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In silico modeling is a powerful strategy to investigate the biological events occurring at
tissue, cellular and subcellular level during bone fracture healing. However, most current
models do not consider the impact of the inflammatory response on the later stages of
bone repair. Indeed, as initiator of the healing process, this early phase can alter the
regenerative outcome: if the inflammatory response is too strongly down- or upregulated,
the fracture can result in a non-union. This review covers the fundamental information on
fracture healing, in silicomodeling and experimental validation. It starts with a description of
the biology of fracture healing, paying particular attention to the inflammatory phase and its
cellular and subcellular components. We then discuss the current state-of-the-art
regarding in silico models of the immune response in different tissues as well as the
bone regeneration process at the later stages of fracture healing. Combining the
aforementioned biological and computational state-of-the-art, continuous, discrete and
hybrid modeling technologies are discussed in light of their suitability to capture adequately
the multiscale course of the inflammatory phase and its overall role in the healing outcome.
Both in the establishment of models as in their validation step, experimental data is
required. Hence, this review provides an overview of the different in vitro and in vivo set-ups
that can be used to quantify cell- and tissue-scale properties and provide necessary input
for model credibility assessment. In conclusion, this review aims to provide hands-on
guidance for scientists interested in building in silico models as an additional tool to
investigate the critical role of the inflammatory phase in bone regeneration.

Keywords: bone regeneration, fracture healing, inflammatory response, in silico modeling, multiscale approach,
experimental validation

1 INTRODUCTION

Bone healing is a complex, well-coordinated process that starts autonomously when a bone fracture
occurs. Bone fractures are one of the most common injuries and their incidence in Europe is expected
to increase by 23% over the coming decade due to ageing, as average life expectancy rises (Borgström
et al., 2020). Owing to the bone tissue characteristics, successful healing is usually achieved within
weeks (Marsh, 1998). However, up to 10% of bone fractures result in delayed healing or non-union
(Zura et al., 2016). This risk rate is influenced by anatomical location, fracture severity and host
factors such as age, smoking or the presence of comorbidities (Zura et al., 2016; Mills et al., 2017;
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Stewart, 2019). Current treatment options to prevent or cure
these incidences present many drawbacks. Autologous bone
grafting remains the gold standard procedure to treat non-
unions, but this technique has limitations such as significant
donor site morbidity and limited volume of available tissue (Pape
et al., 2010). Alternative approaches to support the healing
process, such as bone tissue engineering strategies, are still
being tested in clinical trials or under development (Amini
et al., 2012; Lammens et al., 2012; Papantoniou et al., 2021).
These approaches mainly target the skeletal system and the repair
phase of fracture healing, whereas recent findings have
demonstrated that the skeletal and immune system are closely
interacting through a carefully coordinated cross-talk between
inflammatory and bone forming cells. Hence, inflammatory cells,
such as macrophages, are believed to play a critical, but yet
incompletely understood role in bone healing (Schlundt et al.,
2018; Pajarinen et al., 2019).

In the last two decades, computational modeling has
developed into a powerful technique to complement and
reinforce traditional in vitro and in vivo experimentation, as it
can provide an integrated view of the many events happening
during the bone healing process and hence lead to a deeper
understanding of said process. Moreover, computational models
aim to reduce animal experimentation, although in vivo studies
are often still required for validation purposes. Despite the
importance of the inflammatory phase in bone fracture
healing (Könnecke et al., 2014; Loi et al., 2016; Schmidt-Bleek
et al., 2016), most computational models of bone regeneration
focus on the repair phase, ignoring inflammation and its impact
on the regenerative outcome. Therefore, modeling inflammation
is a necessary inclusion in the current state-of-the-art, as it will
allow to elucidate the mechanisms regulating the early phase of
bone healing and their effect on the final regenerative outcome.
This inclusion is not only needed, but it also starts now to be
possible, as an increasing amount of experimental data regarding
the inflammatory response is becoming available in the literature
(Könnecke et al., 2014; Kovach et al., 2015; Schlundt et al., 2018;
Wagar et al., 2018; Maruyama et al., 2020).

To date, despite the advances in the experimental work on the
inflammatory phase of bone healing, no in silicomodels exist that
capture the spatiotemporal dynamics of the process. In this
review, we bring together the necessary components required
to build a validated computational model able to predict the
inflammatory response in bone healing and study the interaction
of this phase with the subsequent phases of the healing process.
First, Section 2 describes the overall bone fracture healing process
with a strong focus on the inflammatory phase. Then, Section 3
revisits the current computational models describing the immune
and the skeletal system responses after an injury. Next, Section 4
presents an overview of the experimental techniques that can be
used throughout the development of computational models, from
calibration to validation. Finally, the concurrence of biology,
computational methods and experimental validation is
discussed in Section 5. Taken together, this review aims to
provide the necessary information and tools to build in silico
models, which can provide an additional perspective to study the
critical role of the inflammatory phase in bone regeneration.

2 THE BIOLOGY OF BONE FRACTURE
HEALING

Bones support the body, enable its mobility and protect vital
organs. Moreover, bones produce hematopoietic cells and
contribute to mineral storage within the bone marrow. Bone
tissue is highly dynamic: bones adapt themselves to changes in the
body, accommodating mechanical and biological requirements,
and are constantly renewed in a process of remodeling. However,
when stress and compression forces overcome bone tissue
tolerance, bone fracture occurs (Oryan et al., 2015) and the
process of fracture healing starts.

Bone fracture healing is described in Subsection 2.1.
Subsection 2.2 focuses in more detail on the inflammatory
response during fracture healing, paying special attention to
cellular activity, cytokines and mechano-regulation.

2.1 Bone Fracture Healing Process
Bone can regenerate autonomously without fibrous scar
formation after most cases of injury or fracture, eventually
restoring its original state. This healing capacity is orchestrated
by the complex fracture healing process, which involves multiple
different cell types and is regulated by several biochemical,
physical and mechanical factors (Einhorn, 1998). Depending
on the mechanical stability of the fracture, direct or indirect
healing will occur. Direct or primary fracture healing leads to
restoration of the bone through a remodeling process. However,
primary fracture healing is rather exceptional as it requires
complete stability at the fracture site (Marsell and Einhorn,
2011), which is typically not achieved (Perren, 2002; Harwood
et al., 2010; Claes et al., 2012). On the contrary, indirect or
secondary fracture healing, the most common form of fracture
healing (Marsell and Einhorn, 2011), is stimulated by
interfragmentary motion (Harwood et al., 2010; Claes et al.,
2012). In secondary fracture healing, bone repair advances via
a multi-staged process involving both intramembranous and
endochondral ossification (Loi et al., 2016), in which bone is
formed directly from mesenchymal tissue or from intermediate
cartilaginous tissue, respectively. However, high interfragmentary
motion inhibits bone healing progression (Claes et al., 2012),
resulting in compromised healing.

The classic phases of secondary fracture healing are
inflammation, repair and remodeling (Figure 1). This simple
classification is further elaborated in the contemporary literature,
where additional overlapping substages have been proposed:
hematoma formation, acute inflammation, granulation tissue
formation, angiogenesis, fibrous tissue formation,
fibrocartilage, soft callus development, cartilage mineralization,
hard callus development, and, finally, remodeling (Kolar et al.,
2010; Loi et al., 2016). Following Figure 1, these key events are
briefly described below.

Immediately after the trauma, the fracture hematoma is
formed due to the blood vessels disruption, which triggers the
blood coagulation cascade, thus creating a fibrin network. This
fibrin network serves as provisional extracellular matrix for the
influx of inflammatory cells as well as the progenitor cells from the
periosteum and the bonemarrow (Kolar et al., 2010; Loi et al., 2016).
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Although this phase of bone healing is mostly defined as the
invasion of inflammatory cells, the hematoma also contains
immune cells present in the blood released from the disrupted
vessels (Kolar et al., 2010). The healing process is then initiated
with the activation of neutrophils, monocytes and macrophages
(Kolar et al., 2010), leading to an acute inflammation reaction and
the release of growth factors and cytokines. The initial fracture
hematoma (Grundnes and Reikerås, 1993; Kolar et al., 2010) and
subsequent inflammatory response (Bastian et al., 2011; Claes
et al., 2012; Hoff et al., 2016) are critical for fracture healing
(Schlundt et al., 2015). The hematoma is cleared in several days by
the action of macrophages, which remove the fibrin matrix and
necrotic cells at the bone ends via phagocytosis (Loi et al., 2016).
A hypoxic environment remains within the fracture site, since
neovasculature has not been developed yet.

