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ABSTRACT

Massive elliptical galaxies can display structures that deviate from a pure elliptical shape, such as a twist of the principal axis or
variations in the axis ratio with galactocentric distance. Although satisfactory lens modeling is generally achieved without accounting
for these azimuthal structures, the question about their impact on inferred lens parameters remains, in particular, on time delays as
they are used in time-delay cosmography. This paper aims at characterizing these effects and quantifying their impact considering
realistic amplitudes of the variations. We achieved this goal by creating mock lensing galaxies with morphologies based on two data
sets: observational data of local elliptical galaxies, and hydrodynamical simulations of elliptical galaxies at a typical lens redshift. We
then simulated images of the lensing systems with space-based data quality and modeled them in a standard way to assess the impact
of a lack of azimuthal freedom in the lens model. We find that twists in lensing galaxies are easily absorbed in homoeidal lens models
by a change in orientation of the lens up to 10◦ with respect to the reference orientation at the Einstein radius, and of the shear by
up to 20◦ with respect to the input shear orientation. The ellipticity gradients, on the other hand, can introduce a substantial amount
of shear that may impact the radial mass model and consequently bias H0, up to 10 km s−1 Mpc−1. However, we find that light is a
good tracer of azimuthal structures, meaning that direct imaging should be capable of diagnosing their presence. This in turn implies
that such a large bias is unlikely to be unaccounted for in standard modeling practices. Furthermore, the overall impact of twists and
ellipticity gradients averages out at a population level. For the galaxy populations we considered, the cosmological inference remains
unbiased.
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1. Introduction

In the past decades, strong gravitational lensing analy-
sis has been a competitive method used to constrain
the Hubble constant H0. Along with other methods (e.g.,
Abbott et al. 2018; Riess et al. 2019; Freedman et al. 2020;
Pesce et al. 2020; Philcox et al. 2020; Planck Collaboration VI
2020; Schombert et al. 2020; Wong et al. 2020; Blakeslee et al.
2021), the key challenge has been to reach an increasingly pre-
cise value of H0. Increasing the precision of each measure-
ment led to a difference between the early-time probes, such
as cosmic microwave background, and late-time probes, such as
cepheid and supernova methods (Verde et al. 2019). Strong grav-
itational lensing has the advantage of being independent of any
distance ladder while being a late-time probe. This technique
is based on the phenomenon that a massive galaxy bends the
light arising from a variable source, such as a quasar, and thus
produces up to several images of this source (Refsdal 1964).
Modeling the mass of the foreground galaxy allows constrain-
ing the effect of the galaxy (displacement and elongation) on
the light rays coming from the source. In combination with
the arrival time difference between the different images of the
source, the Hubble constant can be constrained assuming a
given cosmological model. Other factors, such as the environ-
ment surface mass density, the velocity dispersion of the lensing
galaxy, and time-delay microlensing effects, also help character-
izing H0 with precision (e.g., Chen et al. 2018; Sluse et al. 2019;
Tihhonova et al. 2020; Millon et al. 2020; Donnan et al. 2021;
Liao 2021; Yıldırım et al. 2021).

While a gravitational lensing analysis requires many ingre-
dients to perform with the best precision, we focus here on
the role of the mass model of the lensing galaxy. Most lens-
ing galaxies are massive ellipticals. Those early-type galaxies
are mainly modeled by either a power-law ellipsoid or by a com-
bination of a dark and baryonic ellipsoidal components in strong-
lensing studies. From the point of view of the lensing mass
distribution, the assumption about the radial mass profile
has been explored extensively (Schneider & Sluse 2013, 2014;
Xu et al. 2016; Kochanek 2020, 2021; Birrer et al. 2020), while
the azimuthal mass profile has been explored less frequently.
Recently, Van de Vyvere et al. (2022) specifically addressed the
question of the impact of boxyness or diskyness, that is, the
octupolar moment in addition to the usual quadrupolar (ellip-
tical) lens, on the consmographic inference if only quadrupolar-
mass models are used. Cao et al. (2022) studied the influence
of the shape of lensing galaxies under the elliptical power-law
(EPL) model assumption in more detail. They used simula-
tions of mock images whose lensing galaxy mass morphol-
ogy was based on observed SDSS-MaNGA1 stellar dynamics
data, and cautioned about too simple (i.e., EPL) lens-mass
models. Kochanek (2021) also cautioned about the possible
effect of angular variations in the lensing galaxy on the Hubble
constant when the model lacks degrees of freedom in the
azimuthal direction. These setups can allow clear but incorrect

1 SDSS stands for Sloan Digital Sky Survey, and MaNGA for Map-
ping Nearby Galaxies at APO, with APO standing for the Apache Point
Observatory.
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likelihood distinctions between different radial mass profiles
that sometimes lead to an apparently precise but biased H0
determination.

To quantify the role of azimuthal structure on gravitational
lensing modeling inference, it is necessary to understand how
strong the azimuthal perturbations are in both light and total
mass profile, and in particular, in the inner regions of galax-
ies, which prevails in the lensing phenomenon. The galaxy for-
mation processes in Lambda cold dark matter (ΛCDM) uni-
verse considers small fluctuations in dark matter density that
are seeded during inflation, to grow over time through merg-
ers with other halos and/or slow accretion, forming the dark
matter halos around present-day galaxies (Davis et al. 1985;
Frenk et al. 1988). A number of early-type galaxy formation sce-
narios have been proposed over the past five decades: (i) mono-
lithic collapse, (ii) major mergers between galaxies, leading to
larger galaxies, and (iii) minor mergers, in which the cores of
massive galaxies extend, but not much more mass is added.
The inflow of gas through accretion and mergers in to the cen-
ters of dark matter halos can modify their density profiles and
shapes through adiabatic contraction (or expansion). This can
be further complicated by possible outflows induced by feed-
back from stellar winds, SN explosions, UV radiation, and AGN
feedback, for instance. Because a complete analytic theory of
baryonic physics is lacking, cosmological hydrodynamic simu-
lations that include many physical processes have emerged as the
dominant tool for studying the complex nonlinear interactions
taking place during galaxy formation (e.g., Vogelsberger et al.
2014; Schaye et al. 2015). The most recent hydrodynamical sim-
ulations with improved stellar and AGN feedback, for exam-
ple, can reproduce the cosmic star formation history of the Uni-
verse and the galaxy stellar mass function. In summary, numeri-
cal simulations and recent large surveys have helped us to under-
stand galaxy formation more precisely, but some questions remain
open because we generally only have access to the luminous
mass.

Nevertheless, morphological features of galaxies could
provide important information about their formation history
(Hao et al. 2006; Kormendy et al. 2009; Chaware et al. 2014;
Cappellari 2016). Early surface photometry measurements of
large samples of galaxies have shown different estimates of the
percentage of significantly twisted objects among the galax-
ies. The estimates range from 10% to 60% (Lauer 1985b,a;
Michard 1985; Djorgovski & King 1986; Jedrzejewski 1987;
Vigroux et al. 1988). This broad disagreement can partially be
described by the different criteria that are used to select the sam-
ples, the data quality of the images, and by the definition of the
twist itself. Moreover, several factors unrelated to the intrinsic
structure of the objects may be able to produce isophotal twist-
ing, such as dust in lanes or patches, the overlap with isophotes
of nearby projected companions, tidal effects due to nearby
galaxies, a noncircular point spread function, and artificial trends
in the background even after flat fielding (Kormendy 1982;
Fasano & Bonoli 1989). Nevertheless, intrinsic azimuthal vari-
ations with the major axis of elliptical galaxies is now acknowl-
edged. For instance, Hao et al. (2006) analyzed the shape of 847
early-type galaxies and reported a standard deviation of 8.39◦ for
the position angle variation between 1 and 1.5 half-light radii in
their sample, and a 0.051 scatter for the ellipticity variations.
Kormendy et al. (2009) focused on all known elliptical galaxies
in the Virgo cluster and reported the position angle, ellipticity,
and brightness profiles of those galaxies, linking the proper-
ties of the galaxies with a formation history. Corroborated by
other studies (e.g., Krajnović et al. 2011; Fogarty et al. 2015;

Cappellari 2016) and with the ingress of kinematics data, the
formation history of elliptical galaxies, distributed into slow
rotators and fast rotators, is becoming better understood. Slow
rotator galaxies, with masses typically below 2 × 1011 M�, arise
from spiral galaxies, are distributed in space accordingly, and are
consistent with oblate spheroid shapes. On the other hand, more
massive fast rotators are present in locally denser environments
and are likely to display a triaxial symmetry. With the advent of
understanding the galaxy formation and the structure of early-
type galaxies, further models of elliptical galaxies are expected
to be able to reach an increased precision.

