions is presented in Figure 2.

0 2 4 6
x1 [-]

0

2

4

6

x 2
 [-

]

q=1

0 2 4 6
x1 [-]

0

2

4

6

x 2
 [-

]

q=0.75

0 2 4 6
x1 [-]

0

2

4

6

x 2
 [-

]

q=0.5

0 2 4 6
x1 [-]

0

2

4

6

x 2
 [-

]

q=0.25

Figure 2: Two dimensional hyperbolic truncation sets of order 7 for different value of q.
The two axes represent the exponents of the random variables in the system.

17

2.3 Computation of the Coefficients
A wide variety of numerical and analytical methods have been proposed to compute the
weighting coefficients of the pce provided the polynomial basis is known. As a reminder,
the mapping function y of an arbitrary second-order random variable Y = y(X), i.e.
having a non-zero and finite variance, can be expanded as an infinite series of orthogonal
polynomials. Practically, the series is truncated after the n-th term:

y(x) =
∞∑
j=1

yjPj(x) '
n∑
j=1

yjPj(x). (2.21)

2.3.1 Spectral Projection

The orthogonality property of the polynomials can be exploited to find an analytical
expression for the coefficients by performing a spectral projection [8]. Multiplying both
sides of the equation (2.21) by Pi fX and integrating over the domain Ω leads to

∫
Ω
y(x)Pi(x) dµ(x) =

∫
Ω

n∑
j=1

yjPj(x)Pi(x) dµ(x)

⇔
∫

Ω
y(x)Pi(x) dµ(x) =

n∑
j=1

yj 〈Pj, Pi〉 = yi 〈Pi, Pi〉

⇔ yj = 1
〈Pj, Pj〉

∫
Ω
y(x)Pj(x) dµ(x).

(2.22)

This integral can then be computed numerically even without explicit knowledge of the
weight function by using a mc integration or a quadrature rule. Moreover, if Y is a
one-dimensional random variable with cumulative distribution function FY , the previous
result can be developed a little further. The probability integral transform states that if
X is a continuous random variable with cumulative distribution function FX , then FX
maps to a uniform distribution in [0, 1]. Since Y and X are fully dependent by definition,
FY and FX map to the same uniform random variable U in Ω = [0, 1], allowing the
following change of variables:

0.0 0.2 0.4 0.6 0.8 1.0
y [-]

0.0

0.5

1.0

1.5

2.0

2.5

f Y
(y

)
[-]

0 5 10 15 20
y [-]

0.00

0.03

0.05

0.08

0.10

0.12

f Y
(y

)
[-]

Figure 3: Beta distribution expanded in terms of an exponential distribution on the left.
Gamma distribution expanded in terms of a uniform distribution on the right.

18

 y = F−1
Y (u),

x = F−1
X (u),

u = FX(x) = FY (y),

du = ∂FX
∂x

(x) dx = fX(x) dx.
(2.23)

Injecting this change of variable in the second integral of equation (2.22) leads to

yj = 1
〈Pj, Pj〉

∫ 1

0
F−1
Y (u)Pj

[
F−1
X (u)

]
du, (2.24)

which allows the expression of any second order random variable in terms of a substitution
variable provided the reciprocals of their cumulative distribution functions exist. Two
examples are presented in Figure 3.

2.3.2 Least Squares Regression

An alternative to the spectral projection is the point collocation method [18], which
imposes the expanded function to be satisfied at a set of points. The algorithm thus
requires a number of collocation points equal to the number of polynomials to solve
the linear system of equations. When the number of points is larger than the number
of polynomials in the basis, the collocation pce finds a least squares solution to the
overdetermined system of equations. Considering the random variable X in the sample
space Ω, and Y = y(X), where y is a square integrable function in Ω. Let {Pi(x)} be an
orthogonal basis with respect to the weight function fX in Ω, the least squares solution
is the set of coefficients that minimizes the error

Error =
∫

Ω

[
y(x)−

n∑
j=1

yjPj(x)
]2
dµ(x). (2.25)

If one dispose of a sample {xj} of realisations of X, and if the weight function is the
corresponding probability density function, it will be shown in a further chapter that the
error can be computed by a mc integration as follows:

Error = 1
m

m∑
j=1

[
y(xj)−

n∑
i=1

yiPi(xj)
]2
. (2.26)

The optimal value of yi is then obtained by cancelling the partial derivatives of the error
with respect to the pce coefficients, leading to a linear system of equations:

m∑
j=1

∂

∂yk

[
y(xj)−

n∑
i=1

yiPi(xj)
]2

= 0

⇔
m∑
j=1

{
− 2y(xj)Pk(xj) + ∂

∂yk

[
n∑
i=1

yiPi(xj)
]2}

= 0

⇔
m∑
j=1

{
− 2y(xj)Pk(xj) + 2Pk(xj)

n∑
i=1

yiPi(xj)
}

= 0

⇔
m∑
j=1

Pk(xj)
n∑
i=1

yiPi(xj) =
m∑
j=1

y(xj)Pk(xj)

⇔ A>Ay = A>b,

(2.27)

19

where A is the Vandermonde matrix, y is the vector of unknown pce coefficients and b
is the vector of model response given by

A : Aij = Pj(xi),
b : bj = y(xj).

(2.28)

Similarly, the error can also be estimated with a quadrature rule {wj,xj} leading to

Error =
m∑
j=1

[
y(xj)−

n∑
i=1

yiPi(xj)
]2
wj. (2.29)

Then, the coefficients are obtained by cancelling the partial derivatives of the error with
respect to the coefficients, leading to the following linear system of equations:

m∑
j=1

Pk(xj)
n∑
i=1

yiPi(xj)wj =
m∑
j=1

y(xj)Pk(xj)wj

⇔ A>WAy = A>Wb,

(2.30)

where W is the diagonal weight matrix. Furthermore, if the quadrature weights are all
positive, solving (2.30) is equivalent to finding a least squares solution to the following
overdetermined system:

W1/2Ay = W1/2b. (2.31)

The convergence of the solution can be improved by computing the error with a quasi-mc
integration. Either by generating a low-discrepancy sequence for the distribution related
to fX using the inverse probability transform [19], or by generating a uniform grid and
use fX as a weight function. In the latter case, it will be shown that

W : Wij = v

m
fX(xj)δij, (2.32)

where v is the volume of the domain:

v =
∫

Ω
dx. (2.33)

2.3.3 Least Angle Regression

In addition to compute the pce coefficients, the lars algorithm can efficiently select the
relevant polynomials to be used in the surrogate model, acting as a truncation technique.
The principle of the algorithm is to move the coefficient estimates in the direction where
the polynomial is the most correlated with the remaining residual [20][17]. First, the
constant predictor is removed from the model, which amounts to remove the first column
of A. The input data are then standardized and we define

b ′ : b ′j = bj − b̄,

A ′ : A ′ij = Aij − Āj
σj

,
(2.34)

20

where b̄ is the mean of b, Ā is the column-wise mean of A and σ the column-wise standard
deviation of A. In the following, the prime symbol of the standardized quantities will be
omitted for readability reason. In the initial step, the model is empty and the residual is
r1 = b, one then select the index of the most correlated polynomial:

j1 = argmaxj |〈Aj, r1〉| = argmaxj |A>j r1| (2.35)

where Aj = colj(A) is the response of the predictor j in the standardized Vandermonde
matrix. The direction di at the i-th step is obtained by solving

AJ
>AJ di = AJ

>ri−1, (2.36)

where AJ = colJ(A) is the matrix formed by the columns of indices J = [j1, j2, . . . , ji]
corresponding to the predictors in the model at the i-th step. The coefficient vector is
then updated with

yi(α) = yi−1 + αdi, (2.37)

where α ∈ [0, 1] represents how far the estimate of y moves in the direction di before
another estimator enters the model. One chooses α at the i-th step by finding the smallest
value of α such that the angle between the remaining residual

ri(α) = ri−1 − αAdi (2.38)

and one of the variables not in the model equals the angle between ri(α) and a predictor
in the model. Practically, α is chosen such that

〈ri(α),Ak〉 = 〈ri(α),Aj〉, (2.39)

with j ∈ J being the index of a predictor in the model at the i-th step and k the index
of a predictor out of the model. The solution to this equation is

α+
k = 〈ri−1,Aj〉 − 〈ri−1,Ak〉

〈ri−1,Aj〉 − 〈Adi,Aj〉
. (2.40)

Similarly, the angle between ri(α) and −Ak equals the angle between ri(α) and Aj when

α−k = 〈ri−1,Aj〉+ 〈ri−1,Ak〉
〈ri−1,Aj〉+ 〈Adi,Aj〉

. (2.41)

Finally, J is updated for the next step and the new predictor enters the model:

α = min
{
α+
k , α

−
k

}
∈ [0, 1] for k /∈ J,

ji+1 = k ⇒ J =
[
j1 j2 . . . ji+1

]
.

(2.42)

Once the desired number of predictors has entered the model, the lars algorithm ends.
The last step is to rescale the vector of pce coefficients thus obtained to the original
non-standardized problem:

21

y ′1 = b̄−
n∑
j=2

yj
σj

and y ′j = yj/σj for j > 1. (2.43)

Generally, the coefficients corresponding to the selected polynomials are recomputed by
a least squares algorithm to improve the accuracy of the lars [11]. A summary of the
procedure is presented in algorithm 3.

Algorithm 3: Least angle regression

Standardize A and b
Initialize d = 0 and r = b
J = j1 = argmaxj |〈Aj, r1〉|

while α < 1 or (not enough predictors in J) do

d[J] =
(
AJ
>AJ

)−1
AJ
>r

α = min
{
α+
k , α

−
k

}
with k /∈ J

Add k to the array J
y = y + αd
r = r− αAd

end

Rescale the output y to the original problem

2.4 Sensitivity Analysis
The pce provides an analytical expression for some of its statistical moments [21]. Indeed,
due to the orthogonality of the polynomial basis, a particular property of the pce is that
the total variance and expectation of the truncated expansion of Y = y(X) can be directly
obtained from the coefficients by

E(Y) =
∫

Ω
y(x) dµ(x) = y1,

Var(Y) =
∫

Ω

[
y(x)− E(Y)

]2
dµ(x) =

n∑
j=2

y2
j 〈Pj, Pj〉,

(2.44)

meaning that the total variance of the output of the function is decomposed into a sum of
squared coefficients related to one or more random variables, i.e. into a sum of variances
associated with each group of input variables. If the polynomials are normalized, the
expression of the variance reduces to

Var(Y) =
n∑
j=2

y2
j . (2.45)

22

2.4.1 Sobol Indices

The analysis of variance decomposition consists in identifying the shares of variance of the
output Y associated with the different random variables [22]. The first order Sobol indices
quantify the variance of the conditional expectation, normalised by the total variance, of
the output given the value of an input. The k-th index is thus given by

Sk =
Var

[
E (Y |Xk)

]
Var(Y) =

∑
j

y2
j

Var(Y) ∀j : Ij ∈ k, (2.46)

where I is the multi-index matrix, {yj} corresponds to the set of coefficients of polynomials
depending only on the variable xk and k is the corresponding subset of multi-indices.
Following the same reasoning, the total order indices quantify the complementary of the
variance of the conditional expectation, normalised by the total variance, given the values
of all outputs but the one considered. One has thus

STk = 1−
Var

[
E (Y |X∼k)

]
Var(Y) =

∑
j

y2
j

Var(Y) ∀j : Ij ∈ kT , (2.47)

where X∼k denotes the vector of all random variables but Xk, the set {yj} corresponds
to the coefficients of polynomials depending at least on the variable xk and kT is the
corresponding subset of multi-indices. While the anova decomposition allows explain-
ing the variance provided the variables are independent, the ancova decomposition is
an extension to the case of correlated variables [21][23]. The variance of the model is
decomposed in a first part related to the model structure and a second part related to
the dependence of the variables. In the following, the pce will be developed as

y(x) =
n∑
j=1

yjPj(x) =
m∑
j=1

ajxIj
, (2.48)

where xIj
is the monomial of multi-index Ij. Moreover, we define the function g(xk) as

the part of (2.48) depending only on a particular monomial and its powers, with k the
corresponding subset of multi-index vectors:

g(xk) =
∑
j

ajxIj
∀j : Ij ∈ k,

g(x∼k) =
m∑
j=1

ajxIj
− g(xk).

(2.49)

The variance of the model response can be expressed as the covariance between the exact
model and its polynomial representation:

Var(Y) = Cov(Y, Y) = Cov
(
Y,

m∑
j=1

ajXIj

)
= Cov

(
Y,
∑

k
g(Xk)

)

=
∑

k

{
Var

[
g(Xk)

]
+ Cov

[
g(Xk), g(X∼k)

]}
,

(2.50)

23

where the first contribution to the sum is the anova structural part and a second part
is related to the dependence structure of the variables. As a reminder, the covariance
between two continuous random variables Y = y(X) and G = g(X) is obtained by
computing the integral

Cov(Y,G) =
∫

Ω

[
y(x)− E(Y)

][
g(x)− E(G)

]
dµ(x). (2.51)

This separation of contribution is also known as the ancova decomposition, the following
triplet of sensitivity indices has been proposed to describe the contributions of each
variable in the expansion:

SS(k) = Var
[
g(Xk)

]
/Var(Y),

ST (k) = Cov
[
Y, g(Xk)

]
/Var(Y),

SC(k) = Cov
[
g(Xk), g(X∼k)

]
/Var(Y),

(2.52)

where SS is the structural contribution index, ST is the total contribution index and SC
is the correlative contribution index. Finally, the ancova indices verify

ST (k) = SS(k) + SC(k),∑
k
ST (k) = 1. (2.53)

For example, one can have the particular functional decomposition

y(x) = 3 + x1 + x2 + x2
2 + x1x2

= g(1) + g(x1) + g(x2) + g(x1x2)
= ∑

k g(xk),
(2.54)

where the random input vector X follows a bivariate normal distribution of mean µ and
covariance matrix Σ, contains three different monomials and so three ancova indices.
The estimation of the triplet of sensitivity indices is presented in Table 1.

µ =
[
0 0

]
and Σ =

[
1 0.8

0.8 1

]
. (2.55)

Index SS [-] SC [-] ST [-]

X1 0.29 0.23 0.52
X2 0.1 0.07 0.17
X1X2 0.16 0.15 0.31
Total 0.55 0.45 1

Table 1: Triplet of ancova sensitivity indices resulting from the example of functional
decomposition with correlated normal random variables.

