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Abstract: In clinical routine, the diagnosis of cystic fibrosis (CF) is still challenging regardless of 
international consensus on diagnosis guidelines and tests. For decades, the classical Gibson and 
Cooke test measuring sweat chloride concentration has been a keystone, yet, it may provide normal 
or equivocal results. As of now, despite the combination of sweat testing, CFTR genotyping, and 
CFTR functional testing, a small fraction (1–2%) of inconclusive diagnoses are reported and justifies 
the search for new CF biomarkers. More importantly, in the context of precision medicine, with a 
view to early diagnosis, better prognosis, appropriate clinical follow-up, and new therapeutic de-
velopment, discovering companion biomarkers of CF severity and phenotypic rescue are of utmost 
interest. To date, previous sweat proteomic studies have already documented disease-specific var-
iations of sweat proteins (e.g., in schizophrenia and tuberculosis). In the current study, sweat sam-
ples from 28 healthy control subjects and 14 patients with CF were analyzed by nanoUHPLC-Q-
Orbitrap-based shotgun proteomics, to look for CF-associated changes in sweat protein composition 
and abundance. A total of 1057 proteins were identified and quantified at an individual level, by a 
shotgun label-free approach. Notwithstanding similar proteome composition, enrichment, and 
functional annotations, control and CF samples featured distinct quantitative proteome profiles sig-
nificantly correlated with CF, accounting for the respective inter-individual variabilities of control 
and CF sweat. All in all: (i) 402 sweat proteins were differentially abundant between controls and 
patients with CF, (ii) 68 proteins varied in abundance between F508del homozygous patients and 
patients with another genotype, (iii) 71 proteins were differentially abundant according to the pan-
creatic function, and iv) 54 proteins changed in abundance depending on the lung function. The 
functional annotation of pathophysiological biomarkers highlighted eccrine gland cell perturba-
tions in: (i) protein biosynthesis and trafficking, (ii) CFTR proteostasis and membrane stability, and 
(iii) cell-cell adherence, membrane integrity, and cytoskeleton crosstalk. Cytoskeleton-related bi-
omarkers were of utmost interest because of the consistency between variations observed here in 
CF sweat and variations previously documented in other CF tissues. From a clinical stance, nine 
candidate biomarkers of CF diagnosis (CUTA, ARG1, EZR, AGA, FLNA, MAN1A1, MIA3, LFNG, 
SIAE) and seven candidate biomarkers of CF severity (ARG1, GPT, MDH2, EML4 (F508del 
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homozygous), MGAT1 (pancreatic insufficiency), IGJ, TOLLIP (lung function impairment)) were 
deemed suitable for further verification. 

Keywords: cystic fibrosis; human eccrine sweat; shotgun proteomics; companion biomarkers; actin 
cytoskeleton 
 

1. Introduction 
In clinical routine, the diagnosis of Cystic Fibrosis (CF) is confirmed in the presence 

of both clinical manifestations of the disease and evidence of CFTR loss-of-function, ac-
cording to consensus, yet guidelines are still evolving [1,2]. As of today, CF diagnosis re-
mains challenging due to: (i) the high number of mutations and phenotypes [3–5], (ii) the 
struggle with the differential diagnosis in a small fraction (1–2%) of equivocal cases (e.g., 
between CF and CFTR-Related Metabolic Syndrome/CF Screen Positive, Inconclusive Di-
agnosis (CRMS/CFSPID) cases), but also in regard to (iii) the worldwide implementation 
of currently available newborn screening strategies and diagnosis tests [6]. The Gibson 
and Cooke sweat test [7] (the measurement of chloride concentration in sweat secreted 
following cholinergic stimulation with pilocarpine) has been the cornerstone of CF diag-
nosis for decades. Genetic analysis of CFTR and functional testing of CFTR (nasal potential 
difference, intestinal current measurements, or forskolin-induced swelling in intestinal 
organoids) complete the panel of currently available diagnostic tests. CF likeliness is high 
for sweat chloride concentrations above 60 mM, in the presence of two CF-causing muta-
tions together with the demonstration of CFTR dysfunction. However, CF is unlikely for 
sweat chloride concentrations below 30 mM, in the absence of CF-causing mutations to-
gether with the demonstration of the functional integrity of CFTR. Cases featuring normal 
or equivocal sweat chloride concentrations, CFTR variants with unknown phenotypic sig-
nification and equivocal CFTR function make room for the development of new CF bi-
omarkers. Moreover, in the context of personalized medicine, prognostic biomarkers and 
companion diagnostic biomarkers are valuable for the earliest and most appropriate ther-
apeutic intervention [8]. In addition, in the context of therapeutic development, bi-
omarkers of clinical response and phenotypic rescue (e.g., CFTR/F508del CFTR physical 
or functional protein interactors) are critical to the emergence and advance of new thera-
pies [9–11]. 

Sweat is a biological fluid of utmost interest in the search for CF biomarkers since 
sweat collection and testing have already been integrated into CF diagnosis guidelines. 
The collection of sweat is less invasive than that of other matrices such as blood and bron-
choalveolar fluid or nasal and intestinal biopsies. Moreover, the recent advances in high-
resolution, high-sensitivity analytical techniques allow working with sweat volumes col-
lected by means of standardized collection methods [12–15] on par with the Gibson and 
Cooke sweat test volume ranges and standards, typically ranging from 20 to 100 µL for a 
protein concentration ranging from 0.1 to 1 µg·µL−1. 

Remarkably, despite a low protein concentration, the proteomic analysis of human 
sweat already proved to be an informative source of pathophysiological biomarkers. For 
instance, disease-specific profiles of sweat proteins were described in patients with schiz-
ophrenia [12] or tuberculosis [13]. 

Here, with a view to discovering new protein biomarkers of CF for precision medi-
cine and therapeutic development, the proteomic profiles of sweat from patients with CF 
and healthy control subjects were compared. Downstream sweat collection following the 
sweat test gold standard, the nanoUHPLC-Q-Orbitrap-based analytical workflow charac-
terized, identified, and quantified 1057 proteins at an individual level, by means of a shot-
gun label-free strategy. Distinct sweat proteome profiles were observed in CF, due to 
pathophysiological inter-individual variations of the sweat proteome. Functional annota-
tion of the differentially expressed proteins was performed. Interestingly, cytoskeleton-
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related biomarkers varied consistently in CF sweat, as reported here, and in other CF tis-
sues, as documented in previous works. With regards to the clinical relevance of sweat 
proteins, candidate biomarkers of CF diagnosis and CF severity were deemed of interest 
for further investigation. 

2. Materials and Methods 
The study was conducted according to the guidelines of the Declaration of Helsinki 

and approved by the Ethics Committee of Cliniques Universitaires Saint-Luc–Université 
Catholique de Louvain faculty hospital (ClinicalTrials.gov identifier: NCT03993600, date 
of approval 4 December 2018). A material transfer agreement was signed with the Uni-
versity of Liège for sample analysis. Informed consent was obtained from all subjects in-
volved in the study. 

2.1. Sweat Collection 
Sweat samples were collected from 30 healthy volunteers (15 females, 15 males) and 

15 patients with CF (11 males, 4 females) under the most standardized and spectroscopi-
cally pure conditions following the current recommendations for the Gibson and Cooke 
sweat test [16]. In short, the volar region of the forearms was chosen based on its high 
density in eccrine glands and low density in apocrine/apoeccrine glands together with its 
easy access. Sweat samples were collected from each forearm successively, from fasting 
and well-hydrated individuals. Before sampling, the tested region was washed with 70% 
ethanol, rinsed with ultrapure water, and dried using ashless filter paper. Sweat secretion 
was stimulated by pilocarpine iontophoresis using pilocarpine gel-padded (Pilogel® discs, 
ELITechGroup, Brussels, Belgium) electrodes. A 5 mA current (Webster Sweat Inducer, 
Model 3700, ELITechGroup, Brussels, Belgium) was applied for 5 min. After stimulation, 
the electrodes were removed and a Macroduct Sweat Collector (ELITechGroup, Brussels, 
Belgium) (blue dye removed with 70% ethanol and ashless filter paper) was attached in 
the place of the cathode to collect sweat for 30 min. At the end of the collection, the tubing 
was uncoiled, cut off, and connected to a needle and syringe to transfer sweat to a 0.6 mL 
micro-tube. 

