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Abstract

High contrast imaging (HCI) is one of the most challenging techniques for exoplanet
detection, but also one of the most promising. The main difficulties encountered with
HCI arise from the small angular separation between the host star and the potential
exoplanets, the flux ratio between them, and the image degradation caused by the
Earth’s atmosphere. Adaptive optics and coronagraphic techniques are now widely
used to improve the quality and the dynamic range of the images with dedicated
instruments. However, despite the use of these cutting-edge technologies, the resulting
images are still affected by residual aberrations. Under good observing conditions,
the performance of HCI instruments is limited by aberrations arising in the optical
train of the telescope and instrument, generating quasi-statics speckles in the field of
view. Different post-processing techniques along with observing strategies have been
proposed in the last decade to deal with these quasi-static speckles, whose shape and
intensity are similar to potential companions.This PhD thesis builds upon these recent
advances, focusing mainly on the development of a new data processing technique to
unveil fainter planetary signals from angular differential imaging (ADI) sequences, and
to retrieve their observed properties.

Most post-processing techniques are based on the ADI observing strategy and
perform a subtraction of a reference point spread function (PSF), which models the
speckle field. Such techniques generally make use of signal-to-noise maps to infer the
existence of planetary signals via thresholding. An alternative method to generate
the final detection map based on a regime-switching model (RSM) is developed in the
first part of this thesis. This approach considers a planetary regime and a speckle
regime to describe, via a Markov chain, the evolution of the pixels intensity within
cubes of residuals generated by one or multiple PSF-subtraction techniques. The short
memory process used in the RSM algorithm allows quasi-static speckles to be treated
more effectively. Using multiple PSF-subtraction techniques helps reducing further
the residual speckle noise level, better discriminating planetary signals from residual
speckles. The RSMmap algorithm showed an overall better performance in the receiver
operating characteristic space when compared with standard signal-to-noise ratio maps
for several state-of-the-art ADI-based post-processing algorithms.

Building on the good results obtained with the RSM algorithm, several improve-

v



vi ABSTRACT

ments of the vanilla RSM map algorithm are then implemented. We started by con-
sidering two forward-model versions of the RSM map algorithm based on the LOCI
and KLIP PSF-subtraction techniques, allowing to account for the planetary signal
self-subtraction observed at short separations. We then addressed the question of op-
timally selecting the PSF subtraction techniques to optimise the overall performance
of the RSM map. A new forward-backward approach is also implemented to take into
account both past and future observations to compute the RSM map probabilities,
leading to improved precision in terms of astrometry and lowering the background
speckle noise. Performance analysis demonstrate the benefits of these improvements.

Following these developments, the RSM map algorithm can use up to seven PSF-
subtraction techniques. The selection of the optimal parameters for these PSF-subtraction
techniques as well as for the RSM map is therefore not straightforward, time consum-
ing, and can be biased by assumptions made as to the underlying data set. We propose
in the fourth chapter of this thesis a novel optimisation procedure that can be applied
to each of the PSF-subtraction techniques alone, or to the entire RSM framework. This
optimisation procedure, called auto-RSM, consists of three main steps: (i) definition of
the optimal set of parameters for the PSF-subtraction techniques, (ii) optimisation of
the RSM algorithm, and (iii) selection of the optimal set of PSF-subtraction techniques
and ADI sequences used to generate the final RSM probability map. The optimisation
procedure is applied to the data sets of the exoplanet imaging data challenge (EIDC).
The results demonstrate the interest of the proposed optimisation procedure, with
better performance metrics compared to the earlier version of RSM, as well as to other
HCI data-processing techniques.

The auto-RSM framework is finally applied to the SHARDDS survey to bring an
additional piece to the exoplanet puzzle, by contributing to the characterisation of
planetary population via the estimation of occurrence rate maps. This survey gath-
ers 55 main-sequence stars within 100 pc, known to host a high-infrared-excess debris
disk, allowing us to potentially better understand the complex interactions between
substellar companions and disks. A clustering approach is used to divide the set of
targets into multiple subsets, in order to reduce the computation time by estimating a
single optimal parametrisation for each considered subset. A new planetary character-
isation algorithm, based on the RSM framework, is developed and tested successfully.
We uncover the companion around HD206893, but do not detect any new companion
around other stars. Planet detection and planet occurrence frequencies are neverthe-
less derived from the generated contrast curves and show a high sensitivity between
10 and 100 au for substellar companions with masses >10MJ .

Throughout the different chapters of this thesis, we have built a complex but highly
efficient post-processing framework for ADI sequences, adding in each chapter many
new features and simplifying its use. All these developments have been compiled into
a python package, called PyRSM, which offers a parameter-free detection map com-
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putation algorithm with a very low level of residual speckles. This package has largely
increased in maturity thanks to the SHARDDS survey and has become a robust HCI
post-processing pipeline, achieving good performance in terms of contrasts. PyRSM
will hopefully be used for many more surveys and provide unprecedented detection lim-
its, allowing the detection of many exoplanets with the next generation of telescopes
and instruments.
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Résumé

L’imagerie à haut contrast (HCI) est l’une des techniques les plus complexes pour
détecter des exoplanètes, mais aussi l’une des plus prometteuses. Les principales dif-
ficultés rencontrées avec l’imagerie à haut contrast proviennent de la faible sépara-
tion angulaire entre l’étoile hôte et ses compagnons potentiels, de leur contraste et
de la dégradation de l’image causée par l’atmosphère terrestre. L’optique adaptative
et les techniques de coronographie ont permis d’améliorer la qualité des images via
l’utilisation d’instruments dédiés. Malgré l’utilisation de ces technologies de pointe,
les images obtenues sont néanmoins toujours affectées par des aberrations résiduelles
apparaissant dans le train optique du télescope et de l’instrument, générant des aber-
rations quasi-statiques dans le champ de vue. Différentes techniques de traitement
d’images ainsi que des stratégies d’observation ont été proposées au cours de la dernière
décennie pour traiter ces aberrations quasi-statiques, dont la forme et l’intensité sont
similaires à celles de compagnons potentiels. Cette thèse de doctorat s’appuie sur ces
avancées récentes, afin de développer de nouvelle techniques de traitement d’images
pour détecter des signaux plus faibles et les caractériser.