24

2.4.2 Shapley Indices

The main drawback of the sensitivity indices derived previously is their difficulty of inter-
pretation when the variables are correlated. Indeed, an index is computed for each group
of variables and the contribution from the covariance may be negative. The notion of
Shapley value originated in game theory, where this latter gives players a fair distribution
of winnings [24][25]. In the context of sensitivity analysis, the goal is to assign to each
random variable an index associated with the uncertainty that it brings in the output
variable. The Shapley value of the j-th random variable is given by

Sj = 1
d

∑
k

(
d− 1
|k|

)−1[
V(k ∪Xj)− V(k)

]
∀k ∈ {X/Xj}, (2.56)

where d is the dimension, k corresponds to a particular subgroup of random variables
not containing Xj and |k| is its size. Finally, the cost function is given by

V(k) = Var
[
E(Y |k)

]
/Var(Y) (2.57)

and measures the part of variance of Y caused by the uncertainty of the inputs in k. The
cost function thus satisfies the following propriety

V(∅) = 0,
V(X) = Var(Y).

(2.58)

Another interesting propriety of the Shapley indices is that they are positive and sum
to one, Sj can therefore be interpreted as the part of the total variance due to the j-th
variable. For example, the Shapley value related to X1 in the function (2.54) is

S1 = 1
2

(
Var(Y)− Var

[
E(Y |X2)

]
+ Var

[
E(Y |X1)

])
Var(Y)−1. (2.59)

Using the same distributions for the input random vector, the Shapley indices relative to
the different variables of this toy problem are

S1 = 0.38 and S2 = 0.62. (2.60)

2.5 Conclusion
In conclusion, we presented two methods to generate an orthogonal polynomial basis
for the construction of the pce. The three term recurrence relation builds analytical
polynomials which are orthogonal with respect to a product of labelled and independent
probability density functions, the gs orthogonalization builds orthogonal polynomials
with respect to an arbitrary probability density function from a training sample. In
particular, this method allows the construction of the basis with respect to Bayesian
posteriors coming from the inverse problem in Pybitup. Once the polynomial basis has
been obtained, we propose three methods for computing the pce coefficients. The spectral
projection is the classical approach by projecting y onto the polynomials, the least squares
regression and the lars estimate the coefficients by minimizing a cost function.

25

The accuracy of their estimate depends on the quality of the polynomial basis at a less
significant degree than the spectral projection, and the lars allows the selection of rel-
evant polynomials in order to reduce the complexity of the surrogate model when the
number of dimensions is high. As these algorithms require the computation of definite
integrals, it is important to continue the discussion on the different integration methods
available as well as on the difficulties encountered in higher dimensions or when one dis-
pose of a chain of samples generated by Bayesian inference. This topic is discussed in the
next chapter.

The last part of the chapter was dedicated to the post processing of the pce by exploit-
ing the functional decomposition of the variance. The computation of Sobol sensitivity
indices is straightforward, but limited to independent input variables. The ancova sen-
sitivity indices are a generalisation of the Sobol indices to dependent variables, but can
be difficult to interpret as the contribution from the covariance may be negative. Finally,
the Shapley indices provide a clear interpretation of the shares of variance of the out-
put associated with the different random variables, but may become difficult to estimate
when the number of input variables increases.

26

Chapter 3

Integration Methods

27

3.1 Introduction
Various Gaussian quadrature rules are available for computing one-dimensional integrals
or multidimensional integrals for independent variables. For instance, a well known ex-
ample is the Gauss-Hermite quadrature rule, which approximates the value of an integral
in R according to the weight function

fX(x) = e−x
2/2

√
2π

. (3.1)

It is clear that fX is nothing but the probability density function of a normal distribution
of zero mean and unitary variance. This quadrature rule can thus be used to compute
the pce coefficients of a random variable Y = y(X) related to some independent normal
random parameters X. For instance, by estimating the value of the error in (2.25) or the
inner product in (2.22). Others Gaussian quadrature rules related to different distribu-
tions can be computed from three term recurrence relations [10], but suffer from a curse
of dimensionality in addition to be limited to independent random variables in multiple
dimensions. A common alternative for high dimensional integrals is the mc integration
[26]. Indeed, the promised advantage of mc integration against most deterministic meth-
ods is the independence of the computational cost to the dimensions of the integral, but
the slow convergence of the method may still require a large number of points to reach
the desired accuracy. Numerous variance reduction techniques such as the quasi-mc have
been developed in order to increase this convergence rate.

Recently, different sparse quadrature rules have been developed in order to overcome the
exponential increase of the number of points in Gaussian quadratures and to provide an
alternative to classical mc integration techniques. Indeed, it will be observed in a further
chapter that the embedded quadrature based on approximate Fekete points [27][28] allows
the construction of an accurate pce with a smaller number of points than mc integrations.
As Fekete points are obtained from the resolution of an expensive optimization problem,
we will seek an approximation of them through the factorization of the Vandermonde
matrix. In addition, these new methods allow the generation of an embedded quadrature
rule for dependent random variables.

3.2 Monte Carlo Integration
Let X be a random vector of joint probability density functions fX defined in the sample
space Ω, and let {xj} be a set of some realisations of X. Finally, let Y = y(X), where y
is a square integrable function in Ω. By the law of large numbers [29], one can write

∫
Ω
y(x) dµ(x) = E

[
y(X)

]
= lim

n→∞

1
n

n∑
j=1

y(xj). (3.2)

Afterwards, assume one wants to compute this integral using the samples of a random
vector Z with an arbitrary probability density function fZ defined over the same domain.
Following the same reasoning, one can write

∫
Ω
y(x) dµ(x) =

∫
Ω

y(x)fX(x)
fZ(x) fZ(x) dx = E

[
y(Z) fX(Z)
fZ(Z)

]
. (3.3)

28

For instance, this expression allows the use of a uniform grid of points or samples uni-
formly distributed on Ω to estimate the integral, leading to fZ(x) = 1/v and to the
simplification of (3.3) into the classical mc integration formula:

∫
Ω
y(x) dµ(x) = v E

[
y(Z)fX(Z)

]
= lim

n→∞

v

n

n∑
j=1

y(zj)fX(zj). (3.4)

where {zj} are uniformly distributed points in Ω and v is the volume of the domain.
However, if most of the contributions to the integral comes from a small region of the
integration volume, there will be only a few significant points there, which can lead to
large statistical errors. The result can thus be greatly improved if the sampling points
are chosen such that

fZ(x) ∝ y(x)fX(x), (3.5)

which concentrates the points where the function to be integrated is the largest. This
method is the so-called importance sampling [26]. To simplify the importance sampling
process in one dimension, one can use the probability integral transform with a change
of variable to obtain the following relation:

∫
Ω
y(x) dµ(x) = E

y
[
F−1
Z (U)

]
fX

[
F−1
Z (U)

]
fZ
[
F−1
Z (U)

]
 , (3.6)

where U is a uniform random variable in [0, 1]. Thereby, mc integration allows the
computation of definite integrals when an analytical solution is impossible, or when a
closed form of fX is not known explicitly.

3.2.1 Quasi-Monte Carlo

The convergence rate can be improved by different variance reduction techniques. In
particular, the so called quasi-mc integration uses deterministic sequences where the
points are maximally self-avoiding. The simplest approach to obtain this property is
to uniformly partitioning each dimension of a domain, but this approach suffers from
several drawbacks for the numerical integration in high dimension. Thereby, different
low-discrepancy sequences (Figure 4) were proposed in the literature to help remedy this
problem [19]. The Halton sequence is a generalisation of the van der Corput sequence
in multiple dimensions. This latter relies on the fact that a positive integer x can be
expressed in a base b with a sequence of digits uniquely determined by

x =
n∑
j=1

dj(x) b j−1, (3.7)

where dj(x) ∈ [0, b − 1]. By introducing the radical inverse function ψ, defined in the
base b as the function that converts any positive integers x to a fractional value in [0, 1[
according to the following relation:

ψb(x) = 0. d1(x)d2(x) . . . dn(x). (3.8)

29

The points of the van der Corupt sequence on the interval [0, 1] are then obtained by the
radical inverse in base 2 for different integers:

xj = ψ2(j), (3.9)

and the Halton sequence is obtained by generating these sequences for different bases in
each dimension. Since the bases must all be relatively prime to each other, a common
choice is to use the first prime numbers:

xj =
[
φ2(j) φ3(j) . . . φp(j)

]
. (3.10)

A second example of simple and efficient quasi-random sequence is the additive recurrence
R-sequence, this latter is based on irrational numbers [30]. The j-th point of the sequence
is computed by

xj =
{

0.5 +α(1 + j)
}
, (3.11)

where {a} denotes the decimal part of a and α is a vector such that

α : αk = φ
−(1+k)
d , (3.12)

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-] Halton

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-] Sobol

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-] R-sequence

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-] Uniform

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

Figure 4: Comparison between Halton, Sobol, R-sequences of quasi-random numbers and
a pseudo-random uniform distribution on the unit square in two dimensions.

30

where d is the number of dimensions of the domain, k ∈ [1, d] and φd is the generalized
golden ratio defined as the unique positive solution to

xd+1 = x+ 1. (3.13)

Finally, another possibility is the so-called Sobol sequence [31], which constructs the
points based on successive partitions of the interval and reorder the coordinates in each
dimension. These different methods are illustrated in Figure 4.

3.2.2 Quadratic Resampling

The moment matching method consists in correcting a sample set of realisations of X in
order to match the actual distribution moments, for instance, precomputed with more
accuracy on a larger sample set. The quadratic resampling generalizes this method to
correlated random variables [32]. Assume that the exact expectation E(X) and the
covariance matrix Σ of the distribution are known, one can compute an empirical mean
and covariance matrix of the sample x as

x̄ = 1
n

n∑
j=1

xj,

Σ ′ = E
[
(x− x̄) (x− x̄)>

]
.

(3.14)

Due to the finite number of points in the sample, the empirical moments are different
from the exact distribution moments and can lead to large statistical errors. We first
define the gain matrix:

H =
√

Σ
√

Σ ′
−1
. (3.15)

Then, the method of quadratic resampling consists in computing the corrected sample x ′
with first and second order moments equals to E(X) and Σ that can be used in place of
the original sample in the quadrature formula. This latter is exact for any polynomial of
order two or less:

x ′ = (x− x̄) H> + E(X). (3.16)

3.3 Quadrature Rules
While there exist many powerful algorithms for the numerical evaluation of one-dimensional
integrals such as trapezoidal, Simpson or Gaussian quadrature rules, it is often difficult
to find computationally efficient methods for multidimensional integrals even in standard
domains. As a reminder, if xj are the quadrature points, wj their associated weights and
m the number of points, a quadrature rule allows the estimation of a definite integral
with the following relation:

∫
Ω
y(x) dµ(x) =

m∑
j=1

wj y(xj). (3.17)

31

3.3.1 Recurrence Relations

When the polynomial basis is obtained by a three term recurrence relation (2.8), a one-
dimensional quadrature rule can be computed using the coefficients and the Golub-Welsch
algorithm [10] [33], then generalized to multidimensional spaces by tensor product pro-
vided the random variables are independents. Let xj be a point of the rule, the three
term recurrence relation can be identified with

xjP1(xj)
xjP2(xj)
xjP3(xj)

...
xjPn(xj)

 =

a1 1 0 0 . . . 0
b2 a2 1 0 . . . 0
0 b3 a3 1 . . . 0
...
0 0 0 0 . . . an

P1(xj)
P2(xj)
P3(xj)

...
Pn(xj)

⇔ xjP(xj) = TP(xj).

(3.18)

Namely, the points xj are the eigenvalues of T. If the polynomials are not orthonormals,
T is not symmetric and one can perform a diagonal similarity transformation DTD−1 = J
which yields to a symmetric tridiagonal matrix J, also known as the Jacobi matrix:

J =

a1
√
b2 0 0 . . . 0√

b2 a2
√
b3 0 . . . 0

0
√
b3 a3

√
b4 . . . 0

...
0 0 0 0 . . . an

 . (3.19)

As the matrices T and J are similar, they share the same spectrum and the same char-
acteristic polynomial. The orthonormal version of (3.18) is thus

xjP(xj) = JP(xj), (3.20)

where P(x) are orthonormal polynomials, and the quadrature rule verifies by definition:
n∑
j=1

wjPi(xj)Pk(xj) = 〈Pi, Pk〉 = δik. (3.21)

Introducing the Vandermonde matrix and the diagonal weight matrix, the previous equal-
ity can be rewritten as follows:

AWA> = I
⇔ W−1 = AA>

⇔ 1
wj

=
∑
i

Pi(xj)2 = ||P(xj)||2.
(3.22)

On the other hand, computing the orthonormal eigenvectors of J gives

Jvj = xjvj

vj =
[
vj1 vj2 . . . vjn

]>
,

(3.23)

32

and since the first polynomial of the orthonormal basis is given by P1(x) = 1, it can be
shown there exists a constant c such that

vj = cP(xj)
⇔ vj1 = cP1(xj) = c.