Only few works have intentionally taken possible twists and
ellipticity variations with radius in the modeling of strong lens-
ing galaxies into account. Schramm (1994) developed a frame-
work to create any type of lensing galaxy profile through an
ensemble of elliptical slices, but his work was not used in practi-
cal applications. Keeton et al. (2000) used a double pseudo-Jaffe
model, with different core radii, cutoff radii, position angles, and
ellipticities, to account for twist and ellipticity variations in the
lens mass profile of the lensing system Q0957+561. Fadely et al.
(2010) refined the model of the same lensing galaxies. They
explicitly used the light map of the galaxy with a modeled con-
stant mass-to-light ratio to account for the baryonic compo-
nent, using fast Fourier transform methods to convert the mass
maps into the lensing quantities. For the dark matter compo-
nent, either a Navaro–Frenk–White profile (NFW; Navarro et al.
1996) or a combination of three softened power-law profiles
were used. The twists and ellipticity changes of the light pro-
file were thus explicitly used in the mass model for this specific
system Q0957+561. More generally, using multiple analytical
components in a mass model can inherently account for a gra-
dient in ellipticity or position angle. In addition, nonparamet-
ric mass models (e.g., Liesenborgs et al. 2009; Lefor et al. 2013;
Lubini et al. 2014) naturally allow for more azimuthal freedom.
However, these free-form or multicomponent models have not
been used to quantify the impact of azimuthal variations, but
rather naturally account for it, sometimes even affording a larger
freedom than is present in galaxies.

In this paper we do not model known lens systems with mass
profiles increased in azimuthal structures, but instead systemat-
ically investigate the impact that azimuthal perturbations have
on lensed image morphologies by means of simulations. Specif-
ically, we create mock lensing galaxies with varying position
angle and/or ellipticity, simulate lensing images of a background
source, and model the images with standard lensing modeling
methods, that is, we do not take the varying azimuthal structure
into account. This experiment allows us to quantify the impact of
the lack of azimuthal degree of freedom in a model of a lensing
galaxy that displays twists and/or ellipticity gradients. This paper
is complementary to Van de Vyvere et al. (2022), who investi-
gated the impact of another type of azimuthal variations in lens-
ing galaxies, that is, boxyness and diskyness.

In Sect. 2 we first review the method of Schramm (1994) to
simulate a lens mass profile displaying a varying position angle
and ellipticity (Sect. 2.1). We then apply it (Sect. 2.2), explain-
ing the strategy we followed: we first introduced an academical
experiment, and then a more realistic one. We end our method
section with the characteristics of our mock images (Sect. 2.3)
and standard fitting procedure (Sect. 2.4). In Sect. 3 we display
the results of the different experiments. Finally, we summarize
our findings and conclude in Sect. 4.

The fiducial cosmology used in our study is a flat ΛCDM
cosmological model. The associated cosmological parameters
are Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1.
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2. Method

To study the effect of twists and ellipticity changes with radius
on lensed images, we designed the following experiment. First,
different lens mass profiles displaying twists and/or ellipticity
variations were created. These mass profiles were then used
to simulate mock images with HST data-quality by lensing a
background source, consisting of a quasar and its host galaxy.
The time delays associated with the lensed quasar images were
also calculated. Afterward, the simulated frames were mod-
eled using a power-law elliptical mass distribution (PEMD)
and shear for the mass model, thus displaying neither twist
nor ellipticity changes in the model. After the modeling pro-
cess, we assessed the goodness of the fit and analyzed the
retrieved parameters to correlate the varying input profiles with
specific modeled parameters, such as H0. This method is simi-
lar to the one presented in Van de Vyvere et al. (2022). As this
paper and Van de Vyvere et al. (2022) focus on different types
of azimuthal variations, the lensing galaxies are built differently:
this paper uses a sum of slices that radially mimic a singu-
lar isothermal ellipsoid (SIE) profile, while Van de Vyvere et al.
(2022) used an analytical SIE perturbed by a global octupo-
lar moment. Nevertheless, the scientific procedure is the
same in the two works as they both quantify how the input
azimuthal perturbations in lensing galaxies impact the param-
eter inference with a mass model displaying a single elliptical
shape.

2.1. Lens mass profile: Theory

We used the technique developed by Schramm (1994) to con-
struct a mass distribution that allows the position angle to twist
and ellipticity to vary with radius. This technique consists of
approximating any mass profile by a sum of finite elliptical slices
of constant surface mass density that can have different ellip-
ticities, position angles, centers, and major-axis lengths. The
superposition of the slices is a discrete approximation of the
global mass profile. For each slice, the following quantities can
be calculated: the lensing potential, its first derivative, that is,
the deflection angles, and its second derivatives. They are then
summed to compute the lensing quantities associated with the
global mass profile. The lensing quantities associated with one
slice are separated into two parts: those for a position inside the
slice, and those for a position outside of the slice. If we con-
sider an elliptical slice of constant surface mass density Σ0 with
a semi-major axis a, semi-minor axis b, and a position angle ϕ,
the lensing potential at position (x, y) inside a slice centered at
coordinates (0, 0) is given by

Ψin =
1
2

(
(1 − ε)(x cosϕ + y sinϕ)2

+ (1 + ε)(y cosϕ − x sinϕ)2
)
Σ0 + Σ0r2

E(1 − ε2) ln rE,

(1)

where the elliptical parameter ε is a−b
a+b , and the elliptical radius

rE is equal to a+b
2 . Outside the slice, the lensing potential is given

by

Ψext = <

1 − ε2

4ε

 f 2 ln

 sign(ze−iϕ)ze−iϕ +
√

z2e−2iϕ − f 2

2


− sign(ze−iϕ)ze−iϕ

√
z2e−2iϕ − f 2 + z2e−2iϕ

)
Σ0

]
, (2)

where z = x + iy, f 2 = a2 − b2, and the sign function is defined
such that

sign(z) =

{
+1 ifx > 0 or (x = 0 and y ≥ 0)
−1 otherwise.

The additive constant, that is, Σ0r2
E(1 − ε2) ln rE, in the Ψin defi-

nition was chosen such that the transition between external and
internal potentials of a given slice was continuous. The deflec-
tion angle, α = αx + iαy, inside the slice is given by

αin = (z − εze2iϕ)Σ0. (3)

The deflection angle outside the slice is

αext =
2ab
f 2

(
ze2iϕ − eiϕsign(zeiϕ)

√
z2e2iϕ − f 2

)
Σ0. (4)

The second derivatives of the potential, which are also the first
derivatives of the deflection angle, can be calculated numerically
by deriving the deflection angle. We implemented such a mass
profile under the name ‘ElliSLICE’ in the lenstronomy soft-
ware2.

To create a realistic lens mass profile, several slices have to
be superposed. The lensing quantities (i.e., lensing potential and
deflection angle) associated with each slice were calculated fol-
lowing Eqs. (1)–(4), and they were then summed to constitute the
lensing quantities associated with the whole profile. As the num-
ber of slices increases, the stepwise mass density approaches a
smooth profile, but the computational time to calculate the lens-
ing quantities of each slice and sum them grows as well. Approx-
imately 60 slices in which the major axis is evenly spaced in
log space are sufficient to accurately describe a realistic lensing
mass profile, as shown in Fig. 1 in which mass profiles created
with slices are compared to a singular isothermal sphere (SIS).
Section 3.1 and Fig. 2 also later show that an HST-like mock
image simulated with a lensing mass profile made of 60 slices
following an SIE is perfectly modeled with an SIE mass model.
Typically, the last slice extends up to five times the Einstein
radius. Since each slice is associated with an analytical potential
and deflection angle, these simulations show no spurious arti-
ficial shear, which occurs when truncated mass maps alone are
used to compute the lensing quantities. The mass profile there-
fore does not have to be extended up to 50 times the Einstein
radius (Van de Vyvere et al. 2020).

In addition to the the mass of the lensing galaxy, a shear
was also considered to mimic any tidal perturbation caused by
galaxies along the line of sight or at the lens redshift. The lens-
ing potential at position (x, y) associated with a shear is the
following:

Ψshear =
1
2

(γ1x2 + 2γ2xy − γ1y2), (5)

where γ1 and γ2 are the components of the complex shear. The

shear strength is γext =

√
γ2

1 + γ2
2 and its orientation is φext =

1
2 arctan(γ2/γ1). The first and second derivatives of the potential
can easily be determined by analytical derivation of the lensing
potential definition.

2 https://github.com/sibirrer/lenstronomy
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Fig. 1. Accuracy of mass profiles created via slices following Schramm
(1994) compared to an analytical SIS. Top: Radial convergence profile
of a SIS (blue line) and of ‘ElliSLICE’ mass models using 10, 20, or 60
slices (dash-dotted orange line, dashed green line, and densely dashed
red line, respectively). Bottom: Residuals in percent between the SIS
profile and profiles made of slices. The vertical black line indicates the
Einstein radius.

2.2. Lens mass profile: In practice

2.2.1. Strategy

In practice, the lens mass profile consisting of elliptical slices
needs to be defined by characterizing each slice. The choice of
the azimuthal profile given to the slices depends on the scien-
tific question that is to be answered. Beyond the general inves-
tigation of the impact of twists and ellipticity gradients on lens-
ing analyses, we particularly investigated which types of isoden-
sity perturbations, that is, twists or ellipticity gradients, affect
the fitted mass density profile most. We determined whether the
same effects are produced if the variations are located in different
regions of the galaxy. We further examined whether the combi-
nation of both position angle and ellipticity variations created
unexpected degeneracies in the model. The quantitative impacts
of the different perturbations when realistic twists and ellipticity
gradients were considered were also studied.