2.2. Sample Preparation for Shotgun Proteomics 
Pure, undiluted sweat samples were processed in three series of ten control samples 

and two series of seven and eight CF samples. Five sample preparation rounds (1 per 
series) were performed to avoid any technical bias that might come from a single sample 
preparation experiment. 

Sweat protein concentration was estimated using the Pierce Micro BCA™ Protein 
Assay kit (#23235, ThermoFisher Scientific, Waltham, MA, USA) according to the manu-
facturer’s instructions. Ten micrograms of proteins were precipitated by incubation in 
90% acetonitrile for 30 min at 4 °C followed by centrifugation for 10 min at 4 °C, at 10,000× 
g. The protein pellet was re-suspended in 50 mM ammonium bicarbonate and then incu-
bated in: (i) 10 mM DTT (dithiothreitol) for 40 min at 56 °C, under stirring at 600 rpm 
(Thermomixer comfort, Eppendorf, Hamburg, Germany), to reduce disulfide bonds, (ii) 
20 mM iodoacetamide protected from light for 30 min at room temperature to alkyl-
ate/block cysteine residues, (iii) 11 mM DTT protected from light for 10 min at room tem-
perature to quench the residual iodoacetamide, (iv) mass-spectrometry grade trypsin 
(Pierce™ Trypsin Protease, MS Grade, ThermoFisher Scientific, Waltham, MA, USA) at a 
1:50 enzyme:protein ratio (protein concentration = 0.25 µg·µL−1) for 18 h at 37 °C, under 
stirring at 600 rpm (Thermomixer comfort, Eppendorf, Hamburg, Germany), (v) MS-
grade trypsin in 80% acetonitrile, at a 1:100 enzyme:protein ratio for 3 h at 37 °C, under 
stirring at 600 rpm (Thermomixer comfort, Eppendorf, Hamburg, Germany). Digestion 
was stopped by adding TFA (trifluoroacetic acid) to a final concentration of 0.5% (v/v). 
Samples were dried in a vacuum concentrator and re-suspended at 3.75 µg/20 µL in 0.1% 
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TFA. At this step, aliquots from each control sample were collected and mixed in three 10-
sample pools, considering three series of 10 individual samples and an average pooled 
sample per series. CF samples were only processed as individual samples. No CF pooled 
library was prepared. Individual samples and pooled samples were desalted with C18 Zip 
Tips according to the manufacturer’s recommendations, dried, and re-suspended at 3 µg/9 
µL (injection volume) in 0.1% TFA spiked with an equivalent of MassPREP Digestion 
Standard Mixture 1 (MPDS Mix 1, #186002865, Waters, Milford, MA, USA) corresponding 
to 50 fmol of ADH (alcohol dehydrogenase 1 from Saccharomyces cerevisiae) content per 
injection volume. 

2.3. Liquid Chromatography and Mass Spectrometry Data Acquisition 
The control individual samples and pooled samples were randomly sorted into three 

series of ten individual samples plus one pooled sample while the CF samples were ran-
domly sorted into two series of seven and eight individual samples. All samples were 
analyzed using an ACQUITY UPLC M-Class liquid chromatography system (Waters, Mil-
ford, MA, USA) coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap mass spec-
trometer (ThermoFisher Scientific, Waltham, MA, USA). Five acquisition rounds (1 per 
series) were performed to avoid any technical bias that might come from a single LC-MS 
acquisition series. 

The chromatographic separation consisted of a 3 min long trapping step performed 
on a reversed-phase (RP) ACQUITY UPLC M-Class Trap Column (nanoEase MZ Sym-
metry C18 Trap Column, 100 Å, 5 µm, 180 µm × 20 mm, Waters, Milford, MA, USA) fol-
lowed by a 177–minute elution step on an ACQUITY UPLC M-Class Analytical Column 
(nanoEase MZ HSS T3 C18 Analytical Column, 100 Å, 1.8 µm, 75 µm × 250 mm, Waters, 
Milford, MA, USA) using a gradient of mixed water and acetonitrile, both supplemented 
with 0.1% formic acid as eluents. 

The mass acquisition was operated in data-dependent positive ion mode. Source pa-
rameters were set at: (i) 2.3 kV for spray voltage, (ii) 270 °C for capillary temperature, (iii) 
S-lens RF level = 50.0. 

For individual samples, MS spectra were obtained for scans between m/z 400 and 
m/z 1600 with a mass resolution of 70,000 at m/z 200, an Automated Gain Control (AGC) 
of 3 × 106, a maximum Injection Time (IT) of 200 ms, and an internal lock mass calibration 
at m/z 445.12003. MS/MS spectra were obtained for the top 10 most intense ions of each 
MS scan (TopN = 10) with a mass resolution of 17.500 at m/z 200, an isolation window of 
1.6 m/z with an isolation offset of 0.5 m/z, an AGC of 1 × 105, a maximum IT of 200 ms, 
and an (N)CE at 28. The exclusion of single-charged ions and a dynamic exclusion of 10 s 
were enabled. 

For each pooled sample, the MS acquisition consisted of a two-round strategy of three 
injections each. During both rounds, MS spectra were obtained for scans between m/z 400 
and m/z 528.3, m/z 524.3 and m/z 662.8, or m/z 658.8 and m/z 1600, in three independent 
analyses, respectively, with a mass resolution of 70,000 at m/z 200, an AGC of 3 × 106, a 
maximum IT of 200 ms, and internal lock mass calibrations at m/z 445.12003, m/z 
536.16537, and m/z 684.20295, respectively. During the first acquisition round, MS/MS 
spectra were obtained for the top 25 most intense ions of each MS scan (TopN = 25) with 
a mass resolution of 17.500 at m/z 200, an isolation window of 1.6 m/z with an isolation 
offset of 0.5 m/z, an AGC of 1 × 105, a maximum IT of 250 ms, and an (N)CE at 28. For the 
second acquisition round, an exclusion list for all signals related to peptides identified in 
the first round with more than 4 PSM (peptide–spectrum matches) was uploaded to the 
methods. During the second acquisition round, MS/MS spectra were obtained for the top 
10 most intense ions of each MS scan (TopN = 10) with a mass resolution of 17.500 at m/z 
200, an isolation window of 1.6 m/z with an isolation offset of 0.5 m/z, an AGC of 1 × 105, 
a maximum IT of 600 ms and an (N)CE at 28. The exclusion of single-charged ions and a 
15 s dynamic exclusion were enabled for both rounds. 
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2.4. Bioinformatic Analysis 
Raw MS data were submitted to protein identification and label-free quantification 

by the MaxQuant software [17] (version 1.6.6.0) using default settings when not specified 
otherwise. Identification consisted of a search against a custom-made reviewed Uniprot 
Homo sapiens database (20443 Homo sapiens entries + 4 MPDS Mix 1 entries, release date 8 
August 2019) with Carbamidomethyl (C) set as a fixed modification Oxidation (M), De-
amidation (NQ) set as variable modifications and a minimum of two peptides (including 
one unique peptide) required. LFQ was enabled and separated between control and CF 
groups with a minimum LFQ ratio count of 1, no Fast LFQ, and no requirement of MSMS 
for LFQ comparison. The ‘match between runs’ (MbR) option was enabled and tuned to 
allow matches from the library (pooled samples considered as parameter group 1, ‘match 
from’) and between individual samples (parameter groups 0 and 2, ‘match from and to’). 
A match time window of 2.5 min was used. 

MaxQuant output data (proteingroups.txt) were submitted to statistical analysis us-
ing the Perseus software [18] (version 1.6.10.43). ‘Only identified by site’, ‘REVERSED’, 
and Contaminant data were filtered out. LFQ intensities were log2-transformed and pro-
teins with less than 50% of valid values were filtered out. Principal Component Analysis 
(PCA) was performed on Z-score-normalized LFQ intensities. 