(3.24)

Injecting c = vj1 in the equation (3.24) leads to

P(xj) = vj/vj1, (3.25)

and the quadrature weight wj associated with the point xj can be computed using equa-
tion (3.22) and the fact that the eigenvectors vj have a unit norm:

wj = ||P(xj)||−2 = ||vj/vj1||−2 = v2
j1. (3.26)

Finally, a multidimensional quadrature rule is obtained by performing the tensor product
of the one-dimensional quadrature points and weight vectors, where k is the index of the
variable and d is the dimension:

{wj,xj} =
d⊗

k=1

{
wkj ,xkj

}
, (3.27)

3.3.2 Approximate Fekete Points

The previous multidimensional quadrature rule was obtained from the tensor product
assuming the random variables were independent. When the random variables are de-
pendent, selecting a set of points for multidimensional polynomial interpolation is still
an open problem. For instance, the Fekete points are a good interpolation set which may
be defined for any compact set and dimension, but requires an expensive and challeng-
ing multivariate optimization [28][34]. Therefore, we will seek for approximating Fekete
points by solving the discrete optimization problem of extracting a square submatrix F
of maximum volume from the Vandermonde matrix [27], namely

F = rowJ(A) : J = argmaxJ

(
det [rowJ(A)]

)
, (3.28)

where J is the index vector of the selected rows, and corresponds to the selected points
among an original set containing more points than the number of polynomials in the
basis. The corresponding quadrature weights are then obtained by solving

F>w = m, (3.29)

where m is the statistical moment vector defined by

m : mj =
∫

Ω
Pj(x) dµ(x). (3.30)

The solution to this problem can be easily computed by performing a QR factorization
of the Vandermonde matrix with column pivoting:

A> = QRP, (3.31)

33

where P is a pivot matrix, then solving the linear system

col(R)w = Q>m, (3.32)

where col(R) is the square submatrix formed by the n first columns of R. The solution
w is the optimal quadrature weight vector for the set of approximate Fekete points
corresponding to the points whose indices are the n first elements of the pivot vector. An
example of such embedded quadrature is presented in Figure 5. If the polynomial basis
is not orthogonal, for example, due to approximation errors in the gs algorithm, one has
mj 6= δ1j and A may be ill-conditioned. The following step aims to remedy this problem
by successive orthogonalizations (Algorithm 4). This step amounts to a change of basis
from the original polynomials basis q to the discrete orthonormal basis p with respect to
the inner product

〈p1,p2〉 =
m∑
j=1

p1(xj)p2(xj), (3.33)

and leads to the following vector of moments:

mj = 〈1,pj〉 =
m∑
i=1

Aij = δ1j, (3.34)

where A is the orthogonal Vandermonde matrix. In practice, two iterations suffice to
reach an epsilon machine accuracy unless the original matrix is severely ill-conditioned.
The main drawback of quadrature rules such as the one obtained from approximate Fekete
points is the risk of catastrophic cancellation of the weights. Indeed, the rounding errors
are amplified by a factor

c =
n∑
j=1
|wj| (3.35)

which is known as the condition number [14]. If the weights are positive, c = 1 by
definition. However, c may be very high for quadrature rules containing negative weights.

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-]

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

0.0 0.2 0.4 0.6 0.8 1.0
x1 [-]

0.0

0.2

0.4

0.6

0.8

1.0

x 2
 [-

]

Figure 5: Approximate Fekete points on the unit square and a triangle using rescaled
Legendre polynomials, the original set of points is a uniform sampling.

34

Algorithm 4: Iterative refinement

for k = 1 : s do
Compute the decomposition QR : Ak = QR
Update Ak+1 = Q

end

3.3.3 Embedded Positive Quadrature Rule

Different algorithms were recently proposed in the literature [35][36] to extract an embed-
ded quadrature rule with positive weights from an existing quadrature rule containing a
higher number of points with strictly positive weights. Indeed, we dispose of a long chain
of samples generated by Pybitup, this latter can be considered as mc samples and so,
as a quadrature rule with a large number of points and positive weights from which the
embedded quadrature may be extracted. First, let {xj, wj} be any positive quadrature
rule for n polynomials in Ω with m > n points, for instance a mc integration:

A>w = m. (3.36)

The null space of A> is the collection of all nonzero vectors z such that

A>z = 0. (3.37)

By definition, any linear combination of a vector of the null space with the solution is
also a solution of the system. Thus, taking α such that

α = wj
zj

: j = argminj
∣∣∣∣∣wjzj

∣∣∣∣∣ and wk ≥ αzk ∀ k (3.38)

allows the computation of a new solution to (3.36) with w ′j = 0 as follows:

w ′ = w− αz. (3.39)

The j-th point as well as the associated column of A> can then be removed from the
system. Repeating this operation until the remaining quadrature uses at most as many
points as there are equality constraints imposed generates the desired quadrature rule that
still allow to integrate the polynomials. A similar solution can be obtained by solving
the following optimisation problem:

min c>w subject to

 A>w = m,

wj ≥ 0 ∀ j,
(3.40)

where c = [1, . . . , 1]. Indeed, some linear optimization methods such as the simplex
algorithm directly provide a sparse optimal solution by performing a sequence of pivoting
operations on basic feasible solutions.

35

3.4 Conclusion
In conclusion, this chapter introduced several integration techniques in order to estimate
the integrals involved in the computation of the pce coefficients. When the polynomial
basis has been obtained by a three term recurrence relation, this latter provides an ac-
curate quadrature rule directly generated by the eigenvectors of a tridiagonal matrix.
However, Gaussian quadrature rules suffer from a curse of dimensionality and are lim-
ited to independent variables. A well-known alternative is the mc integration, whose
convergence is independent of dimension. This method allows a robust estimation of the
integral based on a sample of realisation of the random variables, but its slow convergence
may require a large number of integration points to reach the desired accuracy, variance
reduction techniques such as quasi-mc or importance sampling were thereby proposed to
improve the convergence. The last method proposed aims at combining the advantages of
the two previous integration techniques by extracting an embedded quadrature rule from
a mc sample set. The quadrature weights are computed so that the equalities satisfied
by the mc integration are still satisfied by the embedded quadrature rule containing a
smaller number of points. This method is particularly useful when the computational
cost of numerical simulations does not allow an evaluation of the reference model at a
large number of integration points.

Finally, it is clear that an essential element determining the efficiency of an algorithm is
the way this latter is implemented in the code. In the following chapter, we thus continue
the discussion on the numerical implementation of the different algorithms presented in
the chapters 2 and 3 in Pybitup.

36

Chapter 4

Implementation Details

37

4.1 Introduction
Several implementations of polynomial chaos solvers already exist in different program-
ming languages, all with their advantages and limitations. For instance, Chaospy [37]
is an efficient open-source Python library providing numerous one-dimensional integra-
tion algorithms for the computation of a pce, but is not designed for high dimensional
problems or dependent variables. UQLab is a highly accessible uncertainty quantification
toolbox developed in Matlab. However, both are licensed programs and Matlab has some
limitations in terms of performance, parallelization tools, oriented-object programming
and compatibility.

The pce library developed for this work is coupled with Pybitup, the Bayesian infer-
ence and uncertainty propagation toolbox developed by J. Coheur. As Python loops are
inherently slower than their low-level counterpart, the library mainly relies on Numpy
and Scipy packages integrating C and Fortran parallel codes for efficient matrix opera-
tions. Once computed, the polynomials and the pce coefficients are stored in a compact
homogeneous block representation [38] within two classes of similar structure presented
in Figure 6, one containing the orthogonal polynomial basis and the other containing
the surrogate model. The compact homogeneous block representation allows a memory
efficient storage as well as the use of simple matrix operations to manipulate the polyno-
mials. It is important to note that Polynomial basis and Expansion share the same
exponent table and dimension, but store a different coefficient matrix.

Set of polynomials

- coefficient matrix
- exponent table
- dimension

+ evaluate(...)

Polynomial basis

+ evaluate(point)
+ truncate(order)
+ clean(index)

Expansion

+ mean
+ variance

+ evaluate(point)

4
4

Figure 6: Abstract representation of the pce related classes implemented in Pybitup.

38

4.2 Polynomial basis Class
The compact homogeneous block representation is adapted for sparse polynomials, this
latter uses an exponent table E containing the power of individual monomials, which
is nothing but the transpose of the multi-index matrix, and a coefficient matrix H to
represent the polynomial basis. For instance, the following set of polynomials:

P1(x) = 1 P5(x) = 1 + 5x2 + x1 + x1x2

P2(x) = 3 + x2 P6(x) = 2 + 4x1 + 7x1x2 + x2
1

P3(x) = 1 + x1 P7(x) = 6 + 3x2 + 9x2
2 + 3x2

1 + x3
2

P4(x) = 2 + 4x1 + x2
2 P8(x) = 3 + 2x1 + x2

2 + 4x2
1 + x1x

2
2

will have the homogeneous block representation presented in Figure 7. It is important to
note that a truncated basis may lead to a non-square or non-triangular coefficient matrix.
Moreover, we define the density of H as the fraction of nonzero elements:

ρ =
∑
i

∑
j 1 ∀ (i, j) : Hij 6= 0∑
i

∑
j 1 ∀ (i, j) . (4.1)

When a high dimensional basis is computed by the tensor product of one-dimensional
polynomials such as Legendre, Hermite or Laguerre polynomials, ρ tends to zero and
H becomes sparse, meaning that the explicit storage of the whole matrix is memory
inefficient. This issue can be addressed by storing H in a compressed sparse row format
consisting of an array containing the column indices, a second array of corresponding
nonzero values, and a third array pointing to row starts of the two previous ones. This
sparse structure is generated by the Scipy library. As the Vandermonde matrix is an
important element in most of the algorithms for computing the pce, the polynomials
must be efficiently evaluated at a set of points to form

E> =

0 0

0 1

1 0

0 2

1 1

2 0

0 3

1 2

H =

1

3 1

1 - 1

2 - 4 1

1 5 1 - 1

2 - 4 - 7 1

6 3 - 9 - 3 1

3 - 2 1 - 4 - 1

Figure 7: Example of compact homogeneous block representation of an arbitrary third
order polynomial basis of two variables. The zero coefficients are not explicitly stored.

39

A : Aij = Pj(xi). (4.2)

In accordance with the homogeneous block representation, the computation of the Van-
dermonde matrix is straightforward:

A = A′H> with A ′ij =
d∏

k=1
x
Ekj

ik , (4.3)

where xik is the value of the k-th component of the i-th point and d is the dimension.
An example of vectorized implementation of (4.3) is presented in Listing 1. Provided the
polynomials share the same exponent table, additions and subtractions are performed
by summing or subtracting their respective coefficient vectors. In addition, the explicit
multiplication of polynomials is not necessary due to the use of quadrature-based algo-
rithms for evaluating the integrals and will therefore not be detailed here. Furthermore,
removing a row from H is equivalent to truncating the corresponding polynomial from
the orthogonal basis.

Finally, another important algorithm implemented in Pybitup is the tensor product of
one-dimensional bases, which is used for constructing orthogonal polynomials for inde-
pendent variables:

{Pj(x)} =
d⊗

k=1
{P k

j (xk)}, (4.4)

where k denotes the index of the variable in the model. This operation is performed first
by rewriting each one-dimensional basis according to the same exponent table, which is
simply the multi-index matrix containing all the possible combinations of the monomials
up to the desired q-norm. The coefficient matrix H of the tensor product basis is then
computed with a Hadamard product:

rowj(H) =
d⊙

k=1
rowEjk (Hk), (4.5)

where rowEjk (Hk) is the Ejk-th row of the coefficient matrix relative to {P k
i (xk)}. Sim-

ilarly, the computation of a polynomial basis by the gs orthogonalisation algorithm pre-
sented in (2.18) is straightforward. Indeed, since both the initial set of linearly indepen-
dent functions {Bj(x)} and the orthogonal polynomial basis share the same exponent
table, the coefficient matrix can be obtained by

rowj(H) =
j∑
i=1

rowi (H ′)R−1
ij , (4.6)

where H ′ is the coefficient matrix relative to the initial set of functions and R is the
upper triangular matrix obtained by QR decomposition of W1/2A. If {Bj(x)} is chosen
such that H ′ is the identity, the previous equation reduces to

Hjk =
n∑
i=1

δikR
−1
ij ⇔ H =

(
R−1

)>
(4.7)

40

and R can be inverted by solving a linear system of equations taking advantage of the
fact this matrix is upper triangular using Lapack packages.

def eval(self,point):

A = 1
point = np.reshape(np.transpose(point),(self.dim,-1)).T
for i in range(self.dim): A *= np.power(point[:,i,None],self.E[i])
A = np.transpose(self.H.dot(A.T))
return A

Listing 1: Computation of the Vandermonde matrix, where d is the dimension of the
polynomial basis. The points are stored in a two dimensional array with xj along the
rows. The explicit use of a loop on d aims to reduce the memory usage.

4.3 Expansion Class
The expansion class takes a polynomial basis and a list of pce coefficients as input
arguments to build and store the surrogate model. At this point, it is important to make
the difference between the dimension of the polynomial basis, which is the number of
individual random variables X in the system, and the dimension of the response, which
is the number of deterministic variables r such as the location in space or the time:

y(r,x) =
n∑
j=1

yj(r)Pj(x) =
m∑
j=1

aj(r)xIj
, (4.8)

where xIj
is the monomial of multi-index Ij. If the output Y = y(X) depends only on

stochastic parameters, the pce coefficients are constants and the expansion class stores
a unique polynomial. However, if the output depends on n deterministic parameters,
the coefficients aj are discretized in a n + 1-dimensional array and the expansion class
stores a polynomial for each discretization of the response. Therefore, the structure of the
expansion and polynomial basis classes differ only by the dimension of their coefficient
matrix. For instance, a one-dimensional response leads to n = 1 with H as a two-
dimensional matrix computed by

H = K>H ′, (4.9)

where H ′ is the coefficient matrix of the polynomial basis and K is the 2-dimensional
matrix of pce coefficients defined by

K : Kij = yi(rj). (4.10)

When n > 1, the computation of the coefficient matrix can be performed by flattening K
as a two-dimensional matrix and solving (4.9). Afterwards, the resulting H is reshaped
in the adequate n+ 1-dimensional array format.

41

Finally, the discretized response of the pce model at a given set of points is obtained
by performing the operation (4.3) for the expansion class. As an illustrative example,
consider the following random variables:

Y (r) = y(r,X) with

X =

[
X1 X2

]
,

r =
[
r1 r2

]
,

(4.11)

where the output Y thus depends on two deterministic variables, for instance, r1 is the
time and r2 is the position. In addition, consider the following pce composed of 7
monomials and their coefficients:

y(r,x) = a1(r)x1 + a2(r)x1x2 + . . .+ a7(r)x3
1x

2
2. (4.12)

The resulting coefficients matrix H is 3-dimensional, with one dimension for the mono-
mials and two for the discretization of aj along r1 and r2 (Figure 8).