La plupart des techniques de traitement d’images sont basées sur la stratégie
d’observation ADI (angular differential imaging) et consiste en une soustraction d’un
modèle du champ d’aberrations, des images issues du télescope. Ces techniques
utilisent généralement des cartes signal sur bruit pour déduire l’existence de signaux
planétaires via la définition d’un seuil. Une méthode alternative pour générer la carte
de détection finale via un modèle à changement de régime (Regime Switching Model,
RSM) est développée dans la première partie de cette thèse. Cette approche consid-
ère un régime planétaire et un régime dominé par les aberrations pour décrire, via
une chaîne de Markov, l’évolution de l’intensité des pixels dans les cubes de résidus
générés par une ou plusieurs techniques de soustraction du champ d’aberrations. Ce
processus à mémoire courte permet de traiter plus efficacement les aberrations quasi-
statiques. L’utilisation de plusieurs techniques de soustraction du champ d’aberrations
aide à réduire davantage le niveau de bruit résiduel. L’algorithme RSM démontre une
meilleure performance globale en terme de courbe de fonction d’efficacité du récepteur
(ROC) par rapport aux cartes de rapport signal à bruit générées par des algorithmes
de post-traitement standard.

ix



x RÉSUMÉ

S’appuyant sur les bons résultats obtenus avec l’algorithme RSM, plusieurs amélio-
rations de l’algorithme ont ensuite été implémentées. Nous avons commencé par inclure
dans l’algorithme RSM, deux techniques de soustraction du champ d’aberrations per-
mettant de tenir compte de la déformation du signal planétaire lors de la soustraction,
observable en particulier à de courtes distance de l’étoile dans les séquences ADI. Nous
avons ensuite abordé la question de la sélection optimale des techniques de soustrac-
tion du champ d’aberrations pour optimiser les performances globales de l’algorithme
RSM. Une nouvelle approche prenant en compte les observations passées et futures
dans un même jeu de données pour calculer les probabilités de l’algorithme RSM a
également été implémenté, permettant d’améliorer la précision en termes d’astrométrie
et réduire le bruit de fond.

L’algorithme RSM pouvant utiliser jusqu’à sept techniques de soustraction du
champ d’aberrations, la sélection des paramètres optimaux pour ces techniques ainsi
que pour l’algorithme RSM est complexe et peut être biaisée par des hypothèses
formulées quant aux conditions d’observations. Nous proposons dans le quatrième
chapitre de cette thèse, une nouvelle procédure d’optimisation qui peut être appliquée
aux techniques de soustraction du champ d’aberrations seule, ou à l’algorithme RSM
en entier. Cette procédure d’optimisation, appelée auto-RSM, consiste en trois étapes
principales : (i) définition de l’ensemble des paramètres optimaux pour les techniques
de soustraction du champ d’aberrations, (ii) optimisation de l’algorithme RSM, et
(iii ) sélection de l’ensemble des techniques de soustraction du champ d’aberrations
et des séquences ADI à considérer lors de l’estimation de la carte de detection fi-
nale. La procédure d’optimisation est appliquée aux jeux de données de l’Exoplanet
Imaging Data Challenge (EIDC). Les résultats démontrent l’intérêt de la procédure
d’optimisation proposée, avec de meilleures résultats en comparaison de la version
précédente de l’algorithme RSM, et d’autres techniques de traitement de d’image.

L’approche auto-RSM est finalement appliqué aux jeux de données du relevé SHARDDS
afin contribuer à la caractérisation des populations de planètes via l’estimation de leur
taux d’occurrence. Ce jeu de données rassemble 55 étoiles situé à moins de 100pc
de la Terre et connues pour héberger un disque de débris, nous permettant poten-
tiellement de mieux comprendre les interactions complexes entre les compagnons et
les disques stellaires. Une approche de partitionnement de données est utilisée pour di-
viser l’ensemble du jeu de données en plusieurs sous-ensembles, afin de réduire le temps
de calcul en estimant une seule paramétrisation optimale pour chaque sous-ensemble
considéré. Un nouvel algorithme de caractérisation des signaux planétaires, basé sur
l’algorithme RSM, est développé et testé avec succès. Le compagnon sub-stellaire
HD206893 B, identifié précédemment dans la littérature, est à nouveau détecté, mais
aucun autre nouveau compagnon n’est détecté. Des cartes de fréquences de détection
et de taux d’occurrence d’exoplanètes sont ensuite calculées sur base des courbes de
contraste précédemment générées et montrent une sensibilité élevée entre 10 et 100 ua
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pour des compagnons substellaires de masse >10MJ .
Tout au long des différents chapitres de cette thèse, nous avons construit un algo-

rithme de traitement d’image à haut contrast complexe mais efficace, ajoutant à chaque
chapitre de nouvelles fonctionnalités et simplifiant son utilisation via une optimisation
automatique de ces paramètres. Tous ces développements ont été compilés dans un
package python appelé PyRSM. Ce package a largement gagné en maturité grâce à
l’analyse des données du relevé SHARDDS et est devenu un algorithme de traitement
d’images robuste, réalisant de bonnes performances en termes de contrastes. Nous es-
pérons que PyRSM sera utilisé pour de nombreux autres relevés et fournira des limites
de détection sans précédent, permettant la détection de nombreuses exoplanètes avec
la prochaine génération de télescopes et d’instruments.
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Chapter 1

Introduction

1.1 A brief history of exoplanetology

1.1.1 History

The possible existence of planets around other stars has fascinated mankind since
ancient times. The Copernican revolution in the sixteenth century, which positioned
the Sun at the center of our solar system, fostered the idea that stars in the sky
could harbour planetary systems, as stated by the Italian philosopher Giordano Bruno.
This idea was later shared by Isaac Newton. In the eighteenth century, he wrote in
the "General Scholium" that concludes his Principia: "... if the fixed stars are the
centres of similar systems, they will all be constructed according to a similar design
and subject to the dominion of One." (Isaac et al. 1999). Although the first attempts
to detect exoplanets are attributed to Huygens (1698), the first claims to have detected
an exoplanet dates back to the nineteenth century with the pioneer works of William
Jacob and Thomas See, who observed deviations in the orbits of the stars composing
the 70 Ophiuchi binary star system. These early detections, that have since been
refuted, were followed by numerous false positive claims in the twentieth century (e.g.
van de Kamp 1969), which were attributable to the low sensitivity of the instruments.