At the end of the inflammatory phase, granulation tissue
replaces the hematoma fibrin network due to the recruitment
and proliferation of skeletal progenitor cells (SPCs) and
fibroblasts (Harwood et al., 2010; Marsell and Einhorn, 2011).
Granulation tissue favors angiogenesis, which is the formation of
new blood vessels from pre-existing ones (Carano and Filvaroff,
2003). The vascularization process of the fracture site is promoted
with interfragmentary motion during the early stages of fracture
healing (Claes et al., 2012) and enhanced with angiogenic factors,

such as fibroblast growth factor (FGF), platelet-derived growth
factor (PDGF) or vascular endothelial growth factor (VEGF)
(Barnes et al., 1999; Carano and Filvaroff, 2003; Tsiridis et al.,
2007). Meanwhile, the hypoxic environment in the central region
of the fracture site induces the differentiation of SPCs into
chondrocytes (Tsiridis et al., 2007; Claes et al., 2012), starting
the repair phase. Chondrocytes produce cartilage to connect the
fractured bone ends, forming a soft callus that wraps the fracture
gap. The soft callus provides initial mechanical stability and
serves as scaffold for endochondral ossification during the
repair phase (Harwood et al., 2010; Marsell and Einhorn,
2011; Loi et al., 2016). At the same time, SPCs differentiate
into osteoblasts in the periosteal region away from the fracture
site, hence creating woven bone via intramembranous
ossification (Malizos and Papatheodorou, 2005; Claes et al.,
2012; Loi et al., 2016). Both ossification events are regulated
by growth factors, such as bone morphogenetic protein (BMP)
and transforming growth factor beta (TGF-β), which control
proliferation, differentiation and apoptosis of both chondrocytes
and osteoblasts (Barnes et al., 1999; Tsiridis et al., 2007). As soft
callus chondrocytes proliferate, they become hypertrophic and
secrete VEGF, generating the rightful environment to attract
blood vessels. Hypertrophic chondrocytes will finally undergo
apoptosis and blood vessels will recruit progenitor cells that will

FIGURE 1 | Bone fracture healing process. Timeline of secondary bone healing phases: inflammation, repair and remodeling. Tissue, cellular and subcellular levels
are represented. Inflammation (left): hematoma formation triggers the invasion of inflammatory cells (neutrophils, monocytes and macrophages) and the release of pro-
inflammatory (IL-1, IL-6, TNF-α) and anti-inflammatory (IL-4, IL-10, IL-11, IL-13) cytokines. Unactivated macrophages differentiate into classical (M1) and alternative (M2)
activated macrophages. Repair (center): revascularization (endothelial cells), soft callus formation (fibrocartilage) and subsequent hard callus formation (woven
bone) are regulated by repair cells (SPCs, fibroblasts, chondrocytes and osteoblasts) and growth factors (VEGF, FGF, BMP, TGF-β). Remodeling (right): restoration of
the bone original shape by osteoblasts, osteocytes and osteoclasts, regulated by RANKL/OPG balance. These three phases are not rigidly defined over the timeline but
overlap, as represented by the curves at the bottom of the image.
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differentiate into osteoblasts, leading to cartilage mineralization
and generating the hard callus (Marsell and Einhorn, 2011). The
formation of the hard callus entails the end of the repair phase of
bone healing, leaving a solid and mechanically rigid fracture site,
which has been revascularized and repopulated with bone cells.
This stage is reached within several weeks or even months after
the trauma (Loi et al., 2016) and generates the mechano-
biological conditions to initiate the process of bone remodeling.

The remodeling phase is the final stage of the bone healing
process and takes years to complete. Bone remodeling involves
the resorption of immature woven bone and underlying cartilage
matrix by osteoclasts, replacing these tissues with lamellar bone,
as well as the decay of osteoblasts, undergoing apoptosis, or their
maturation and embedding into the bone matrix as osteocytes.
The cellular functions of osteoclasts and osteoblasts are regulated
by cytokines such as receptor activator of nuclear factor kappa B
ligand (RANKL) and osteoprotegerin (OPG). While RANKL
promotes cell activation, differentiation and survival, OPG
inhibits cell activation and induces apoptosis (Steeve et al.,
2004; Tsiridis et al., 2007); leading to bone remodeling being
controlled by the RANKL/OPG ratio (Steeve et al., 2004). The
remodeling process establishes the osteon structure and
Haversian system of the bone, restoring the bone’s original
shape, strength and stability (Oryan et al., 2015; Loi et al., 2016).

2.2 Inflammatory Response to Bone
Fracture
The inflammatory response is the immediate reaction to a trauma
that starts when pathogenic agents enter the body due to a wound,
generating undesired living conditions for the injured organism
(Ward and Lentsch, 1999; Bastian et al., 2011; Loi et al., 2016). The
inflammatory response consists of an automated cascade of signals
that activates the innate immune system to contrast the invasion
(Osuka et al., 2014). Cells of the innate immune system can directly
attack the pathogen or trigger a second wave of signaling by
releasing specific factors that can support the response
(Stoecklein et al., 2012). Environmental conditions, such as
swelling and temperature increase, are generated within the
injured zone due to external attack encouraging a quicker
inflammatory response (Evans et al., 2015; Loi et al., 2016).

The inflammatory response has a primary role on the overall
bone healing process, and immune restricted patients are more
prone to experience impaired healing (Hoff et al., 2017). For
example, cytokines and growth factors released from
macrophages recruit SPCs, promoting their capacity to
colonize the fracture zone and differentiate, thus progressing
the healing (Loi et al., 2016). Slower completion of bone fracture
healing is observed in case of reduced influx of macrophages
(Alexander et al., 2011; Schlundt et al., 2018). However, a
continuously activated inflammatory response may incur a
chronic state, which is also detrimental to successful healing
(Osta et al., 2014). This chronic inflammatory fate was observed
in numerous cases of delayed bone healing, where the prolonged
exposition of the healing tissue to cytotoxic T cells extended the
pro-inflammatory stage to the detriment of a fast and successful
healing (Schmidt-Bleek et al., 2012). Adequate treatment of bone

fracture healing should therefore generate a balanced response
from the inflammatory stage. While it is known that the anti-
inflammatory environment generates the conditions for a
successful repair phase (Godwin et al., 2017), the prolonged
use of nonsteroidal anti-inflammatory drugs was observed
experimentally to alter the healing process (Lisowska et al.,
2018). Inflammation involves a large number of agents that
cooperate at different time and length scales to guarantee an
adequate response. In the following subsections, we will describe
the characteristics and functions of the principal immune cells
and cytokines that are involved in this process.

2.2.1 Cells of the Immune System
The cells involved in the inflammatory response can be divided
into two groups according to their belonging to the innate or
adaptive immune system (Medzhitov and Janeway, 1997). The
cells of the innate immune system, which include monocytes,
macrophages, neutrophils, natural killer cells and dendritic cells,
constantly monitor the organism and provide the first response to
the pathogens (Medzhitov and Janeway, 2000; Bouchery and
Harris, 2019). The adaptive immune system guarantees the
second pathogen-specific reaction and is mainly regulated by
the migration of T and B lymphocytes, also referred to as T and
B cells, within the infected region. This response is not immediate
and requires more time to process and enter into action.
However, the adaptive immune system can keep a copy of the
antigen to accelerate the response in case of a future attack from
the same pathogen. A full characterization of immune cells and
their role in the inflammatory response is beyond the scope of the
review and it is already well described elsewhere (Mosser and
Edwards, 2008; Chaplin, 2010).

Cells of both the innate and adaptive immune system are
present in the fracture site during the inflammatory stage of bone
healing (Baht et al., 2018). For example, circulating neutrophils
and monocytes migrate to the healing region in the first hours
after the injury (Hoff et al., 2016; Kovtun et al., 2016). Neutrophils
are the first cells to be recruited in the healing region to promote
the formation of the fibrin thrombus to stabilize the fracture
(Bastian et al., 2016). Monocytes circulate within the
bloodstream, ready to extravasate from the capillaries to the
surrounding tissues when the inflammatory response is
triggered (Maslin et al., 2005). In the bone healing scenario,
monocytes are also recruited from the bone marrow and they
invade the fracture region to clean it from debris and to
upregulate the pro-inflammatory response (Soltan et al., 2012).
Once in the fracture site, monocytes will turn into adherent cells
and differentiate into macrophages. The macrophages present
within the fracture gap in the early stage of the inflammatory
response are activated by the pro-inflammatory environment.
Traditionally, macrophages were described to be activated into
two states, named classically (M1) and alternatively (M2)
activated, depending on whether they promote or inhibit the
inflammatory response. Macrophage activation within the two
states is fundamental for the right course of the inflammatory
phase of bone healing. M1 macrophages regulate the initial pro-
inflammatory response and clean up the region from dead cells
and pathogenic agents through phagocytosis (Mescher, 2017).
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Additionally, they promote the recruitment of other pro-
inflammatory cells through the secretion of specific cytokines
(Gu et al., 2017). At the end of the inflammatory phase, the
macrophages differentiate into M2 macrophages, which
downregulate the inflammatory response to create the right
environment for the following repair phase. The release of
adequate anti-inflammatory cytokines provokes the
recruitment of repair cells, such as SPCs and fibroblasts, which
will start the rebuild of the fractured bone. The importance of the
role of macrophages as initiators of the repair phase has been
shown by Schlundt et al. (2018), who observed altered
endochondral ossification in cases where the macrophages
within the fracture site were depleted. Recently, experimental
work has shown that macrophage activation is rather like a
spectrum than a two-state system, with specific signatures
depending on the location within the spectrum (Mosser and
Edwards, 2008; Harasymowicz et al., 2021).

The adaptive response in fracture healing starts when T cells
sense the molecular signals released from the cells of the innate
immune system within the injury region. If the injury is
characterized by infection from an external pathogen, specific
antibodies are produced and released from B cells to accelerate
the neutralization of the threat. The adaptive response in fracture
healing follows a two-wave dynamics as it is observed to peak
both after the fracture and later during the cartilage
revascularization (Könnecke et al., 2014). Contrasting ideas are
reported on the role of the adaptive immune response on the
overall bone regeneration process: while fracture healing is
observed to be accelerated when the adaptive reaction is
suppressed (Toben et al., 2011), the positive effect of certain
categories of T cells on bone regeneration has been also reported
(Sadtler et al., 2016; Jahn and Weidinger, 2017). Furthermore, T
and B cells promote the differentiation and recruitment of
osteoclasts, which shift the balance of the later remodeling
phase to favor bone resorption over formation (Manabe et al.,
2001; Gillespie, 2007).

2.2.2 Cytokines
Besides cells, the inflammatory response is mediated at
subcellular level by molecular signals called cytokines.
Cytokines are small proteins released from the inflammatory
cells to regulate the inflammatory response, thus playing a role in
the correct development of the early stages of bone healing.
According to their ability to enhance or inhibit the
inflammatory response, cytokines are typically divided into
pro-inflammatory or anti-inflammatory, respectively.