We expect the twists to create quadrupolar moments that vary
in orientation with radius; see the example in Fig. 3 (top). The
twists outside the Einstein radius are thus expected to be equiva-
lent to additional external shears, while those inside the Einstein
radius are expected to mostly influence the orientation of the fit-
ted ellipsoid. Variations in ellipticity are expected to change the
strength of quadrupolar moment with radius, but not its orien-
tation, as illustrated in Fig. 3 (bottom). The ellipticity gradient
is consequently absorbed by an interplay of shear and ellipsoid
azimuthal shape, and may influence the slope of the radial pro-
file of the ellipsoid to better balance the internal versus external
shear, as suggested by Kochanek (2021).

To answer the different questions we raised, we explored two
main paths: (1) We created an experiment in which we controlled
the position angle profiles and the ellipticity gradients in order to
systematically determine the influence of either twists or ellip-
ticity changes in different parts of the galaxy, that is, inside the
Einstein radius, at the Einstein radius, and outside the Einstein
radius. (2) We created samples with twists and ellipticity changes
based on realistic galaxies to investigate the impact of azimuthal
structures on the population level. We note that by convention,
when we report quantities measured at the Einstein radius, we
effectively provide its value as measured at the slice whose major
axis is closest to the Einstein radius.

Our first experiment consisted of using linear functions
to describe the position angles or ellipticity profile, allowing
changes in azimuthal structures at specific locations in the mock
galaxy. This first sample was not meant to reproduce real galax-
ies, but limited the azimuthal structure to specific and controlled
aspects. This allowed us to qualitatively assess the effect of these
structures on the modeling behavior.

The second experiment we conducted mimicked real galax-
ies. We used two physically motivated samples: We first used
observation-based morphological properties of nearby elliptical
galaxies, which has the drawback of only tracing the light. We
then used morphological properties of hydrodynamically simu-
lated galaxies, which allowed us to trace the full mass profile,
but might not always match the mass profiles of real galax-
ies. With each sample, we used elliptical slices to create mock
lensing-mass profiles for which we selected either twists or ellip-
ticity gradients to analyze each effect separately. We then com-
bined the two variations to mimic populations that encompass
the diversity of a sample of real lensing galaxies.

2.2.2. Monotonic azimuthal variations

First, we constructed a lens with slices displaying position angles
and/or ellipticities that varied with radius according to an analyt-
ical function. The purpose of this first way of producing pertur-
bations was to exactly control the input twist or ellipticities and
acquire a basic knowledge about the influence of specific twist
and ellipticity changes in lensing images.

In this test, we assumed a linear change in position angles
or ellipticity with semi-major axis. We considered both varia-
tions separately. We chose a profile made of 60 slices, evenly
spaced in log space, ranging from 0.01′′ to 6′′. When we var-
ied the ellipticity, the latter grew linearly from 0.65 to 0.85,
that is, at a rate of 0.033 per arcsec. When instead twists were
considered, the angles varied linearly from 0◦ to 60◦, that is,
10◦ per arcsec rate of change (see Figs. 4 and A.1). This vari-
ation is not meant to be realistic, but is still comparable to
what is observed in hydrosimulated galaxies or in local galax-
ies, as shown in Fig. A.1. The Einstein radius was set to θE =
2′′, such that the variations in ellipticity or positions angles
were significant both inside and outside the Einstein radius (see
Fig. 4).

We considered three regions in which variations could occur:
the inner region, that is, the region in which the semi-major axis
of the slices is <0.9 θE; the middle region, characterized by a
semi-major axis <0.9θE and semi-minor axis <1.1 θE; and the
outer region, in which the semi-minor axis >1.1 θE. With these
regions, we created five different types of mock lensing profiles:
(1) Mocks in which all slices were aligned and displayed the
same ellipticity, that is, a constant axis-ratio and position angle
in all regions. (2) Mocks for which only the inner part of the
input galaxy was allowed to vary, either with twists or ellip-
ticity changes. In other words, we varied the inner region, but
the middle and outer regions remained constant. (3) Mocks with
changes only near the Einstein radius, that is, changes in the mid-
dle region and a constant profile in the inner and outer regions.
(4) Mocks in which only the outskirts of the galaxy varied, that
is, variations in the outer region, but not in the inner and middle
regions. (5) Finally, mocks in which variations occurred in all
the three regions.

When either the position angle or the ellipticity was not
allowed to vary, the fixed value was chosen to be the one at the
Einstein radius. Figure 4 shows the fully varying position angle
or axis ratio profile of the slices as a function of semi-major axis.
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Fig. 2. Fitted parameters of the performed experiment with linear variations of ellipticity and/or position angle with radius (see Sect. 3.1). The two
families of azimuthal variations, twist and ellipticity gradient, are displayed as green circles and red triangles, respectively. The results displayed
with black squares are the ground-base case: the galaxy has isodensity contours that consist of ellipses displaying homoeidal symmetry (i.e., have
the same axis ratio) and a single orientation. The open symbols characterize the results corresponding to the situation with a fixed fitted slope.
The filled symbols display the median value of the final results after the constraint on the slope is relaxed. The error bars correspond to the 0.16
and 0.84 quantiles of the posterior distribution on the parameters. The x-axis tick labels indicate the type of variation considered: “base” refers to
the ground-base case, “all” refers to variation occurring at all the radii, “in”, “middle”, and “out” indicate if the variation is limited to the region
inside, around, or outside of the Einstein radius (see Sect. 2.2.2 for exact definitions). The y-axis quantities are defined in Table 1.

The three regions we considered to delimit the different cases
described above are indicated.

2.2.3. Data-motivated azimuthal variations

Second, we used realistic changes of ellipticity and/or position
angles to quantitatively measure the impact of these variations
on the lens modeling parameters. We investigated two types
of realistic lensing galaxy samples. (a) We used observed light
profiles of local massive elliptical galaxies through the sam-
ple studied by Kormendy et al. (2009). As the dark matter of
these galaxies cannot be measured directly, the isophotes are the
best reasonable proxy to the shape of the mass profile of ellip-
tical galaxies. (b) We used hydrodynamical simulations of the
universe and directly accessed the mass of massive ellipticals
at redshifts typical of lensing galaxies with the EAGLE3 sim-
ulations (Schaye et al. 2015; Crain et al. 2015; McAlpine et al.
2016). The two samples have differences and similarities, which
highlights the necessity of exploring both. We first present the
two samples and then compare them.

For each galaxy in the sample, we created three types of pro-
files: (1) allowing variation of ellipticity, but fixing the posi-

3 EAGLE stands for Evolution and Assembly of GaLaxies and their
Environments.

tion angles, (2) allowing twists, but fixing the ellipticity, and
(3) allowing both types of variations. Fixing either the posi-
tions angles or the ellipticity helps understanding the role of each
type of variations for the lensing quantities through the model-
ing scheme, while the cases where both types of changes are
displayed are most representative of massive elliptical galaxies.
For comparison purposes, a fiducial profile with both fixed posi-
tion angle and ellipticity was also created for each galaxy. Since
azimuthal structure variations may not be self-similar with galac-
tocentric radii, we created mocks for systems with Einstein radii
of either 1 or 2′′.

(a) Observation-based morphologies. Kormendy et al.
(2009) analyzed the light profile of all known early-type galax-
ies in the Virgo cluster and provided the isophotal analysis of
each galaxy (i.e., size, ellipticity, and orientation of ellipses
matching the isophotes constituting the light profile). Among
others, they included lenticular galaxies, dwarf ellipticals, and
spheroidal galaxies (Kormendy et al. 2009; Graham 2019b). We
did not select any of these peculiar types of early-type galaxies.
We selected nine massive elliptical galaxies that extend at least
up to 4′′ when redshifted to the target lens redshift (see Sect. 2.3
for a discussion of the redshift). While this limit of 4′′ may seem
arbitrary, it ensures that the galaxies are wide enough to provide
isophotal data up to at least twice the Einstein radius. Our sample
is thus composed of the following elliptical galaxies: NGC 4649,
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Fig. 3. Comparison of mass profiles displaying twists or ellipticity variations with a mass profile following a pure ellipsoid. Left: example of input
profiles created with the slice method as explained in Sect. 2.1, displaying either twists (top) or ellipticity changes (bottom). Middle: singular
isothermal ellipsoid with the ellipticity and position angle of the corresponding sliced profile at the Einstein radius, i.e., 1′′. Right: difference of
the two convergence maps in percentage of the input profile. The dashed region indicates the region inside the Einstein radius.

Fig. 4. Slice properties of a fully varying profile in the monotonic
azimuthal variations experiment, with either twists (left y-axis) or ellip-
ticity gradient (right y-axis). The dashed vertical lines show from left to
right the line at which the semi-major axis = 0.9 θE and the line at which
the semi-minor axis = 1.1 θE, considering an Einstein radius of 2′′. They
separate the different regions considered for variations (see Sect. 2.2.2).
The slices belonging to the different regions are represented with differ-
ent colors and symbols.

NGC 4374, NGC 4261, NGC 4382, NGC 4636, NGC 4459,
NGC 4473, NGC 4472, and NGC 4486.

The advantage of this sample is that it represents light mea-
surements of real galaxies. Even without knowing the dark mat-
ter distributions, we can at least be sure that this sample is
representative of the light distributions of typical local massive
elliptical galaxies.

(b) Hydro-simulation based morphologies. The EAGLE
project (Schaye et al. 2015; Crain et al. 2015; McAlpine et al.