Different new techniques were proposed in the second half of the twentieth century.
In 1952, Struve (1952) proposed to use Doppler spectroscopy (radial-velocity) and the
transit method to detect super-Jupiters orbiting their star much closer than Mercury.
The first detection of an exoplanet is attributable to another technique, which relies
on pulsar timing. In 1992, the radio astronomers Aleksander Wolszczan and Dale Frail
announced the discovery of two exoplanets (PSR B1257+12 A and B) orbiting a pulsar
(Wolszczan & Frail 1992). Due to the particularity of pulsars, which are extremely
dense remnant of supernovae (1017 kg/m3 ) rapidly rotating and presenting a very
intense magnetic field (as large as 1010 to 1012 Tesla), these planets do not belong to
the main population of exoplanets. The same year, a suspected detection was made

1
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in the binary star system Gamma Cephei Ab, using radial-velocity (RV) variations.
However, Walker et al. (1992) first dismissed this hypothesis because of weak variations
in the Ca II emission line index, which followed the same periodicity, and it took until
2002 to confirm the detection. The first confirmed detection of an exoplanet orbiting
a main sequence (MS) star followed in 1995. Mayor & Queloz (1995) relied on the RV
technique to detect 51 Pegasi b, an exoplanet with a mass similar to Jupiter orbiting
very closely to its host star with an orbital period of only 4.23 days.

These early discoveries opened up a new field in astronomy, with a harvest of new
detections made in the following years, mainly via the RV technique. The 2000’s
saw the development of additional techniques such as the successful transit method,
microlensing, or high contrast imaging (HCI). The large number of detections made via
the transit method in the last two decades owes to the improved accuracy and precision
of photometric measurements, as well as the development of dedicated space missions.
The Kepler space telescope, launched in 2009, monitored continuously approximately
150,000 main sequence stars. The space telescope discovered during its nine and a half
years of operation more than 2600 exoplanets, which represents to date the largest
number of confirmed detections for a single instrument (e.g. Borucki et al. 2011). As
regards high contrast imaging, the first direct image of a sub-stellar companion was
made in 2004 (Chauvin et al. 2004).

Since 1992, approximately 4980 exoplanet detections have been confirmed 1 (as of
February 2022), in the close vicinity (less than 10kpc) of our Sun, illustrating the fast
development of this new field of astronomy. The discoveries made in the past 30 years
changed profoundly our understanding of the formation of planetary systems and of
the place of our own solar system in the Universe. The large diversity of observed
planetary system architectures drives our attempts to develop a general formation
framework. More observations are needed to better characterize planetary systems,
but also to get access to the entire zoo of exoplanets, as a large fraction of the expected
population of exoplanets is not yet within reach, such as Earth analogues potentially
harbouring life. This calls for the development of new instruments and data processing
techniques.

1.1.2 Exoplanet definition

Exoplanets (or extra-solar planets) being defined as planets orbiting stars other than
our Sun, their definition first requires a proper definition for planets. This definition
evolved with our understanding about the Universe and our place in it. The word
planet comes from the Ancient Greek word ’planetes’, which means wanderer. Every
moving light that could be observed at that time in the sky, was considered as a
planet, including our moon. This definition evolved ever since, along with Science, with

1http://exoplanet.eu/catalog/
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sometimes controversies. The most recent definition of the International Astronomical
Union (IAU), which was adopted in 2006, stipulates that a planet should satisfy the
following three conditions:

1. A planet must orbit a star.

2. A planet must have sufficient mass, i.e. enough self-gravity, to overcome rigid
body force and form a nearly spherical shape.

3. A planet must have sufficient mass to clear the neighbourhood along its orbit.

This definition refers mainly to the planets of our own solar system, and the IAU
has not yet adopted a clear definition for exoplanets. A separate proposal to extend
the IAU definition to exoplanets has been issued by Margot (2015), who suggests to
rely on a simple metric to determine whether a planet can clear its orbital zone during
its host star lifetime.

The IAU definition of a planet focuses mainly on small planets and does not in-
corporate information about the transition region between giant planets and brown
dwarfs. An IAU working group issued a statement in 2007, to distinguish exoplanets
from brown dwarfs based on their mass (Boss et al. 2005), leading to the following
additional rule:

4. A planet must have a mass below the limit of deuterium fusion.

Brown dwarfs are defined by the IAU as sub-stellar objects whose mass are high
enough for deuterium fusion but too small for hydrogen-1 fusion. However, the com-
monly admitted mass limit of 13 Jupiter masses (MJ) for deuterium fusion2 does not
seem to correspond to a clear transition in terms of mass distribution of the population
of companions detected via the RV technique (Udry 2010). Based on these statistical
results and considering the existence of a dry region between 25 and 40 MJ in the
mass distribution, Schneider et al. (2011) proposed to set the upper limit of exoplan-
ets mass to 25 MJ . However, more recent observations question the existence of this
brown dwarf desert (e.g. Duchene & Kraus 2013).

An additional concern about the definition of a planet incorporating rules 1-4, is
the fact that it does not account for potential free-floating planets, whose existence has
been confirmed by gravitational microlensing (Sumi et al. 2011) and direct imaging
(Delorme et al. 2012). An alternative strategy to define the concept of exoplanets
could consider the formation processes of planets and how these processes affect the
observational properties of planets throughout their entire lifetime. As brown dwarfs
share the same gravitational collapse mechanism as low-mass protostars, they could
be distinguished from exoplanets in young systems, by looking at their multiplicity

2This limit considers a solar metallicity.
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fraction, their mass accretion rates or the existence of circumsubstellar disks. For
mature giant planets and brown dwarfs, recent studies have focused on metallicity
and chemical composition instead of mass to disentangle them (e.g. Ma & Ge 2014;
Maldonado & Villaver 2017).