Pro-inflammatory cytokines, such as interleukin 1 and 6 (IL-
1, IL-6) and tumor necrosis factor alpha (TNF-α), are observed
to peak their expression in the healing region within the first
24 h post-injury (Dimitriou et al., 2005). At subcellular level,
TNF-α regulates the correct development of the inflammatory
phase and, furthermore, it enhances the recruitment of SPCs to
initiate the subsequent repair stage (Karnes et al., 2015).

Anti-inflammatory cytokines, which include different
interleukins such as IL-4, IL-10, IL-11 and IL-13, are released
to reduce inflammation when the first wave of pro-inflammatory
response is over. Anti-inflammatory cytokines downregulate the

inflammatory response and prevent chronic inflammation, which
would be detrimental to fracture healing (Zhang and Yao, 2019).

2.2.3 Mechano-Regulation
Although cells and cytokines are the major biological regulators
of the inflammatory response in bone fracture healing, the
micromovement in the interfragmentary region also regulates
bone healing at cellular level. The early stage of bone healing is
particularly sensitive to changes in mechano-stimulation, hence
establishing an adequate mechanical environment at the injury
site is necessary from the beginning of the inflammatory phase
(Klein et al., 2003).

Monocytes, for example, express a stronger pro-inflammatory
response under shear or compressive loading (Fahy et al., 2019).
Mechano-regulation also affects the behavior of macrophages
during the inflammatory phase as tissue stiffness influences their
activation status, shape, mobility and phagocytic capacity
(McWhorter et al., 2013; Adams et al., 2019; Jain et al., 2019;
Gruber and Leifer, 2020). Elongation of macrophages under
influence of mechanical loading induces anti-inflammatory
activation and initiates the repair phase in the healing process
(McWhorter et al., 2013). Thus, adequate fracture mechanical
support is decisive to shape the macrophages and move from the
inflammatory to the repair phase (Ballotta et al., 2014).

3 IN SILICO MODELING

With the term in silico, scientists refer to the wide field of research
that benefits from the use of computer modeling and simulation
to investigate intricate and complex systems. This approach is
becoming established in the biomedical field, as an additional
resource to obtain a detailed understanding of the organism or its
individual components. The flexibility provided by the
computational approach favors the unveiling of aspects and
insights that would be otherwise challenging to monitor
experimentally. For this reason, the use of in silico clinical
trials in all stages of the research and development pipeline
has progressively gained more attention in the last decades
(Viceconti et al., 2016). One of the more recent applications of
in silico models is the execution of in silico clinical trials. In this
context, the use of in silicomodels (e.g. through the use of Monte
Carlo methods or the Bayesian approach) allows to quantify the
parametric uncertainty in large data sets obtained from the results
of the computational simulations. This is one way in which the
effect of population variation can be captured in silico. To date,
this approach is used by researchers to investigate the
mechanisms behind neuron activation (Marder and Taylor,
2011), action potential stimuli in cardiac cells (Britton et al.,
2013; Lawson et al., 2018), or mechanical properties of skeletal
muscles (Sierra et al., 2015), among others.

There is a wide range of in silico models available in the
literature to investigate different aspects of bone regeneration in
silico (see Doblaré et al., 2004; Giorgi et al., 2016; Borgiani et al.,
2017; Ghiasi et al., 2017 for recent reviews), but most of them
focus only on the repair and remodeling phases, thus ignoring the
inflammation phase. At the same time, many approaches
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modeling immune and inflammatory responses in other tissues
have been presented in the last two decades (see Section 3.2). The
inflammatory response is already a complex process to simulate
and, certainly, additional complexity arises when it is included in
the bone healing model, as interactions and processes at different
biological levels (tissue, cellular and subcellular) have to be
considered. Besides, there are different computational
approaches (continuous, discrete or hybrid) to model these
different levels over their relevant time and length scales. The
main characteristics of each approach are discussed in
Subsection 3.1 and illustrated in Figure 2A, in order to
elucidate which approach might be best to use depending on
the biological goal of the research. Next, an overview is provided
of the most relevant models to investigate the inflammatory
response (Subsection 3.2) and the bone regeneration process
(Subsection 3.3). In addition, Subsection 3.4 introduces the only
in silico model that is, to the best of the authors’ knowledge,
currently investigating the inflammatory response in bone
fracture healing.

3.1 In silico Approaches to Model Biological
Processes
There are different mathematical approaches to model a given
biological situation: deterministic or stochastic, continuous or

discrete over time and length scales, phenomenological or
mechanistic. The appropriate approach is determined by the
question that needs to be answered, the context of use, the
available data and the computational resources. Even then,
various models can produce qualitatively similar behavior
(Anderson and Chaplain, 1998; Alber et al., 2006). Since the
interest of an in silicomodel of the inflammatory response in bone
fracture healing lies in understanding the biological events
happening within the fracture region, we will focus here on
models that incorporate physiological processes. To build such
type of model, a common framework in mathematical biology is
the so-called compartmental model.

A compartmental model is a system with different
compartments and transitions between them (Figure 2B). In
Figure 2B, specific biological entities (chemical factors, cells and
extracellular matrices) have been assigned to one compartment
depending on their type and can interact with entities in other
compartments by transitions equipped with rates. As a result of
interacting compartments, a coupled system of conservation
equations is derived, in which each compartment is
represented by one equation. Transitions between
compartments represent biological processes such as
migration, differentiation or apoptosis. Rates often follow the
law of mass action and are modeled using rate formulations such
asMichaelis-Menten kinetics or the Hill function. If the biological

FIGURE 2 | In silico approaches to model the bone healing process and the inflammatory response. (A) Overview of in silico techniques to describe biological
processes and predict their different outcomes. The choice of the in silico model depends on the research goal. Continuous models are often used to describe general
dynamics at tissue and cellular scales, such as bonemechanics, in which different tissuematrices interplay (figure adapted fromWang and Yang, 2018). Discretemodels are
mostly used to represent individual behavior at (sub)cellular scales, such as the immune response, which comprises a high number of cells and cytokines. The hybrid
approach combines the advantages of both continuous and discrete techniques, providing comprehensivemultiscalemodels that allow to investigate, for instance, sprouting
angiogenesis during the bone regeneration process (figure obtained with the model described in Carlier et al., 2016). (B) Flow diagram summarizing the macrophage-
mediated inflammation in bone fracture healing described in Trejo et al. (2019). Cells are represented by squares: unactivatedmacrophages (M0), classical macrophages (M1),
alternative macrophages (M2), SPCs (cm) and osteoblasts (cb). Pro-inflammatory (c1) and anti-inflammatory (c2) cytokines are represented by circles. Tissue matrices are
represented by hexagons: fibrocartilage (mc) and woven bone (mb). Debris (D) is represented by a diamond. Adapted from Trejo et al. (2019).
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TABLE 1 |Overview of the biological agents and processes in bone fracture healing and the way they can be captured in silico in continuous-time or discrete-timemodels. In
keeping with the description in Section 3.1, the spatial scale (if present) is mentioned. Examples are provided of experimental setups to use during the calibration phase
of in silico models. Units of quantitative parameters that can be extracted from experiments are in squared brackets. For those experiments that lead to qualitative
observations, this is mentioned explicitly.

Type Activity Continuous-time models Discrete-time models Experimental techniques

Cells Random
motility

1) Fick’s second law, e.g. diffusion
coefficient estimated from molecular
weight or experimental dataa; 2)
Haptokinetic process, e.g. influenced
by total matrix density such that cells
cannot move in absence or abundance
of ECM densityb

Each agent moves in one of the empty
surrounding positions chosen randomly
by the algorithmi,j,m–q

Brightfield microscopy can quantify cell
migration in organ-on-chip systemsr [cell
velocity: distance/time]

Chemotaxis Receptor-ligand kinetics, e.g.
maximum chemotactic response at
certain growth factor concentrationc

The selection of the surrounding position
during migration is not random but it is
biased by the concentration of the
chemotactic factori,o,q

Organ-on-chip systems facilitate the
application of chemical gradientsr

[diffusion of the leading edge of
chemical: distance/time]

Haptotaxis Haptotactic process, e.g. based on a
kinetic analysis of a model mechanism
for the cell-surface-receptor-
extracellular-ligand binding dynamicsb

The selection of the surrounding position
during migration is not random but it is
biased according to the composition
and fiber orientation of ECMa,f,k

Organ-on-chip systems facilitate the
application of density gradientsr [binding
concentration: mass/volume]

Differentiation Concentration-dependent curve, e.g.
Hill function regulated by the
concentration of growth factorse or
oxygenf up to a saturation level

The agent changes its phenotype status
according to the surrounding
environmental conditionsj,n,q

Analysis of cell surfacemarkers (e.g. flow
cytometry) [% of positive cells], gene
expression profiles (e.g. qPCR and
RNA-seq) [fold change in gene
expression] and stainings (e.g. Alizarin
Red for osteogenic differentiation)s

[qualitative observation]

Polarization/
activation

Concentration-dependent curve, e.g.
Hill function regulated by the
concentration of cytokines up to a
saturation levelg

The agent changes its activation status
according to the surrounding
environmental conditionsi,m,o,p

Analysis of cell surfacemarkers (e.g. flow
cytometry) (% of positive cells) and gene
expression profiles (e.g. qPCR and
RNA-seq) (qualitative observation)t

Proliferation Fisher equation and logistic growth
function such that rate of cell division
decreases linearly with cell density, e.g.
regulated by ECM densityb or oxygen
tensiond

A proliferative agent creates a copy of
itself in one of the empty surrounding
positions chosen randomly by the
algorithmj,l–q

Proliferation assays based on DNA
synthesis (e.g. EdU assay) [% of
proliferating cells] or metabolic activity
(e.g. MTT assay) (arbitrary units)s

Apoptosis 1) Rate estimated from experimental
datae; 2) Concentration-dependent
curve, e.g. Hill function regulated by
oxygen tension up to a saturation leveld

The apoptotic agent is removed from the
modeli,j,l,m,o,p,q; nutrient-related survival
conditions are applied by increasing the
apoptosis ratio in undesired conditionsn

Depending on the apoptosis stage,
fluorimetric assays detecting mito-
chondrial degradation, caspase
activation or DNA fragmentation [% of
viable cells]

Senescence Cell differentiation as evolutionary
process, e.g. cells gain properties of
another cell type gradually over timeg

The senescent agent gradually reduces
its cellular activity to zero (not performing
actions, but not removed from the
model)

Staining of SA-β-gal [qualitative
observation]

Chemical agents
(cytokines, growth
factors, hormones, etc.)