Computation of Pearson’s correlation coefficients (PCC) and average Euclidian dis-
tance hierarchical clustering were used to classify samples according to quantitative pro-
files of pairwise correlation with other samples in the cohort, without a priori. Available 
clinical parameters were tested for the significance of their effects on the proteome profile 
clustering by PERMANOVA. 

PERMANOVA (PERmutational Multivariate ANalysis Of VAriance) tests were per-
formed with the PAST software [19] (version 4.04) using the hierarchical clustering dis-
tance matrix with a number of permutations set to 999. 

Sparse Partial Least Squares (SPLS) regression was performed as an unsupervised 
multivariate analysis to test the association between highly correlated covariates from the 
proteomic data (matrix X of multivariate predictors) and the clinical data (matrix Y of 
multivariate responses). Before SPLS processing, the predictors and responses were cen-
tered. η, a sparsity tuning parameter, and k, the number of latent components were deter-
mined among possible numbers for η − η ∈ (0.1,0.9) and k − 1 ≤ k ≤ 15. 𝜂 = 0.69 and k = 2 
minimized the mean squared prediction error (MSPE, Supplementary Figure S1). 

Control versus CF group comparison was achieved by a two-sample Student’s t-test 
with a p-value-based threshold. Proteins with a p-value below 0.05 were considered sig-
nificantly differentially expressed between the control and CF groups. A second compar-
ison was performed by a two-sample Student’s t-test with a permutation-based FDR cal-
culation and a q-value-based threshold. 

Differentially abundant proteins were characterized based on both the p-value (a less 
stringent cut-off threshold (p < 0.05) for biological relevance) and q-value (a more stringent 
permutation-based FDR threshold (q < 0.05) for clinical biomarker relevance) thresholds. 
On top of the q-value cut-off, stringent data filtering based on sample occurrence, differ-
ence significance, and difference value was applied to a shortlist of candidate clinical bi-
omarkers. 

Control versus CF Volcano plot visualization was achieved by a two-sample Stu-
dent’s t-test with a permutation-based FDR calculation (test = t-test; side = both; number 
of randomizations = 250; no grouping in randomizations; FDR = 0.05; s0 = 0.1). 

Functional annotations of identified proteins and over-representation/enrichment 
tests were conducted using the online search engine powered by the PANTHER Classifi-
cation system. The PANTHER Overrepresentation test (release date: 28 July 2020 and 24 
February 2021) parsed the PANTHER database (version 16.0, release date: 1 December 
2020) using the Homo sapiens reference list, the PANTHER-Gene Ontology-Slim, and the 
PANTHER Protein Class annotation dataset. Only p < 0.05 items were retained and con-
sidered significantly over-represented. 
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Visualization of proteome overlaps was performed by submitting SwissProt acces-
sion IDs to the online Venn diagram generator Venny (version 2.1.0, https://bioin-
fogp.cnb.csic.es/tools/venny, accessed on 8 October 2021). 

Visualization of interaction networks was performed by submitting SwissProt acces-
sion IDs to STRING (version 11.0, https://string-db.org, accessed on 13 October 2021). 

For concision, all protein names were abbreviated with the related gene names.  

2.5. Characterization of Sweat Actin 
Sweat actin concentration was determined for each individual sample using the “To-

tal Protein Approach” to estimate absolute quantification [20]. A sweat aliquot equivalent 
to 5 ng of actin was diluted with ultrapure water (q.s. 10 µL, final concentration 0.5 
ng·µL−1). Phalloidin-TRITC stock solution was prepared by dissolving 0.1 mg of phal-
loidin-TRITC (P1951, Phalloidin-TRITC peptide from Amanita phalloides, Sigma-Aldrich) 
in 1 mL of 50% methanol (stock concentration 0.1 mg·mL−1). Buffer A consisted of a 20 mM 
potassium acetate/20 mM Tris acetate, pH 7.5 solution. F-actin microfilaments were la-
beled with phalloidin-TRITC by diluting sweat aliquots with buffer B (1:10 dilution of dye 
conjugate stock solution in buffer A) to a final concentration of 0.25 ng·µL−1 (final volume: 
20 µL) and incubating for 45 min, at room temperature, under stirring at 600 rpm, pro-
tected from light. 

To eliminate residual dye conjugates, labeled F-actin was precipitated with other 
sweat proteins by incubation in 90% acetonitrile for 30 min at 4 °C followed by centrifu-
gation for 10 min at 4 °C, at 10,000× g. The supernatant containing free dye conjugates in 
the solution was discarded. The protein pellet containing phalloidin-TRITC-F-actin was 
re-suspended in 20 µL of buffer A. Twenty µL of labeled F-actin solution were put on a 
microscope slide covered with a cover slip sealed with nail polish. 

Ten individual slides were prepared from ten individual sweat samples (5 controls, 
5 CFs). F-actin microfilaments were observed with an Olympus IX81 inverted microscope 
(Olympus Corporation, Tokyo, Japan) equipped with an X-Cite 120PC Q 120 W Hg lamp 
(Excelitas Technologies, Waltham, MA, USA) for epifluorescence illumination, a red filter 
(excitation wavelength range 560 +/− 55 nm; emission wavelength range 645 +/− 75 nm) 
and a 100X oil-immersed objective (UPLSAPO100XO, Olympus Corporation, Tokyo, Ja-
pan). The image was detected using an Olympus XC50 CCD color camera (Olympus Cor-
poration, Tokyo, Japan). 

For each individual microscope slide, 20 snapshots were taken as followed: 10 snap-
shots at an operator-chosen position and 10 snapshots at a random position. 

Images were automatically analyzed using ImageJ (version 1.53c). Image analysis 
consisted of an in-house macro implementation: pixel-to-µm scaling, conversion to 8-bit 
format, auto-thresholding using the MaxEntropy method [21], selection of thresholded 
particles (size filter = 200 pixels, to filter noise particles out), and particle analysis (count, 
area, perimeter, length, and width). Control versus CF comparison was achieved by an 
unpaired t-test using GraphPad Prism (version 7.00). 

2.6. Experimental Design and Statistical Rationale 
All sweat samples were collected under steady state conditions from subjects with 

no known acute or chronic illness in controls and no exacerbation in patients with CF, no 
drug (controls) or additional drug (CF) use at the time of collection, no cosmetic use or 
skin damage at the site of collection, no clinical sign of dehydration. Female subjects were 
neither pregnant nor lactating. Patients with CF had a confirmed diagnosis and were clin-
ically stable, having a Forced Expiratory Volume in one second (FEV1) % predicted ≥ 30% 
and an O2 saturation ≥ 92%. Patients with CF, tested under stable conditions, were not 
enrolled in other clinical trials or under CFTR modulator therapies. All subjects were 
asked to be fasting and kept well-hydrated for a minimum of 8 h before collection. 
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After sweat collection, sweat chloride (coulometry, ChloroChek chloridometer, 
ELITechGroup, Brussels, Belgium), sodium and potassium concentrations (flame photom-
etry, Flame Photometer Model 420, Sherwood Scientific, Cambridge, UK) were measured. 

Due to the small and variable sweat volumes collected, together with the relatively 
low and variable protein concentrations of sweat, plus the need to store sweat samples for 
further analyses, no technical replicate could be performed for each sample. For the same 
reasons, no CF sample library was analyzed considering the high proteome similarity be-
tween the control and CF proteomes as well as for the use of the inter-sample match be-
tween the run option. To account for technical variability, sweat samples were processed 
and analyzed in three series of ten control samples plus a pooled sample and two series 
of seven and eight CF samples. The inter-series technical variability for a given group was 
negligible when compared to the biological variability [22]. Inter-sample technical varia-
bility was reduced by separating LFQ normalization between the control and CF groups: 
considering the equivalent amount of proteins processed and injected for all samples, the 
computation of both non-normalized data and separated LFQ normalized data drew the 
same general biological conclusions (both differential proteomic analysis and differential 
quantification of the quality control standard digest spike-in were also similar). However, 
global LFQ normalization led to a quantification bias (e.g., the 1:1:1:1 ratio of the standard 
protein digest spike-in was lost). Protein abundances between the two groups were not 
suitable for global normalization (Supplementary Figure S2). 