For exoplanets, two planetary formation scenarios are currently considered. The
core accretion scenario (Pollack et al. 1996) states that the planet core is built by the
accretion of planetesimals formed from the dust grains constituting the protoplanetary
disk. As the core grows, the accretion rate increases due to its higher gravitational
pull, forming a rocky planet or a gas giant if the core becomes sufficiently massive.
According to the gravitational instability scenario (Boss 2002), if the protoplanetary
disk is sufficiently massive, local instabilities lead to the fragmentation of the disk
into dense cores of several Jupiter masses, forming giant planets. Direct collapse
through gravitational instabilities is thought to proceed on an orbital timescale (Boss
2000) while simulations of planet formation via core-accretion suggest a much slower
formation process taking several millions years (Hubickyj et al. 2005). Core accretion
is often associated to a cold start formation mechanism as shocks in the accretion disk
reduces the entropy of the material falling into the protoplanet (Marley et al. 2007). In
contrast, gas collapsing because of gravitational instabilities is thought to retain much
of its entropy leading to a hot start formation mechanism. However, more recent core
accretion models are also compatible with hot start accretion process (Berardo et al.
2017), while planets may form via gravitational instabilities with a range of initial
entropies (Spiegel & Burrows 2012). The faster gravitational instability formation
scenario could account for the giant planets detected at large separation from young
stars by direct imaging. However, the giant planets originating from the protoplanetary
disk fragmentation should share the same solar abundance ratio as their host star,
which is not in line with the evidences suggesting that the upper layers of Jupiter and
Saturn are enriched with heavy elements (Matsuo et al. 2007). These two formation
scenarios do not fully reflect the large variety of exoplanets observed since 1992, and
more observations are needed to take into account more complex formation processes
involving complex interactions with the planetary environment or orbital migration.

1.1.3 Indirect detection methods

The last section highlighted the difficulties associated with the definition of exoplanets
and emphasised the necessity of more observations to adapt and challenge formation
models. These observations have been made possible by the development of complex
detection methods. In this section, we summarize the various indirect methods that
have been developed and used over the past 30 years to detect exoplanets, before
moving on to direct imaging in Section 1.2. For each method, we briefly present their
general principle and discuss their main advantages and drawbacks. As suggested
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Figure 1.1: Percentage of confirmed detections attributable to the different detection
methods from 1992 to February 2022. The detection methods are represented by
different colors. The same color code is used in Figure 1.2. The raw data were extracted
on the 2022-02-15 from the online Extrasolar Planets Encyclopaedia (Schneider et al.
2011).

by the term ’indirect’, the methods presented in this section take advantage of the
influence of exoplanets on their host star to detect and characterize them. In contrast
with direct imaging presented in Section1.2, no direct light from the planet is used for
their characterization.

Throughout this section and the next one, the reader can refer to Figure 1.1 and
1.2 which illustrate respectively the fraction of exoplanet detections attributable to
each method and the region of the mass/semi-major axis parameter space covered by
the considered methods. As can be seen in Figure 1.2, each detection method is well
suited for a given region of the physical parameters space, with most techniques being
complementary. Nevertheless, a large fraction of the physical parameters space is not
covered yet, as illustrated by the region including solar system planets.

Pulsar timing

As mentioned in Section1.1.1, pulsar timing enabled the discovery of the first exoplan-
ets. This approach relies on a frequency analysis of the time-periodic pulses emitted
from the magnetic poles of the pulsar to unveil slight perturbations associated with
the presence of a planet. Pulsar timing allows one to retrieve the mass of the detected
companions as well as most of its orbital parameter (semi-major axis, eccentricity,
inclination). Pulsars being significantly rarer than conventional stars in their main
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Figure 1.2: Semi-major axis of the confirmed exoplanets and brown dwarfs as a func-
tion of their mass, for the considered detection methods. The figure regroups 1331 out
of the known 4978 exoplanets, since a large fraction of exoplanets is not yet character-
ized in terms of semi-major axis and mass. This concerns mainly the detections made
by the RV techniques. The raw data were extracted on the 2022-02-15 from the online
Extrasolar Planets Encyclopaedia (Schneider et al. 2011).

sequence, exoplanets detected via pulsar timing represent a marginal fraction of the
number of detected exoplanets as illustrated in Figure 1.1. Pulsars being compact
object, detected planetary companions are often close to the neutron star and/or mas-
sive. As no information about the origin of the detected exoplanet can be obtained
(whether the exoplanets has been gravitationally captured, formed from the leftovers
of the supernovae, or survived it), these detections do not provide much information
about planet formation processes.

Radial velocities

The radial velocity detection method takes advantage of the revolution of an exo-
planet’s host star around the center of mass of the planet(s)/star system. If the exo-
planet is massive enough and/or close enough to its parent star3, the center of mass

3The gravitational force of a companion decreases with the square of the distance to its host stars
while the center of mass increases linearly with the distance.
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Figure 1.3: Graphical representation of the RV method (left), along with the evolution
of the radial velocity curve of 51 Peg (right), the first exoplanet detected with the RV
method. The dotted line represents the set of observations, while the solid line is the
fit phased to a period of 4.23 days. (Credits: Mayor & Queloz (1995)).

shift becomes sufficiently large to allow a measurable periodic radial motion of the host
star via Doppler spectroscopy (see Figure 1.3 for an illustration). The RV method gives
access to a lower bound of the companion mass but not its true mass, as it depends
on the inclination of the exoplanet orbital plane, which cannot be retrieved with this
method alone. Detections through RV technique favour massive, edge-on and close-in
companions (e.g. hot Jupiter) as they induce larger spectral displacements. Short
orbital periods are also preferred, as they reduce the required observation timescale.

