Study of an anticyclonic eddy in the AlgeroProvencal Basin (Mediterranean) in summer 2019 using altimetric satellite data and an eddy tracker

Cécile Pujol ${ }^{1}$, Aida Alvera-Azcárate ${ }^{1,2}$, Charles Troupin ${ }^{1,2}$, Alexander Barth ${ }^{1,2}$, Hugo Romanelli ${ }^{1}$

${ }^{1}$ University of Liege, ${ }^{2}$ GeoHydrodynamic and Environmental Research

Context and objectives

Context:

Large anticyclone in the Algero-Provencal Basin (Mediterranean Sea) observed with SST data (Alvera et al., 2020) from April 2019 to December 2019
This eddy was really large (diameter $\approx 100 \mathrm{~km}$) and had a long lifespan (≈ 9 months)
BUT: the eddy was "invisible" from mid-summer until mid-autumn

Fig.1. SST maps of the Algero-Provencal Basin (Mediterranean Sea). (A) $31^{\text {st }}$ of May 2019, a large eddy is clearly visible between Balearic Islands and Sardinia. (B) $5^{\text {th }}$ of September 2019, the SST has increase all over the study area and the eddy is not visible anymore. (C) $28^{\text {th }}$ of November 2019, a large eddy is visible between Balearic Islands and Sardinia. (Alvera-Azcárate et al., 2020)

Objectives:

To use altimetric satellite data to track the eddy all over its lifespan
To know its characteristics (radius, amplitude, daily position, contours)

Material and methods

Material and Methods

Data:

Sea level anomaly (SLA) data:
The SLA is estimated by Optimal Interpolation, merging the measurement from the different altimeter missions available It processes data from all altimeter missions (multiplateform, level L4)
Available on the CMEMS website as SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046
Daily $1 / 4$ degree resolution
Sea surface temperature (SST) data:
Mono-Sensor L3 Observations (VIIRS sensor)
Available on the CMEMS website as SST_EUR_SST_L3C_NRT_OBSERVATIONS_010_009_b
Daily 0,02 degree resolution

Data reconstruction: how to reconstruct missing SST data?

DINEOF tool:
Calculates the optimal number of EOF to reconstruct the missing data from cross-validation technique (Aida AlveraAzcarate et al., 2005)

Material and Methods

Eddy tracker

Free-access Python code (Mason et al., 2014 ; Delepoulle and Mason, 2017)
Eddy detection and tracking using alimetric data

Provides:
Detection of all the eddies
Distinction between anticyclone and cyclone
Temporal and spatial tracking of each eddy
Daily determination of the radius, center, amplitude, contours for each eddy

What can we obtain with the eddy tracker?

Fig.2. Contours of an anticyclone tracked during 20 days from 12 until 31st of December 2019. Contours are drawn according to currents speed.

$\rightarrow 2$ types of contours for each eddy

Contours based on sea level anomaly

Altimetric contours of an eddy.
Begining of the observation: 03-Jul-2019 - End of
the observation: 23-Jul-2019

Longitude
Fig.3. Contours of an anticyclonge tracked during 20 days from 3rd to 23rd of July 2019. Contours are drawn according to the sea level anomaly. As the eddy has been tracked for 20 days, there is 20 contours overlayed

Example with an anticyclone tracked for 20 days

Contours based on curents speed

\rightarrow The contours are drawn where the currents speed is the highest (derived from sea level anomaly)
Speed contours of an eddy.
Begining of the observation: 03-Jul-2019 - End of the

Longitude
Fig.4. Contours of an anticyclone tracked during 20 days from 3rd to 23 rd of July 2019. Contours are drawn where the currents speed is the highest. As the eddy has been tracked for 20 days, there is 20 contours overlayed.

Results:
 the anticyclone tracking

Results: some fails in the tracking

Sea level anomaly (m) and eddy's contours

Longitude

4
2
2
1
1

Sea level anomaly (m) and eddy's contours
Date: 03-Sept-2019

$$
0.3
$$

$$
2
$$

$$
0.1
$$

Sea level anomaly (m) and eddy's contours

Sate :31 and eddy

Sea level anomaly (m) and eddy's contours
Date : 02-Sept-2019

Sea level anomaly (m) and eddy's contours Date : 30-Aug-2019
гим

Maybe the anticyclone's shape was too complex to be identified as an eddy by the eddy tracker?
However, the tracking hasn't been
stopped because the eddy tracker allows
to lost the eddy's track during a few days eddy tracker?
However, the tracking hasn't been
stopped because the eddy tracker allows
to lost the eddy's track during a few days eddy tracker?
However, the tracking hasn't been
stopped because the eddy tracker allows
to lost the eddy's track during a few days eddy tracker?
However, the tracking hasn't been
stopped because the eddy tracker allows
to lost the eddy's track during a few days