9 0 3 8 1 2 6
5 4 2 0 6 4 1

0 1 9
7 3 0

0 3 7 1 2 6 1
3 5 1 2 8 4 9

1 2 4
9 0 3

1 4 0 5 3 8 2
0 3 1 4 9 1 3
2 7 1 2 6 2 0
8 0 3 0 5 7 4

Positio
n r2

Coefficients aj
T

im
e
r 1

H =

Figure 8: Fictive coefficient matrix stored in an Expansion class related to a pce dis-
cretized in two deterministic dimension: the time and the position.

def __init__(self,K,poly):

shape = (poly[:].shape[1],)+K.shape[1:]
K = K.reshape(poly[:].shape[0],-1)

self.E = np.copy(np.atleast_2d(poly.E))
self.H = poly[:].T.dot(K).reshape(shape).T
self.dim = self.E.shape[0]

Listing 2: Computation of the coefficient matrix in the expansion class for an arbitrary
number of dimensions of the response.

42

4.4 Quadrature Rules
With the exception of the quadrature rule obtained from the three term recurrence rela-
tion, which is obtained by computing the eigenvalues and the first element of the eigenvec-
tors of a tridiagonal matrix, the Vandermonde matrix is mandatory for the computation
of the quadrature rules, as well as in all the algorithms computing the pce coefficients
in Pybitup. For instance, the quadrature rule based on approximate Fekete points can
be obtained in a straightforward and efficient way by applying the QR decomposition
functions provided by Scipy and Numpy on the Vandermonde matrix. An example of
implementation is presented in Listing 3.

Due to the large number of algorithms implemented in Pybitup for computing the dif-
ferent elements of the pce, the majority of the algorithms is not presented in this section
for readability reason. However, it may be interesting to provide an example of a positive
embedded quadrature rule. Listing 4 displays the algorithm used to extract a sparse
embedded quadrature rule from a mc sample by iterative weight cancellation. This al-
gorithm mainly suffers from the computation time required to compute the null space
of the transpose of the Vandermonde matrix at each iteration. In addition, round-off
errors accumulate at each iteration. However, this quadrature generally provides a better
accuracy than the approximate Fekete points thanks to its positive quadrature weights.

def fekquad(point,poly):

nbrPoly = poly[:].shape[0]

Reconditioning of A and QR factorization

A = poly.eval(point)
A,R = np.linalg.qr(A)
m = np.sum(A,axis=0)/A.shape[0]

Q,R,P = linalg.qr(A.T,pivoting=1,mode=’economic’)
R = R[:,:nbrPoly]
q = np.dot(Q.T,m)

Computes the weights and Fekete points

index = P[:nbrPoly]
weight = linalg.solve_triangular(R,q)
return index,weight

Listing 3: Extraction of an embedded quadrature rule for a mc sample by preforming a
QR factorisation of the Vandermonde matrix. The index output correspond to the in-
dices of the Fekete points in the original sample. Note that poly is a polynomial basis.

43

def newquad(point,poly,weight=0):

def null(At,Jinv,z):

for i in range(50):
F = At.dot(z)
z -= np.dot(Jinv,F)
z = z/np.linalg.norm(z)
if np.max(np.abs(F))<1e-16: break

if i==49: return 0
else: return z

First null space and initialization

A = poly.eval(point)
nbrPts = A.shape[0]
A,R = np.linalg.qr(A)
end = nbrPts-A.shape[1]
index = np.arange(nbrPts)
if not np.any(weight): weight = np.ones(nbrPts)/nbrPts
z = np.ones(nbrPts)

Iteratively updates the quadrature rule

for i in range(end):

z = null(A.T,A,z)
if not np.any(z): break

Selects the coefficient to cancel a weight

wz = weight/z
idx = np.argmin(np.abs(wz))
alp = wz[idx]

Updates the weights and the matrices

weight -= alp*z
z = np.delete(z,idx)
index = np.delete(index,idx)
weight = np.delete(weight,idx)
A,R = linalg.qr_delete(A,R,idx,overwrite_qr=1,check_finite=0)

return index,weight

Listing 4: Extraction of an embedded quadrature rule from a mc sample by iterative
cancellation of the weights. The index output correspond to the indices of the quadrature
points in the original sample. Note that poly is a polynomial basis.

44

4.5 Conclusion
In conclusion, we presented the so-called homogeneous block representation for the stor-
age of the polynomials, allowing the use of the sparse matrix class and its inbuilt
functions provided by Scipy. In particular, the computation of the Vandermonde ma-
trix and the basis by gs orthogonalization, which are central elements in most of the
data-driven pce related algorithms, is straightforward. The pce is then stored in two
classes of similar structure, the first containing the orthogonal polynomial basis, and the
second containing the surrogate model thus obtained.

Afterwards, we presented some examples of algorithm for computing a quadrature rule,
taking advantage of the various Numpy and Scipy functions at our disposal. It is clear
that most of the algorithms involved in the pce were omitted for readability reason, in
particular, the reader may refer to the documentation or to the code itself for more infor-
mation about the implementation of the spectral projection, the least squares collocation,
the lars, the sensitivity indices, the probability distribution classes and their three term
recurrence coefficients, the pca whitening, the mc integration or other quadrature rules.

45

Chapter 5

Application Examples

46

5.1 Introduction
Solving test cases is an essential step in the development of numerical algorithms, either to
demonstrate the validity of the methods, or to analyse and compare the behaviour of dif-
ferent algorithms. To this end, the Ishigami function is commonly used as a test function
to benchmark global sensitivity analysis methods because it exhibits strong nonlinearity
and non-monotonicity [39]. In addition, this latter provides an analytical solution for its
statistical moments and sensitivity indices.

The one- and two-reactions pyrolysis processes implemented in Pybitup for parameter
estimation are the firsts practical applications related to thermal protection systems we
would like to address for testing the pce. Indeed, in addition to being directly related
to the context of atmospheric entry of spacecraft, the random variables representing the
different input parameters have been identified as non-Gaussian and highly correlated,
this test case thereby aims to access the relevance of the sparse pce for moderately high
dimensional problems with dependent variables. Finally, the one-dimensional ablation
test case implemented in PATO is a large scale problem involving a sample of solid mate-
rial heated at a constant temperature until it undergoes a pyrolysis reaction [40]. As the
numerical model is computationally expensive to evaluate, this latter cannot be used to
perform statistical and sensitivity analysis of the output. Consequently, the computation
of a cheaper surrogate model becomes a necessity.

It is important to distinguish the two types of test cases explored in this chapter: the
first involving the Ishigami function is an introduction to classical pce applications, we
consider that the uncertain input variables are statistically independent and described
in terms of labelled probability density functions. The pyrolysis and ablation examples
consider a purely data-driven pce where the uncertainty in the input variables is described
in terms of a chain of samples. The orthogonal polynomials and their coefficients are thus
computed using only a part of the available sample set as training data.

5.2 Ishigami Function
The Ishigami function is a 3-dimensional function with a particular dependence on its
third input variable, whose analytical expression is given by

y(x) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (5.1)

where a and b are constant parameters. For computer experiment purposes, we assume
that the random variables are uniform and independent, the output is thus

Y = y(X) with X = U(−π, π)3. (5.2)

Under such conditions, it has been shown in [39] that the analytical expressions of the
expectation and the variance of the output are given by

E(Y) = a/2,

Var(Y) = 1
2 + a2

8 + b2π8

18 + bπ4

5 ,
(5.3)

47

and the joint probability density function of the input vector is simply the product of
each one-dimensional probability density function:

fX(x) =

 (2π)−3 in Ω = [−π, π]3,
0 otherwise.

(5.4)

Moreover, the first and total Sobol sensitivity indices are

S1 = 1
Var(Y)

1
2

(
1 + bπ4

5

)2

, ST1 = ST3 + S1,

S2 = 1
Var(Y)

a2

8 , ST2 = S2,

S3 = 0, ST3 = 1
Var(Y)

8b2π8

255 .

Consequently, an orthogonal basis can be constructed by the tensor product of Legendre
polynomials as well as the associated Gauss-Legendre quadrature rule for the computation
of the coefficients by spectral projection. For the sake of comparison, we define the
squared relative error of a surrogate model y ′ on the reference model y as

sre =

∫
Ω

[y(x)− y ′(x)]2 dµ(x)∫
Ω
y(x)2 dµ(x)

. (5.5)

This error is computed by a mc integration. It is important to note that the error must
be estimated with a sample different from the training data in order to avoid an un-
derestimation of the error due to overfitting of the pce. Indeed, the surrogate model
may provide a correct solution at the integration points but deviate from it between the
points. As shown in Figure 9, the estimate of the surrogate model converges to the ref-
erence solution when the order of the polynomials increases.

2 4 6 8 10
Order [-]

10-5

10-3

10-1

SR
E

 [-
]

PCE

Figure 9: Error of a pce using Legendre polynomials, for the Ishigami function. The
coefficients are computed by a Gauss-Legendre quadrature rule.

48

Finally, the pce provides an accurate approximation of the Sobol sensitivity indices.
The total index of the random variable X1 is the highest, meaning that it has the most
significant impact on the total variance. Since X3 appears only in the term multiplied
by sin(X1), this latter has no effect at first order, but its total effect is nonzero due to
the interactions with X1. The second random variable X2 has no interactions with the
others, which implies that its first order index is equal to its total order index.

S1 = 0.314, S2 = 0.442, S3 = 0,
ST1 = 0.558, ST2 = 0.442, ST3 = 0.243.

5.3 One-Reaction Pyrolysis
The second example consists in a simplified case of pyrolysis process involving a single
solid phase. Consider a sample of solid phase S producing a gaseous species G, where k
is the reaction rate and F is the mass fraction of gas involved:

S
k−−→ FG. (5.6)

Assuming the sample is heated at a constant rate τ , the time evolution of the temperature
of the sample is a linear relation given by

T (t) = T0 + τt (5.7)

and the production of gas is governed by the following equation:

g = −dβ
dt

= FA

τ
βn exp

(−E
RT

)
, (5.8)

where n is the reaction order, A is the Arrhenius pre-exponential factor, E is the activation
energy, R is the perfect gas constant and β is a function to be determined. First, the
time derivative of β can be rewritten as

dβ

dt
= ∂β

∂T

dT

dt
= τ

dβ

dT
. (5.9)

Injecting this result into the equation (5.8) leads to∫ β

1

dβ

βn
= −FA

τ

∫ T

T0
exp

(−E
RT

)
dT. (5.10)

In order to avoid dealing with different solutions depending on the value of n, we will
consider the case where n 6= 1. The left-hand side becomes

∫ β

1

dβ

βn
= 1− β1−n

n− 1 . (5.11)

Introducing the following change of variable:

z = E

RT
⇔ dz = −E

RT 2 (5.12)

49

and integrating by part, the integral of the right-hand side becomes
∫ T

T0
exp

(−E
RT

)
dT = −E

R

[
e−z

z
− E1(z)

]z
z0

(5.13)

where E1(z) is the exponential integral function

E1(z) =
∫ ∞
z

e−z

z
dz. (5.14)

The expression of β is then obtained by replacing these two results in (5.10):

β =
{

1− 1− n
τ

[
AT exp

(−E
RT

)
− AE

R
E1

(
E

RT

)
+ C0

]}1/(1−n)

C0 = AE

R
E1

(
E

RT

)
− AT exp

(−E
RT

)
.

(5.15)

Finally, the production of gas is computed by injecting β into (5.8), leading to

g = FA

τ
βn exp

(−E
RT

)
. (5.16)

5.3.1 Inverse Problem

The solution is evaluated for different temperatures and the variables [A,E, n, F] play the
role of random parameters X, the pce is thus composed of 4-dimensional polynomials and
the coefficients are discrete functions of the temperature. These random parameters need
to be identified based on experimental data available in the literature. The parameter
estimation can be seen as an inverse problem consisting in finding the model parameters
x given experimental observations d such that

y(x) + ε = d, (5.17)

where ε accounts for measurement noise. One of the possible approach is to interpret the
parameters as a probability distribution fX(x |d) [41] that can be obtained by writing
the Bayes theorem:

fX(x |d) = fX(d |x) fY (x)∫
Ω fX(d |x) fY (x) dx , (5.18)

where fY is the prior distribution and contains a priori beliefs on the parameters. Due
to the processing noise, the function fX(d |x) measures the probability of observing the
experimental data d through the model given X = x. Practically, The sample is obtained
by a Metropolis–Hastings algorithm, which consists in generating a collection of points
according to a posterior distribution using a Markov process. First, a random candidate
x2 is generated according to a proposal distribution fZ(x2 |x1), where x1 is the current
state. The next step is to decide whether to accept the candidate [42][43]. The candidate
is accepted with a probability

α = min
[
1, fX(x2 |d) fZ(x1 |x2)
fX(x1 |d) fZ(x2 |x1)

]
. (5.19)

50

If the candidate is accepted, this latter is added to the output samples and the current
state is updated to x2, otherwise the current state remains at x1 for the next iteration.
An overview of the resulting distribution is presented in Figures 10 and 11.

0 2
A [1/s] 1e6

1.0

1.2

1.4

E
 [J

/m
ol

]

1e5

2.0 2.5 3.0
n [-]

3.8

4.0

4.2

4.4

F
 [-

]

1e-2

4.00 4.25
F [-] 1e-2

0

1

2

3

A
 [1

/s
]

1e6

Figure 10: Overview of the correlation between different input parameters in the one-
reaction pyrolysis test case computed by Metropolis-Hastings algorithm.

0 1 2 3 4 5
Iteration [-] 1e4

0

2

4

6

8

A
 [1

/s
]

1e5

0 1 2 3 4 5
Iteration [-] 1e4

1.0

1.1

1.2

1.3

1.4

E
 [J

/m
ol

]

1e5

0 1 2 3 4 5
Iteration [-] 1e4

1.75

2.00

2.25

2.50

2.75

3.00

n
[-]

0 1 2 3 4 5
Iteration [-] 1e4

3.8

4.0

4.2

4.4

F
 [-

]

1e-2

Figure 11: Markov chains generated by Metropolis-Hastings algorithm to obtain the
distribution of the random parameters in the one-reaction pyrolysis test case.

51

5.3.2 Monte Carlo

Since the computation of the polynomial basis by gs orthogonalisation only requires to
compute the response of the polynomials at the integration points, this method is inde-
pendent of the computational cost to evaluate the response of the reference model. Once
the basis has been computed using a part of the original samples, a straightforward way
to compute the pce coefficients is to perform a mc integration using the sample on which
the polynomials have been orthogonalized. However, its slow convergence may require a
large number of points to achieve the desired accuracy. Figures 13 and 12 show the error
of the surrogate model computed with different samples than the ones used to compute
the pce. Figure 14 shows the statistical moments of the gas production.