Astrometry

Besides the use of the Doppler effect to unveil radial velocity variations, a precise
astrometry4 monitoring of the star can also lead to the detection of the periodic mo-
tion caused by an exoplanet. The GAIA space telescope dedicated to astrometry and
launched in 2013, should increase significantly the number of exoplanets detected via
astrometry in the next few years. Astrometry provides information about some orbital
parameters of the exoplanet, including the inclination, and can therefore be used along
with RV to define precisely the companion mass. The main limitation of astrometry
pertains to the difficulty of obtaining precise measurements of the small displacement
of stars under the gravitational influence of exoplanets. Space-based observations are
required, as distortion caused by atmospheric turbulence affects dramatically the ac-
curacy of measurements. Similarly to the RV method, massive exoplanets orbiting low
mass stars are preferred. Astrometry has nevertheless a good complementarity with

4Astrometry consists in the precise measurement of the location of an object relative to reference
background stars.
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Figure 1.4: Graphical representation of the primary and secondary transits (left, cred-
its: Perryman (2018)). Photometric time series of HD 209458 during a transit. The
solid line represents the best fit model indicating a maximum reduction of 1.7% of the
host star brightness during the transit (Credits: Charbonneau et al. (2000))

RV measurements as it favours pole-on system and is more sensitive to companions
with large orbits.

Photometric Transit

The transit detection method has revolutionized the field of exoplanet astronomy with
over 3400 confirmed transiting exoplanets, representing 72% of the discovered exoplan-
ets. This method is based on the analysis of the evolution of the starlight intensity to
track periodic eclipses (primary or secondary) caused by planets in a nearly edge-on
configuration (see Figure 1.4). The idea behind the transit method dates back to O.
Struve in 1952 but the first transit observation was made only in 1999 by Charbon-
neau et al. (2000). The NASA Kepler space observatory (Borucki et al. 2010) has
been so far the most prolific instrument for the detection of exoplanets, monitoring
simultaneously a hundred thousand stars in a region close to the solar system. Future
missions, such as PLATO (PLAnetary Transits and Oscillations of stars, expected to
be launched in 2026, Rauer et al. 04 September 2014) will contribute to new discoveries
by considering a larger set of stars.

The transit method gives directly access to the radius of the planetary compan-
ion by studying the transit depth, which is proportional to the star-planet surface
ratio. It also provides information about the orbital period and the orientation of the
exoplanet’s orbit relative to the sky plane. Transit may be used along with RV to
obtain the mass and eccentricity, which combined with the transit observations, give
access to the density of the planet and therefore to its internal structure. Although
the transit method is indirect, it can probe planetary atmospheres via spectroscopy,
by comparing the spectrum during the transit with the spectrum of the star outside
transit. The main limitation of the transit method owes to the inclination requirement
to observe the eclipse. The probability of having a stellar system inclination match-
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ing the Earth line of sight decreases with separation, favouring companions at short
separation. Moreover, there is a clear preference for large companions compared to
their host star, since they induce a deeper transit, easier to detect. A drawback of
the transit method is its high false positive rate (see among others, Santerne et al.
2012; Morton et al. 2016), due to the large number of events that can produce transit
signatures, such as brown dwarf eclipses, background eclipses, stellar spots, or diluted
eclipsing binaries5.

Microlensing

The microlensing method exploits a galactic gravitational lens, i.e., a distribution of
matter between a background light source and the observer, which curves the light
rays emitted by the background light source, as they travel towards the observer. In
the context of exoplanet detection, the background light source is a star and the dis-
tribution of mass acting as a magnifier is another star potentially surrounded by a
planetary system. Such alignments being rare, only a few dozens of exoplanet detec-
tions have been made via microlensing since the first detection in 2000 (Bond et al.
2001). Interestingly, the method can also probe faint free-floating companions that
are not accessible by any other technique, shedding light on the population of such
objects (Sumi et al. 2011). In terms of discovery space, microlensing has an increased
sensitivity to small exoplanets orbiting low-mass stars at large separations, just be-
yond the snow line (typically between 0.5 and 10 AU), and also multi-planet systems.
Microlensing allows to recover the mass of the exoplanet relative to the mass of its host
star as well as the projected semi-major axis. The main limitations of the microlens-
ing method are the limited number of retrieved astrophysical parameters and its non
reproducibility, considering the extremely low probability of follow-up alignment with
another background star.

1.2 The power of direct exoplanet imaging

Although indirect detection methods have dominated exoplanet science in the past
decades, recent instrumental developments and new data processing techniques al-
lowed the fast development of direct imaging as a promising complementary detection
method. As illustrated by Figure 1.2, direct imaging enables the detection of young
and massive exoplanets at separations that are not yet covered by indirect methods
(>5 au). It is bound to bridge the gap with indirect methods in terms of angular sepa-
ration and companion mass with the advent of extremely large telescopes (Quanz et al.
2015). Moreover, as the method relies on the direct observation of photons emitted by

5When a background eclipsing binary is co-aligning with a target star, the eclipse is diluted by
the foreground target star and can appear as the transit of a exoplanet.
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Figure 1.5: Exoplanet orbiting the 2MASSWJ 1207334-393254 brown dwarf (upper
left panel, credits: Chauvin et al. 2004), Eri51 b (upper right panel, credits: Marois
et al. 2008b), HR8799 b,c,d (bottom panel, credits: Macintosh et al. 2015)

the planets themselves, it gives access to a wider range of astrophysical parameters,
putting new constraints on planet formation models.

The first exoplanet detected via direct imaging was a giant planet orbiting the
2MASSWJ 1207334-393254 brown dwarf situated in the TWHydrae association (Chau-
vin et al. 2004). The low temperature of the brown dwarf and the relatively large
angular separation (778 mas for a projected distance of 55 AU) eased the detection,
the contrast between the two objects being only 10−2. This discovery was followed
by a few tens of exoplanets and brown dwarf companions detected via direct imaging,
using both space based and ground based telescopes. Ground based telescopes are
the most commonly used for direct imaging nowadays, thanks to their larger aper-
ture and the development of advanced adaptive optics. Among these discoveries, we
can point out the detection of HR8799 b,c,d,e using the Keck and Gemini-south tele-
scopes (Marois et al. 2008b, 2010), the detection of Beta Pictoris b using the VLT
(Lagrange et al. 2010), or more recently the discovery of Eri51 b with the Gemini-
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south telescope (Macintosh et al. 2015). All these detections have been made possible
by advanced techniques involving optics, instrumental design and data processing (see
Pueyo 2018, for a review). These advanced techniques are designed to tackle the two
main challenges of High Contrast Imaging (HCI), namely the contrast and the angular
separation between the exoplanet and its host star. These state-of-the-art technologies
will be discussed in Section1.3. We consider first the physical parameters of detected
exoplanets that can be inferred from HCI observations.