Diffusion Fick’s second law, e.g. diffusion
coefficient estimated from molecular
weight or experimental dataa

Discretized Fick’s first law: the amount of
substance exchanged between two
adjacent patches is proportional to
concentration difference, diffusing from
patch of higher concentration to patch of
lower onei,p,q

The biomolecule distribution across an
hydrogel can be quantified with
immunoassays (e.g ELISA) [biomolecule
concentration: mass/volume]r

Production 1) Rate estimated from experimental
dataa; 2) Concentration-dependent
curve, e.g. Hill function to model a
threshold-like behaviore

Substance concentration increases in
function of the number of agents present
in the patch according to a defined
production ratioi,n,p,q

Immunoassays to quantify protein
synthesis (e.g. ELISA)u [biomolecule
concentration: mass/volume]

Consumption Michaelis-Menten kinetic law, e.g.
oxygen consumption by cellsh

Substance concentration decreases in
function of the number of agents present
in the patch according to a defined
consumption ratioq

Metabolites labeled with stable isotope
tracers (e.g glucose consumption or
fatty acid uptake) [normalized metabolite
consumption: molarity/(time · mass)]t

Denaturation Rate estimated from experimental dataa Substance decay within patch
decreases by following a time-
dependent exponential functioni,o,p,q

Biomolecule half-life estimation (e.g.
pulse-chase analysis for cellular
proteins) [time]

(Continued on following page)
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entities migrate either randomly or directed up to a gradient
(such as chemotaxis or haptotaxis), a diffusion term is considered
in the equation, providing a solution as function of time and
space. Additionally, density-dependent models include growth
dynamics by using e.g. a logistic-growth function (Murray, 1989).
More details about common principles to model biological
processes (in bone fracture healing) can be found in Table 1.
Compartmental models can be translated into deterministic or
stochastic models, using continuous- or discrete-time
approaches. In most cases, the solution of the resulting system
of equations is impossible to solve and represent using analytical
techniques and hence it is approximated with numerical
methods.

Continuous-time models use differential equations to describe
mechano-biological processes. Differential equation models,
whether ordinary (ODE), delay (DDE), partial (PDE) or
stochastic (SDE), imply a continuous overlap of generations
(Murray, 1989), thus describing the chronological time of
biological phenomena. ODEs often describe how spatial-
average biological entities change over time, simulating e.g.
inflammatory responses (Kumar et al., 2004; Reynolds et al.,
2006; Vodovotz et al., 2006; Trejo et al., 2019) or the bone healing
process (Trejo et al., 2019; Lo et al., 2020) at tissue and cellular
levels, and individual intracellular dynamics (Warrender et al.,
2006; Peiffer et al., 2011) at subcellular level. DDEs model
biological processes that not only depend on the current time,
but also on an earlier time; representing e.g. hematopoiesis
regulation (Mackey and Glass, 1977; Faria and Oliveira, 2020)
or inflammatory responses (Nagaraja et al., 2014). PDEs describe
the spatiotemporal evolution of biological entities, using e.g.
reaction-diffusion equations to model bone healing within the
fracture area (Bailón-Plaza and Van Der Meulen, 2001; Lacroix

and Prendergast, 2002; Gómez-Benito et al., 2005; Isaksson et al.,
2006; Geris et al., 2008 among others, see section 3.3) or
angiogenesis (Olsen et al., 1997; Anderson and Chaplain,
1998). SDEs introduce random parameters in the model and
are used to investigate e.g. bone remodeling (Sun et al., 2012; Jerez
et al., 2018). One main advantage of continuous-time models is
that they have been studied exhaustively in the last centuries,
leading to many well-known numerical methods to determine
their solutions, such as the finite element (FE) method
(Zienkiewicz et al., 1977, used e.g. in Zysset et al., 2013;
Coquim et al., 2018), the finite difference method (Liszka and
Orkisz, 1980, used e.g. in Nagatani et al., 2006) and the method of
lines (Hundsdorfer and Verwer, 2003, used e.g. in Geris et al.,
2008). Some main disadvantages are that they usually fail to
capture heterogeneous behaviors (Van Dyke Parunak et al., 1998;
Wilkinson, 2009) and that the incorporation of new biological
aspects is often not trivial (Yates et al., 2001; Fachada et al., 2007).

Discrete-time models use difference equations to study small-
scale biological processes at (sub)cellular levels. Difference
equations do not consider overlap between successive
generations as they are solved for each time increment, involving
an inherent delay to register changes (Murray, 1989). Discrete
models are characterized by a stochastic nature, allowing the
introduction of probabilistic rules, such as Monte Carlo methods
(Lux, 2018), to describe each biological entity with its own
properties and not as part of a population (Alber et al., 2006).
The most common discrete approaches in biomedicine are agent-
based (AB) and cellular automata (CA)models. ABmodels simulate
the behavior of agents that can evolve generation after generation by
changing their spatial position and internal properties. AB models
are typically used to investigate cellular dynamics in response to
environmental conditions, finding many applications in

TABLE 1 | (Continued) Overview of the biological agents and processes in bone fracture healing and the way they can be captured in silico in continuous-time or discrete-time
models. In keeping with the description in Section 3.1, the spatial scale (if present) is mentioned. Examples are provided of experimental setups to use during the calibration
phase of in silico models. Units of quantitative parameters that can be extracted from experiments are in squared brackets. For those experiments that lead to qualitative
observations, this is mentioned explicitly.

Type Activity Continuous-time models Discrete-time models Experimental techniques

Extracellular matrix Synthesis Rate estimated from experimental datab Matrix percentage increases within the
patch where the cell is localized
according to a synthesis ratioj,q

Cells/ECM growth can be evaluated with
a Live-Dead viability/cytotoxicity staining
[volume fraction: %]v

Degradation Rate estimated from experimental datab Matrix percentage decreases within the
patch where the cell is localized
according to degradation ratioq

Level of biomolecules associated to
degradation (e.g. hydroxyproline for
collagen matrix) [biomolecule
concentration: mass/volume]

Debris Phagocytosis Concentration-dependent curve, e.g.
Hill function to model engulfing rateg

Phagocytic agent reduces the debris
concentration within a defined radius of
actionl,o

Phagocytes culture (e.g. macrophages)
with cellular debris or pathogens
[cytokine concentration: mass/volume]w

Angiogenesis Vessel
formation

Migration (random and directed)a and
proliferationc of endothelial cells, finally
producing vascular matrix

Development of vasculature according
to tip endothelial cell movementa,f,k,n

Microscopy imaging, brightfieldx or
confocaly, of an endothelial cell
monolayer during sprouting [sprout
displacement: length

References: aAnderson and Chaplain (1998), bOlsen et al. (1997), cGeris et al. (2008), dCarlier et al. (2015), eBailón-Plaza and Van Der Meulen (2001), fCarlier et al. (2012), gTrejo et al.
(2019), hProkharau et al. (2012), iMi et al. (2007), jCheca et al. (2011), kPeiffer et al. (2011), lMartínez et al. (2012), mPennisi et al. (2013), nOReilly et al. (2016), oShi et al. (2016), p Gong et al.
(2017), qBorgiani et al. (2021), rMoreno-Arotzena et al. (2014), sGroeneveldt et al. (2020), tVats et al. (2006), uZhang et al. (2017), vGuyot et al. (2014), wFraser et al. (2009), xDel Amo et al.
(2016), yVaeyens et al. (2020), Abbreviations: SA-β-gal, senescence-associated β-galactosidase; ELISA, enzyme-linked immunosorbent assay; qPCR, quantitative polymerase chain
reaction; ECM, extracellular matrix; RNA-seq, RNA-sequencing.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org September 2021 | Volume 9 | Article 7037258

Lafuente-Gracia et al. Inflammatory Response in Bone Healing

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


immunology (Martínez et al., 2012; Shi et al., 2016; Pappalardo
et al., 2020 among others, see section 3.2) and bone healing (Checa
et al., 2011; OReilly et al., 2016; Borgiani et al., 2019 among others,
see section 3.3). CA models are a subgroup of AB models, hence
they are often referred to as AB. However, while AB models are
more focused on the single agent behavior to explore its impact on
the overall scenario, the CA method is based on nearest-neighbor
interactions governed by phenomenological rules (Anderson and
Chaplain, 1998), meaning that interactions in CA models regard
only neighbor regions. CA models are typically used to describe
angiogenesis (Bentley et al., 2008; Peiffer et al., 2011; Carlier et al.,
2012). One advantage of discrete-time modeling is its capacity to
model each single element as an individual entity, allowing
heterogeneous behaviors (Van Dyke Parunak et al., 1998;
Wilkinson, 2009). Some main disadvantages are that the number
of unknown parameters is usually high, and these rely crucially on
the biological parameters obtained from experimental data
(Murray, 1989). This often entails a reduction of precision and
accuracy, resulting in model simplifications and approximations
(Shi et al., 2016).