102 103 104 105 106

Points [-]

10-2

101

104

107

M
ea

n
SR

E
 [-

]

PCE

Figure 12: Mean error of a 3rd order pce computed by a mc integration with different
number of points for the one-reaction pyrolysis test case.

1 2 3 4 5
Order [-]

10-4

10-3

10-2

M
ea

n
SR

E
 [-

]

PCE

Figure 13: Mean error of a pce computed by a mc integration of 2×105 points at different
orders for the one-reaction pyrolysis test case.

52

Increasing the number of mc points provides a better approximation of the integrals
involved in the algorithms constructing the pce. However, it can be seen that the gas
production cannot be exactly represented by a pce of order 3 as the error converges to
a nonzero value when increasing the number of points. On the contrary, increasing the
order of the pce allows a further reduction the error.

250 500 750 1000 1250
Temperature [K]

0.0

0.5

1.0

1.5

2.0

g
[1

/s
]

1e-4

Ref
PCE

250 500 750 1000 1250
Temperature [K]

0

1

2

3

4

SD
 [1

/s
]

1e-6

Ref
PCE

Figure 14: Range containing 98% of the outputs around the mean for a 4th order pce
computed by mc integration on the left, and its standard deviation on the right. The
reference curve is the gas production of the one-reaction pyrolysis test case.

5.3.3 Quadrature Rule

Another approach to compute the pce coefficients when an evaluation of the reference
model is computationally expensive is to use an embedded quadrature rule selecting a
small number of integration points. It is important to note that an embedded quadrature
rule generated from a basis of order n integrates a polynomial of the same order. Since
the integrand is the product of a polynomial of the basis and the function to be expanded,
one must generate quadrature at least of order 2n.

0 1 2 3 4
Points [-] 1e3

10-3

10-2

10-1

100

101

102

103

M
ea

n
SR

E
 [-

]

PCE

Figure 15: Mean error of a 3rd order pce computed by an embedded quadrature rule
with different number of points for the the one-reaction pyrolysis test case.

53

This method has the advantage of requiring less points than the mc integration in low and
moderately high dimensions, but suffers from the fast increase of the number of polyno-
mials with the dimension. Figure 15 shows the mean error of a pce when the coefficients
are computed using approximate Fekete points. Figure 16 shows the statistical moments
estimated by the pce at different temperatures.

It can be first observed that only 4 × 103 integration points are sufficient to obtain
the same accuracy than a mc integration with 2 × 105 points, leading to a significant
reduction of the computation cost since the reference model must be evaluated for reduced
number of points. It is important to note that the computation time of the weight
cancellation algorithm strongly depends on the size original sample since a null space
must be computed at each iteration. Moreover, rounding errors can accumulate and
decrease the accuracy of the quadrature thus obtained. Pivoting operations in the simplex
algorithm become expensive when the number of points is large, making the selection of
a quadrature rule based on approximate Fekete points much faster than the two other
methods for large sample sets.

250 500 750 1000 1250
Temperature [K]

0.0

0.5

1.0

1.5

2.0

g
[1

/s
]

1e-4

Ref
PCE

250 500 750 1000 1250
Temperature [K]

0

1

2

3

4

SD
 [1

/s
]

1e-6

Ref
PCE

Figure 16: Range containing 98% of the outputs around the mean for a 3rd order pce
computed by an embedded quadrature rule on the left, and its standard deviation on the
right. The reference curve is the gas production of the one-reaction pyrolysis test case.

5.3.4 Decorrelation Methods

The correlated random variables and their non-Gaussian joint probability density prevent
the use of analytical polynomials. This issue can be addressed by the parameterization
proposed in [4] to map the original set of random parameters X to a random vector X ′

of non-dimensional variables which can be approximated by Gaussian random variables.
The latter is expressed as follows, where Ā, Ē, n̄, F̄ and T̄ are scaling factors, note that
A undergoes a non-linear transformation while the other parameters are simply rescaled:

 A ′ = lnA− E(RT̄)−1,

E ′ = E/Ē,

 n ′ = n/n̄,

F ′ = F/F̄ ,
(5.20)

54

It can be observed in Figure 17 that the resulting random variables are now linearly
correlated, meaning that a change of coordinate system is sufficient to decorrelate them.
In particular, the pca whitening is a decorrelation method for linearly separable and
zero-centered random variables, generating a linear mapping between the correlated and
decorrelated random vectors through a whitening matrix. Practically, the pca will project
the random vector into a new coordinate system where each variable has a maximum
variance along a principal axis [44]. The whitening matrix K satisfies the relation

K>K = Σ−1, (5.21)

where Σ is the covariance matrix. In fact, there are infinitely many possible K satisfying
this condition, in particular, the pca uses the following whitening matrix:

K = S−1/2U>, (5.22)

where S is a diagonal matrix of singular values of Σ and U is the matrix containing the
eigenvectors of Σ, which can be obtained by a singular value decomposition:

Σ = USV>. (5.23)

Note that since Σ is symmetric and positive semi-definite, the left and right eigenvectors
are equals. An important remark is that the pca depends on the scaling of the variables,
this can be solved by standardizing the input to obtain unitary variances. The linear
mapping between the parametrized samples x ′ and the corresponding whitened samples
z is then obtained by

z = Kx ′. (5.24)

Finally, an orthogonal polynomial basis for Z ∼ N (0, 1)4 can be constructed by the tensor
product of the well known Hermite polynomials and the corresponding quadrature rule
is derived from the three term recurrence coefficients. Let f be the mapping

f : X→ Z. (5.25)

0 2
A [1/s] 1e6

1.0

1.2

1.4

E
 [J

/m
ol

]

1e5

-7.4 -7.2
Param A [-]

0.8

0.9

1.0

1.1

1.2

P
ar

am
 E

 [-
]

0 5
White A [-]

-4

-2

0

2

W
hi

te
 E

 [-
]

Figure 17: Overview of the correlation between A and E on the left, their parametrized
image at the middle, and their whitened image by pca on the right.

55

If the training data for the computation of the pce coefficients are such that the response
at a point zj is the response of the pyrolysis process at xj = f−1(zj), the resulting pce
model ĝ will thus take zj as input parameter and generate the response corresponding to

ĝ(zj) ' g [f(zj)] = g(xj). (5.26)

The resulting statistical moments and the convergence of the pce computed by Gauss-
Hermite quadrature at different temperatures and orders are presented in Figures 18 and
19. It is important to note that if the empirical mean and covariances are only an ap-
proximation of the actual moments, or if the original samples are not linearly separable,
the resulting samples z may not exactly match the uncorrelated Gaussian distribution
and thus generate some errors in the pce.

1 2 3 4 5
Order [-]

10-3

10-2

M
ea

n
SR

E
 [-

]

PCE

Figure 18: Mean error of a pce computed by a Gauss-Hermite quadrature rule at different
orders for the one-reaction pyrolysis test case.

250 500 750 1000 1250
Temperature [K]

0.0

0.5

1.0

1.5

2.0

g
[1

/s
]

1e-4

Ref
PCE

250 500 750 1000 1250
Temperature [K]

0

1

2

3

4

SD
 [1

/s
]

1e-6

Ref
PCE

Figure 19: Range containing 98% of the outputs around the mean for a 6th order pce
computed by a Gauss-Hermite quadrature on the left, and its standard deviation on the
right. The reference curve is the gas production in the one-reaction pyrolysis test case.

56

Since the whitened random variables are independent and follow a Gaussian probability
distribution, a quasi-mc integration for computing the orthogonal polynomial basis and
the associated pce coefficients may be considered as an alternative to overcome the expo-
nential increase of the number of points in Gaussian quadrature rules with the dimension.
In particular, one can perform an inverse probability transform or the Box–Muller trans-
form of the Halton or Sobol sequences to generate a low-discrepancy sequence for the
normal distribution [19].

5.4 Two-Reactions Pyrolysis
The following test case is a pyrolysis reaction where two different solid phases are involved
in the production of a single gas species. The reaction scheme considered is S1

k1−−→ F1G,

S2
k2−−→ F2G,

(5.27)

and the production of gas is given by an equation of the form

g = ρα1F1
dξ1

dt
+ ρα2F2

dξ2

dt
, (5.28)

0.0 0.5 1.0
A1 [1/s] 1e5

0.85

0.90

0.95

1.00

E
1
 [J

/m
ol

]

1e5

2.0 2.5 3.0
n1 [-]

0.95

1.00

1.05

1.10

F
1
 [-

]

1e-1

1.0 1.1
F1 [-] 1e-1

0.00

0.25

0.50

0.75

1.00

A
1
 [1

/s
]

1e5

0 1
A2 [1/s] 1e6

1.2

1.4

E
2
 [J

/m
ol

]

1e5

1.00 1.25 1.50
n2 [-]

4.0

4.5

5.0

5.5

F
2
 [-

]

1e-2

4 5
F2 [-] 1e-2

0.0

0.5

1.0

1.5

A
2
 [1

/s
]

1e6

Figure 20: Overview of the correlation between different parameters in the two-reaction
pyrolysis test case computed by Metropolis-Hastings algorithm.

57

where the advancement of the reaction ξ ∈ [0, 1] follows an empirical relation with f(ξ)
assumed to be a non-linear function of the advancement:

dξj
dt

= f(ξj)kj(T). (5.29)

The stochastic parameters considered are the two sets of reaction variables [A,E, n, F] and
the deterministic parameter is the temperature, leading to a 8-dimensional problem. As
in the previous example, the different parameter are non-Gaussian and highly correlated.
An overview of the input distributions is presented in Figure 20.

5.4.1 Sparse Polynomial Chaos

The classical pce of order p uses all the available monomials up to a total degree p,
meaning that the total number of polynomials in the expansion, and so the number of
unknown coefficients to estimate, is given by

n =
(
d+ p

p

)
= (d+ p)!

d ! p ! , (5.30)

which may become considerably large when the dimension of the problem increases, hence
the use of hyperbolic truncation schemes based on the q-norm to reduce the complexity
of the expansion. Indeed, decreasing q leads to a drastic reduction of the number of
polynomials, and so of the number of unknown coefficients as shown in Figure 21. The
accuracy of the pce for different q-norms is presented in Figure 22. It can be observed
that taking q = 0.7 allows a reduction of the number of polynomials while preserving a
good accuracy of the surrogate model. A part of the samples at our disposal has been
used to compute the polynomials by gs orthogonalization, this set of points has been
then reused to compute the associated coefficients by mc integration.

1 2 3 4 5
Order [-]

0.00

0.25

0.50

0.75

1.00

1.25

n
 [-

]

1e3
q= 1
q= 0.9
q= 0.7
q= 0.5

Figure 21: Number of polynomials in the orthogonal basis as a function of the order and
the hyperbolic q-norm truncation for a 8-dimensional pce.

58

A further reduction in the number of polynomials in the expansion using the lars al-
gorithm aims at eliminating irrelevant predictors to improve the stability of the pce,
reducing the computational cost and the number of unknowns to estimate in the expan-
sion. At each iteration, a polynomial is selected by the lars algorithm according to its
correlation with the response of the reference model. It is important to note that a differ-
ent set of polynomials is selected at each discretization of the response, meaning that the
set of polynomials selected at a temperature T1 may be different from the one selected
at a temperature T2. An estimation of the error is presented in Figure 23 for different
number of iterations. It can be observed that only 60 iterations are sufficient to capture
the behaviour of the reference solution with an optimal accuracy, it is also possible that
large number of iterations may destabilizes the surrogate model by selecting irrelevant
polynomials. The statistical moments of gas production are presented in Figure 24.

0.4 0.6 0.8 1.0 1.2
q-norm [-]

0

1

2

3

4

M
ax

 S
R

E
 [-

]

1e-4
PCE

Figure 22: Mean error of a 4th order pce computed by mc integration and a large number
of integration points for different q-norm hyperbolic truncation schemes.

0 20 40 60 80 100 120
Iterations [-]

10-4

10-3

10-2

M
ax

 S
R

E
 [-

]

PCE

Figure 23: Maximum error of a 4th order pce with a hyperbolic truncation of q = 0.7.
The polynomials are first selected by the lars algorithm and the resulting coefficients
are updated by a least squares regression for a better accuracy.

59

250 500 750 1000 1250
Temperature [K]

0

2

4

g
[1

/s
]

1e-4

Ref
PCE

250 500 750 1000 1250
Temperature [K]

0

1

2

3

4

SD
 [1

/s
]

1e-6

Ref
PCE

Figure 24: Range containing 98% of the outputs around the mean for a 4th order pce
computed by lars on the left, and its standard deviation on the right. The reference
curve is the gas production of the two-reaction pyrolysis test case.

5.5 One-Dimensionnal Ablation
The porous material analysis toolbox PATO is a modular analysis platform for multiphase
porous reactive materials based on OpenFoam and developed by nasa. Such complex
models are used to analyse the behaviour of ablative thermal shields with high fidelity,
but are typically expensive to compute. Thereby, the primary interest of the polynomial
chaos is to reduce this computational cost in order to allow statistical studies. The one-
dimensional ablation test case presented in [40][7] and Figure 25 consists of a sample of
a theoretical ablative composite of 5 cm heated on its side for 1 minute at atmospheric
pressure with adiabatic boundary condition on the other side. The heat flux will heat
the virgin material until it undergoes a pyrolysis reaction, then decomposes into a porous
matrix. The gas produced by the pyrolysis and the eroded char is then reinjected into
the boundary layer of the incoming flow.

Adiabatic
Impermeable

Heat flux

Pyrolysis gas

Char recession5 cm
x

d

Virgin composite

Pyrolysis front

Porous matrix (char)

Figure 25: Progressive decomposition of the theoretical ablative virgin composite into a
pyrolysis char due to the inflow heat flux at its surface.

60

5.5.1 Independent Parameters

The process involves 2 pyrolysis reactions and so 8 kinetic parameters. As we do not have
any information about the actual distributions in play, the stochastic parameters will first
be described either by the uniform or normal probability density functions presented in
Figure 26 and Table 2. Finally, the reference model provides different outputs such as
the recession depth d of the char and virgin material respectively defined as the length
of the sample with less than 2% and more than 98% of resin, the blow rate of pyrolysis
gas and the spatio-temporal temperature profile in the sample.