As already mentioned, direct imaging aims at detecting the photons emitted (mainly
in the infrared) or reflected (mainly in the visible) by the exoplanet itself. The in-
tensity of visible light from the host star reflected by the exoplanet depends on the
planet albedo, which derives from its surface and atmosphere composition. As for
the intensity of the photons emitted in the infrared, it depends on the planet surface
temperature, which is affected by both the planet age and mass. Giant exoplanets as
well as brown dwarfs contract with time and release gravitational potential energy as
thermal emission, cooling down monotonically with age. Following evolution models,
the temperature for giant exoplanets ranges from 500 to 3000 K during their first 10
Myr to cooler temperature below 500 K at 1 Gyr. Their thermal emission therefore
peaks at near-to mid-infrared wavelength in their earlier stages, moving later to the
mid-infrared regime at older ages. Particular attention has been paid to near-infared
emissions for HCI, which provides a good trade-off between the noisier mid-infrared
bands and the more turbulent visible regime6. The contrast between the host star and
hot young planets at these longer wavelengths is also lower than for visible light where
the star black body emission is usually much higher compared to the reflected light.
Although most HCI efforts focused on near-infrared H band, the Lp thermal infrared
band (3.78µm) has led to many discoveries (e.g. β Pic b, HR8799 e or PDS 70 b, resp.
Lagrange et al. 2010; Marois et al. 2010; Keppler, M. et al. 2018) due to its higher
Strehl ratio, lower background star contamination, and the higher emission of young
and intermediate giant exoplanets in these wavelengths.

1.2.1 Astrometry

Several key physical parameters of detected exoplanets may be inferred from HCI
observations. Confirmed detections require usually at least two sets of observations
taken at two different epochs to ensure that the planetary candidate is not an artefact
due to residual noise, or a background star, especially for systems in the Galactic
plane. The exoplanet orbital elements estimation requires however at least three sets
of observations. A higher number of observations spanned over a long period are

6The higher level of noise in mid-infrared is explained by the temperature of the Earth atmosphere
and the instrument itself, while atmospheric turbulence is more difficult to treat in the visible range
due to the smaller coherence time (see Section 1.3.1).
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often necessary, considering the slow revolving planets detected by HCI. The orbital
periods of directly imaged exoplanets are so long, that no exoplanet has yet a closed
orbit, i.e. astrometric measurements covering the whole orbit. The orbital elements
are usually computed relying on Monte-Carlo Markov Chains or Large-Step Markov
Chains (resp. MCMC and LSMC) estimation, which allows to explore the orbital
parameter space, based on the estimated angular separation and angular position of
the planetary candidate at the different epochs. Precise astrometry is therefore a
key element of image processing techniques, as the precision of the orbital elements
computation depends directly on the uncertainty associated with the estimation of the
angular separation and angular position.

The definition of the orbital elements in a multi-planet system allows the simula-
tion of potential dynamical configurations in order to infer the multi-planet system’s
long term stability, as well as the potential existence of additional planets. One of the
best studied multi-planet system is HR 8799, for which the astrometric measurements
are consistent with a stable configuration, with at least three of the four planets being
co-planar, close to a 1:2:4:8 period ratio (Goździewski & Migaszewski 2020). Other
systems such as β Pic have also been studied in details (Lagrange, A. M. et al. 2020).
The geometry of the orbit in single-companion system may also be used to infer the
possible existence of additional companions. For example, the determination of possi-
ble periastron/apastron distances for HD 95086 b by Rameau et al. (2016) suggested
that the companion had not a sufficient eccentricity to explain the truncation of the
outer edge of the debris disk. Orbit monitoring on single-companion systems can help
differentiate perturbation due to an inner companion from non-zero eccentricity (e.g.
Rameau et al. 2016; Maire et al. 2019; Lacour et al. 2021). Precise astrometry can also
help investigate the formation scenario by studying the misalignment between orbital
plane and stellar spin axes (Bryan et al. 2020), or by considering the orbital geometry
differences existing between exoplanets and brown dwarfs (Bowler et al. 2020).

1.2.2 Photometry

Besides astrometry, precise photometry is also essential to properly characterize the
detected planet. Relying on both the contrast between the companion and its host star
and the estimated age of the host star, evolutionary models may be used to estimate
the mass of the planet. The selected evolutionary models (often referred as hot start
and cold start model) as well as the assumptions made on the physics of the atmosphere
may affect drastically the estimated mass (e.g. Marley et al. 2007).

An accurate and precise estimation of the host star age is also of paramount impor-
tance, as a revision of stellar ages can affect drastically the interpretation of a detected
signal, such as its classification between giant exoplanet and brown dwarf. As an il-
lustration, a recent revision of the age of AB Pic from 30 Myr to 13 Myr (Chauvin
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et al. 2005; Booth et al. 2021) led to a decrease in the estimated mass of AB Pic b
from 14 MJ to 10 MJ . A more striking example is GJ 504b which was first considered
as an exoplanet with a mass of 4+4.5

−1.0 MJ for a star age of 160+350
−60 Myr estimated via

gyrochronology and activity indicators (Kuzuhara et al. 2013). High-resolution optical
spectrum analysis of the star led to an inferred isochronal age of 2.51.0

−0.7Gyr (D’Orazi
et al. 2017), implying a mass above 24 MJ for the companion and classifying there-
fore GJ 504b as a brown-dwarf. Most of the stars hosting a imaged planetary system
belong to young moving groups or associations of stars (ages between 10-300 Myr) at
close separation from the Earth (. 100 pc). Stars in such groups have been formed
in the same region and share similar age and proper motions. Their age is estimated
relying on Hertzsprung-Russell diagram, or Lithium abundance. For isolated stars,
the estimation is more difficult and often based on stellar rotation and activity, using
optical interferometry to resolve them.