Continuous and discrete models can complement each other
in hybrid models. In hybrid models, continuous- and discrete-
time approaches are coupled through input/output variables to
provide multiscale models describing mechano-biological
processes at tissue, cellular and/or subcellular levels. The most
common hybrid formulation in biomedicine couples a PDE
system of reaction-diffusion equations with AB or CA models
(Stéphanou and Volpert, 2016). The PDE system is often used to
capture biomechanical stimuli and tissue mechanical properties
(Checa et al., 2011; Zahedmanesh and Lally, 2012; Virgilio et al.,
2015; Ceresa et al., 2018), which regulate the spatial distribution
of cells modeled with an AB model. CA models are often used to
describe angiogenesis, and coupled to PDE systems describing the
spatiotemporal evolution of cells, tissue matrices and chemical
factors (Peiffer et al., 2011; Carlier et al., 2012). It is also common
to use continuous formulations to regulate the subcellular
behavior of individual cells within a discrete model. For
instance, ODEs regulating the intracellular behavior of
endothelial cells (Peiffer et al., 2011; Carlier et al., 2012) or
PDEs determining the molecular environment of individual
cells (Warrender et al., 2006). The reader is referred to
Stéphanou and Volpert (2016) for a review of hybrid
modeling in biology.

3.2 Modeling the Inflammatory Response
Computational models describing the immune response, also
known as computational immunology, can be broadly classified
into two groups: those describing generic inflammatory responses
after infection or trauma, and those simulating immune
responses in specific tissues. Most approaches of the former
group are continuous, whereas the latter are often simulated
using discrete or hybrid models. Starting with the models
describing generic inflammatory responses, Kumar et al.
(2004) proposed a three-equation ODE model to simulate a
simplified acute inflammatory response, able to predict healthy
and negative outcomes. This model describes the relationships
between the pathogen, which instigates the innate immune

response, and early and late pro-inflammatory mediators
(Kumar et al., 2004). Reynolds et al. (2006) considered three
subsystems for different biological situations (non-specific local
immune response, resting phagocytes and activated phagocytes)
and merged them into a four-equation ODEmodel describing the
generic acute inflammatory response to a pathogen. A bifurcation
analysis of the model identified when the outcome was
compromised depending on the administration of anti-
inflammatory mediators (Reynolds et al., 2006). In the same
year, Vodovotz et al. (2006) introduced a more elaborate
mathematical model to simulate a non-specific acute
inflammatory response after trauma, infection or hemorrhagic
shock. This ODE system described the dynamics of cells and
cytokines and included the effect of tissue dysfunction,
coagulation elements and blood pressure. In addition, it was
the first model validated with animal and human experimental
data (Vodovotz et al., 2006). Almost a decade later, Nagaraja et al.
(2014) presented a comprehensive mathematical model to
represent the local inflammation process in a wound and
characterize the indicators triggering chronic inflammation.
This model was validated with experimental data and
consisted of fifteen ODEs and one DDE: the ODEs described
inflammatory cells, cytokines and growth factors, whereas the
DDE represented monocyte differentiation into pro-
inflammatory macrophages, driven by chemotaxis with a 12 h
delay (Nagaraja et al., 2014).

Within in silico models of tissue-specific immune responses,
the popularity of AB methods is clear (Fachada et al., 2007; Shi
et al., 2016). Several AB models of the immune system can be
found in the literature, together with a large variety of simulators
to develop them. Some models are implemented in custom AB
simulators, such as ImmSim (Celada and Seiden, 1992; Seiden
and Celada, 1992) and UISS (Pappalardo et al., 2010), whereas
other models use generic open-source simulators that allow for
the implementation of AB models such as NetLogo (Mi et al.,
2007; Brown et al., 2011; Pennisi et al., 2013; Shi et al., 2016).
ImmSim was the first AB model and framework to simulate the
immune system, focusing on the processing of antigens and their
effects on the different cell types (Celada and Seiden, 1992; Seiden
and Celada, 1992; Fachada et al., 2007). Mi et al. (2007) presented
an AB model focused on the interrelation between inflammation
and skin wound healing in a physical domain. Skin injury and the
subsequent inflammatory response were simulated to examine
the general healing progression in terms of cells and cytokines
dynamics. Brown et al. (2011) described a model of inflammation
simulating the response of macrophages and fibroblasts to
particulate exposure in the lung, as well as their interactions
within the simulated environment, such that cytokines
production, tissue damage and collagen deposition are
represented. Martínez et al. (2012) developed a model of
macrophage action on endocrine pancreas, focused on
modeling the activation of the innate immune system upon
stimulation by necrotic or apoptotic cell death in the first step
of type 1 diabetes autoimmune response. Wendelsdorf et al.
(2012) designed the ENISI simulator to represent mucosal
inflammatory and regulatory immune pathways in the gut. Shi
et al. (2016) proposed an integrated-mathematical-AB model to
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simulate the hepatic inflammatory response to Salmonella
infection in mouse, which might cause a severe immune
response and result in sepsis. Pennisi et al. (2013) and
Pappalardo et al. (2020) investigated the cause of chronic
inflammation in relapsing remitting multiple sclerosis using
AB techniques. This framework was further developed into the
Universal Immune System Simulator (UISS), which is now also
used to investigate immunotherapy in cancer (Gianì et al., 2018)
and the development of vaccines for Tuberculosis (Russo et al.,
2020b) and Sars-Cov2 (Russo et al., 2020a).

Warrender et al. (2006) described a hybrid model of early
Mycobacterium infection, the causative agent of tuberculosis, and
the subsequent inflammatory response using a simulator called
CyCells. With this approach, cells are represented explicitly and
extracellular molecular components are represented by their
concentration. More recently, Ceresa et al. (2018) presented a
multiscale model coupling FE and AB techniques to simulate the
immunological and biomechanical implications of emphysema,
one of the major obstructive lung diseases. This model provided a
detailed description of inflammation and tissue remodeling, since
the AB part was based on existing ODE models of inflammation
and immunological response and the FE part captured the
biomechanical effects of repeated strain on the biological tissue
(Ceresa et al., 2018).

3.3 Modeling the Repair and Remodeling
Phases in Bone Healing
The use of computer models to simulate bone healing can be
dated back to Carter et al. (1988), who investigated in silico the
role of intermittent stress on the revascularization and tissue
differentiation processes in the initial stages of bone healing. In
the following years, many other studies exploited the
computational power to study the mechano-regulation of the
bone healing process (Prendergast et al., 1997; Carter and
Beaupré, 1998; Claes and Heigele, 1999; Bailón-Plaza and Van
Der Meulen, 2003; Isaksson et al., 2006; Geris et al., 2010; Checa
et al., 2011; Burke and Kelly, 2012; Vetter et al., 2012; Borgiani
et al., 2015;Wang and Yang, 2018). Another common application
of computational methods is the simulation of the
revascularization process on bone healing to highlight the role
of angiogenesis and relative oxygen supply on disrupted tissues
(Geris et al., 2008; Peiffer et al., 2011; Carlier et al., 2012; Carlier
et al., 2015; OReilly et al., 2016). Moreover, different in silico
models have been developed to investigate critical healing
therapeutic strategies, such as the use of bone graft with a
scaffold support (Perier-Metz et al., 2020), the transplant of
stem cells (Geris et al., 2010; Carlier et al., 2016) or the
provision of exogenous growth factors (Moore et al., 2014;
Ribeiro et al., 2015) within the healing region. Different
biomechanical studies employed in silico approaches to
evaluate the impact of fracture stabilization (Gómez-Benito
et al., 2006), gap size (Gómez-Benito et al., 2005) and nature
of mechanical stimuli (Epari et al., 2006; García-Aznar et al.,
2007; Steiner et al., 2013).

Most of the aforementioned studies use FE analyses to
reproduce the mechanical environment (e.g. stress/strain

distribution, tissue mechanical properties, bone density) within
the injury. However, to date, many studies in this field started to
additionally employ AB models to acquire a different point of
view on the investigation of the mechano-biological relationships
driving bone fracture healing. The supporting AB models are
commonly employed to simulate the dynamics of repair cells
(Byrne et al., 2011; Checa et al., 2011; Borgiani et al., 2019, 2021)
and angiogenesis (Peiffer et al., 2011; Carlier et al., 2012; OReilly
et al., 2016). Carlier et al. (2012) developed the hybrid MOSAIC
model to simulate sprouting angiogenesis in a discrete
environment. The behavior of the discrete endothelial cells
was regulated by their protein levels and their relationship
with cells, tissue and growth factors present in the global
continuous environment. The multiscale model from Checa
et al. (2011) investigated the inter-species differences in bone
fracture healing between small and large animals within a
mechano-regulated environment. They used an AB model to
simulate how the spatial distribution of specialized bone repair
cells (microenvironment) is regulated according to the
mechanical stimulus predicted with FE (macroenvironment).
Multiscale in silico modeling is a successful approach to
explore the bone healing process at the levels of tissues, cells
and subcellular agents by simulating their response to mechano-
biological stimuli.

3.4 First Model of the Inflammatory
Response in Bone Healing
The in silico studies of the repair and remodeling phases reported
in the previous section do not include the simulation of the early
stages of bone fracture healing, thus ignoring the role of the
inflammatory response. Inflammation is characterized by
numerous actors whose role in the overall scenario is worthy
to be investigated. However, due to its complex nature, the
inflammatory response to bone injury has been rarely
simulated with a computer model. To the best of the authors’
knowledge, only one in silico model describing the inflammatory
response in bone fracture healing has been reported in the
literature. The model was first introduced by Kojouharov et al.
(2017) and further updated within the same research group by
Trejo et al. (2019).

