MINERAL CONTENT AND BIOMECHANICAL PROPERTIES OF FIBROLAMELLAR BONE

A Cantamessa¹, P Muraro¹, Y Delaunois¹, P Compère¹, S Blouin², MA Hartmann², D Ruffoni¹

> ¹ University of Liege, Liege, Belgium ; ² Ludwig Boltzmann Institute of Osteology, Vienna, Austria

Hard Tissue I: Tissue Interactions

Im 27/06/2022
Im Astrid.Cantamessa@uliege.be
Im www.biomat.uliege.be

Introduction

Introduction: fibrolamellar bone

- Apparent mechanical properties
- Spatial distribution of mineral content old X
- Local mechanical properties \mathbf{X}

Clinical relevance: Similarity between deposition and callus formation in bone healing

Aims

Combination of imaging & mechanical testings to explore structure-function relationship

Mineral content, structure & nanoporosity

Quantification of local mineral content and visualization of microstructure & nanoscale porosity of fibrolamellar bone

Magal, J. Struct. Biol., 2014 – Kerschnitzki, Cells Tissues Organs, 2011

Mechanical properties with nanoindentation

▼ nIND

- Spacing: ~6 µm
- Applied force: 500 μN
- Corresponding penetration depth: ~150 nm

- PHL is softer than PFB
- PFB is the stiffest region
- Clear difference in mechanical behavior between lamellae
- What about their transition?
- → Need of **higher resolution** to characterize submicron mechanical behavior within LB

Modulus Mapping based on nanoindentation

Nanoindentation combined with AFM-like piezo-scanner and force modulation system

Zlotnikov, Prog. Mater. Sci., 2017

Mechanical properties with modulus mapping

▼ NanoMM

Static force: 3 µN | Dynamic force: 1 µN & 285 Hz | Penetration depth: ~6 nm | Lateral resolution: ~80 nm

Two techniques, two length scales

▼ nIND

- Large elastic field: 25X larger
- Probing pores & canaliculi
- ~24% difference between stiff and soft lamellae

▼ NanoMM

- Small elastic field: 25X lower
- Probing crystal-collagen composite on the surface
- ~25% difference between stiff and soft lamellae for storage & loss

Fracture behavior

Qualitative analysis of fracture behavior in each region

Conclusion & Perspective

Mechanical and structural heterogeneity of fibrolamellar bone

Primary hypercalcified layer: Lower stiffness although higher mineral content and less porosity \rightarrow Critical role of collagen organization

Parallel-fibered bone: Stiffest region

Lamellar bone: **Very sharp** modulation of elastic properties → Known to hamper crack propagation [Fratzl, Adv. Mater., 2007]

NanoMM technique is ideal to characterize small features/**interfaces** such as lamellae or cement lines (1-5 μ m)

Thanks to all co-authors!

PhD Candidate in Biomedical Engineering at the MBBM lab \mathbf{Q} University of Liege, Belgium

Astrid CANTAMESSA

Yann DELAUNOIS

Philippe COMPERE

Pauline

MURARO

Davide RUFFONI

Markus HARTMANN

Stéphane BLOUIN

Thank you for your attention!

@astrid_canta