1.2.3 Spectroscopy

An interesting additional feature of direct imaging, is its ability to probe multiple
wavelengths via spectroscopy. To date, spectro-photometric measurements have been
obtained for 41 giant planets or low mass brown dwarf companions via direct imaging
and 136 jovians and super-Earths via the transit technique (Currie et al. 2022). While
the transit method focuses on mature and highly radiated jovians and super-Earth,
direct imaging allows the characterisation of young self-luminous giant exoplanets at
wider distances, where the irradiation level is negligible. Multispectral observations
of exoplanet can help constraining the surface temperature, the presence of clouds
but also provide information about the surface gravity and the planetary radius when
used along with advanced atmospheric models. High resolution spectroscopy can also
unveil the chemical composition of the atmosphere and the presence of molecule such
as water, methane or ammonia.

Models of exoplanet and brown dwarf atmospheres are more complex than those
of stars, as they must deal with much lower temperature, lower surface gravity, the
presence of clouds, disequilibrium chemistry due to vertical mixing or convection. Mul-
tiple 1D models have been developed and improved in the past decades. Their first
objective was to provide spectra at the top of the atmosphere for multiple effective
temperature and surface gravity, via the determination of atmospheric temperature
profiles via radiative-convective flux balance. The temperature profile can then be
used as boundary conditions for interior structure model providing information about
temperature and surface gravity evolution over time (Chabrier & Baraffe 1997). Well
known early models include the AMES-Cond models of Baraffe et al. (2003) or the
model of Saumon & Marley (2008), which also incorporates a varying sedimentation
efficiency in the upper atmosphere boundary to investigate the impact of clouds on the
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evolution of brown dwarfs. Cloud models have first been developed by Allard et al.
(2001) and Ackerman & Marley (2001) to account for the reddening of L dwarf spec-
tra. Indeed, the presence of clouds is often associated to a hotter temperature profile,
which can explain at least partially the redder colors of exoplanets presenting cloud
coverage, like β Pic, HR 8799 bcde, or 51 Eri b (Currie et al. 2013; Rajan et al. 2017).
Sedimentation efficiency is the main parameter characterising clouds in 1D models
and defines the size of the cloud particle which should insure the equilibrium in the
transport of condensible gases in the atmosphere. Other features of observed brown
dwarf and giant exoplanets required the development of more complex models. High
temperature transitions lines have been incorporated to describe more accurately at-
mosphere opacity (Phillips et al. 2020). Pressure broadened line shapes of alkali metals
Na and K were introduced as it drives partly the shape of red-optical and near-infrared
spectrum of brown dwarfs (Allard et al. 2016; Allard et al. 2019). Non-equilibrium
chemistry has also been included to account for the vertical mixing observed in brown
dwarfs (among others Saumon et al. 2003; Geballe et al. 2009; Leggett et al. 2017).

Quasi-periodic and high amplitude variation in the emission of brown dwarf and
giant exoplanets indicates a dynamic and varying atmosphere that cannot be captured
by global 1D models. Local 3D models have been developed to cope with the variability
of cloud coverage and convective movements (Showman & Kaspi 2013; Tan & Showman
2017, 2021). All these different physics-based models, which are parametrized by
planetary characteristics such as metallicity, temperature, surface gravity, or cloud
coverage, provide spectra that can be compared with multispectral observations to
infer the companion physical characteristics (see among others Baudino et al. 2015;
Claudi et al. 2019; Cheetham et al. 2019; Phillips et al. 2020).

1.2.4 Planet-disk interactions

In our current understanding of planetary system formation, gas giant planets form
in gas-rich protoplanetary disks that dissipate in a few million years, leaving behind
one or several planets as well as belts of planetesimals that never managed to grow
to full-sized planets. These belts are called debris disks, because the planetesimals
collide between each other and generate small dust particles detectable either through
their scattered light in optical regime or through their submillimetric thermal emission,
creating an infrared excess above the stellar photosphere. Current far-infrared surveys
can detect debris disks with an infrared excess above 10−6, and have estimated that a
debris disk must be present around at least 30% of A stars and 20% of FGK stars (e.g.
Eiroa et al. 2013), but the real occurrence rate could be much higher (Pawellek et al.
2021). Those disks are a natural place to look for planets because planet formation
succeeded to form at least large planetesimals in those systems. Meshkat et al. (2017)
found indeed a tentative evidence that giant planets have a higher occurrence rate
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around debris disc host. Currently forming or mature exoplanets could also explain
the presence of rings, spirals, and gaps seen in many debris disks (Dong et al. 2015),
stirring (Pearce et al. 2022), as well as sharp edges and pericenter offsets (Kalas et al.
2005). Modelling these perturbations may provide constraints on the masses of the
exoplanets (Kalas et al. 2008; Lagrange et al. 2009a).

1.2.5 Surveys and population statistics

The multiple HCI surveys that have been done in the past two decades enabled most
of the exoplanet detections via direct imaging, providing good contrast for a sample of
more than 500 stars. Although the number of discovered exoplanets has been relatively
small, the obtained contrast curves allowed the estimation of giant exoplanet popu-
lation statistics. The most interesting population statistics is the inferred occurrence
rate, more precisely the evolution of the occurrence rate depending on exoplanet or
star properties such as mass, semi-major axis, or star metallicity. This key statistics
allow to strongly constraints the different models of planetary formation and evolution.

Based on RV surveys, Cumming et al. (2008) found out the existence of a power
law relationship between the occurrence rate of giant exoplanets and their semi-major
axis up to 2.5 au. The first direct imaging surveys in the 2000’s showed a low upper
limit on the occurrence rate (below 10%) for giant exoplanets in wider orbit (beyond
10 au), indicating that the power law could not be extended beyond 2.5 au (Lafreniere
et al. 2007b; Chauvin et al. 2010). With the increasing number of detected exoplanets
and the advent of more powerful adaptive optics, more recent surveys have been able
to provide estimates of the occurrence rate instead of upper limits. Higher achievable
contrasts enable the potential detection of lower mass exoplanets (e.g., 50% detection
probability for exoplanet with mass around 1 MJ at separations beyond 50 au for the
SHINE survey, Vigan et al. 2021). Recent surveys show a high sensitivity for giant
exoplanets with mass over 2 MJ between 10 and 200 au (Meshkat et al. 2017; Nielsen
et al. 2019a; Vigan et al. 2021). The study of the obtained planetary occurrence rates
allowed to derive (several) power laws for giant planet population between 10 and
100 au, with occurrence rates decreasing with planet mass and semi-major axis and
increasing with stellar mass. Nielsen et al. (2019a) compared the obtained relationships
for giant exoplanets and brown dwarfs and demonstrated that they were clearly two
different populations, indicating different formation mechanisms. These studies along
with more recent RV surveys (Fernandes et al. 2019; Fulton et al. 2021) beyond 2.5 au,
suggest the existence of an occurrence rate peak for giant exoplanets near the snow
line (3-10 au).