Kojouharov et al. (2017) developed an eight-equation ODE
model to simulate the temporal dynamics of debris, cells,
cytokines and tissues from the first hours post-fracture,
capturing the interaction between biological elements acting at
multiple levels. Debris removal was modeled with a constant rate
depending on the debris and macrophage densities, while the
macrophages density depended on migration and emigration
rates. The concentration of pro- and anti-inflammatory
cytokines was simulated using Hill functions to capture a
saturation effect, which depended on the concentration of
debris and macrophages and of SPCs, respectively. Finally, the
dynamics of SPCs, osteoblasts, fibrocartilage and woven bone was
described as in Bailón-Plaza and Van Der Meulen (2001). The
model simulated the biological time-dynamics in different case
scenarios, highlighting the influence of a controlled cytokine
concentration level as treatment to obtain an overall successful
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healing. Moreover, the model was employed to propose cytokine-
based treatment in challenging healing conditions. For example,
the model showed faster acceleration when an optimized dose of
anti-inflammatory cytokines was administered at the beginning
of the healing process.

Two years later, Trejo et al. (2019) incorporated two additional
equations to simulate the distinction between classical and
alternatively activated macrophages, and the ODE system was
adapted accordingly (Figure 2B). Other biological processes were
upgraded as well, the most relevant being debris removal,
modeled now by a Hill function to represent the saturation of
phagocytosis by macrophages, and macrophages migration,
described now by a logistic growth function. The updated
model allowed to analyze the role of macrophage activation
status in the inflammatory phase to generate a successful
signaling cascade initiating the subsequent repair phase. The
model endorsed macrophages as promoters of tissue
production during healing, giving further merit of this
enhancement to the alternatively activated ones (M2).
However, no spatial distribution of the different biological
agents was modeled, as only temporal evolutions were
reported as results.

The spatiotemporal evolution is of upmost importance to
further explore the dynamics of all the involved actors during
the progress of the inflammatory response, as it represents the
heterogeneous distributions within the region of interest. For
example, one hypothesis would be that macrophage migration to

the fracture zone will initially have a bigger impact in the
peripheral area and less effect in the central area, generating
different spatial dynamics in the healing process. Therefore, we
believe that the next generation of in silico fracture healing
models should include both temporal and spatial evolution of
the densities and concentrations of the different biological agents
related to the inflammation phase. Moreover, many experimental
studies investigate the immune response nowadays, as presented
in Section 4. The incorporation of the spatial description in silico
would allow a stronger validation of the future computational
models investigating bone fracture healing from the initial
inflammatory response to the later remodeling phase.

4 EXPERIMENTAL VALIDATION OF IN
SILICO MODELS

Experimental techniques are continuously evolving to study the
inflammatory response on multiple scales, ranging from micro-
scale in vitro systems to large in vivo animal models. These results
provide important information also in view of validating the
predictive capacity of bone healing in silico models. Each
modeling technique has its unique advantages and provides
essential information about the inflammatory process
(Figure 3A). In vitro models allow the culture of human cells
in a controlled environment outside of living organisms, although
they are poorly suited for long-term studies. Moreover, in vitro

FIGURE 3 | Validation of in silicomodels of the inflammatory response in bone healing. (A) Summary of in vitro and in vivo experimental techniques to validate the
predictive capacity of in silicomodels. The choice of the experimental model depends whether the validation regards a specificmechanism or the global response. In vitro
models investigate single biological mechanisms, such as the chemoattractant effect of inflammatory markers or specific cell types. In vivomodels evaluate the effects of
individual factors, such as the depletion of a cell type, on the complete biological response. (B) Experimental techniques for the validation of in silicomodels can be
broadly divided into cell and tissue-scale techniques. The former validate in silicomodels of molecular mechanisms regulating cell function and models of cell migration
dynamics. The latter validate in silico models of the repair and remodeling phase, by quantifying bone histomorphometric parameters, and models describing cellular
composition in the fracture site.
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models may fail in recapitulating a clinically relevant
environment due to the absence of all factors present in vivo
(Boussommier-Calleja et al., 2016), which motivates the use of
animal models. The resemblance of the human biological
environment is the reason why in vivo models are an absolute
requirement for translational studies of human immunology
(Wagar et al., 2018). However, biological mechanisms may
differ between animal models and humans (Mestas and
Hughes, 2004).

Hereafter, both traditional and advanced in vitro and in vivo
systems to model the inflammatory response in bone healing are
discussed in Subsection 4.1 and Subsection 4.2, respectively. In
Subsection 4.3 we describe different assays to extract both
qualitative and quantitative data for the validation of in silico
predictive models.

4.1 In vitro Models of the Inflammatory
Response in Bone Healing
4.1.1 Source of Inflammatory Cells
Human blood is the most frequently used source of immune cells
for in vitro experiments since peripheral blood samples are easy to
obtain. Immune cells with a single nucleus can be isolated from
the whole peripheral blood by density centrifugation (Dagur and
McCoy, 2015). These cells, named peripheral blood mononuclear
cells (PBMCs), are a heterogeneous cell population mainly
composed of lymphocytes and monocytes. Lymphoid cells
account for 85% of all human PBMCs and consist of T cells
(∼60%), B cells (∼10%) and natural killer (NK) cells (∼10%).
Monocytes constitute around 15% of the total PBMCs count,
while other cell types, such as dendritic cells, are less than 1%
(Bittersohl and Steimer, 2016).

In general, in vitro experiments study specific cellular
functions and require the isolation of single cell types. While
monocytes are traditionally isolated from the rest of PBMCs and
differentiated into macrophages by cell adhesion to tissue culture
plastic (Rios et al., 2017), every cell type in PBMCs can be
separated by labeling with magnetic beads. Immunomagnetic
cell separation consists of binding magnetic beads to cell surface
antigens using specific antibodies (Plouffe et al., 2015). The
characteristic surface molecules, named cluster of
differentiation (CD) molecules, of each PBMC type are
known: CD3+ for T cells, CD22+ for B cells, CD56+/CD16+ for
NK cells and CD14+ for monocytes (Bittersohl and Steimer,
2016).

Although human PBMCs are routinely used to answer
fundamental questions about the immune cell functions, their
choice has some drawbacks. First, immunomagnetic cell
separation requires expensive reagents, such as antibodies.
Secondly, in vitro results obtained from primary human cells
are affected by natural immune variations between individuals,
which is related to genetic variations, environmental exposure
and aging (Patin et al., 2018). A variable immune response is
crucial in the context of patient-specific models of the immune
response, but it might obscure the effects related to the
mechanisms under investigation. Therefore, in search of a
stable phenotype, human cell lines are an attractive solution

for many in vitro experiments aiming to validate in silico
models. As an example, THP-1 is an established monocytic
cell line isolated from a patient affected by acute monocytic
leukaemia (Tsuchiya et al., 1980). Compared to human
primary monocytes, THP-1 cells can be cultured in vitro for
an almost indefinite time, while maintaining monocytic
characteristics. On top of that, there is limited genetic
variation between THP-1 cells, thus their phenotype is stable
during culture. Nevertheless, the polarization profile of THP-1
cells does not coincide with the one of primary monocytes
isolated from PBMCs. It is suggested to use THP-1 cells to
validate in silico models involving phagocytosis and M1
activation (Shiratori et al., 2017).

4.1.2 Mono-Culture vs. Co-Culture
Single immune cell types have been extensively investigated in
traditional mono-culture systems such as tissue culture plastics.
Macrophages, for example, are routinely derived frommonocytes
and activated using standard activators, such as IL-4, IL-10, TGF-
β, interferon gamma (IFN-γ) and lipopolysaccharide (LPS). Each
standard activator, or their combination, is associated with a
specific activation state within theM1-M2 spectrum, identified by
specific markers (Murray et al., 2014). Once isolated and seeded
on well plates, macrophages can be used as models of the
inflammatory response and as phagocytosis assay (Fraser et al.,
2009; Westman et al., 2020). As for the in vitro mono-culture of
SPCs, well plates are routinely used to culture cells and evaluate
properties such as cellular proliferation, differentiation,
metabolism and senescence following standard protocols
(Groeneveldt et al., 2020). Co-culture systems study the
interaction between the immune cells and SPCs to model the
inflammatory response in bone healing. Traditional co-culture
systems consist of both direct co-culture, where cells are in direct
contact with each other on cell culture plastics, and indirect co-
culture, where transwell inserts are added to culture plates to keep
the two cell types separated from each other (Goers et al., 2014).
By tuning the pore size of the transwell insert, indirect co-culture
models were employed to study the paracrine cell-cell signaling
(pore size 0.4 μm, Zhang et al., 2017) or the chemoattractant
effect of immune cells on SPCs (pore size 8 μm, Anton et al.,
2012). Recent reviews discuss in vitro models of the interaction
between SPCs and T cells (Kovach et al., 2015) or macrophages
(Maruyama et al., 2020), as well as their implications for bone
healing.