3. Results 
3.1. The Proteome of CF Sweat 

Sweat samples from 30 controls and 15 patients with CF—see Supplementary Tables 
S1 and S2 for complete clinical data summary—were analyzed by nanoLC-MS/MS (Figure 
1). Based on chromatogram discrepancy and poor correlation with the other sample data, 
likely of technical origin, two female control samples and one male CF sample were dis-
carded (Supplementary Figure S3). Clinical data of the remaining control and patients 
with CF are summarized in Tables 1 and 2. Considering a minimum of two peptides—
including one unique peptide—and an FDR below 0.01 for protein identification, a total 
of 1057 proteins were identified, accounting for data filtering (Supplementary Table S3) 
and the standard protein mixture (MPDS Mix 1, Waters) for quality control. About 520 ± 
18 (mean ± SEM, control: 542 ± 23, CF: 476 ± 26) proteins were peptide-spectrum matching 
hits while 317 ± 7 proteins (control: 310 ± 9, CF: 330 ± 11) required matching between runs 
for identification for an average total of 837 ± 14 proteins (control: 853 ± 18, CF: 805 ± 22) 
identified in each sample (Figure 2A). A total of 314 proteins were consistently identified 
across all samples. 

The comparison of protein identifications between control and CF sweat proteomes 
emphasized a near-complete overlap and a high degree of similarity: 98% of proteins were 
common to the control and CF groups and only 18 out of 1057 identified proteins were 
exclusive to control sweat (Figure 2B). Exclusive proteins were in the low abundance and 
low occurrence tiers so one could not consider them biologically relevant. The classifica-
tion and over-representation analysis of identified proteins highlighted the predominance 
of (i) proteins related to proteolytic activity, proteases, and peptidases as well as their re-
spective inhibitors, (ii) cytoskeletal proteins, i.e., protein components and regulators (actin 
and Actin-Binding Proteins (ABP)) of the actin cytoskeleton organization and dynamics, 
(iii) proteins of reactive oxygen species metabolism and oxidative stress, (iv) markers of 
UPR and RE stress, (v) components and regulators of the proteasome, or (vi) proteins of 
all major metabolic pathways, among the over-represented proteins mapped to annota-
tion clusters of the PANTHER Classification system and Gene Ontology Enrichment anal-
ysis, mapping protein IDs against PANTHER GO Slim annotation datasets (Supplemen-
tary Tables S4–S7). 
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Figure 1. General experimental workflow. (A) Standardized sweat collection method. (B) Single 
sample preparation method for subsequent sweat proteomics and metabolomics studies. (C) Ana-
lytical and bioinformatic strategy using the “match between runs” option (MaxQuant). 1. Genera-
tion of a sweat reference proteome database from pooled control samples. A two-round analysis of 
three limited m/z range acquisitions was performed. A precursor exclusion list was applied for the 
second-round experiment. 2. Individual sweat sample analyses. (D) Statistical data processing tools. 
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Table 1. Clinical data summary. Student’s t-test, significantly different parameters highlighted in green, p < 0.05 *, p < 0.01 **, p < 0.001 ***. Green (control) and red 
(CF) shades of background color indicated the different analytical series. 

Sample IDs Age  
(Years) 

Sex BMI 
(kg/m²) 

Collected Volume 
(µL) (Right Arm) 

Collected Volume 
(µL) (Left Arm) 

[Na+] 
(mM) 

[Cl−] 
(mM) 

[K+] 
(mM) 

[Protein] 
(µg/µL) 

Na+ 

(µmol) 
Cl− 

(µmol) 
K+ 

(µmol) 
Protein 

(µg) 
 

19_2792 36 M 22.7 62.1 87.8 56 26 8 0.488 3.48 1.61 0.50 42.85 

Control  
(n = 28) 

19_2796 29 M 31.6 48.1 42.4 23 4 10 0.557 1.11 0.19 0.48 23.62 
19_2805 28 M 30.0 98.9 97.5 59 24 7 0.340 5.84 2.37 0.69 33.15 
19_2812 40 M 25.5 89.6 96.5 39 18 8 0.432 3.49 1.61 0.72 41.69 
19_2866 74 M 21.3 56.9 64.2 37 12 12 0.551 2.11 0.68 0.68 35.37 
19_2823 31 F 19.8 71.8 89.8 32 10 10 0.262 2.30 0.72 0.72 23.53 
19_2830 30 F 23.1 94.0 77.9 32 11 8 0.462 3.01 1.03 0.75 35.99 
19_2843 24 F 18.2 63.5 64.1 65 36 10 0.472 4.13 2.29 0.64 30.26 
19_2849 27 F 20.5 97.7 84.6 22 10 8 0.432 2.15 0.98 0.78 36.55 
19_2856 29 F 18.7 79.7 70.4 28 6 8 0.422 2.23 0.48 0.64 29.71 
19_3163 32 F 19.4 44.8 30.1 30 12 9 0.785 1.34 0.54 0.40 23.63 
19_3166 26 F 18.9 57.2 64.0 44 22 10 0.494 2.52 1.26 0.57 31.62 
20_1490 39 F 21.3 40.1 43.5 26 12 8 0.371 1.04 0.48 0.32 16.14 
19_3177 28 M 23.1 35.9 27.0 51 30 8 0.475 1.83 1.08 0.29 12.83 
19_3190 29 M 24.5 98.6 80.7 55 28 6 0.406 5.42 2.76 0.59 32.76 
19_3194 41 M 24.1 34.4 42.7 36 8 9 0.736 1.24 0.28 0.31 31.43 
19_3197 36 M 22.5 27.5 82.7 91 44 8 0.504 2.50 1.21 0.22 41.68 
19_3207 28 M 23.8 84.9 93.2 45 22 7 0.364 3.82 1.87 0.59 33.92 
20_1494 29 F 20.9 61.3 64.4 54 30 12 0.441 3.31 1.84 0.74 28.40 
19_2869 28 F 17.7 57.1 45.9 67 10 24 0.646 3.83 0.57 1.37 29.65 
19_2877 33 F 22.3 102.7 83.7 35 12 7 0.350 3.59 1.23 0.72 29.30 
19_2882 24 F 20.6 57.2 53.6 29 10 6 0.377 1.66 0.57 0.34 20.21 
19_3169 57 F 19.2 35.6 29.9 58 24 8 0.661 2.06 0.85 0.28 19.76 
20_1479 25 M 24.5 56.4 72.6 69 38 7 0.336 3.89 2.14 0.39 24.39 
20_1484 24 M 23.6 99.0 93.4 49 20 8 0.622 4.85 1.98 0.79 58.09 
19_2817 26 M 20.8 47.4 40.4 73 44 9 0.314 3.46 2.09 0.43 12.69 
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19_3448 30 M 20.6 91.2 74.0 50 22 10 0.448 4.56 2.01 0.91 33.15 
19_3456 31 M 22.6 101.5 99.5 69 40 5 0.198 7.00 4.06 0.51 19.70 
20_497 36 M 24.7 98.5 92.1 122 106 14 0.492 12.02 10.44 1.38 45.31 

CF  
(n = 14) 