2016) is a suite of hydrodynamic simulations that was run
with a modified version of the smoothed particle hydrody-
namics code GADGET3 (last described by Springel 2005) with
15043 dark matter particles and an equal number of baryonic
particles. The gravitational softening length of these particles
is 2.66 comoving kpc (ckpc), limited to a maximum physi-
cal scale of 0.7 proper kpc (pkpc). The resulting galaxies are
in overall agreement with observed properties such as the star
formation rate, passive fraction, Tully–Fischer relation, total
stellar luminosity of galaxy cluster and colors (Schaye et al.
2015; Trayford et al. 2015), the evolution of the galaxy stel-
lar mass function and sizes (Furlong et al. 2015, 2017), rotation
curves (Schaller et al. 2015), and the α-enhancement of early-
type galaxies (Segers et al. 2016).

To select a sample similarly populated as the Kormendy et al.
(2009) sample, we used several criteria. First, we selected galax-
ies at redshift z = 0.271 (see Sect. 2.3 for a discussion of
redshift), and then used a threshold at 1011 M� to select only
the most massive galaxies. To avoid most spiral or lenticular
galaxies displaying disky shapes, we considered the galaxies
properties and selected only those with a principal axial ratio
c/b > 0.7 following Trayford et al. (2019). We then applied the
Simulating EAGLE LEnses (SEAGLE; Mukherjee et al. 2018)
lens-simulation pipeline (Mukherjee et al. 2018, 2021), which
uses the GLAMER code (Metcalf & Petkova 2014; Petkova et al.
2014) for particles projection, to the selected galaxies to cre-
ate their dark matter, stellar, and gas surface mass density maps
using different projection axes. The sum of the three components
is the total projected mass map of a galaxy. Our selection still
comprised about 25 galaxies, with projected mass maps in three
arbitrary orthogonal directions. We thus randomly chose a sub-
sample of 12 mass maps out of these. Three of these have
peculiar ellipticities in the center of the galaxy, that is, axis
ratios lower than 0.3 at radii typically smaller than 0.8′′. This
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Fig. 5. Distributions of absolute ellipticity changes (top) and position angles twists (bottom) for the observed and hydro-simulated sample. The left
panels summarize changes between 0.25′′ and the Einstein radius, and the right panels focus on changes between one and two Einstein radii. The
observed sample, using the light of nearby galaxies analyzed by Kormendy et al. (2009; green), is compared to the hydro-simulated sample using
the mass of the EAGLE hydrodynamical simulations from Mukherjee et al. (2018; blue). The light profiles associated with the simulated galaxies
(orange) is also displayed to facilitate comparison between the two samples.

intermediate-scale disk component is typical of ES, also called
ellicular, galaxies (Liller 1966; Graham 2019a,b). The three ES
galaxies appear as ES only in one projection. In the other projec-
tions, they appear as regular elliptical galaxies.

To convert the EAGLE mass maps into a series of ellip-
tical slices, we used the AutoProf (Stone et al. 2021) soft-
ware. AutoProf is a recent software providing pipelines that
allow reducing, treating, and analyzing several images at the
same time. We only used the part of the pipeline that fits
ellipses at different radii of a galaxy and display, among oth-
ers, the ellipticity, the position angle, and the size of each
retrieved ellipse. This isophotal fitting algorithm is based on
Jedrzejewski (1987) with improvements in speed and accuracy
through procedures adapted from machine-learning techniques.
We cross-validated the resulting profiles with the more broadly
used function Ellipse in photutils (Bradley et al. 2020).
This last method is similarly based on Jedrzejewski (1987),
but does not include the regularization schemes borrowed from
machine learning used in AutoProf. As expected following
Stone et al. (2021) for regular elliptical galaxies, the results from

the two methods are similar; the AutoProf results are more
stable.

(c) Comparison of properties of the two realistic samples.
The two galaxy samples from observations and from hydro-
simulations have slightly different properties in terms of changes
in position angles and changes in ellipticity. To compare them,
we introduced four metrics: ∆PAIN (∆elliIN), which is the change
in position angle (ellipticity) between the slice with a semi-
major axis at 0.25′′ and the one at the Einstein radius; and
∆PAOUT (∆elliOUT), being the change of position angle (ellip-
ticity) between the slice with major axis at the Einstein radius
and the one at twice this radius. These metrics summarize varia-
tions in ellipticity or position angles, even if the variation may
not always be monotonic over the considered range of radii.
The innermost limit is chosen to be 0.25′′ to ensure that the
shape parameters at this minimum semi-major axis are robust
enough to be used as representative of the inner parts of the
galaxies. Indeed, since the EAGLE mass maps have a pixel
size of 0.05′′, and the fitted ellipses used to recover the shape
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Fig. 6. Distributions of the axis ratio at Einstein radius. The colors are
the same as in Fig. 5.

parameters have to span enough pixels to adequately retrieve the
local shape.

Two galaxies in our sample extracted from Kormendy et al.
(2009) display particularly drastic position angle twists. How-
ever, one of these two galaxies is almost circular with an axis
ratio of 0.97 at θE, compared to 0.84 for the other galaxy.
Thus, only one galaxy in the chosen Kormendy et al. (2009)
sample can be considered as significantly highly twisted. On
the other hand, galaxies from the EAGLE sample generally
display stronger changes in ellipticity. Since the sample from
Kormendy et al. (2009) is based on isophotes of galaxies while
the EAGLE sample is based on isodensity contours, the dif-
ference between the two sample could come from a difference
between mass and light behavior. The EAGLE hydrodynamical
simulations provide stellar mass maps in addition to total mass
maps. We can thus analyze the light of the EAGLE galaxies
and compare it to properties of the light of observed galaxies
in a consistent way. Comparison between the different samples
in terms of twists and ellipticity changes are shown at Fig. 5
as histograms and associated kernel density estimations (KDEs)
of the four metrics for the samples we considered. The EAGLE
isodensity and isophotal contours are similarly twisted and have
analogous ellipticity changes. The range of ellipticity variations
in the EAGLE sample, independently of whether we consider
light or mass, is wider than the variation range from the sample
from Kormendy et al. (2009). However, the highest ∆elliIN and
∆elliOUT are due to the three ellicular galaxies that were probed
at two different Einstein radius. Excluding these three galaxies
would lead to still wider, but more similar distributions of the
EAGLE and Kormendy et al. (2009) samples. We conclude that
the differences between the two samples is mainly due to the dif-
ferent types of early-type galaxies that constitute them. For illus-
tration purpose, we present at Fig. A.1 a set of position angle and
axis ratio profiles for the linear experiment from Sect. 3.1, two
hydro-simulated galaxies, and two observed galaxies.

In addition to the position angle and ellipticity changes, we
note that the axis ratios at the Einstein radius of the observed
local galaxies are often higher than that of the simulated sample,
as shown in Fig. 6. This may yield a larger impact of the twists
for the simulated sample, even with comparable distributions of
the position angle variations.

2.2.4. Radial mass distribution

For each mock lensing galaxy, we adjusted the surface mass den-
sity of each slice such that the radial profile at the mean elliptical
radii follows an isothermal profile. We also always fixed the cen-
ter of every slice to be the same in order to avoid any lopsided-
ness and focus on the effect of changes of position angle and/or
ellipticity with the galactocentric radius.

To better understand the interplay between the azimuthal
changes and the radial mass profile, we also constructed mock
images based on radial lensing profile following a composite
mass profile with baryonic and dark matter components. The
results of this experiment are presented in Appendix B.

Our method of specifying the constant surface density of
each slice did not allow us to specify the Einstein radius and
slopes with an arbitrary accuracy. This is particularly notice-
able when there is a drastic change in ellipticity between several
slices. In this case, the mass associated with the very elliptical
slices in the inner part of the galaxy can be underestimated and
create a shallower profile at radii typically smaller than a few
pixel, which biases the overall Einstein radius. If these extreme
variations also occur up to the Einstein radius, the slope at that
radius can be affected. Only the ellicular galaxies are subject to
these drastic ellipticity evolution. Generally, the simulated Ein-
stein radius and the slope of the azimuthally averaged radial
profile reach their targeted value (i.e., the value when no twist
or ellipticity gradients are present) within an accuracy of 1%.
For the most extreme cases, the Einstein radius can be biased
by up to 7% and the slope by up to 3%. Different schemes of
mass attribution to the slices can slightly modify the strength of
this effect, but cannot prevent it. When analyzing our results, we
therefore ensured that we compared the fitted Einstein radius to
the true input Einstein radius of each specific mock, calculated
independently as being the radius at which the mean conver-
gence drops below 1. This calculation has an accuracy of 0.01′′.
The same practice was used for the slope results, which were
compared to the input slope, measured using the azimuthally
averaged logarithmic power-law slope of a profile at the Einstein
radius. In addition to the mass profile of the lensing galaxy made
of slices, a shear was added with a strength γext = 0.05 and a
random orientation φext.

2.3. Creation of mock images

With the mass model produced as explained in the previous
section, we used the lenstronomy software to create images
of a background source composed of a quasar and a Sérsic host
galaxy (Rsersic = 0.1, nsersic = 3) at redshift zs = 2, lensed by the
mock lensing galaxy. The source was randomly placed inside
the inner caustic to create a quad lens in the image plane. The
choice of a circular Sérsic source allowed us to avoid any spe-
cific degeneracy that could arise from the interplay between the
ellipticity of the source, the image configuration, and the change
in ellipticity or position angle in the lens.