4.1.3 Advanced in vitro Models
Besides traditional cell culture plastics, novel in vitro systems enable
higher control of the culture environment and cellular interaction.
Recent developments of the organ-on-chip technology provide
confined engineered microenvironments where biochemical and
physical stimuli can be finely tuned over space and time (Zhang
et al., 2018). By changing the culture chambers design, organ-on-
chips can incorporate multiple cell types cultured both in 2D, as the
endothelial monolayer (Del Amo et al., 2016), or in 3D, as cells
embedded in a hydrogel (Nasello et al., 2020). The optical
transparency of organ-on-chip devices facilitates live cell imaging
and monitoring. Compared to traditional transwell inserts, organ-
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on-chips provide a more physiological environment to study the
transendothelial migration of inflammatory cells (Han et al., 2012)
and the recruitment of SPCs (Eng et al., 2013). In addition, these
systems facilitate the application of both chemical (Moreno-
Arotzena et al., 2014) and mechanical cues (Middleton et al.,
2017) during culture (Occhetta et al., 2019). Therefore, the
combination of inflammation-on-chip (Irimia and Wang, 2018)
and bone-on-chip (Nasello et al., 2021) would offer a unique
alternative to validate in silico models of bone healing by
replicating key cellular and environmental interactions of the
inflammatory phase.

4.2 In vivo Models
Despite ethical concerns, validation with animal models is still an
essential step for any preclinical study of both the immune system
(Wagar et al., 2018) and the bone repair process (Mills and
Simpson, 2012; Lammens et al., 2021). Based on the size, in vivo
models are generally divided into small and large animals. Their
use depends on the biological process under investigation and the
translational stage of the study (Figure 3A). Here, we discuss the
most common small and large animal models used when focusing
on the role of the immune system in bone fracture healing. The
main results are commented from the modeler’s perspective, in
view of creating in silico counterparts of these studies. When
modelers retrospectively collect data from animal studies to
estimate input parameters, they should be aware of the
physiological differences between anatomical regions of the
skeleton. Besides differences in developmental origins,
structural variations in bone composition and direct changes
in the biomechanical environment (Cointry et al., 2016), there are
regional specializations in cellular composition and
differentiation potential. For example, the differentiation
potential of skeletal progenitor cells varies between different
anatomical sites both in small and large animals (Groeneveldt
et al., 2020; Sivaraj et al., 2021).

4.2.1 Small Animal Models
Murine models are widely used to study human diseases and
physiology. Despite the differences in the immune system
(Mestas and Hughes, 2004) and in the fracture healing process
(Haffner-Luntzer et al., 2016) of rodents and humans, murine
models can provide clinically relevant results. For instance,
murine models were used to validate the clinical observation
that fracture healing rate is correlated to higher levels of CD8+

T cells in the peripheral blood (Reinke et al., 2013). By depleting
or introducing CD8+ T cells in a mouse model, the authors
observed that fracture regeneration was enhanced or impaired,
respectively. Therefore, when modeling the immune effect on
bone healing, the levels of CD8+ T cells in peripheral blood might
be used as a marker of the patient-specific immune reactivity
(Reinke et al., 2013).

As for the murine model choice, conventional mouse inbred
strains are commonly used since animals share an almost identical
genotype, thus leading to higher consistency in the experimental
results (Wagar et al., 2018). The lack of genetic variability between
individuals is the reason why researchers prefer inbred strains to
investigate the fundamental effects of the inflammatory response

during fracture healing. The depletion of specific immune cell types,
such asmacrophages (Schlundt et al., 2018) and T cells (Reinke et al.,
2013), was assessed in the mouse inbred strain named C57BL/6N.
Moreover, the same inbred strain was used to demonstrate that T
and B cells invade the fracture site during the inflammatory phase
and the callus mineralization (Könnecke et al., 2014).

4.2.2 Large Animal Models
Large animal models are the most realistic experimental models
of human biology and therefore an essential pre-clinical step in
translational research (Ribitsch et al., 2020). While nonhuman
primates are the most representative model of the human
immune system (Wagar et al., 2018), pigs and sheep are
normally used to model bone repair since their bone anatomy,
mineral composition, regeneration capacity and biomechanical
properties are relatively similar to human’s (Sparks et al., 2020).
Moreover, compared to mice, their immune system is closer to
the human one (Lüthje et al., 2018). As a consequence, pigs and
sheep are the first choices as large animal models of the
inflammatory response in bone fracture healing.

Compared to small animal models, the biological responses of
large animal models are more heterogeneous. While small animal
models mostly provide mechanistic insights, such as the effect of
depleting a specific cell type, research using large animal models
tends to explore the complete biological response and the effects
on the entire organism, namely the systemic effects. An in vivo
study on pigs showed temporal differences in the upregulation of
pro-inflammatory cytokines at the fracture site and in the
peripheral blood (Horst et al., 2015). Therefore, the validation
of in silico models using the cytokine levels in blood as input is
intrinsically related to a large animal study.

Another key advantage of using large animal models is the
possibility to apply clinically relevant mechanical loads to the
fracture site. Schmidt-Bleek et al. (2012) showed that mechanical
loads delaying bone healing corresponded to a higher presence of
T cells in the fracture site, a prolonged inflammatory signaling in
the periosteum and reduced angiogenesis. Hence, large animal
models should be chosen to assess the interplay between the
immune system, bone repair and mechanical loads.

4.3 Laboratory Techniques for Experimental
Evaluation
Experimental cell-scale techniques can validate in silico models
describing cellular functions and their response to external
stimuli. Therefore, this subsection discusses the quantification
of molecular mechanisms behind cell processes which could be
applied to both in vitro and in vivo experiments. Additionally, live
imaging techniques are discussed to calibrate cell invasion
parameters with in vitro migration assays.

As for extracting tissue-level information, standard imaging
methods consist of micro-computer tomography (micro-CT),
histology and immunohistochemistry. While their use in
preclinical models of bone defects has been recently described
elsewhere (Sparks et al., 2020), the present subsection shows
examples of tissue-level data extracted from images that could
validate in silico models.
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4.3.1 Cell-Scale Techniques
The structural and functional characterization of biological
molecules belongs to the scientific fields named omics. To
explore cellular processes in bone biology, omics technologies
characterize, among others, DNA modifications (epigenomics),
RNA transcriptions (transcriptomics), protein synthesis
(proteomics) and metabolic activity (metabolomics) (Reppe
et al., 2017). Transcriptomics, proteomics and metabolomics
provide a direct measure of cell survival, proliferation,
differentiation and phenotype (Calciolari and Donos, 2020).
Therefore, omics technologies can validate in silico models of
bone healing by coupling cellular function to tissue adaptation
(Figure 3B).

Regarding transcriptomics, RNA sequencing (RNA-seq)
technologies measure whole transcriptomes, thus they
simultaneously analyze the gene expression profile of thousands
of genes (Stark et al., 2019; Calciolari and Donos, 2020). When
applied to fracture healing, RNA-seq revealed differences in gene
expression associated to skeletal and vascular formation between
two mice strains, which was correlated to differences in
endochondral bone formation (Grimes et al., 2011). Full and
stress fractures revealed different transcriptional profiles during
repair, with higher expression of inflammatory and immune-
related genes in full fractures (Coates et al., 2019). In addition,
RNA-seq can measure the dynamic changes in the transcriptome.
For example, RNA-seq showed that bone marrow stromal cells
upregulate pro-inflammatory gene expression during aging,
supporting the hypothesis of a regulatory effect on
hematopoietic stem cells (Helbling et al., 2019).

As for proteomics, multiplex immunoassays use specific
detection antibodies to measure the level of target proteins.
Therefore, immunoassays can quantify a large set of
inflammatory cytokines from serum or hematoma samples
(Horst et al., 2015), as well as cytokines and osteogenic factors
synthesized by macrophages and osteoprogenitor cells in vitro
(Zhang et al., 2017). Another analytical tool in proteomics is mass
spectrometry, which can be used to evaluate the protein
composition of the SPC secretome and its variation in a pro-
inflammatory environment (Maffioli et al., 2017).

Concerning metabolomics, cell metabolism is continuously
altered in bone healing (Loeffler et al., 2018) and experimental
techniques can measure both the metabolites produced and the
metabolic pathway activities. Glucose and lactate levels are
routinely measured in cell culture media, while glucose
consumption and lactate secretion can be calculated by
comparison with the unspent medium. An increase in glucose
uptake and lactate secretion is associated with the M1
macrophages (Galván-Peña and O’Neill, 2014), but their direct
calculation from the cell culture media cannot be related to the
specific metabolic pathway producing lactate from glucose.
Variations in metabolite levels in the media might be related
to faster uptake or lower secretion, rather than to a switch in the
metabolic routes. To quantify the activity of each metabolic
pathway, glucose is labeled with isotope tracers and
incorporated radioactivity is measured. Therefore, isotope
tracing reveals differences in glucose uptake for M1 and M2
macrophages (Vats et al., 2006).

It is important to mention that traditional omics technologies
consist of analyzing the bulk sample, meaning that the quantified
data refers to the whole cell population or tissue. Therefore, bulk
omics technologies lose the information regarding RNA
transcription, protein synthesis and metabolic activity of
individual cells. To maintain the biological information of
individual cells, novel advances in the omics field separate and
analyze single cells from the population (Barh and Azevedo,
2019). For example, high-throughput techniques for RNA-seq
allow to measure the whole transcriptome of single cells (scRNA-
seq) (Goodwin et al., 2016). By using multiplexed and parallel
detection systems, scRNA-seq is generating data that can be used
to construct cell atlases from animal and human tissues, both
from pathological and physiological conditions (Camp et al.,
2018). Although the majority of scRNA-seq methods do not
preserve the spatial information of transcriptomic data, novel
methods are arising to first localize cells in tissue sections and
then sequence RNA (Camp et al., 2018). It is clear that the
calibration and validation of in silico models, especially discrete
models, would benefit from cell atlases reporting the variations of
the transcriptome in bone fractures over space and time.