Sea leve anomaly (m) and eddy's contours

Date : 29-Auo-2019

Longitude
Sea level anomaly (m) and eddy's contours
Date : 01-Sept-2019

Results: some fails in the tracking

\qquad

Sea level anomaly (m) and eddy's contours
Sea level anomaly (m) and eddy's contours
nomaly (m) and eddy
Date : 03-Sept-2019
Longitude

$$
\square
$$

Date: 31-Aug-2019

-

Sea level an

Anticyclone tracking: the eddy has been tracked during its entire lifespan thanks to SLA data We are now able to know its characteristics and its position

Longitude
Fig.5. Anticyclone's contours on the 5th of September 2019 and sea level anomaly (m). Contours drawn according to currents speed.

Fig.6. Sea surface temperature (${ }^{\circ} \mathrm{C}$) on the 5 th of September 2019. The anticyclone is not observable because the sea surface temperature is high all over the study area.

Results: Anticyclone tracking: contours overlayed with SLA \rightarrow different life stages

D
Sea level anomaly (m) and eddy's contours Date: 16-Oct-2019

Longitude

B Sea level anomaly (m) and eddy's contours Date : 20-Apr-2019

E Sea level anomaly (m) and eddy's contours

A = First half of April: the eddy is forming and low SLA

B = Second half of April: Eddy's radius and amplitude are increasing

C = May to mid-June: Eddy's position is quite stable and its amplitude is still incresing. Cold period \rightarrow low SLA all over the area

D = July to November: the eddy is relativly stable. Warm period \rightarrow highSLA all over the area

E = December: Eddy's amplitude is decreasing

Results: Anticyclone tracking: contours overlayed with SST

A = First half of April: the eddy is forming and low SLA
$B=$ Second half of April: Eddy's radius and amplitude are increasing C = May to mid-June: Eddy's position is quite stable and its amplitude is still incresing. Cold period \rightarrow low SLA all over the area
$D=$ July to November: the eddy is relativly stable. Warm period \rightarrow highSLA all over the area
$\mathrm{E}=$ December: Eddy's amplitude is decreasing

A
\qquad
\qquad

A
Sea surface temperature (${ }^{\circ} \mathrm{C}$) and eddy's contours Date: 09-Apr-2019

D
Sea surface temperature (${ }^{\circ} \mathrm{C}$) and eddy's contours Date : 16-Oct-2019

B Sea surface temperature (${ }^{\circ} \mathrm{C}$) and eddy's contours

Sea surface temperature (${ }^{\circ} \mathrm{C}$) and eddy's contours
Sea surface temperature $\left({ }^{\circ} \mathrm{C}\right)$ and ed
Date : 20-Dec-2019

E

Conclusion:

Large anticyclone observed with SST data from April to December 2019 but its trace has been lost in August-September

> Use of sea level anomaly and an Eddy Tracker $\quad \rightarrow$ Daily position known
> \rightarrow Maximum amplitude $=0,22 \mathrm{~m}(2019-J u n-02)$
> \rightarrow Maximum radius $=66,6 \mathrm{~km}(2019-\mathrm{Apr}-28)$

References:

Alvera-Azcárate, A., Barth, A., Troupin, C., Beckers, J.-M., Evers-King, H., Pascual, A., Aguiar, E., Tintoré, J., 2020. Multiplatform analysis of a large anticyclonic eddy in the Algero-Provencal basin in 2019 (other). display. https://doi.org/10.5194/egusphere-egu2020-13744

Delepoulle, A., Mason, E., 2020. py-eddy-tracker Documentation 111

Mason, E., Pascual, A., McWilliams, J.C., 2014. A New Sea Surface Height-Based Code for Oceanic Mesoscale Eddy Tracking. J. Atmospheric Ocean. Technol. 31, 1181-1188. https://doi.org/10.1175/JTECH-D-14-00019.1

Mason, E., Pascual, A., Gaube, P., Ruiz, S., Pelegrí, J.L., Delepoulle, A., 2017. Subregional characterization of mesoscale eddies across the BrazilMalvinas Confluence. J. Geophys. Res. Oceans 122, 3329-3357. https://doi.org/10.1002/2016JC012611

Datasets:

SLA: available on the CMEMS website
https://resources.marine.copernicus.eu/?option=com_csw\&view=details\&product_id=SEALEVEL_GLO_PHY_L4_NRT_OBSERVATIONS_008_046

SST: available on the CMEMS website
https://resources.marine.copernicus.eu/?option=com_csw\&view=details\&product_id=SST_EUR_SST_L3C_NRT_OBSERVATIONS_010_009_b