We always considered our lensing galaxy at redshift
0.271. This redshift is typical of lensing galaxies as
observed in the SLACS survey (Bolton et al. 2006; Treu 2010;
González-Nuevo et al. 2012) and was also used in the SEAGLE
project (Mukherjee et al. 2018), from which we used the pipeline
to create mass maps in our sample of mock lensing galaxies
based on hydro-dynamical simulations.

The lens was considered to be transparent to avoid blending
between the lensed source images and the lens light. Incorpo-
rating lens light in our mock images would be more realistic.
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However, the lens light and the ring would overlap. Therefore
the uncertainties introduced by the lens light subtraction would
depend on the specific method used and would limit the gen-
eralization of the results. We nevertheless created a few mock
images with lens light to assess the validity of our results for a
nontransparent lens. We found that strong azimuthal variations
in the lens light are generally not properly fitted by Sérsic pro-
files and ubiquitous patterns at the lens position can be seen in
the residuals. On the other hand, if the lens light follows a non-
azimuthally varying profile and is modeled as such, the addi-
tional freedom and noise introduced by the lens light beneath
the arc do not influence the fitted parameters: consistent results
are retrieved in both cases with and without lens light. We can-
not rule out the possibility that specific lens-light profiles could
degenerate with source-light patterns in the arc appearing due to
azimuthal variations in the mass, and could bias the subsequent
fit. However, such cases are expected to be rare.

We created mocks with typical space-based data quality.
In particular, we chose to simulate observations obtained with
the Wide Field Camera 3 (WFC3) on board the Hubble Space
Telescope (HST) in the F160W filter. This is one of the most
frequently used setups for high-resolution imaging of lensed
quasars (Suyu et al. 2017; Ding et al. 2021). We used a PSF
created from the drizzling of eight PSFs extracted from real
images. This PSF is the same as the one used in Rung 2
and 3 of the Time Delay Lens Modeling Challenge (TDLMC;
Ding et al. 2021). We used a pixel size of 0.08′′ and add noise
assuming an exposure time of 5400 s. Our setup is highly
similar to other works that simulated lensing systems (e.g.,
Ding et al. 2021; Wagner-Carena et al. 2021; Park et al. 2021;
Van de Vyvere et al. 2022). A noise map and a mask, masking
the pixels with values lower than twice the background level,
were also created and were used during the lens modeling pro-
cedure.

The time delay between the quasar images were also calcu-
lated within lenstronomy. We used the exact value of the delay
in the modeling process, but associated a 2% uncertainty with its
value with a minimum threshold of one day.

2.4. Fitting procedure

After the mock images were created, they were modeled with
lenstronomy assuming that the lensing galaxy is a singu-
lar power-law ellipsoid, and that an external shear is present.
Since early-type galaxies density profiles are observed to be
well approximated with a power-law profile up to large radii
(Suyu et al. 2009, 2010), the power law was a standard model
commonly employed to model real quasar images (Birrer et al.
2016; Shajib et al. 2019; Wong et al. 2020). We used a source
model composed of a circular Sérsic profile with a quasar at its
center. This setup uses similar light and mass profiles for the
mocks and for the model, setting aside the azimuthal variations.
It allowed us to test how the lack of flexibility of the model in the
azimuthal direction impacted the inference. Because azimuthal
and radial structures might interact, we later relaxed this assump-
tion and used a radial distribution that no longer was a power law
(Appendix B).

As a first step, the slope of the power-law ellipsoid mass
distribution (PEMD) was fixed to simulate an isothermal pro-
file. A particle swarm optimization (PSO; Kennedy & Eberhart
1995; Shi & Eberhart 1998) was then initiated to identify the
maximum likelihood. After convergence was reached (or, in
a few cases, maximum iteration reached), the slope con-
straint was relaxed and a second PSO was started. A Markov

Table 1. Definition of the parameters used to compare models.

Quantity Difference between Quantity description

Input Fiducial Fitted

δθE x x Einstein radius [′′]
∆q x x Lens axis ratio
∆φelli x x Lens position angle [◦]
∆γext x x Shear strength
∆φext x x Shear position angle [◦]
δslope x x Power-law slope
∆Rsersic x x Source Sérsic radius [′′]
∆nsersic x x Source Sérsic index
∆H0 x x Hubble constant

[km s−1 Mpc−1]

Notes. “Fiducial” stands for the retrieved value of the parameter for the
fiducial case without twists and no ellipticity changes. “Input” stands for
the quantity calculated specifically for the mock, created with ellipticity
changes and/or twits, taken at the Einstein radius for the effective slope.

chain Monte Carlo (MCMC), through the software emcee
(Goodman & Weare 2010; Foreman-Mackey et al. 2013), finally
proceeded in the vicinity of the second PSO optimum to sam-
ple the posterior and retrieve the uncertainties on the modeled
parameters.

3. Results

3.1. Monotonic azimuthal variations

As described in Sect. 2.2.2, we performed an experiment with
linear variations of ellipticity or position angles at radii lower,
close to, and greater than the Einstein radius. While this test is
not directly reflective of real galaxies, it is useful for understand-
ing qualitatively the impact of each type of change occurring at
different galactocentric radii of a lensing galaxy. The results of
this experiment are displayed at Fig. 2.

Figure 2 shows that the changes in ellipticity outside the
Einstein radius can be absorbed by the external shear by chang-
ing its strength by 0.01 and its orientation by 11◦. The changes
in ellipticity inside or at the Einstein radius, on the other hand,
are absorbed by a change in slope that yields a bias of a few
km s−1 Mpc−1 on H0. The twists, on the other hand, mainly affect
the retrieved orientations: the position angle of the ellipsoid is
changed by up to 3◦ for twists inside the Einstein radius, but the
shear position angle varies by up to 37◦ when the twist is out-
side θE, in agreement with Fig. 3 (top). Twists present only at
the Einstein radius do not influence orientations, as they are very
localized and average out in the global mass profile. The effect of
twists on the power-law slope and H0 is harder to characterize as
the evolution of both parameters when relaxing the fixed slope
constraint is correlated, while the resulting H0 remains mostly
unbiased.

3.2. Data-motivated azimuthal variations

We now analyze the impact of twists and ellipticity gradients as
they are displayed in data-motivated samples. The retrieved fitted
parameters at a population level allow us to first verify the inter-
pretation scheme outlined in Sect. 3.1, and second, they quan-
tify the effective impact of data-motivated azimuthal structures.
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Fig. 7. Population results based on mock mass profiles following the ellipticity and position angle variations observed in local galaxies, using the
Kormendy et al. (2009) sample. The nine fiducial galaxies are represented with different symbols, filled when the considered Einstein radius is 2′′,
and empty for θE = 1′′. Each galaxy is used to create three types of mock mass profile: the twist case in which only the position angles follow the
original galaxy profile (red), the ellipticity case in which only changes of ellipticity are allowed (green), and the twist + ellipticity variation case
(blue). The different mock images, created with the lens mass profile that lenses a circular Sérsic background source, are modeled with a PEMD
+ shear lens model and a circular Sérsic for the source model. The definition of the first nine quantities is listed in Table 1. The χ2 is the reduced
imaging χ2 of the fit. The last four quantities are defined in Sect. 2.2.3. Since these latter quantities are specific to the different galaxies and do
not involve any modeling, they are plotted in black. The diagonal cells are KDEs of the marginalized quantity. Only the fits with χ2 < 1.5 are
considered for the KDE distributions.

This last outcome will inform us on any possible issue affecting
lens models that ignore the lens azimuthal structure. We refer to
Sect. 2.2.3 for the description of the two samples used, that is, (a)
a sample based on observed isophotes of local galaxies, and (b)
a sample based on isodensity contours of galaxies drawn from
hydrodynamical simulations.

3.2.1. Observation-based morphologies

The summarized results of the selected Kormendy et al. (2009)
population are displayed in Fig. 7 and Table 2. As described in
Sect. 3.1, the twists mainly impact the angles of the retrieved
position angle of the main lens model, or the angle of the shear.
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Table 2. Kormendy population results.

Input

Twist Elli Elli + twist

∆PAIN 1.+13.
−6. – 1.+13.

−6.

∆PAOUT −0.6+2.2
−8.9 – −0.6+2.2

−8.9

∆elliIN – −0.05+0.12
−0.04 −0.05+0.12

−0.04

∆elliOUT – 0.006+0.035
−0.050 0.006+0.035

−0.050

Results

Twist Elli Elli + twist

δθE 6.5+5.8
−6.8 × 10−3 4.7+7.3

−3.6 × 10−3 5.8+7.1
−4.8 × 10−3

∆q 0.0+2.1
−2.3 × 10−3 0.0+2.1

−1.6 × 10−2 0.3+1.7
−1.8 × 10−2

∆φelli 0.1+1.6
−1.2 1.7+3.4

−5.3 × 10−1 0.1+0.9
−1.0

∆γext 0.0+5.1
−5.0 × 10−3 0.3+1.3

−0.8 × 10−2 0.7+0.9
−1.1 × 10−2

∆φext −0.3+3.8
−1.9 0.9+5.9

−4.8 1.8+4.3
−9.1

δslope −0.6+2.4
−1.6 × 10−2 −0.2+7.6

−6.1 × 10−2 −1.4+3.4
−4.4 × 10−2

∆Rsersic −0.0+1.4
−1.8 × 10−3 −0.2+5.4

−4.6 × 10−3 −0.8+4.5
−3.0 × 10−3

∆nsersic −3.7+2.7
−4.3 × 10−2 0.2+6.1

−7.5 × 10−2 0.8+7.6
−6.3 × 10−2

∆H0 −0.3+1.2
−0.9 −0.8+4.0

−3.1 −0.6+2.2
−3.0

Notes. Input sample properties (top) and statistics of the model results
(bottom) for each azimuthal variation subsample. See Sect. 2.2.3 for the
comprehensive population description. See Table 1 for the definition of
the retrieved quantities and Fig. 7 for the visualization of the results.
Only fits with χ2 < 1.5 are considered within the population results.