20_504 32 M 26.8 74.6 85.8 106 100 17 0.424 7.91 7.46 1.27 36.38 
20_511 57 M 25.3 72.0 34.6 75 56 9 0.472 5.40 4.03 0.65 16.33 
20_1257 43 M 25.4 55.3 71.4 130 102 9 0.208 7.19 5.64 0.50 14.85 
20_1264 31 M 20.9 54.0 30.2 103 92 14 1.315 5.56 4.97 0.76 39.71 
20_1269 55 M 20.5 59.9 53.1 151 114 8 0.237 9.04 6.83 0.48 12.58 
20_1277 23 F 20.8 103.4 102.7 106 102 13 0.414 10.96 10.55 1.34 42.52 
20_2375 46 F 21.6 14.1 43.2 67 61 13 1.060 0.94 0.86 0.18 45.79 
20_2380 35 M 18.5 62.9 90.3 109 84 14 0.489 6.86 5.28 0.88 44.16 
20_2387 47 F 27.9 64.8 71.3 72 68 10 0.512 4.67 4.41 0.65 36.51 
20_2394 30 M 25.0 77.4 75.2 110 100 16 0.515 8.51 7.74 1.24 38.73 
20_2400 63 F 19.7 52.2 55.3 98 82 15 0.404 5.12 4.28 0.78 22.34 
20_2554 21 M 23.7 89.9 103.4 142 108 9 0.287 12.77 9.71 0.81 29.68 
20_2559 54 M 19.8 18.6 47.6 123 94 15 0.504 2.29 1.75 0.28 23.99 
Mean 33 

13 F  
15 M 

22.2 67.7 67.7 47 21 9 0.462 3.13 1.39 0.58 29.72  

Median 29 21.8 61.7 71.5 47 21 8 0.445 3.16 1.22 0.59 29.98  

SD 11 3.2 24.2 22.7 18 12 3 0.137 1.49 0.89 0.24 9.87  

SEM 2 0.6 4.6 4.3 3 2 1 0.026 0.28 0.17 0.05 1.87  

Mean 41 
4 F  

10 M 

22.9 64.1 68.3 108 91 13 0.524 7.09 6.00 0.80 32.06  

Median 40 22.7 63.9 71.4 108 97 14 0.481 7.02 5.46 0.77 36.44  

SD 13 3.0 25.8 24.6 25 18 3 0.303 3.44 2.98 0.39 11.93  

SEM 4 0.8 6.9 6.6 7 5 1 0.081 0.92 0.80 0.10 3.19  

t-test 
p-value 

0.034 *  0.503 0.662 0.941 <0.001 *** <0.001 *** 0.001 ** 0.368 <0.001 *** <0.001 *** 0.033 * 0.502  
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Table 2. Clinical data summary: genotype, clinical manifestations, and spirometry of patients with CF. PA, Pseudomonas aeruginosa, MSSA, meticillin-sensitive 
Staphylococcus aureus, MRSA, meticillin-resistant Staphylococcus aureus, AF, Aspergillus fumigatus, A. Sp., Achromobacter species, BCC, Burkholderia cepacia complex. 
Red shades of background color indicate the different analytical series. 

Sample IDs Genotype Pancreatic Insufficiency Onset Diabetes Onset Sputum Microbiology FEV1 %Predicted 
20_497 F508del/Y913S NO NO PA/MSSA 44.0 
20_504 F508del/F508del YES NO mucoid PA 46.4 
20_511 F508del/ND NO NO mucoid PA/AF 83.0 

20_1257 F508del/F508del YES NO PA/A. sp. 39.0 
20_1264 F508del/306insA YES NO PA/A. sp. 63.3 
20_1269 F508del/F508del YES YES PA 60.0 
20_1277 F508del/1717- 1G- > A YES NO - 101.0 
20_2375 F508del/1002-113-110delGAAT NO NO AF/MSSA 127.0 
20_2380 F508del/F508del YES NO PA/AF/MSSA 70.0 
20_2387 F508del/P574H NO NO PA 73.0 
20_2394 F508del/2184insA YES NO BCC/MRSA 42.0 
20_2400 1717-3T- > G/1717-3T- > G NO NO - 94.0 
20_2554 F508del/F508del YES NO intermittent PA 103.0 
20_2559 F508del/F508del YES YES A. sp./MRSA 59.0 

    Mean 71.8 
    Median 66.7 
    SD 26.7 
    SEM 7.1 

 



Cells 2022, 11, 2358 12 of 27 
 

 

 
Figure 2. High similarity of control and CF proteome in protein identification (A). Number of pro-
teins identified in each sample by MS/MS (in green) and by MbR (in purple), with the total number 
of identified proteins (in orange). (B) Protein identification overlap between control and CF samples. 

3.2. Analysis of Sweat Proteome Profiles 
A total of 1057 identified proteins were suitable for protein label-free quantification. 

For further statistical differential analysis between control and CF sample groups, only 
proteins identified and quantified in at least 50% of a sample group were used, amounting 
to 947 proteins. 

First of all, the hierarchical clustering of control and CF samples together confirmed 
CF-specific/control-specific proteome profiles of PCC since samples were sorted into eight 
clusters, grouping samples from the same subject group (Figure 3A, upper panel), without 
a priori. Only four samples (one control and three CF) were mismatched. According to 
PERMANOVA, the variations in proteome profiles between control and CF were signifi-
cantly correlated with Na+ and Cl− concentrations, protein concentration, Na+ amount, and 
CF status (Figure 3A, lower panel). Then, the hierarchical clustering of CF samples into 
five clusters of CF proteome profiles highlighted the inter-individual biological variability 
of CF sweat (Figure 3B, upper panel). According to PERMANOVA, the variations in CF 
sweat proteome profiles were significantly correlated with sweat Na+ and K+ concentra-
tions, protein concentration, and K+ amount (Figure 3B, lower panel). Interestingly, no 
significant correlation with CFTR genotype or clinical manifestations (pancreatic insuffi-
ciency, diabetes, airway infection status, or lung function impairment) was observed. 

SPLS regression selected 135 out of 1057 proteins as important variables with high 
correlations with clinical data (Supplementary Table S8A). Especially, SPLS confirmed the 
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correlation between sweat ion composition and protein profiles (Supplementary Figure 
S4) 

 
Figure 3. Sweat protein profiles discriminated patients with CF from control subjects, without cor-
relation with CF severity and complications (A). Heat-map representation of control versus CF 
sweat protein profiles. Control samples (blue color bar), CF samples (pink color bar). (B) Heat-map 
representation of CF sweat protein profiles. Hierarchical clustering of Pearson’s correlation coeffi-
cients using average Euclidian distance matrix. PERMANOVA test for significance of the correlation 
between clustering and clinical data distribution (number of permutations = 999, p < 0.05 *, p > 0.01 
**, p > 0.001 ***), ion formulae into brackets indicate ion concentrations and ion formulae without 
brackets indicate ion amounts. 

3.3. Characterization of Candidate CF Biomarkers 
The clustering of sweat proteome profiles like the sample grouping by PCA (Figure 

4A) resulted from the differential abundance of 402 out of 947 proteins (Supplementary 
Table S8B), as tested by a supervised two-sample t-test. CF was associated with a decrease 
in the expression of 351 out of 402 proteins in differential abundance, 51 out of 402 proteins 
being over-expressed. The proteome dynamic correlated with a partial depletion in CF 
sweat (as visualized in Figure 4B). 
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Of note, 17 of the 20 most abundant proteins in sweat [22] were in significantly dif-
ferential abundance between the control and CF groups (Supplementary Table S8B, high-
lighted in blue). In addition, kallikreins (KLK5, KLK11 (ESG-specific), KLK14) were sig-
nificantly decreased in CF sweat. (Supplementary Table S8B, highlighted in yellow)  

One-hundred and eighty-nine proteins were differentially abundant between the 
control and CF groups (11 up in CF, 178 down, Supplementary Table S8C) after a super-
vised two-sample t-test with permutation-based FDR calculation. Data filtering based on 
sample occurrence (protein found in all samples) significance (p < 0.001) and value (con-
trol-CF log2 LFQ difference ≥ 2 or control-CF log2 LFQ difference ≤ −2) of the difference in 
protein abundance highlighted nine candidate CF biomarkers of potential clinical rele-
vance (Figure 4). Decreases in the protein abundances of ARG1, CUTA, MAN1A1, AGA, 
EZR, SIAE, LFNG, MIA3, and FNLA (Figure 4C, panel a) between the control and CF 
groups were the most statistically significant. Only EZR and FLNA were closely function-
ally related, being involved in the integrity and stability of the cortical actin network. 