As we consider stochastic independence between the input parameters, a straightforward
way to obtain an orthogonal basis is to compute the tensor product of Hermite and
Legendre polynomials. However, the reference model is expensive to evaluate, the pce
coefficients must therefore be computed with a minimal number of points and the tensor
product of Gauss-Hermite and Gauss-Legendre quadrature rules is not efficient. Indeed,
the number of points in tensor product Gaussian quadrature rules increases as

n = (p+ 1)d, (5.31)

Parameter Distribution

F1 [-] U(0.1, 0.4)

F2 [-] U(0.1, 0.3)

A1 [1/s] N (12, 1)× 103

A2 [1/s] N (50, 2)× 107

Parameter Distribution

E1 [J/mol] N (71, 4)× 103

E2 [J/mol] N (17, 0.6)× 104

n1 [-] N (3, 0.2)

n2 [-] N (3, 0.2)

Table 2: Kinetic parameters of the pyrolysis reactions involved in the one-dimensional
ablation test case with their probability distributions.

1.0 1.5
A1 [1/s] 1e4

6

7

8

E
1
 [J

/m
ol

]

1e4

4.5 5.0 5.5
A2 [1/s] 1e8

1.6

1.8

E
2
 [J

/m
ol

]

1e5

2.5 3.0 3.5
n1 [-]

2.5

3.0

3.5

n
2
 [-

]

Figure 26: Overview of the input parameter distributions for the one-dimensional ablation
test case. We first consider the random variables as statistically independent.

61

where p is the order of the quadrature and d is the dimension. To remedy this problem,
we propose to compute the basis by gs orthogonalization and generate an embedded
quadrature rule in order to estimate the pce coefficients. Figure 27 highlights the equiv-
alent accuracy of the surrogate model computed by a embedded quadrature rule and the
mc sample from which it has been extracted. The error has been evaluated using different
samples than the ones used to build the surrogate model. It is important to note that
the number of points in the embedded quadrature is smaller than in the mc sample and
depends on the number of polynomials in the basis, which increases with the dimension
at a significantly less degree than for Gaussian quadrature rules.

It can be first observed that the error of the char recession depth is higher than for the
other outputs of the model. Table 3 shows that an important part of the variance is due
to the parameter n which is related to the decomposition speed of the virgin material
into char, for large n, the virgin material decomposes slowly and the char takes longer
to appear. The high relative variance due to the strong dependence to n of this output
requires higher order polynomials and a larger number of quadrature points to be accu-
rately represented.

1 2 3 4
Order [-]

10-2

10-1

100

M
ax

 C
ha

r
SR

E
 [-

]

MC
Quad

1 2 3 4
Order [-]

10-5

10-4

10-3

M
ax

 V
ir

g
SR

E
 [-

]

MC
Quad

1 2 3 4
Order [-]

10-6

10-5

10-4

M
ax

 T
 S

R
E

 [-
]

MC
Quad

1 2 3 4
Order [-]

10-6

10-5

10-4

10-3

M
ax

 ṁ
g
 S

R
E

 [-
]

MC
Quad

Figure 27: Maximum error of a pce computed by a mc integration of 2×104 points, and
an embedded quadrature rule extracted from this mc sample at different orders. The
reference solution is the one-dimensional ablation test case.

62

Figure 28 shows that A and E have an opposite effect on the output. As predicted by its
small Sobol index, the variation of A has a lower influence than n on the char recession.
This suggests that the range of possible values for A has been assumed too small. Indeed,
by assuming statistical independence between the inputs, we limited the sample space in
order to avoid forbidden combinations of the parameters.

Char E1 E2 n1 n2

S [-] 0.12 0.03 0.5 0.08
ST [-] 0.16 0.06 0.58 0.12

Char F1 F2 A1 A2

S [-] 0.09 0.04 0.008 7× 10−4

ST [-] 0.13 0.06 0.014 0.01

Table 3: First and total Sobol sensitivity indices relative to the char recession depth.

2.6 2.8 3.0 3.2 3.4
n1 [-]

1.0

1.5

2.0

2.5

3.0

3.5

d
 C

ha
r

[m
m

]

Ref
PCE

2.6 2.8 3.0 3.2 3.4
n2 [-]

1.0

1.5

2.0

2.5

3.0

3.5

d
 C

ha
r

[m
m

]

Ref
PCE

1.0 1.2 1.4
A1 [1/s] 1e4

1.0

1.5

2.0

2.5

3.0

3.5

d
 C

ha
r

[m
m

]

Ref
PCE

1.0 1.2 1.4
E1 [J/mol] 1e4

1.0

1.5

2.0

2.5

3.0

3.5

d
 C

ha
r

[m
m

]

Ref
PCE

Figure 28: Char recession depth of the one-dimensional ablation test case after 1 min as
a function of n, A and E. The other parameters are fixed at their mean value.

63

The difference between the embedded quadrature and the mc integration for the char
recession may be explained by the location of the selected points in the domain. In-
deed, the quadrature rule tends to select the points at the boundaries of the domain
while the mc integration selects the points mainly in the center of the domain. Figure
29 shows that the error mainly depends on n1 and rapidly increases for higher values
of this parameter, since we decided to take into account the maximum error to assess
the convergence of the solution, the few points at large n1 considerably increase the error.

Figure 30 displays the statistical moments of the different outputs of the ablation process,
the temperature of the material is recorded at each time step by 8 probes disposed at dif-
ferent distances from the heated surface, allowing the representation of a spatio-temporal
temperature profile. The average temperature profile is displayed in Figure 31 and its
standard deviation is presented in Figure 32 for each probe.

2.5 3.0 3.5
n1 [-]

2.5

3.0

3.5

n
2
 [-

]

6 7 8
E1 [J/mol] 1e4

1.5

1.6

1.7

1.8

1.9

E
2
 [J

/m
ol

]

1e5

0.01

0.08

0.62

4.61

34.04

251.55

M
ax

 C
ha

r
SR

E
 [-

]

0.1 0.2 0.3 0.4
F1 [-]

0.10

0.15

0.20

0.25

0.30

F
2
 [-

]

1.0 1.2 1.4
A1 [1/s] 1e4

4.5

5.0

5.5

A
2
 [1

/s
]

1e8

0.01

0.08

0.62

4.61

34.04

251.55

M
ax

 C
ha

r
SR

E
 [-

]

Figure 29: Maximum error of a 3rd order pce computed by an embedded quadrature
rule of 1e3 integration points for the char recession depth in the one-dimensional ablation
test case. The coloured dots correspond to the integration points projected in a two
dimensional space.

64

0 20 40 60
Time [s]

0

5

10

15

d
 [m

m
]

Ref
Char
Virg

0 20 40 60
Time [s]

0.00

0.25

0.50

0.75

1.00

SD
 [m

m
]

Ref
Char
Virg

0 20 40 60
Time [s]

0

2

4

ṁ
g
 [k

g/
m

2
s]

1e-2

Ref
PCE

0 20 40 60
Time [s]

0

2

4

6

8

SD
 [k

g/
m

2
s]

1e-3

Ref
PCE

Figure 30: Range containing 98% of the gas blowing rate and the recession depths around
the mean for a 4th order pce computed by an embedded quadrature rule of 3×103 points
on the left, and their standard deviation on the right. The reference curve is the reference
solution of the one-dimensional ablation test case.

x [mm]

0
6

12
18

24

t [s]

0
15

30
45

60

M
ea

n
T
 [K

]

400

800

1200

1600

Figure 31: Mean of the temperature profile in the material obtained with a 4th order
pce computed by an embedded quadrature rule of 3× 103 points. The coloured surface
is the reference solution and the white dots are the response of the pce at the probes.

65

0 10 20 30 40 50 60
Time [s]

0

5

10

15

SD
 T

 [K
]

Ref
1 mm
2 mm
4 mm
8 mm
12 mm
16 mm
24 mm

Figure 32: Standard deviation of the temperature profile in the material obtained with a
4th order pce computed by an embedded quadrature rule of 3× 103 integration points.

5.5.2 Correlated Parameters

We propose to analyse the effect of a correlation by generating a sample using the
Metropolis-Hasting algorithm implemented in Pybitup for the two-reaction pyrolysis
process with respect to fake experimental data. Although the differential equations in-
volved in both algorithms are similar, it is important to note that the one-dimensional
ablation process is more complex and that the resulting distributions may be different
from actual experimental data. The distributions are presented in Figure 33.

0.0 0.5 1.0
A1 [1/s] 1e10

0.8

1.0

1.2

E
1
 [J

/m
ol

]

1e5

5.0 7.5
n1 [-]

2.6

2.8

3.0

3.2

3.4

F
1
 [-

]

1e-1

2.5 3.0
F1 [-] 1e-1

0.00

0.25

0.50

0.75

1.00

A
1
 [1

/s
]

1e10

0.0 0.5 1.0
A2 [1/s] 1e10

1.6

1.7

1.8

1.9

E
2
 [J

/m
ol

]

1e5

2 3
n2 [-]

1.6

1.8

2.0

F
2
 [-

]

1e-1

1.50 1.75 2.00
F2 [-] 1e-1

0.00

0.25

0.50

0.75

1.00

A
2
 [1

/s
]

1e10

Figure 33: Overview of the correlation between different input parameters of the one-
dimensional ablation test case obtained from a posterior distribution.

66

In this test case, we will use a positive embedded quadrature rule, this latter provides
a more accurate estimation of pce coefficients compared to approximate Fekete points
thanks to its lower condition number. As a reminder, the condition number of a quadra-
ture rule {xj, wj} is given by

c =
∑
j

= 1n|wj| (5.32)

and represents the amplification of rounding errors in the estimation of the integral. By
definition, c = 1 for a positive quadrature rule, but the approximate Fekete points gener-
ally contains some quadrature points of negative weights. A comparison between the mc
integration is presented in Figure 34. The statistical moments of the different outputs
are presented in Figures 35 and 36. It is clear that the total standard deviations of the
outputs is smaller than in the previous case. This can be explained first by the smaller
variance of F , then by the fact that A and E have opposite effects on the pyrolysis re-
action. As the correlation imposes A to increase when E increases, their effect on the
solution tends to cancel out and the variance of the output decreases despite of the fact
that both parameters display a large marginal variance. This observation suggests that
there exists a nonlinear relation between A and E leading to a constant value involved
in the governing equations of the ablation process, as shown in Figure 37.

103 104

Points [-]

101

104

107

1010

M
ax

 C
ha

r
SR

E
 [-

]

MC
Quad

103 104

Points [-]

10-3

100

103

106

M
ax

 V
ir

g
SR

E
 [-

]

MC
Quad

103 104

Points [-]

10-6

10-4

10-2

100

102

M
ax

 T
 S

R
E

 [-
]

MC
Quad

103 104

Points [-]

10-3

100

103

106

M
ax

 ṁ
g
 S

R
E

 [-
]

MC
Quad

Figure 34: Maximum error of a 3rd order pce computed by an embedded quadrature
rule and mc integration for different number of points. The reference solution is the
one-dimensional ablation test case.

67

0 20 40 60
Time [s]

0

5

10

15

d
 [m

m
]

Ref
Char
Virg

0 20 40 60
Time [s]

0.0

0.1

0.2

0.3

0.4

SD
 [m

m
]

Ref
Char
Virg

0 20 40 60
Time [s]

0

1

2

3

4

ṁ
g
 [k

g/
m

2
s]

1e-2

Ref
PCE

0 20 40 60
Time [s]

0.0

0.5

1.0

1.5

SD
 [k

g/
m

2
s]

1e-3

Ref
PCE

Figure 35: Range containing 98% of the gas blowing rate and recession depths around the
mean for a 4th order pce computed by a positive embedded quadrature rule of 3 × 103

integration points and 20 iterations of the lars algorithm. The reference curves are the
reference solutions of the one-dimensional ablation test case.

0 10 20 30 40 50 60
Time [s]

0

1

2

3

4

SD
 T

 [K
]

Ref
1 mm
2 mm
4 mm
8 mm
12 mm
16 mm
24 mm

Figure 36: Standard deviation of the temperature profile in the material obtained with a
4th order pce computed by a positive embedded quadrature rule of 3 × 103 integration
points and 20 iterations of the lars algorithm.

68

0.0 0.2 0.4 0.6 0.8 1.0
A1 [1/s] 1e10

0.8

1.0

1.2

E
1
 [J

/m
ol

]
1e5

10 15 20
ln(A1) [1/s]

0.8

1.0

1.2

E
1
 [J

/m
ol

]

1e5

0.0 0.2 0.4 0.6 0.8 1.0
A2 [1/s] 1e10

1.5

1.6

1.7

1.8

1.9

E
2
 [J

/m
ol

]

1e5

18 20 22
ln(A2) [1/s]

1.5

1.6

1.7

1.8

1.9

E
2
 [J

/m
ol

]

1e5

Figure 37: Correlation between the natural logarithm of the Arrhenius pre-exponential
factor and the activation energy for the one-dimensional ablation test case obtained by a
Bayesian posterior.

5.5.3 Extremal Parameters

It was previously shown that extremal values of the input parameters are typically diffi-
cult to estimate by the pce as they are located at the boundaries of the validity domain of
the surrogate model. Nevertheless, the model response related to a large part of the sam-
ple space, including extremal values, can be correctly represented provided one remains
within the validity domain determined by the training data. An example is presented in
Table 4 and Figure 38.

Parameter A1 [1/s] E1 [kJ/mol] n1 [-] A2 [1/s] E2 [J/mol] n2 [-]

Max (A,E)1 9.9× 109 1.2× 105 6.6 9.4× 108 1.7× 105 3.1
Min (A,E)1 5322 6.8× 104 3.1 3.1× 109 1.8× 105 2.8

Table 4: Parameter combinations containing the maximal and minimal values of A1 and
E1 in the one-dimensional ablation test case, with F1 = 0.27 and F2 = 0.18.

69

0 20 40 60
Time [s]

0.0

0.5

1.0

1.5

2.0

d
 C

ha
r

[m
m

]

(A,E)1 max
(A,E)1 min

0 20 40 60
Time [s]

0

5

10

15

d
 V

ir
gi

n
[m

m
]

(A,E)1 max
(A,E)1 min

0 20 40 60
Time [s]

300

320

340

360

T
 [K

]

(A,E)1 max
(A,E)1 min

0 20 40 60
Time [s]

0

1

2

3

4

ṁ
g
 [k

g/
m

2
s]

1e-2

(A,E)1 max
(A,E)1 min

Figure 38: Outputs of the one-dimensional ablation test case for extremal values of the
Arrhenius pre-exponential factor and the activation energy of the first reaction.