The position angle of the ellipsoid differs from the fiducial angle
with a scatter of 1.4◦. The position angle of the shear is offset
with respect to the true shear angle with a scatter of 2.8◦ on
average. We note that the amplitude of the position angle devi-
ation for the shear may also depend on the strength and orien-
tation of the fiducial input shear. The gradient of ellipticity, on
the other hand, mainly impacts the shear strength, the slope, the
source size, and the value of H0, introducing a scatter of 22%,
3.4%, 5.0%, and 5.1%, respectively, on these quantities. We did
not separate the θE = 1′′ mock image results from the θE = 2′′
results because the two subsamples are too small to distinguish
a statistically significant difference of behavior.

Another clear trend is the correlation between H0 and the
fitted slope, but also with the source size. This suggests that to
first order, the redistribution of the azimuthal mass due to ellip-
ticity gradients has the same effect as the one produced by a
mass-sheet transformation (MST; Schneider & Sluse 2013), as
the fitted model is degenerate with the data provided that the
source is magnified. The fact that the χ2 is not 1 shows that this
is not a perfect degeneracy. This behavior has been anticipated
by Kochanek (2021), who stated that the presence of ellipticity
variations will (1) favor a specific value of the fitted slope to
balance internal and external shear introduced by the azimuthal
perturbation and retrieve the correct general ring shape, (2) cause
the model to increase or decrease the source size to recover the
ring brightness and thickness, and (3) bias the value of H0, which
mainly depends on the lens mass model, accordingly.

The dependence of the modeled ellipticity on the input
changes of the ellipticity inside the Einstein radius is trivial. The
slight correlation between position angle of the PEMD model
and the amplitude of the input twist is also trivial. The distri-
bution of χ2 informs us that good fits are retrieved in all cases,
despite the twists and ellipticity changes. Finally, even if single
H0 values can be biased low or high, the recovered median value
of the distribution is centered, within 0.3σ, on the fiducial H0,

that is, 70 km s−1 Mpc−1, for all types of azimuthal variations.
We define σ as the mean value of the two sides of the 68% cred-
ible interval.

3.2.2. Hydro-simulation based morphologies

The results for the sample based on the EAGLE hydro-
dynamical simulations is shown in Fig. 8 and Table 3. The
observed trends are similar to those from the sample of
Kormendy et al. (2009), despite a few peculiarities that we
explain below.

First, the scatter on the position angle of the ellipsoid and on
the shear in presence of twists is wider than what we measured
in Sect. 3.2.1, with population standard deviations of 2.4◦ and
8.4◦, respectively. The scatter on the recovered shear strength is
about 44% in presence of ellipticity gradients, 26% with twists,
and reaches 50% when the two morphological deformations are
present, which is twice broader for this sample than for the
sample of Kormendy. Second, when gradient of ellipticities are
present, the retrieved axis ratio can differ by up to several per-
cent from the ratio measured at the Einstein radius, in particular
when a strong ellipticity gradient is present inside the Einstein
ring. However, strong gradients are also harder to fit with a single
elliptical profile, as indicated by the poorer χ2. The slope, Rsersic,
nsersic, and H0 also have a broader distribution due to the ellip-
ticity gradients than the twist-only galaxies: the parameter pop-
ulation distributions for ellipticity gradients are between 2.6 and
4.1 times broader than the twists gradients for the quantities cited
above. Third, the correlation between the slope, Rsersic, and H0 is
similar to the correlation reported earlier with the sample from
Kormendy et al. (2009). The correlation between the retrieved
axis ratio and the changes in ellipticity inside the Einstein radius
is trivial. Finally, the galaxies displaying the strongest ellipticity
gradients, mostly the ellicular galaxies, are not well fit, as indi-
cated by the χ2. The twist-only galaxies, on the other hand, are
all fit well.

3.2.3. Comparison of the two samples

We now compare the distributions of fitted quantities for our
two mock populations in detail. Figure 9 compares the his-
tograms of the two population results when both twists and ellip-
ticity changes are present. We anticipate that the combined set
of EAGLE and Kormendy covers a wide range of azimuthal
variations within which the real population is expected to lie.
While the extreme changes in ellipticity are sometimes difficult
to model, most twists and ellipticity changes are easily absorbed
by the model, which is a simple power-law ellipsoid model and
shear. Figure 10 shows typical fit residuals when the azimuthal
variations are well (top) and poorly (bottom) absorbed in the
model. The galaxies based on the simulated sample display the
most extreme ellipticity variations. The reason is that this sam-
ple includes ellicular galaxies, which are absent from the sample
studied by Kormendy. For the two samples, the changes in posi-
tion angles are absorbed by the position angle of the modeled
ellipsoid and the orientation of the shear. The variations in ellip-
ticity have an impact on the retrieved shear strength, with ampli-
tudes depending on the sample. The same observation can be
made for the slope of the power-law ellipsoid, the source size,
and H0. Moreover, no bias is observed, the recovered median
value of H0 being less than half a σ away from the fiducial one.
The ∆H0 distribution for the sample based on EAGLE galaxies
is slightly broader, however, as they display a broader range of
ellipticity variations (see Sect. 2.2.3).
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Fig. 8. Population results for the EAGLE sample from Mukherjee et al. (2018), based on 12 fiducial galaxies. The description is the same as for
Fig. 7. The markers of the three ES galaxies are triangles pointing to the left, triangles pointing to the bottom, and the diamond shape. We recall
that only the fits with χ2 < 1.5 are considered for the KDE distributions.

The strong correlation between H0, the power-law slope, and
the source size when ellipticity gradients are present is similar to
what would be observed in presence of a mass sheet degener-
acy (MSD), and it appears in both samples. This can be qual-
itatively understood from the bottom panel of Fig. 3. To com-
pensate for the missing or excess mass introduced by ellipticity
gradients, the slope of the density profile of the model needs
to be modified and rescaled to conserve the mass within the
Einstein radius. A pure mass sheet transformation (MST) acts
only as a rescaling of a radial mass density profile. Nevertheless,
the ellipticity gradients, which are azimuthal variations, trigger
an MST-like degeneracy. The pure MST effects have been miti-
gated so far: We used power-law mass profiles for both the input
lens mass and the model, whereas an MST cannot transform
a power law into a power law. It may therefore be important
to relax the assumption on the radial density profile to better
investigate the interplay between the radial mass profile and the

azimuthal variations. We thus added Appendix B to explore this
question further by creating mock lenses following a compos-
ite mass model instead of a power law. We did not observe an
additional effect of the interaction of the radial and azimuthal
mass profile. The MST due to the radial mass profile and the
MST-like degeneracy due to azimuth variations seem to act
independently.

4. Summary and conclusions

Isophotal twists and ellipticity variations have been detected
in elliptical galaxies in the local environment as well as at
higher redshifts (see, e.g., Fasano & Bonoli 1989; Keeton et al.
2000; Hao et al. 2006; Pasquali et al. 2006; Kormendy et al.
2009). Lensing galaxies, which mostly are massive ellipticals,
can also display these features (see, e.g., Keeton et al. 2000;
Fadely et al. 2010). However, most lensing galaxies are modeled
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Table 3. EAGLE population results.

Input

Twist Elli Elli + twist

∆PAIN 2.+11.
−14. – 2.+11.

−14.

∆PAOUT −2.8+8.5
−7.6 – −2.8+8.5

−7.6

∆elliIN – −0.04+0.42
−0.12 −0.04+0.42

−0.12

∆elliOUT – 0.02+0.06
−0.13 0.02+0.06

−0.13

Results

Twist Elli Elli + twist

δθE 0.6+1.1
−0.5 × 10−2 1.2+0.8

−1.2 × 10−2 1.3+0.5
−1.3 × 10−2

∆q 1.5+6.8
−2.9 × 10−3 −1.2+2.7

−8.4 × 10−2 −2.2+3.5
−6.8 × 10−2

∆φelli 0.4+2.3
−2.5 −0.4+5.6

−4.3 × 10−1 −0.0+3.8
−3.2

∆γext −0.0+1.6
−1.0 × 10−2 −0.1+4.0

−0.4 × 10−2 0.4+3.8
−1.2 × 10−2

∆φext 7.6+7.0
−9.7 −0.1+4.0

−6.9 0.3+1.9
−0.9 × 101

δslope −1.5+1.4
−2.6 × 10−2 0.6+9.9

−6.4 × 10−2 −0.0+1.3
−0.7 × 10−1

∆Rsersic −1.0+2.0
−1.7 × 10−3 0.9+7.2

−4.7 × 10−3 1.2+8.7
−7.9 × 10−3

∆nsersic 1.0+2.2
−5.1 × 10−2 0.0+0.8

−1.1 × 10−1 −2.1+9.2
−8.7 × 10−2

∆H0 −0.5+1.3
−2.2 0.0+8.1

−4.4 1.3+5.2
−4.5

Notes. Distributions of azimuthal variations for the sample (top) and
associated population results (bottom). See Sect. 2.2.3 for a comprehen-
sive description. See Table 1 for the definition of the retrieved quantities
and Fig. 8 for the visualization of the results. Only fits with χ2 < 1.5 are
considered.

with a simple ellipsoidal shape (see, e.g., Treu & Marshall 2016;
Shajib et al. 2019; Wong et al. 2020). Characterizing the influ-
ence of this assumption has been the goal of this paper.