 
Figure 4. CF status and severity correlated with disease-specific abundances of sweat proteins. (A) 
PCA, CF (plain red squares), control (plain green dots). (B) Volcano plot, CF-overexpressed (plain 
red squares), CF-underexpressed (plain green squares), threshold curve (black bold line, FDR = 0.05, 
s0 = 0.1). (C) Box-and-whiskers representation of sweat protein abundances for (a) CF, (b) F508del 
homozygous, (c) PI, and (d) lung function candidate biomarkers. 
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According to the PANTHER-Gene Ontology functional annotation and over-repre-
sentation test (Supplementary Tables S9–S12), proteins involved in: (i) the hydrolase ac-
tivity (both protease/peptidase and glycosidase activity) of the lysosome, (ii) the structure 
and function of the proteasome, (iii) protein processing and mechanisms of ER stress and 
UPR, (iv) the structure of desmosomal anchoring junctions, and (v) the structure, organi-
zation, and dynamics of the actin cytoskeleton were over-represented in the set of differ-
entially abundant proteins (Figure 5). 

 
Figure 5. Interaction network mapping of sweat core CF biomarkers (182 proteins in 42/42 samples). 
The 182 query proteins resulted in 180 mapped proteins. Network settings included: Homo sapiens 
database, high confidence minimum required interaction score, hidden disconnected nodes, and 
confidence-based networking. 

Of note, the differential phenotypes of CFTR/F508del CFTR physical and functional 
interactions could be described in sweat since subsets of sweat CF biomarkers cross-
checked the CFTR interactome (n = 82, Figure 6A) and F508del CFTR interactome (n = 23, 
Figure 6B) as established by Pankow et al. [23]. 
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Figure 6. Interaction network mapping of the CFTR interactome and F508del CFTR interactome of 
sweat CF biomarkers. (A) Sweat CFTR interactors in CF-specific abundance (82/82 mapped pro-
teins). (B) Sweat F508del CFTR interactors in CF-specific abundance (22/23 mapped proteins). Net-
work settings included: Homo sapiens database, lowest confidence minimum required interaction 
score, hidden disconnected nodes, and confidence-based networking. CFTR was added to the list of 
sweat proteins of interest before analysis (red circle). 

CF Biomarker Profiles Partially Reflect CF Severity Related to CFTR Genotype 
To determine if CF biomarker profiles correlate with genotype, pancreatic status, air-

way infection status, or spirometry, computation of Pearson’s correlation coefficients, av-
erage Euclidian distance hierarchical clustering of samples, and PERMANOVA testing of 
available clinical parameters were applied to CF biomarkers only (n = 402). 

Firstly, the hierarchical clustering of all samples using only the protein abundance 
profiles of CF biomarkers generated CF and control groups sub-divided into five clusters 
of protein abundance profiles (Supplementary Figure S5A, upper panel), without a priori. 
According to PERMANOVA, the variations in CF biomarker profiles between control and 
CF were significantly correlated with sweat Na+, Cl−, and K+ concentrations, protein con-
centration, Na+, Cl−, and K+ amounts, and CF status (Supplementary Figure S5A, lower 
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panel). Secondly, the hierarchical clustering of CF samples (n = 14) using only the protein 
abundance profiles of CF biomarker sorted samples into six clusters (Supplementary Fig-
ure S5B, upper panel), without a priori. According to PERMANOVA, the variations in CF 
sweat proteome profiles were significantly correlated with CFTR genotype (F508del ho-
mozygous status) (Supplementary Figure S5B, lower panel). No significant correlation 
with clinical manifestations (pancreatic insufficiency, diabetes, airway infection status, or 
lung function impairment) was observed. 

3.4. Characterization of CF Severity Biomarkers 
The correlation between sweat CF biomarker profiles and CFTR genotype, as it was 

observed by PERMANOVA of hierarchical clustering, resulted from the differential abun-
dance of 68 proteins between F508del homozygous patients and patients with other gen-
otypes (Supplementary Table S13), as tested by a supervised two-sample t-test. Dermcidin 
(DCD), the most abundant protein in sweat, was significantly less abundant in F508del 
homozygous sweat (Supplementary Table S13, highlighted in blue). 

Concurrently, applying the same supervised statistics to patients with or without 
pancreatic insufficiency, 71 proteins were found differentially abundant (Supplementary 
Table S14). 

According to the PANTHER-Gene Ontology functional annotation and over-repre-
sentation test, proteins involved in: (i) the hydrolase activity (both protease/peptidase and 
glycosidase activity) of the lysosome and (ii) the structure and function of the ribosome 
were over-represented in both F508del homozygous and PI patients (Supplementary Ta-
bles S15–S34). 

Meanwhile, 54 proteins were differentially abundant in correlation with lung func-
tion, between patients with normal or mildly impaired lung function (≥70% FEV1%) and 
patients with moderate to severe lung function impairment (<70% FEV1%) (Supplemen-
tary Table S35). According to the PANTHER-Gene Ontology functional annotation and 
over-representation test, hydrolases and desmosomal linkers to intermediate filaments 
were over-represented in this subset (Supplementary Tables S36–S43). 

Data filtering based on sample occurrence (protein found in all samples) significance 
(p < 0.001) and value (control-CF log2 LFQ difference ≥ 2 or control-CF log2 LFQ difference 
≤ −2) of the difference in protein abundance highlighted seven candidate biomarkers of 
CF severity with potential clinical relevance (Figure 4). Differential abundances of: (i) 
ARG1, GPT, MDH2, and EML4 between F508del homozygous and F508del heterozygous 
patients, (Figure 4C, panel b), (ii) MGAT1 between pancreatic insufficient and pancreatic 
sufficient patients (Figure 4C, panel c), and (iii) IGJ and TOLLIP between patients with 
normal lung function/mild lung function impairment and moderate/severe lung function 
impairment (Figure 4C, panel d) were the most statistically significant.  

Nevertheless, the latter results were generated from a small number of patients and 
would gain clinical relevance with a larger cohort and subsequent dataset. 

3.5. Actin Dynamics in CF Sweat 
In light of the functional annotation of the sweat proteome, 35 out of all identified 

proteins are involved in the organization and dynamics of the actin cytoskeleton (Supple-
mentary Tables S4–S7). Supervised differential proteomics reported 13 ABPs with signif-
icant changes in protein abundance between the control and CF groups while actin abun-
dance remained steady between healthy subjects and patients with CF.  

ABPs cofilin-1 (CFL), insulin receptor substrate 53 kDa/brain-specific angiogenesis 
inhibitor 1-associated protein 2 (IRSp53/BAIAP2), and dihydropyrimidinase-related pro-
tein 3 (DPSYL3) plus actin-bundling protein lysozyme C (LYZ) were more abundant in 
CF sweat. 

ABPs tropomyosins 1 and 3, plastins 2 and 3 (LCP1 and PLS3), plus small RhoGTPase 
Ras-related C3 botulinum toxin substrate 1 (RAC1), and myotrophin (MTPN) were less 
abundant in CF sweat.  
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At the same time, subunits of the Arp2/3 complex were differentially abundant from 
one another: Arp2/3 complex subunit 1A (ARPC1A) was less abundant in CF sweat while 
actin-related protein 2 (ACTR 2), Arp2/3 complex subunit 3 (ARPC3), and Arp2/3 complex 
subunit 4 (ARPC4) were more abundant. Actin-related protein 3 (ACTR3) and Arp2/3 
complex subunit 2 (ARPC2) abundances were not significantly different between the con-
trol and CF groups. 