70

Chapter 6

Conclusion

71

6.1 Summary
The first part of this work was a literature review about the so-called polynomial chaos
expansion. On the one hand, related to the construction of an orthogonal polynomial
basis by recurrence relation or gs orthogonalization, and on the other hand, related to
the computation of the pce weighting coefficients by spectral projection, leasts-squares
collocation or lars algorithm. In addition, different methods were proposed to take
advantage of the functional decomposition provided by the pce. For instance, the com-
putation of the mean, the variance and the Sobol sensitivity indices is straightforward. It
was shown that orthogonal bases obtained by three term recurrence relation provide an
accurate quadrature rule for the computation of inner products and are probably the best
choice when such relations are available, however, Gaussian quadrature rules suffer from
the curse of dimensionality and are limited to independent variables. In contrast, the gs
orthogonalization allows the computation of orthogonal polynomials with respect to an
arbitrary weight function regardless of the correlation between the random variables, but
the quality of the basis thus obtained depends on the accuracy of the technique used to
perform the integrations.

Once the polynomial basis has been obtained, the pce coefficients can be computed by
spectral projection, which assumes a perfect orthogonality between the polynomials form-
ing the basis. The least squares method will determine the coefficients that minimize the
error with respect to the reference solution. Finally, the lars algorithm will select the
polynomials which are the most correlated with the reference model by minimizing the
angle with a residual. All these methods require the evaluation of inner products and so
the evaluation of integrals. When Gaussian quadrature rules are not feasible, due to the
high dimension or the correlation, different integration techniques have been explored.
For instance, mc integration is the most robust and simplest solution, but may lead to a
large number of integration points due to its low convergence, which is not always feasible
when the reference model is costly to evaluate. Nevertheless, this method remains a good
alternative. The second possibility is the embedded quadrature rule, aiming at extracting
a quadrature rule with a minimum number of points from an already existing quadrature
rule having a larger number of points. This technique suffers from the increase in the
number of dimensions to a lesser extent than Gaussian quadrature rules. We have shown
in the last chapter that the embedded quadrature rule allows the computation of a pce
with far fewer integration points than mc integration. Indeed, Chapter 5 was dedicated
to the application of the methodology to different test cases:

• A surrogate model was first computed for the Ishigami function as an introduction
to strong nonlinear and non-monotonic functions. In addition, the estimation of the
sensitivity indices and statistical moments have been shown as equivalent to their
analytical solution.

• The second problem was a pyrolysis process of one and two reactions. This test case
allowed the comparison and the validation of the different tools at our disposal to
compute a surrogate model for correlated input parameters in addition to reduce the
complexity of the pce in higher dimension by limiting the number of polynomials in
the surrogate model.

72

In particular, the embedded quadrature rules allowed to reach, with far fewer evalu-
ation of the reference model, an accuracy comparable to using a large sample set in
a reference Monte Carlo approach. Afterwards, decorrelation and whitening methods
were used to compute a classical pce with Hermite polynomials and a Gauss-Hermite
quadrature rule.

• The last application was a large scale problem of one-dimensional ablation, a sample
of solid material is heated at a constant temperature until it undergoes a pyrolysis
reaction. As the numerical model is expensive to evaluate, an embedded quadrature
rule was used in order to compute an accurate pce with a minimum number of in-
tegration points. Finally, the surrogate model was used for statistical studies of the
output related to different sets of input parameters and to quantify the impact of the
correlation between the different variables of the problem.

In conclusion, the goal of this thesis was to successfully demonstrate the possibility of
computing a cheap and accurate surrogate model for complex problems in moderately
high dimensions when the input parameters are correlated, in particular, in the context of
pyrolysis reactions occurring in thermal ablation shields. To this end, a pce library has
been implemented in Pybitup and different algorithms proposed in the literature were
compared. As thermal protection systems involve a large number of physical parameters
whose exact value are not known exactly, the need for a cheaper surrogate model arises
when one wants to investigate and mitigate the effect of uncertainties on the output of a
numerical model whose execution time is long.

6.2 Future Work
• First, the pce developed during this thesis is still limited to a moderately high di-

mensionality of the input uncertainty, more complex algorithms have been proposed
in the literature to address different types of problems or to improve the accuracy of
the pce. For instance, the global behaviour of the model could be approximated by
a sparse pce while the local variations of the output could be modeled by a Gaussian
random process. Thus, some methods such as the pce-Kriging [45] seek to exploit
sparsity. In the same way, an improvement of the algorithms extracting the embed-
ded quadrature rule should be considered, in particular, the simplex and the iterative
weight cancellation suffer from their computational cost and rounding errors when the
training sample set is large, but provide a better accuracy than other quadrature rules
containing negative weights.

• Moreover, future works can focus on more elaborated test cases for statistical studies.
Indeed, the ablation process presented in this paper is limited to one spatial dimension,
but other algorithms of higher fidelity are available in the porous material analysis
toolbox. Consequently, the higher number of input parameters as well as the complex
behaviour of the response may highlight some limitations of the methods and the
requirement of more advanced pce meta-modeling techniques. To this end, different
approaches such as the use machine learning, which are not directly related to the
pce, have been proposed in the literature to improve the efficiency of the method.

73

Although significant advantages of the pce on machine learning techniques were high-
lighted in [46], where it was shown that a pce purely trained on data can yield to an
accuracy comparable to machine learning regression models, a recent paper shows that
the integration of an artificial neural network with the polynomial chaos (pce-ann)
can provide similar results using much less computational effort [47].

• Finally, as one of the main challenges when dealing with high dimensional data is the
computational cost, other improvements of the code may be achieved by transcription
the Python script into lower level languages such as C and C++, as they are intrinsically
faster and allow the use of efficient libraries for high performance parallel computing
such as MPI and OpenMP. However, it could be more interesting to improve the effi-
ciency of the code with Cython [48], a programming language aiming to give C-like
performance with code written mostly in Python using optional additional C-inspired
syntax. Cython thus provides the benefits of both low and high-level languages.

74

Chapter 7

Appendix

75

7.1 Finding z : A>z = 0
In the following sections, we now address how to find a solution to (3.37). If the poly-
nomial basis is orthonormal with respect to the Monte Carlo samples, the Vandermonde
matrix has orthogonal columns and thus satisfies

A>A = B = mI,

A−1 = A>
1
m
,

(7.1)

where A−1 denotes the Moore–Penrose inverse and m is the number of Monte Carlo
samples. Indeed, the columns of the Vandermonde matrix form an orthonormal basis
with respect to the discrete inner product

〈pi, pk〉 = 1
m

m∑
j=1

pi(xj)pk(xj), (7.2)

where the points {x} are the Monte Carlo samples for which the polynomials are or-
thogonormal. The elements of the resulting matrix B are thus given by

Bik =
m∑
j=1

pi(xj)pk(xj) = mδik. (7.3)

However, if the polynomial basis is not orthonormal, for instance due to the use of
an orthogonal basis or another Monte Carlo sample set, the Vandermonde matrix does
not have orthogonal columns and may be ill-conditioned [27]. The following step aims
to remedy this problem by performing a qr factorization of A and use the reduced
orthogonal matrix Q instead of A in (3.36) for the extraction of the quadrature:

A =
[
Q Z

] [R
0

]
= QR,

A ← Q.
(7.4)

This step amounts to a change of basis from the original polynomials basis to the or-
thonormal basis with respect to the discrete inner product

〈pi, pk〉 =
m∑
j=1

pi(xj)pk(xj). (7.5)

Meaning that Q has orthogonal column vectors and thus displays the following proprieties

Q>Q = I,
Q−1 = Q>.

(7.6)

Note that Z is the null space of A> and can thus be used to find z, however the full qr
factorization becomes expensive when m is large as [Q Z] is a m ×m matrix. Instead,
it is preferable to only compute Q by a thin qr factorization and find a nontrivial z
by a Newton-Raphson algorithm. Indeed, as (3.37) is a linear system of equations, the
Jacobian matrix is nothing but Q>. Since this latter has orthogonal columns:

76

J = Q>,
J−1 = Q,

(7.7)

where J−1 denotes the Moore–Penrose inverse of the Jacobian. The vector z is thus
computed iteratively at each iteration of the quadrature rule extraction algorithm by

Fk = Q>zk,

z̄k+1 =
(
zk − J−1Fk

)
,

zk+1 = z̄k+1/|z̄k+1|

(7.8)

until the desired accuracy is reached. Note that one must ensure the algorithm to converge
to the nontrivial solution by normalizing z at each Newton-Raphson iteration. Moreover,
the relation (7.7) is only valid for the first iteration of the quadrature rule extraction.
Indeed, as we remove a row of Q at each iteration, this latter loses its orthogonality
propriety after the first weight removal. In a further section, we present two methods for
updating J−1 without explicitly recomputing the pseudo-inverse.

7.2 The Thin QR Factorization
Numerous algorithms such as Givens rotations or Householder reflections already exist for
computing a qr factorization of a matrix. However, the full qr factorization is expensive
as we assume the number of Monte Carlo samples used to compute the quadrature rule
is much larger than the number of polynomials in the basis. Thereby, it is necessary
to compute the reduced matrix Q of the thin qr factorization in (7.4) without actually
computing the full matrix [Q Z]. We propose the use of the qr-Cholesky method [49]
for computing the thin qr factorization of A as this latter allows the computation of Q
using only m× n and n× n sized matrices. One first compute

B = A>A,
L>L = B,

(7.9)

where B is Hermitian positive-definite by definition and L is the lower triangular matrix
obtained by a Cholesky factorization of B. Practically, the elements of the factorized
matrix L can be computed [50] as follows:

L11 =
√
B11, Lj1 = Bj1

L11
for j ∈ [2, n],

Ljj =

√√√√Bjj −
j−1∑
i=1

L2
ji for j ∈ [2, n],

Lij =
(
Bij −

j−1∑
k=1

LjkLik

)
/Ljj

if j 6= n,

for i ∈ [i+ 1, n].

(7.10)

Finally, the reduced m × n matrix Q and the corresponding right n × n matrix R are
obtained as follows. It is important to note that R can easily be inverted by exploiting
the fact this latter is upper triangular.

77

R = L>,
Q = AR−1.

(7.11)

7.3 The Givens Rotation
In this section, we present a reminder about the so-called Givens rotation, this technique
can for instance be employed for computing the full qr factorization of a matrix, but also
for updating the full or thin qr factorization when a particular change in the original
matrix occurs, at a much lower computational cost than recomputing the qr factorization.
A Givens rotation rotates a plane about two coordinates axes and can thus be used to
cancel out elements in a matrix. This latter is represented by a matrix G(i, j) whose
elements are given by

Gii = Gjj = cos θ,
Gji = −Gij = sin θ,
Grr = 1 for r 6= i, j,

(7.12)

where θ is the rotation angle. The left matrix multiplication G(i, j)A only effects the i-th
and j-th rows in A. Similarly, the right transpose multiplication AG(i, j)> only affects
the i-th and j-th columns in A. For instance, if one wants to cancel-out the element Ajk
in the original matrix by rotating the column vector

v =
[
Aik Ajk

]>
(7.13)

along the horizontal axis, one can find the values of cos θ and sin θ by computing the
linear map H(i, j) v that zeroes the second element of v. One thus needs to solve

H(i, j) v =
[
cos θ − sin θ
sin θ cos θ

] [
v1
v2

]
=
[
r
0

]
, (7.14)

where r = |v| is the l2-norm of v. An explicit calculation of the rotation angle is not
necessary as one can directly solve the previous problem for cos θ and sin θ, leading to

cos θ = v1/
√
v2

1 + v2
2,

sin θ = −v2/
√
v2

1 + v2
2.

(7.15)

Each Givens rotation can be used to cancel out an element in the subdiagonal part of
A and successive Given rotations can be used to compute the upper triangular matrix
of a full qr factorization [51]. As the Givens matrices are orthogonal by definition,
their concatenation form the orthogonal matrix. Generally, the Givens rotations are
not actually performed by building a whole G(i, j) matrix and doing a matrix product.
Indeed, as the product G(i, j)A will only affect the i-th and j-th rows of A, one can use
the smaller matrix H(i, j) and replace the previous matrix product by

H(i, j) rowij(A). (7.16)

78

7.4 Rank Downgrade
One way to update J−1 for the next iteration of the quadrature rule extraction algorithm
is the computation of the qr factorization related to the new matrix A ′ in order to re-
cover the orthogonality propriety, then use (7.7) to obtain the Jacobian and its pseudo
inverse. However, it is clear that recomputing the qr factorization from scratch at each
iteration of the process for extracting the embedded quadrature rule may become very
expensive when m is large.

An alternative is the so-called rank downgrade of the thin qr factorization [52], this
method allows one to update the factorization matrices related to A for the ones related
to a new matrix A ′ where a column or a row has been removed or added. In the present
case, the j-th column of A> is deleted at each iteration, we thus would like to update
the decomposition for A having its j-th row deleted. This update can be achieved first
by computing a permutation matrix P moving the row to be deleted at the bottom of
the original matrix, one can write

PA = PQR =
[
A ′

a>

]
=
[

Q̄
q>

]
R, (7.17)

where a is the row be deleted and q is the last row of the permuted orthogonal matrix.
As adding a row of zeros at the bottom of R and an arbitrary column vector v of size n
on the right side of Q does not change the output of the matrix product, one can write[

A ′

a>

]
=
[

Q̄ 0
q> 1

] [
R
0

]
= P

[
Q v

] [R
0

]
. (7.18)

In addition, it has been shown in [53] that performing a Gram-Schmidt process with
reorthogonalization allows the decomposition of the new matrix Q augmented by v into
the following matrix product:

[
Q v

]
=
[
Q g

] [I r
0 ρ

]
,

r = Q>v, ρ = |v ′|,
g = v ′/ρ, v ′ = v−Qr.