We have followed a method similar to that of
Van de Vyvere et al. (2022). We created mock lensing galax-
ies that displayed twists and/or ellipticity gradients using the
method proposed by Schramm (1994). It consists of superposing
finite elliptical slices of constant surface density, which have
different sizes, mass, orientations, and ellipticities, to mimic
an arbitrary mass profile. The lensing potential and deflection
angle of each slice are known analytically, and were summed
to compute the lensing quantities associated with the whole
mass profile. We then simulated gravitationally lensed systems
and modeled them with a mass profile characterized by a
single orientation and ellipticity. The analysis of the retrieved
parameters allowed us to quantify the impact of the scarcity of
azimuthal structures in the lens modeling.

We first simulated lensing galaxies with position angles and
ellipticities that varied linearly with radius to acquire a heuris-
tic understanding of the role of each of these two azimuthal
structures on lensed images. We found that moderate azimuthal
changes do not preclude good modeling of the systems. The
twists in the inner regions of the galaxy mainly impact the orien-
tation of the fitted ellipsoids, while twists in the outer regions
of the galaxy rotate the position angle of the retrieved shear.
For ellipticity gradients in the outer part of the galaxy, the shear
strength and orientation are modified instead. Ellipticity gradi-
ents in the inner part mainly impact the ellipticity of the mod-
eled density profile. Ellipticity variations also influence other
parameters, however, such as the power-law slope, the source
size, and the time-delay distance, which is a proxy for H0. This
is explained by a balance of the internal and external shear that
is achieved in the modeling by an adjustment of the radial pro-
file, thus modifying H0, and accommodating the source size

accordingly. This confirms the statement by Kochanek (2021)
that fitting a lensing galaxy displaying ellipticity gradients with a
homoeidal power-law profile would lead to a bias on the slope to
balance the internal and external shear introduced by the change
of ellipticity, and would thus bias H0.

To quantify the impact of twists and gradients on lens parame-
ters and cosmography, we simulated and modeled populations of
lensing galaxies displaying realistic morphologies. Two popula-
tions of data-motivated azimuthal variations were considered: the
light profiles of observed nearby galaxies (Kormendy et al. 2009),
and the mass profiles of galaxies from the EAGLE hydrodynami-
cal simulations (Schaye et al. 2015). Both samples display similar
position angle variations. Ellicular galaxies in the EAGLE sam-
ple yield a wider population of ellipticity gradients, however, as
the sample contains galaxies displaying drastic variations in their
ellipticity profile (e.g., an axis ratio varying by 0.5 within 4 kpc).
While extreme ellipticity variations are difficult to model, all the
twists we tested were easily absorbed in the modeling. When both
twists and ellipticity gradients are present in the mock lensing
galaxy, the effect of each simply add up. The modeling of a sin-
gle lens can reach a bias on the shear orientation of 20◦, while the
shear strength can rise up to twice its fiducial value. The H0 infer-
ence can also be biased up to 10 km s−1 Mpc−1. Nevertheless, the
influence of the azimuthal variations averages out at a population
level. The median H0 value is centered on the fiducial value within
less than 0.5σ for both observed and hydro-simulated morpholo-
gies. Other parameters such as the shear strength, shear orienta-
tion, and the ellipsoid axis ratio and position angle are also cen-
tered on their fiducial values at a population level. The absence of
ellicular galaxies yields narrower distributions of the fitted param-
eters in the observation-based sample compared to the hydro-
simulation sample.

The reported results on a lens-by-lens case may cause con-
cern, but fortunately, galaxies are not transparent, and twists and
ellipticity gradients may be readily detectable in their luminosity
profile. The lens-light variations are a sufficiently good proxy of
the mass distribution azimuthal patterns according to the anal-
ysis we performed of elliptical galaxies from hydrodynamical
simulations. By comparing light and mass in EAGLE, we found
that the variations in orientation and axis ratio in the light are
similar to the variation in the mass. The light is thus a good
tracer of the position angle and ellipticity fluctuations in the
inner 15 kpc of elliptical galaxies. The precision of the instru-
ment point spread function, which blurs and circularizes the fea-
tures of the galaxies, will nevertheless play a role in the detec-
tion of azimuthal variations, especially in the inner parts of the
galaxy.

In principle, kinematic information should also provide addi-
tional constraining power that can help to inform and model the
existence of such structures. However, in practice, neither the
data quality nor the kinematic models commonly employed in
lensing contexts are sufficient to this degree as yet. In the con-
text of lens modeling, many assume spherical Jeans velocity dis-
persions (e.g., Wong et al. 2017; Birrer et al. 2019; Rusu et al.
2020), or the most advanced models assume axisymmetry (e.g.,
Yıldırım et al. 2021), and therefore do not take azimuthal struc-
tures into account. While methods exist to create mock kinemat-
ics with additional structure (e.g., triaxiality via Schwarzschild
modeling), these structures can currently not be modeled jointly
with lens modeling. As kinematic simulation and lens modeling
codes coevolve, it might be possible in the future to better con-
strain a complex galaxy with azimuthal variations using spatially
resolved kinematic information.

To conclude, this paper explores the effect of isodensity
twists and ellipticity gradients on lensing cosmography analyses,
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Fig. 9. Comparison of results for the sample of mocks based on hydro-simulated morphologies (dashed green) and for the results based on
observed morphologies (plain red) when both ellipticity variations and twists are present. Both variations are needed to mimic realistic galaxies.
The displayed quantities are identical to those of Figs. 7, 8. Only the fits displaying χ2 < 1.5 are considered.

Fig. 10. Example of a fit when ellipticity gradients and twists are well absorbed within the model (top) and when these azimuthal variations
leave ubiquitous patterns in the residuals (bottom). From left to right: convergence map of the input mass profile displaying twists and ellipticity
gradients, mock image created with this mass profile, best power-law + shear model fitting the mock image, and residuals between the image
and the model. In most cases, the residuals display no patterns. When extreme changes in ellipticity are displayed in the input mass model, as
for ellicular galaxies, the azimuthal variations may not be absorbed by the model. In this case, the residuals display recognisable patterns that are
unlikely to be mistaken as lens light or any other well-behaved light component.

as such azimuthal variations exist in early-type galaxies. The
impact of twists on the modeling is in general rather marginal.
Ellipticity gradients, on the other hand, can introduce substantial
amount of shear that can be partly absorbed by the lens mod-
els, with an impact on the value of H0 on a single lens basis.
However, no bias is observed at the population level. We did
not construct our samples to perfectly match the true population
of lensing galaxies, but we chose it with a rather broad diver-
sity representative of real systems. An overpopulation of some
subsamples might change the broad picture slightly, but the lat-
ter indicates that the impact of ellipticity gradients and twists is
generally small or averages out. If a population analysis is not
feasible, a lens-light analysis should enable a rough estimation
of the azimuthal variations. It may be important to look at the

light profile outside the Einstein radius as ellipticity gradients in
these regions can introduce substantial shear. If azimuthal varia-
tions are detectable in the isophotes, a more complex modeling
scheme can consequently be applied to increase the azimuthal
freedom in the mass model and assess the presence of a possible
systematic bias.

More broadly, ellipticity gradients and twists are not
the only type azimuthal variations that can be considered.
Van de Vyvere et al. (2022) also explored the role of undetected
azimuthal variations in the mass on the model and specifically
H0, but focused on the role of the multipolar component of order
4, which corresponds to boxyness and diskyness. They found
that boxyness or diskyness in the mass introduces specific pat-
terns in the lensed arcs. Depending on the signal-to-noise ratio
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and on the complexity allowed in the source reconstruction,
these patterns could be absorbed in the modeling with purely
ellipsoidal power-law mass profiles. For ellipticity gradients and
twists, the patterns are almost always unnoticed as they are easily
modeled by changing the azimuthal components (orientation and
strength of shear or ellipticity) and/or by modifying the radial
power-law mass model. Both ellipticity gradients and multipoles
of order 4 have impacts on H0 up to a bias of 15%. However, a
realistic combined population of boxy and disky galaxies aver-
ages the H0 bias to be below the percent level, and similarly, a
sample of early-type galaxies displaying a variety of ellipticity
gradients also averages out the bias down to the percent level.
A combination of all the different types of azimuthal variations
(i.e., boxyness or diskyness, ellipticity gradients, and twists) was
not explored in this paper. Nevertheless, as both multipolar vari-
ations and ellipticity gradients have little bias on H0 at a pop-
ulation level, we expect that a sample of galaxies displaying a
combination of both would also lead to an unbiased cosmologi-
cal inference, even if cosmological results of individual lensing
systems could be more widely spread.
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Appendix A: Example profiles

Fig. A.1. Example variations with semi-major axis of axis ratio (top)
and position angle (bottom) from hydro-simulated, observed, and
custom-designed galaxies. The "Hydro-simu 2" curves depict the mor-
phology of an ellicular galaxy, i.e., an early-type galaxy displaying a
medium-sized disk component in the center. The position angle profiles
are translated by a constant angle to help visualization. The correspond-
ing convergence maps are also shown in Fig. A.2.