Besides omics technologies to quantify the molecular
mechanisms, migration assays are relevant experimental
techniques to measure cell-scale parameters in bone healing. For
instance, cell culture inserts can assess SPC migration in vitro and
already quantified higher migration capacity under inflammatory
conditions (Anton et al., 2012). However, the in vitro environment of
a cell culture insert does not represent the 3D extracellular matrix in
which cells are embedded in vivo. In search of a more representative
structural and biological environment, organ-on-chip systems offer
confined 3D culture chambers to monitor the migration of
inflammatory and osteoprogenitor cells throughout the
experiment (Del Amo et al., 2018; Irimia and Wang, 2018). By
tuning themicrostructural properties in the culture chamber, such as
using fibrin or collagen hydrogels, the organ-on-chip can mimic the
different extracellular matrices during bone repair. By changing the
cell types and themechano-chemical stimuli in the device, the organ-
on-chip can selectively identify the role of different factors in cell
migration. Therefore, in silicomodelers can use cell migration assays
in organ-on-chips both to calibrate and validate their predictions.

4.3.2 Tissue-Scale Techniques
Experimental methods to evaluate bone repair at tissue level are
widely applied to animal studies and they mostly rely on imaging
techniques. Imaging techniques provide qualitative and
quantitative information about the analyzed tissue, thus they
can validate bone healing in silico models (Figure 3B). For
example, micro-CT provides metric and non-metric
parameters of the bone tissue, such as the mineral density of
the bone matrix and trabecular morphology (Müller, 2009).
Micro-CT imaging has been applied recently for the non-
invasive monitoring of fracture healing in mice. By registering
time-lapsed scans of the fracture, micro-CT facilitates the
assessment of bone parameters throughout the healing process,
without altering the callus properties (Wehrle et al., 2019). This
imaging technique has already been coupled to FE models of the
mechanical in vivo environment, as it substantially contributed to
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the creation of a personalized bone regeneration model (Tourolle
né Betts et al., 2020). Moreover, the combination of micro-CT
images and FE models reveals the influence of mechanics on the
processes of bone formation and resorption (Birkhold et al.,
2014), which can be used to validate in silico models of bone
adaptation (Schulte et al., 2013).

While micro-CT imaging allows to quantify the newly formed
mineralized tissue, histological sections provide
histomorphological parameters of the regenerated bone. The
histomorphometrical analysis of the Movat Pentachrome
staining quantifies the relative area of bone marrow and
connective, cartilaginous and osseous tissue (Schlundt et al.,
2018). Additionally, immunohistochemical analyses can be
used to stain specific cells in a tissue and quantify their
density, thus they can identify the different cell types within
the fracture site. The output of immunohistochemical analyses is
the fraction of the target cell type, such as CD8+ T cells, M1
macrophages or osteoblasts, in the stained section (Wendler et al.,
2019).

5 TOWARDS THE NEXT GENERATION OF
BONE HEALING IN SILICO MODELS

Considering all the computational models of bone healing that
have been developed in the last years, it is surprising that almost
none of them describe the early inflammatory phase. As the
initiator of the bone healing process, inflammation has a
considerable impact in the later stages of bone repair: if the
inflammatory response is too strongly down- or upregulated, the
fracture can result in non-union. To our knowledge, only one in
silico model of the inflammatory response in bone healing was
developed, which captured the effect of pro- and anti-
inflammatory pathways on the healing outcome (Kojouharov
et al., 2017; Trejo et al., 2019). Although this model laid a strong
foundation within the field of computational bone fracture
healing, it still has limitations, among them the lack of spatial
distribution of cells and cytokines within the healing region.
Therefore, this review aims to guide the design and the validation
of the next generation of bone fracture healing in silico models,
which will include the inflammatory phase.

The biological problem was initially defined by exploring the
process of bone healing, with particular attention to the
inflammatory phase and its cellular and subcellular
components. The inflammatory reaction after bone fracture is
a highly complex process, as there is an interplay between
different levels (tissue, cellular and subcellular) and systems
(musculoskeletal and immune). However, while the mechano-
biological activities at cellular and subcellular levels are usually
challenging to investigate experimentally, the in silico approach
can be employed to unveil the hidden events happening at
different time and length scales. Following the current trend of
developing hybrid multiscale models (Checa et al., 2011; Carlier
et al., 2012; Ceresa et al., 2018; Borgiani et al., 2019) to integrate
individual (sub)cellular contributions to tissue dynamics, it seems
straightforward that the computational research of the
inflammatory phase in bone healing should take advantage

from similar methodologies. Hybrid multiscale models benefit
from both continuous models, which capture the mechano-
regulation of tissue and cellular dynamics, and discrete
models, which describe the stochastic interactions at cellular
and subcellular level occurring during the immune response.

At the current state-of-the-art, numerous in silico models of
the inflammatory response for different organ systems have been
developed within the field of computational immunology (see
Subsection 3.2). Since the inflammatory response always tends to
follow an analogous cascade of events, these in silico models
generate the basis to simulate the inflammatory phase in bone
healing. Within computational immunology there is a clear
preference to use discrete approaches, such as agent-based
models or cellular automata, to represent the stochasticity of
the immune system. Discrete models can capture better the
cascade of cells and subcellular factors that characterize the
inflammatory response in bone healing at different time and
length scales. However, continuous algorithms capture the
dynamics of tissue formation during the subsequent repair and
remodeling phases. The development of a comprehensive model
that can simulate the mechano-regulation of tissues and the
dynamics of large cell populations, while accounting for the
probabilistic rules dominating the biological events at
subcellular level, requires the combination of continuous and
discrete models. For this reason, we believe that the next
generation of in silico bone healing models will rely on hybrid
approaches to include inflammatory regulation.

In order to guarantee the credibility of in silico models results
in a clearly defined context of use, verification, validation and
uncertainty quantification analysis (VVUQ) (ASME, 2018;
Parvinian et al., 2019) are essential. Verification ensures the
accuracy of the model implementation and validation confirms
the correspondence between simulation results and experimental
reality. The correspondence between computational outputs and
physical reality is intrinsically related to in vitro and in vivo
experiments; as the in silicomodeling of biological processes, like
the ones listed in Table 1, requires thorough parameter
estimation. Computational modelers should take advantage of
different experimental setups able to provide data for the time
and length scales simulated. Table 1 presents a proposal to
validate certain biological activities happening during the bone
healing process using in vitro techniques to replicate specific
biological mechanisms in a laboratory, thus providing
quantitative data to estimate model parameters. In general,
in vitro models and multi-omics approaches can validate in
silico models describing signaling pathways involved in cell
fate decision or the response of different cell types under
external cues. Therefore, in vitro models and omics
approaches are highly recommended for the validation of
discrete computational models simulating biological events at
cellular or subcellular levels. In vivo models and imaging
techniques are more suitable to validate continuous or hybrid
in silicomodels describing the biological response at higher scales,
such as histomorphometrical parameters or tissue mineralization.
As a result, multiscale or hybrid models covering different time
and length scales might require both in vitro and in vivo models,
as well as both cell and tissue level experimental techniques, for
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their validation. Furthermore, in vitro experimental studies are
performed to calibrate in silico models during their design. The
possibility to isolate single biological mechanisms in vitro and
introduce them as calibrated parameters within the in silico
model allows to simulate behaviors that resemble the ones
observed experimentally and investigate their role in the
overall outcome of the simulation. The impact of each
parameter on the simulation can be quantified with
uncertainty quantification methods.

Uncertainty quantification is tested with sensitivity analyses
using e.g. Design of Experiments (DOE) or Machine Learning
approaches (Mehrian et al., 2018) to assess whether the uncertainty
in model assumptions and parameter values does not lead to non-
physiological results. The use of these methodologies to investigate
and evaluate the inference of the different parameters can result in
valuable information about the most realistic values to describe
mechano-biological events. For instance, Isaksson et al. (2008)
used DOE to evaluate the significance of multiple factors in bone
fracture healing. Parametric uncertainty was addressed by
evaluating the outcome of different experiments (simulations, as
the study was performed in silico) characterized by organized
combinations of parametric values assigned to the factors that
describe the bone fracture healing process at cellular level (Isaksson
et al., 2008). Another class of optimization techniques is the one
used by Steiner et al. (2013), namely evolutionary computation.
They calibrated their in silico model by using the Particle Swarm
Optimization (PSO) method to achieve the optimal
characterization of the mechanical properties of the tissues in a
bone fracture healing scenario. The PSO algorithm evaluated
combinations of parameters equally distributed in a stochastic
way to find the best combination to describe the tissue mechanics
(Steiner et al., 2013).Machine Learning techniques can also be used
to evaluate the best value fitting of specific parameters or to
categorize certain outputs. An Artificial Neural Network was
used by Cilla et al. (2017) to evaluate the geometrical features
for the design of a patient-specific short-stem hip implant to

contrast the mechanical side effect of prosthetic stress-shielding
(Cilla et al., 2017).

The inflammatory response in bone fracture healing has a
noteworthy complexity, but in silicomodels help us to understand
the principles regulating the diverse events occurring at tissue,
cellular and subcellular level. Certainly, the experimental
validation of such in silico models is mandatory if we aim to
go from bench to bedside. With this review, we aimed to highlight
the potential of using multiscale in silico approaches to tackle
bone healing intricacy. Based on the current state-of-the-art, we
conclude that hybrid models are particularly suited to simulate
adequately the multiscale course of events of the inflammatory
phase and its overall role in the healing outcome.We furthermore
described possible in vitro and in vivo methodologies that can be
employed to experimentally calibrate the parametric description
of the in silico model during its development and, afterwards, to
validate the computational results and support their bench to bed
transition. We believe that the next generation of in silicomodels
of bone regeneration should account for inflammatory events to
guarantee a more realistic investigation of the process, favoring its
employment within a clinical context.
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