(7.19)

The vector g of size n is then decomposed into a subvector ḡ of size n− 1 augmented by
scalar σ, the relation (7.19) can thus be rewritten as[

Q̄ 0
q> 1

]
=
[

Q̄ ḡ
q> σ

] [
I r
0 ρ

]
. (7.20)

Moreover, injecting the decomposition of Q and v into the equations (7.19) allows the
computation of the two vectors

79

r =
[
Q̄> q

] [0
1

]
= q,

v ′ =
[
ḡ
σ

]
=
[
0
1

]
−
[

Q̄
q>

]
r =

[
−Q̄ q

1− q>q

]. (7.21)

The value of σ can finally be deduced by injecting the value of v ′ obtained above into
the equation of ρ presented in (7.19) and taking its square, leading to

ρ2 = |Q̄q|2 + (1− q>q)2

= q(I− q>q)q + (1− q>q)2

= 1− q>q = σρ.

(7.22)

If ρ is nonzero, one has ρ2 = ρσ so ρ = σ, otherwise one has q>q = 1 and since
q>q + σ2 ≤ 1 it can also be deduced that ρ = σ. The relation (7.20) becomes[

Q̄ 0
q> 1

]
=
[

Q̄ ḡ
q> ρ

] [
I r
0 ρ

]
. (7.23)

Finally, injecting this matrix decomposition into (7.18) gives[
A ′

a

]
=
[

Q̄ ḡ
q> ρ

] [
I r
0 ρ

] [
R
0

]
=
[

Q̄ ḡ
q> ρ

] [
R
0

]
. (7.24)

It is now possible to cancel-out the n first elements of the bottom row in the right-hand
side matrix by performing n successive Givens rotations such that

H> = G(n, n+ 1)> . . .G(1, n+ 1)>,[
q> ρ

]
H> =

[
0 α

]
.

(7.25)

Note that the resulting vector is normalized, meaning that |α| = 1 since the Givens
rotations do not modify the length. Thereby, applying these rotations to the right and
to the left of the decomposition obtained in (7.24) leads to[

Q̄ ḡ
q> ρ

]
H> =

[
Q ′ 0
0 α

]
,

H
[
R
0

]
=
[
R ′

β

]
,

(7.26)

where the right hand side of the second equation is upper Hessenberg due to the Givens
rotations, meaning that R ′ is upper triangular. Note that the column of zero above α is
forced by the orthogonality of the matrix. The thin qr factorization of the matrix A ′ is
finally obtained by

80

[
A ′

a

]
=
[

Q̄ q̄
q> ρ

]
H>H

[
R
0

]
,

[
A ′

a

]
=
[
Q ′ 0
0 α

] [
R ′

β

]
=
[
Q ′R ′

±β

]
,

⇔ A ′ = Q ′R ′.

(7.27)

A summary of the procedure of extracting an embedded quadrature rule with positive
weights from a Monte Carlo sample set is presented in Algorithm 5.

Algorithm 5: Embedded quadrature rule

Compute A : Aij = pj(xi)
Compute the thin qr factorization of A
Set w : wj = 1/m ∀j

while len(w) > n do
Set J−1 = Q
Find nontrivial z : Q>z = 0 with Newton-Raphson
Set α = wj/zj : j = argminj |wj/zj|
Replace w ← w− αz
Remove the j-th row of A and element of {w,x}
Update the thin qr factorization of A

end

Return {w,x}

7.5 Update the Pseudo Inverse
A second possibility to update J−1 for the next iteration of the quadrature rule extraction
is to directly update the inverted matrix instead of updating the qr factorization and
taking its transpose. Indeed, if the polynomials are orthonormal, one can directly obtain
the Moore–Penrose inverse of A> at the first iteration by

J = A>,
J−1 = A/m

(7.28)

and then deduce the Moore–Penrose inverse of the Jacobian matrix J ′ = J whose the
j-th column has been removed from the knowledge of J and J−1 obtained at a previous
iteration [54, 55]. One first compute

81

v1 = colj(J),
v>2 = rowj(J−1),
α = v>1 v2.

(7.29)

One then compute a permutation matrix P allowing to extract the submatrix J̄−1 such
that the following relation holds:

PJ−1 =
[
J−1
j

J̄−1

]
, (7.30)

where J−1
j denotes the j-th row of J−1. Depending on the scalar product α, the Moore–Penrose

inverse of the new Jacobian matrix is finally computed by

V = I + v1v>2
1− α if α < 1,

V = I− v2v>2
v>2 v2

if α ≥ 1,

⇔ J ′−1 = J̄−1V.

(7.31)

In both cases, one restrict to the exclusive use of at most m×n sized matrices. Note that
both approaches (i.e. updating the qr factorization or the pseudoinverse) lead to similar
accuracy, and the choice of the method may rely on the available pre-built linear algebra
libraries or their implementation. A summary of this alternative procedure is presented
in Algorithm 6.

Algorithm 6: Embedded quadrature rule

Compute A : Aij = pj(xi)
Set w : wj = 1/m ∀j
Set J−1 = A/m

while len(w) > n do
Find nontrivial z : A>z = 0 with Newton-Raphson
Set α = wj/zj : j = argminj |wj/zj|
Replace w ← w− αz
Remove the j-th row of A and element of {w,x}
Update J−1 = A>−1

end

Return {w,x}

82

References

[1] Space Exploration Technologies Corp, SpaceX. Online: https://www.spacex.com/.
2012.

[2] J.Lachaud et al. “A Generic Local Thermal Equilibrium Model for Porous Reactive
Materials Submitted to High Temperatures”. In: International Journal of Heat and
Mass Transfer (2017).

[3] Francisco Torres-Herrador et al. “A High Heating Rate Pyrolysis Model for the
Phenolic Impregnated Carbon Ablator Based on Mass Spectroscopy Experiments”.
In: Journal of Analytical and Applied Pyrolysis (2019).

[4] Coheur Joffrey et al. “Bayesian Parameter Inference for PICA Devolatilization Py-
rolysis at High Heating Rates”. 10th VKI PhD Symposium. 2019.

[5] Francisco Torres-Herrador et al. “Competitive Kinetic Model for the Pyrolysis of
the Phenolic Impregnated Carbon Ablator”. In: Aerospace Science and Technology
(2019).

[6] H. Arnst and J.P. Ponthot. “An Overview of Nonintrusive Characterization, Prop-
agation, and Sensitivity Analysis of Uncertainties in Computational Mechanics”.
In: International Journal for Uncertainty Quantification (2014).

[7] M.Riviera, J.Lachaudd, and P.M.Congedoc. “Ablative Thermal Protection System
Under Uncertainties Including Pyrolysis Gas Composition”. In: Aerospace Science
and Technology (2018).

[8] Xiu Dongbin and Karniadakis George Em. “The Wiener-Askey Polynomial Chaos
for Stochastic Differential Equations”. In: SIAM Journal on Scientific Computing
(2002).

[9] S.Oladyshkin and W.Nowak. “Data-Driven Uncertainty Quantification Using the
Arbitrary Polynomial Chaos Expansion”. In: Reliability Engineering System Safety
(2012).

[10] Golub et al. Calculation of Gauss Quadrature Rules. Tech. rep. Stanford, CA, USA,
1967.

[11] Blatman et al. “Adaptive Sparse Polynomial Chaos Expansion Based on Least
Angle Regression”. In: Journal of Computational Physics (2011).

[12] Abramowitz and Milton. Handbook of Mathematical Functions, With Formulas,
Graphs, and Mathematical Tables. New York, NY, USA: Dover Publications, 1974.

[13] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 2012.

[14] J.D. Jakeman, A. Narayan, and F. Franzelin. Polynomial Chaos Expansions for
Dependent Random Variables. Presentation: Sandia National Laboratories. 2019.

[15] Akira Imakura and Yusaku Yamamoto. “Efficient Implementations of the Modified
Gram-Schmidt Orthogonalization With a Non-standard Inner Product”. In: Japan
Journal of Industrial and Applied Mathematics (2017).

83

[16] Peter J. Olver. “Orthogonal Bases and the QR Algorithm”. Lecture notes at Uni-
versity of Minnesota. 2010.

[17] Mai et al. “Hierarchical Adaptive Polynomial Chaos Expansions”. In: Thematic
Conference on Uncertainty Quantification in Computational Sciences and Engi-
neering (2015).

[18] Haiyan Cheng and Adrian Sandu. “Collocation Least-squares Polynomial Chaos
Method”. In: Society for Computer Simulation International, 2010.

[19] Giray Öktena and Ahmet Göncüb. “Generating Low-discrepancy Sequences From
the normal Distribution: Box-Muller or Inverse Transform”. In: Mathematical and
Computer Modelling (2011).

[20] Sandamala Hettigoda. “Computation of Least Angle Regression Coefficient Profiles
and LASSO Estimates.” In: The University of Louisville’s Institutional Repository
(2016).

[21] Sudret Bruno and Caniou Yann. Analysis of Covariance Using Polynomial Chaos
Expansions. International Conference on Structural Safety and Reliability. 2013.

[22] Sudret Bruno and Chu Mai. “Computing Derivative-Based Global Sensitivity Mea-
sures Using Polynomial Chaos Expansions”. In: Reliability Engineering and System
Safety (2014).

[23] Y. Caniou and B. Sudret. Covariance-BasedSensitivity Indices Based on Poly-
nomial Chaos Functional Decomposition. Presentation: Eidgenössische Technische
Hochschule Zürich. 2013.

[24] Art B. Owen. “Sobol Indices and Shapley Value”. In: Society for Industrial and
Applied Mathematics (2013).

[25] Bertrand Iooss and Clementine Prieur. “Shapley Effects for Sensitivity Analysis
with Correlated Inputs, Comparisons with Sobol Indices, Numerical Estimation
and Applications”. In: International Journal for Uncertainty Quantification, Begell
House Publishers (2019).

[26] Stefan Weinzierl. Introduction to Monte Carlo Methods. Lecture notes: Research
School Subatomic Physics, Amsterdam. 2000.

[27] Alvise Sommariva and Marco Vianello. “Computing Approximate Fekete Points
by QR Factorizations of Vandermonde Matrices”. In: Computers and Mathematics
with Applications (2009).

[28] L. Bos et al. “Computing Multivariate Fekete and Leja Points by Numerical Linear
Algebra”. In: SIAM J. Numerical Analysis (2010).

[29] Bengt Ringnér. The law of the unconscious statistician. Centre for Mathematical
Sciences, Lund University. 2009.

[30] M. Roberts. The Unreasonable Effectiveness of Quasirandom Sequences. Online:
http://extremelearning.com.au. 2019.

[31] Corrado Chisari. The Sobol Quasirandom Sequence. Online: https://people.sc.fsu.
edu/ jburkardt/py src/sobol/sobol.html. 2020.

[32] Jérôme Barraquand. “Monte Carlo Integration, Quadratic Resampling, and Asset
Pricing”. In: Mathematics and Computers in Simulation (1995).

84

[33] Maria Cameron. Gaussian Quadrature. Lecture notes: University of Maryland, De-
partment of Mathematics. 2015.

[34] Len Bos et al. “Weakly Admissible Meshes and Discrete Extremal Sets”. In: Nu-
merical Mathematics, Theory, Methods and Applications (2011).

[35] M. Arnst et al. “Measure Transformation and Efficient Quadrature in Reduced-
Dimensional Stochastic Modeling of Coupled Problems”. In: International Journal
for Numerical methods in Engineering (2012).

[36] Laurent van den Bos et al. Generating Nested Quadrature Rules with Positive
Weights Based on Arbitrary Sample Sets. 2020.

[37] Jonathan Feinberga and Hans Petter Langtangena. “Chaospy, an Open Source Tool
for Designing Methods of Uncertainty Quantification”. In: Journal of Computa-
tional Science (2015).

[38] Mickael Gastineau. “Storage of Multivariate Polynomials”. Workshop at Observa-
toire de Paris. 2007.

[39] Takayuki Ishigami and Toshiteru Homma. “An Importance Quantification Tech-
nique in Uncertainty Analysis for Computer Models”. In: Proceedings First Inter-
national Symposium on Uncertainty Modeling and Analysis (1990).

[40] Jean Lachaud et al. Ablation Workshop Test Case. AF-SNL-NASA Ablation Work-
shop, Albuquerque, New Mexico. 2011.

[41] Albert Tarantola. Inverse Problem Theory and Methods for Model Parameter Esti-
mation. Society for Industrial and Applied Mathematics, Philadelphia, 2005.

[42] Ilker Yildirim. Bayesian Inference, Metropolis-Hastings Sampling. Lecture notes:
Department of Brain and Cognitive Sciences, University of Rochester. 2012.

[43] Christian P. Robert. The Metropolis-Hastings Algorithm. 2015.
[44] Agnan Kessy, Alex Lewin, and Korbinian Strimmer. “Optimal Whitening and

Decorrelation”. In: The American Statistician (2018).
[45] Roland Schöbi, Bruno Sudret, and Joe Wiart. “Polynomial Chaos Based Kriging”.

In: International Journal of Uncertainty Quantification (2015).
[46] E. Torre et al. “Data-Driven Polynomial Chaos Expansion for Machine Learning

Regression”. In: Journal of Computational Physics (2019).
[47] Maysara Ghaith and Zhong Li. “Propagation of Parameter Uncertainty in SWAT,

A Probabilistic Forecasting Method Based on Polynomial Chaos Expansion and
Machine Learning”. In: Journal of Hydrology (2020).

[48] Cython C-extension for Python. Online: https://cython.org/. 2007.
[49] Takeshi Terao, Katsuhisa Ozaki, and Takeshi Ogita. “LUCholesky QR algorithms

for thin QR decomposition”. In: Parallel Computing (2019).
[50] Michael Parker. Digital Signal Processing 101, Second Edition: Everything You Need

to Know to Get Started. Newnes, 2017.
[51] Che-Rung Lee. An Example of QR Decomposition. Department of Computer Science

, National Tsing Hua University. 2008.

85

[52] Hammarling Sven and Lucas Craig. Updating the QR factorization and the least
squares problem. Manchester Institute for Mathematical Sciences School of Mathe-
matics. 2008.

[53] J. Daniel et al. “Reorthogonalization and Stable Algorithms for Updating the Gram-
Schmidt QR Factorization”. In: Mathematics of Computation (1976).

[54] William W.Hager. “Updating the Inverse of a Matrix”. In: SIAM Review (1989).
[55] Yi Cao. Pseudo-Inverse Update. MATLAB Central File Exchange. 2009.

86