Fig. A.2. Examples of convergence maps created with slices for hydro-
simulated, observed, and custom-designed galaxies that display axis
ratio and position angle variations with semi-major axis. The corre-
sponding azimuthal profiles of the different galaxies are displayed in
Fig. A.1.

We constructed mock lensing galaxies with varying azimuthal
profiles. Five of these position angle and axis ratio profiles are
presented at Fig. A.1. The convergence maps created with slices
following the different azimuthal variation profiles are shown
in Fig. A.2. In Sect. 2.2.2, monotonic variations of position
angle or ellipticity were considered. The profile used is dis-
played as a purple long-dashed line. Two data-motivated sam-
ples of azimuthal variations were considered in Sect. 2.2.3: the
morphologies based on observed local elliptical galaxies ana-
lyzed by Kormendy et al. (2009), and the morphologies based
on the density of EAGLE hydro-simulated galaxies. Two profiles
of each sample are presented in Fig. A.1: with dashed blue and
dash-dotted orange lines for the morphologies based on hydro-
simulations, and as plain green or dotted red lines for those based
on observations.
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Appendix B: Composite mass profiles

To explore the role of radial mass profile in conjunction with
azimuthal variations such as twists or ellipticity gradients, we
created new samples of mock lensing images based on compos-
ite lensing mass profiles consisting of a baryonic and a dark mat-
ter component. Unlike the power-law profile, this mass profile
does not display the same radial slope at every galactocentric
radii.

The baryonic component is usually represented with a Sér-
sic or a Chameleon profile (Dutton et al. 2011; Suyu et al. 2014,
Gomer et al. in prep). The chameleon profile, which is the dif-
ference between two nonsingular isothermal ellipsoids (NIE),
mimics the well-known Sérsic profile for Sérsic indexes between
1 and 4 and has the advantage of being less computationally
demanding for the calculation of lensing quantities. The math-
ematical formulation we used for this profile is the following:

κ(θ1, θ2) =
L0

1 + q

 1√
θ2

1 + θ2
2/q

2 + 4w2
c/(1 + q)2

−

1√
θ2

1 + θ2
2/q

2 + 4w2
t /(1 + q)2

 , (B.1)

where (θ1, θ2) are defined within the coordinate system oriented
along the main axis of the chameleon ellipsoid, L0 is a normal-
ization factor, q is the axis ratio, wc is a proxy for the core radius
of the first NIE, and wt is that of the second NIE.

The dark matter component is commonly simulated with a
Navaro-Frenk-White mass model (NFW; Navarro et al. 1996).
The halo of dark matter thus follows

ρ(r) =
ρ0

(r/rs)(1 + r/rs)2 , (B.2)

where ρ is the 3D mass density, ρ0 the central mass density,
and rs is the scale radius at which the profile smoothly switches
between a ρ ∝ 1/r relation and a ρ ∝ 1/r3 proportionality.
The lensing quantities formulation in 2D of this mass density
in pseudo-elliptical symmetry can be found in Golse & Kneib
(2002).

The composite mass profile we chose to simulate had the fol-
lowing characteristics. The Einstein radius was set to 1′′, which
is typical of observed Einstein radii. Other characteristics were
chosen such that in the end, the baryonic profile mimicked a Sér-
sic with Reff = 1.7′′ and nsersic = 4, corresponding to a total mass
of 0.28 × 1012 M�, and the dark matter profile had physical size
of R200 = 0.25 Mpc and M200 = 2.4 × 1012 M�. The latter is
defined as the mass enclosed in the radius R200 in which the aver-
age density is 200 times the critical density of the universe at the
considered redshift. This setup is arbitrary but representative of
real lensing galaxies (Gomer et al. in prep). Such a radial mass
profile is presented in Fig. B.1.

The radial mass profile was created using the azimuthal aver-
age of the elliptically symmetric mass density at each radius.
However, the azimuthal profile shows that for an elliptical com-
posite mass profile, the logarithmic slope of the profile is not
constant for a circular azimuthal cut because it probes different
elliptical radii of a profile with a varying slope with radius, as
shown in Fig. B.2.

With the radial profile as simulated above, mock lensing
images can be created for the different twist and ellipticity

Fig. B.1. Radial profile of the composite mass model (dash-dotted blue
line), made of a baryonic component following a chameleon profile
(dashed orange line) and a dark matter component simulated with an
NFW mass profile (dotted green line). The vertical black line indicates
the Einstein radius.

Fig. B.2. Circular azimuth cut of the profile slope for an SIE (orange)
and the composite mass profile (blue) described in this section, consid-
ering a typical mass density axis ratio of 0.8 for both components, taken
at the Einstein radius θE=1′′.

profiles of the two populations of data-motivated azimuthal vari-
ations, that is, the observation-based an the hydro-simulation-
based morphologies. These images were then modeled with a
PEMD and a shear, following the same procedure as imple-
mented before.

Fig. B.3-B.4 display the results when both twists and ellip-
ticity changes are considered for the mocks based on either an
SIE input mass profile and Einstein radius of 1′′ (dashed green),
or a composite input mass profile (plain red). Fig. B.3 specifi-
cally focuses on results from mock lensing galaxies based the
isophotes of the observed sample, and Fig. B.4 displays those
based on the isodensity contours of the hydro-simulated sample
(see Sect. 2.2.3 for the sample details). Only fits with χ2 < 1.5
were considered. For the sample based on observed morpholo-
gies, all the fits have χ2 below the cutoff. This is not the case for
the sample based on simulation: 9 (10) out of 12 mock images
with a composite (isothermal) radial lens profile were fit to the
required level. The galaxies leading to poor χ2 beyond the cutoff
are not systematically the same for the two radial profiles (i.e.,
composite or isothermal).

Compared to the models of the isothermal mock lensing sys-
tems, the parameters of the models resulting from composite
mocks are more widely spread in terms of shear angle, slope,
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Fig. B.3. Comparison between fitted parameters of mock images created with either isothermal (dashed green) or composite radial mass pro-
files (plain red). The mock lensing mass models display both ellipticity changes and twists based on the observed morphologies, using the
Kormendy et al. (2009) sample. Only θE s = 1′′ lensing galaxies are displayed for the isothermal cases in order to match the Einstein radius of
the composite mock images samples. Only fits with resulting χ2 < 1.5 are considered. The four right cells of the second row display identical
distributions, as the same population of twists and ellipticity changes are used to create the composite and the SIE mocks, and all the fit results
have sufficiently low χ2.

Fig. B.4. Comparison between fitted parameters results of mock images created with either isothermal (dashed green) or composite radial mass
profiles (plain red). The mock lensing mass models display both ellipticity changes and twists based on the hydro-simulated morphologies using
EAGLE galaxies from Mukherjee et al. (2018). Only θE = 1′′ lensing galaxies are displayed for the isothermal cases in order to match the Einstein
radius of the composite mock images samples. Only fits with resulting χ2 < 1.5 are considered. Due to the χ2 cut, the displayed distributions of
ellipticity gradient and twists are slightly different.

source size, and H0 for azimuthal variations based on either
an observational sample (Fig. B.3) or a hydro-simulated sam-
ple (Fig. B.4). This extent in these characteristics is understood
as the imprint of the variation in slope with angle for a given
radius, as shown in Fig. B.2. Depending on the configuration
and the ellipticity, the slope distributions even of mocks display-
ing neither twist nor ellipticity gradients are between twice and
three times broader for the composite mass profile than for the
isothermal profile. This scatter on the slope is additionally broad-
ened by the ellipticity variations, hence the twice or three times
larger scatter in ∆H0 for the composites mocks compared to the
isothermal mocks.

The interplay between the radial profile and the azimuthal
variations does not add bias to H0. Even if the MSD induces a
shift in the central value of the H0 distribution for the composite
mocks – the H0 distribution for the composite mocks is centered

on 60 km s−1 Mpc−1 instead of 70 km s−1 Mpc−1 (see Birrer et al.
(2020) for a discussion on how to mitigate this degeneracy)–,
the ∆H0 distributions (see Table 1 for definition) are centered
on 0 for the composite mocks, similarly as for the isothermal
mocks.

To summarize, the results of the modeling of composite
radial mass profile are similar to those with an isothermal radial
mass profile: the same correlations are observed, and no addi-
tional bias on H0 is observed due to the interplay between radial
and azimuthal variations. The only noticeable difference is the
larger scatter of the distributions of the composite results. It is
understood as the manifestation of an intrinsic property of the
composite mass models independent of the azimuthal variations,
however. The mock composite mass profile thus does not seem to
interact more with the input azimuthal variations than a power-
law mass profile does.
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