In regard to the differential abundance of ABPs and functionally associated proteins, 
the observation of sweat F-actin (Figure 7A) featured significant differences in microfila-
ment organization between control and CF sweat. In detail, particles assimilated to micro-
filaments in CF sweat were significantly more abundant (Figure 7B, panel a, fold change 
(FC) = 1.81, p < 0.001 ***), longer and larger with significantly greater mean microfilament 
area (Figure 7B, panel b, FC = 2;68, p < 0.001 ***), perimeter (Figure 7B, panel c, FC = 1.92, 
p < 0.001 ***), length (Figure 7B, panel d, FC = 1.79, p < 0.001 ***), and width (Figure 7B, 
panel e, FC = 1.69, p < 0.001 ***) and significantly lower circularity (Figure 7B, panel f, FC 
= 0.80, p < 0.001 ***, circularity = 1 describes a perfectly round object). 

 
Figure 7. CF-specific abundance of sweat ABP equated to differences in the organization of F-actin 
microfilaments between control and CF sweat. (A) Specimen epifluorescence micrographs of free-
in-solution Phalloidin-TRITC-labeled F-actin microfilaments in control (a) and CF (b) sweat. Arrow-
heads: control (empty) and CF (plain) microfilament specimens, scale bar = 10 µm. (B) Mean count 
(a), area and perimeter (b,c), length (d), width (e), and circularity (f) of thresholded particles assim-
ilated to F-Actin microfilaments, between control and CF sweat. Mean ± S.E.M. Student’s t-test for 
statistical significance analysis: *** p < 0.001, (n = 5, 5 controls compared to 5 patients with CF; nmicro-

graphs = 20 per individual). 
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4. Discussion 
The current study was designed to achieve the first thorough and in-depth charac-

terization of the sweat proteome of patients with CF versus healthy subjects, at an indi-
vidual level. A standardized and optimized workflow from the sample collection and 
preparation to the LC-MS analysis and bio-informatic data processing was developed. 
With a particular emphasis on sweat sampling in a non-invasive and reproducible way, 
the methodology followed the Gibson and Cooke sweat test gold standard guidelines. 
Accounting for all analyzed samples, 1057 proteins were identified and quantified by their 
inter-individual relative abundance. Comparing 14 patients with CF to 28 healthy subjects 
as a control cohort, relative protein abundances between control and CF sweat samples 
were computed to: (i) evaluate whether sweat protein profiles would help discriminate 
patients with CF from healthy subjects, (ii) test the correlation between CF severity and 
sweat protein profiles, and (iii) characterize biomarkers of CF disease and severity in 
sweat. 

First and foremost, the statistical analysis of sweat proteome profiles without a priori 
partially reflected the clinical diagnosis and conclusions of the sweat test since CF status 
alongside Na+ and Cl− concentrations correlated with the control versus CF sample clus-
tering. However, the clinical relevance of sweat proteome profiles was hindered by the 
respective inter-individual variabilities of control sweat—inter-subject variability corre-
lated with Na+ amount [22]—and CF sweat—inter-patient variability correlated with K+ 
concentration and K+ amount alongside Na+ concentration and sweat protein concentra-
tion. On a side note, these correlations underlined the susceptibility of protein content to 
the shifts in the mechanisms of eccrine ion secretion between control subjects and patients 
with CF. The fact remains that the combined physiological and pathophysiological inter-
individual variability of sweat allowed control versus CF sample correlation and cluster-
ing mismatches, with no evidence to rationalize or exclude mismatched samples as outli-
ers. Therefore, the statistical analysis of whole sweat proteome profiles without a priori 
could not discriminate patients with CF from the healthy population. Neither could it dis-
criminate against patients based on their genotype or the clinical manifestations, failing 
to report CF severity. 

However, CF samples were distributed together without a priori among clusters in 
correlation with CF status, even if a priori control and CF sample groups were not retained 
afterward. So, CF pathophysiology partly influenced the protein composition of sweat. 
Applying a supervised statistical analysis for differential proteomics between the CF and 
control groups, a third of all characterized sweat proteins (351 out of 947) were signifi-
cantly less abundant in CF sweat. Functionally wise, the over-representation of differen-
tially abundant proteins involved in protein processing, ER stress, and UPR pathways was 
consistent with this apparent depletion. This observation had to be correlated with phe-
notypes of impaired CFTR processing due to CFTR mutations and generalized to the 
global protein machinery of eccrine gland cells. Thirteen out of fourteen patients with CF 
carried the F508del mutation whose phenotype is the absence of functional CFTR at the 
membrane due to CFTR production and trafficking impairment and degradation of mis-
folded proteins. The over-representation of proteins in disease-specific abundance related 
to proteasome- and lysosome-mediated proteolysis alongside markers of UPR was in total 
agreement with the prevalence of the F508del mutation in the patient cohort. 

To sum up, the protein composition of CF sweat compared to control sweat high-
lighted that CF pathophysiology of the eccrine gland, e.g., defects in the mechanisms of 
protein processing resulting in ER stress, the onset of the UPR, and proteolysis can be 
indirectly monitored by sweat proteomics. From a pathophysiological standpoint, the 
F508del mutation globally affected the protein machinery of the eccrine gland beyond the 
sole processing of CFTR, hence the disease-driven depletion of the CF sweat proteome. 

When considering the 402 differentially abundant proteins, the proteome profiles of 
CF sweat correlated with CFTR F508del mutation, i.e., sweat was a matrix of candidate 
biomarkers of both CF diagnosis and discrimination between F508del homozygous and 
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F508del heterozygous status. The pathophysiology of F508del homozygous patients is fre-
quently associated with the onset of pancreatic insufficiency [24]. Interestingly, the most 
differentially abundant proteins were both F508del homozygous and PI biomarkers. Yet, 
the recruitment of F508del heterozygous patients with PI helped characterize F508del ho-
mozygous- and PI-specific biomarkers. The over-representation of proteins in genotype- 
or PI- related abundance involved in the protease activity of the cytoplasm and the struc-
ture and function of the ribosome echoed the correlation between CFTR mutation classes, 
phenotypes of protein processing defects, and CF severity. 

In brief, the protein composition of CF sweat highlighted that factors of CF severity 
(CFTR genotype) can be monitored by sweat proteomics. From a pathophysiological per-
spective, ribosomal stalk proteins were described as modifiers of CF severity when the 
silencing of corresponding genes elicited the partial phenotype rescue of F508del CFTR 
processing defects [25]. Here, ribosomal stalk proteins uL11, P0 (uL10), and P2 plus ribo-
somal proteins uL4 and eL6 were sweat markers of CF disease and severity, respectively. 

As for the pathophysiological relevance of sweat proteins in differential abundance, 
17 proteins from the core proteome (systematically found in all samples) and the top 20 
most abundant proteins of sweat [22] were in CF-specific abundance. To a greater extent, 
proteins in the high abundance and high occurrence tiers were all affected by CF. Derm-
cidin, the most abundant protein in sweat was characterized as a biomarker of F508del 
homozygous and PI. Moreover, a number of previous results about CF-specific abun-
dance of proteins were confirmed: (i) the decreased levels of kallikreins were already de-
scribed in sweat [26] and correlated with a decreased enzymatic activity in CF plasma [27], 
(ii) the decreased arginase-1 abundance in CF sweat would correlate with the decreased 
abundance and reduced enzymatic activity in CF plasma [28], (iii) the under-expression 
of filamins A and B in CF sweat could be correlated with the decreased cell levels of fila-
mins [29]. Interestingly, in the current work, arginase-1 and filamin A were characterized 
as promising candidate biomarkers for CF diagnosis and estimation of CF severity from 
CF sweat. More importantly, some biomarkers found in CF sweat were already described 
in previous studies on the secretome and proteome of bronchial epithelial cell lines [30–
32], the proteome of nasal epithelial cells [33], the proteome of CF serum [34], and the 
proteome of CF urine exosomes [35] (Supplementary Table S44). Inconsistencies in the 
protein abundances of these biomarkers were observed between studies and could be par-
tially explained by the nature of the models (e.g., in vitro cell lines versus patient tissue 
samples). Still, proteins related to CFTR proteostasis and membrane stability plus cyto-
skeleton crosstalk (e.g., FLNA, EZR, VCL, SET, COL6A1, and HSPA5) were among the 
ones in good agreement throughout. In total, 82 sweat proteins in CF-specific abundance 
(Supplementary Table S45) were listed in the CFTR interactome [23]. In addition, in CF 
sweat, the decreased levels of CFTR interactors, e.g., ERM proteins (EZR, MSN) or fila-
mins, plus the under-expression of all the protein constituents of the desmosome high-
lighted: (i) the defects in CFTR homeostasis and membrane stability as well as cell-cell 
adherence and membrane integrity of the eccrine gland cells, (ii) the potential of sweat 
analysis to remotely monitor some aspects of CF pathophysiology in other epithelia. In 
addition, from a clinical standpoint, sweat CFTR interactors and F508del CFTR interactors 
(Supplementary Table S46) in CF-specific abundance are of utmost interest in the search 
for biomarkers of phenotypic rescue to benefit new therapeutic developments. 

Concurrently, the functional annotation of proteins in disease-specific abundance 
pointed out new insights into the pathophysiology of CF sweat, i.e., the significant over-
representation of proteins related to sweat actin organization and dynamics. 

Precisely, protein abundances of lysozyme C (LYZ) and Actin-Binding Protein (ABP) 
cofilin-1 (CFL) were significantly increased in CF sweat while actin levels remained 
steady. Both LYZ and CFL are known to alter actin dynamics in relation to variations in 
ionic strength and concentration ratio to actin, as discussed below and summarized in 
Figure 8. Changes in LYZ and CFL abundance correlated with CF-specific changes in 
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sweat actin organization, i.e., larger, more abundant microfilaments resulting from dis-
ease-induced F-actin polymerization and bundling. 

 
Figure 8. Hypothetical mechanism of F-actin microfilament reorganization in CF sweat. 

Initially described as an Actin-Depolymerizing Factor (ADF) [36], CFL regulates actin 
dynamics as a whole from F-actin/G-actin balance and treadmilling to the spatial organi-
zation of the actin cytoskeleton [37,38]. CFL concentration ratio to actin (CFL: ACT ratio), 
pH, oxidative stress, or CFL phosphorylation are well-described modulators of CFL actin-
related biological function and activity [39].  

At a higher CFL: ACT ratio, F-actin microfilaments are severed and prone to the nu-
cleation and polymerization of new branches. Conversely, F-actin microfilaments are sev-
ered and completely depolymerized into G-actin at a lower CFL: ACT ratio [40,41]. In CF 
sweat, the higher CFL abundance in relation to steady actin levels increased CFL:ACT 
ratio. So, CF sweat G-actin was more likely to nucleate and be polymerized into F-actin 
while microfilaments were more likely to elongate. 

This phenomenon would be accentuated by CFL sensitivity to pH [42]. At a slightly 
acidic pH (6.5), CFL is less likely to divert actin dynamics from nucleation and polymeri-
zation [40]. Since sweat pH is neutral to slightly acidic varying between pH 5 (at the lowest 
sweat rate) and pH 7 [43], with no significant change correlated with CF [44], F-actin mi-
crofilaments would be more likely to stabilize and elongate further. 

In the meantime, tropomyosins, known competitors of CFL for access to actin micro-
filaments [45,46], and MTPN, an inhibitor of actin polymerization via interaction with ac-
tin-capping proteins [47], were decreased in CF sweat. 

Although (de)phosphorylation of its Ser3 residue is an important modulator of intra-
cellular CFL activity, it is noteworthy that no protein involved in CFL regulation by 
(de)phosphorylation (slingshot phosphatases and LIM kinases) was identified in control 
or CF sweat. Interestingly enough, an upstream regulator of LIM kinases, small RhoG-
TPase Rac1, was under-expressed in CF sweat. On that note, Rac1 is involved in the reg-
ulation of both actin polymerization by CFL and actin bundling by IRSp53/BAIAP2. 
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IRSp53 bundles F-actin microfilaments by means of its SH3 domain (recruitment of other 
ABPs and actin regulators) and its IMD domain (direct actin binding) [48,49]. The respec-
tive CF-related abundances of Rac1 (down) and IRSp53 (up) suggested a promotion of 
IMD-mediated actin bundling by IRSp53 without regulation. 

In addition to other actin-bundling proteins, DPYSL3 [50], LCP1, and PLS3 in partic-
ular exhibited CF-associated abundance, suggesting that increased actin bundling re-
sulted from IRSp53, DPYSL3, and LYZ-bound microfilaments. 

Indeed, polycationic proteins and peptides such as LYZ and cathelicidin-derived LL-
37 were described as promoters of F-actin nucleation, polymerization, and bundling 
[51,52]. F-actin microfilaments are bound together through electrostatic (hydrophobic) in-
teractions, mediated by intercalated polycations, with sensitivity to changes in ionic 
strength, polycation concentration, and actin concentration [53]. Polycation-induced F-ac-
tin bundling is promoted by an increase in polycation concentration while prevented by 
an increase in ionic strength or actin concentration. Sweat ionic strength is mainly influ-
enced by NaCl concentration. In physiological conditions, sweat is hypotonic due to ion 
reabsorption along the duct of the eccrine gland. In CF, sweat is hypertonic (up to plasma 
concentration) as the absence of a functional CFTR prevents Cl reabsorption. The presence 
of polycation-bound F-actin bundles has already been described in the pathologically vis-
cous sputum [54]—a bio-fluid with similar neutral to slightly acidic pH [55,56] and in-
creased ionic strength [57] as CF sweat-secreted and accumulated in the pulmonary air-
ways of patients with CF. In the same way, reports of the higher viscosity of CF sweat [44] 
could be explained by extensive LYZ-mediated F-actin bundling of polymerizing, un-
branched microfilaments. 

Besides their interaction with actin, polycationic proteins and peptides are also 
known for their antimicrobial properties [58], essential to skin host defenses and the in-
nate immune system. While trapped in F-actin bundles, polycationic proteins and pep-
tides reversibly lose their antimicrobial activity [59] and potentiate the risk of pulmonary 
infection linked to higher mucus viscosity in patients with CF. Nonetheless, the preva-
lence of skin infections in patients with CF does not corroborate defects in innate immune 
defenses to take place as in CF sputum and airways. The predominance of dermcidin 
(DCD)—a polyanionic precursor of antimicrobial peptides and the most abundant protein 
in sweat—in skin defenses together with the absence of CF changes in DCD abundance 
could explain these observations [60–62]. 

Interestingly, in the event of a deep correlation, yet to be established, between sweat 
and mucus F-actin bundling states and subsequent viscosities, the monitoring of sweat F-
actin dynamics could prove useful in the early evaluation of CF severity. 

To sum up, CF was correlated with disease-specific proteome profiles, contributing 
to non-physiological inter-individual variations of the sweat proteome. The characteriza-
tion of differentially expressed proteins (control vs. CF, F508del heterozygous vs. F508del 
homozygous, PS vs. PI, normal/mild vs. moderate/severe lung function impairment) 
showcased nine CF diagnosis biomarkers (CUTA, ARG1, EZR, AGA, FLNA, MAN1A1, 
MIA3, LFNG, SIAE) and seven CF severity biomarkers (ARG1, GPT, MDH2, EML4 
(F508del homozygous), MGAT1 (pancreatic insufficiency), TOLLIP, IGJ (lung function 
impairment)) candidates as well as potential markers of CFTR phenotypic rescue to be 
further investigated for clinical relevance. On that note, particular attention to the patho-
physiology of ABPs in sweat compared to other CF tissue would also deserve further in-
vestigations. In conclusion, sweat proved to be an informative bio-fluid to help and im-
prove the understanding of CF pathophysiology by providing candidate biomarkers of 
interest for precision medicine and therapeutic development. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/cells11152358/s1, Figure S1: Mean Square Prediction Error (MSPE) 
plot for the determination of SPLS parameters.; Figure S2: Separated LFQ normalization was ap-
plied to raw data since global LFQ normalization elicited a quantification bias; Figure S3: Discarded 
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criminated patients with CF from control subjects, in correlation with CFTR genotype; Tables S1–
S46. 
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