As mentioned in Section 1.1.2, two different formation scenarii have been proposed
in the literature: the gravitational instability, which predicts high-mass exoplanets
at wide separations, and the core accretion scenario, which predicts more low-mass
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exoplanets at shorter separations with a dependence on the stellar mass. The results
from the GPIES survey (Nielsen et al. 2019a) seem to demonstrate the consistency
of the gravitational instability scenario with brown dwarf populations. However, the
power law obtained for giant exoplanets at wide separations rather favours the core
accretion scenario. Vigan et al. (2017) reached similar conclusion with a much higher
contribution of the core accretion scenario than gravitational instability to explain
giant exoplanet population. The eccentricity analysis made by Bowler et al. (2020) also
suggests that brown dwarfs and giant exoplanets have different formation mechanisms
involving for the first, binary-like formation, and for the second, core accretion within
the proto-planetary disk.

1.2.6 Complementarity of indirect methods

A precise orbit determination via astrometric measurements of the planet position,
combined with indirect techniques such as RV or absolute star astrometry may help
further constraining companion mass (e.g. Mawet et al. 2019), without requiring the
definition of the planet age and the selection of an evolutionary model. This will
lead eventually to a set of benchmark planets , for which dynamical measurements
are available together with large infrared spectral coverage. The first data releases
of the Gaia survey are already revealing helpful for direct imaging analysis consid-
ering the length of the mission, which give access to long period orbits (Bonavita
et al. 2021). Indirect techniques may also be helpful to fill the gaps when studying
exoplanet population, direct imaging being limited to large and distant exoplanets.
Indeed, considering multiple detection techniques help covering a larger fraction of the
mass-distance parameter space as illustrated in Figure 1.2, but also in terms of star
properties. RV studies combined with direct imaging can for instance help investigat-
ing the extent of giant exoplanets migration during their lifespan, by considering a
wider range of separations (e.g. , Lagrange, A. M. et al. 2020).

1.3 Challenges of high-contrast imaging

The direct detection of exoplanets is a very challenging task, considering the small
angular distance between the companion and the host star (typically between 0.1 and
a few arcseconds) and the very high contrast between them, which ranges from 10−3

(young massive planet emitting in the infrared) to 10−10 (Earth-like planet reflecting
light from their host star). These elements explain why only giant planets orbiting
at a large angular separation have been discovered so far, despite the technological
breakthroughs of the past decade. In the case of ground-based telescopes, the use of
adaptive optics along with coronagraphic devices has been the mainstream approach
to reach both high contrast and high angular resolution.
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Figure 1.6: Simplified graphical representation of an adaptive optics system. Credits:
Rimmele and Marino (2011).

1.3.1 Angular resolution and adaptive optics systems

The resolution achieved by a telescope is in theory inversely proportional to the diam-
eter of its main aperture for a given wavelength. The image of a point-like source at
large distance, such as a star, is a diffraction pattern called the point spread function
(PSF), which consists for a circular aperture in an Airy function presenting a main
peak surrounded by multiple lobes. In the diffraction-limited case, the resolving power
of the telescope is given by the Rayleigh criterion, which imposes a minimum distance
between two resolved objects of 1.22λ/D, withD the diameter of the telescope primary
mirror, and λ the considered wavelength. This distance corresponds to the separation
between the PSF main peak and its first minimum.

However, for ground-based telescopes, atmospheric turbulence leads to time and
space-varying phase shifts of the wavefront affecting the PSF sharpness. The expected
sharp PSF core is replaced by a fuzzy blob or halo, decreasing the angular resolution
limit. The angular resolution in the presence of atmospheric turbulence is given by the
seeing 0.98λ/r0 (Dierickx 1992), with r0 the Fried parameter providing an equivalent
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telescope diameter in terms of achievable angular resolution. As the Fried parameter is
scaling as λ6/5, the angular resolution limit is less affected by atmospheric turbulence
in the near-infrared compared to the visible7.

The angular resolution limit therefore becomes independent of the telescope aper-
ture, when accounting for atmospheric turbulence. This could drastically limit the
resolving power of the 8 m class telescopes that have been constructed throughout the
90s. The concept of adaptive optics has been proposed by Babcock (1953) to over-
come, at least partially, the effect of turbulence by using deformable mirrors (DM) to
correct the distorted wavefront. It was not until 1990 that adaptive optic was applied
to astronomy at the La Silla Observatory (Rousset et al. 1990).

As illustrated in Figure 1.6, an adaptive optics system combines a wavefront sensor
(WFS), a deformable mirror (DM) composed of hundreds or thousands of actuators
(41x41 actuators for SAXO, in VLT/SPHERE, Beuzit et al. 2019) and a real time
computer (RTC). The wavefront sensor, such as the Shack-Hartmann wavefront sensor
(Shack & Platt 1971), the pyramid wavefront sensor (Ragazzoni & Farinato 1999) or
the curvature wavefront sensor (Roddier & Roddier 1988), analyses the local deforma-
tion of the wavefront of a guide star (a star positioned near the astrophysical object of
interest, or a laser guide star). This information about the local slope of the wavefront
is sent to the RTC that reconstructs the entire wavefront. Based on the reconstructed
wavefront, the RTC computes the correction to be applied to the DM, which consists
in optical path delays or advances. These corrections are sent to the actuators which
deform locally the mirror in order to cancel out the wavefront errors, flattening the
wavefront and therefore sharpening the PSF. These steps are repeated in a closed loop
mode at a high frequency (1.2 kHz for SAXO, in VLT/SPHERE, Beuzit et al. 2019).

The VLT/SPHERE instrument, which will provide most data sets used throughout
this dissertation, relies on extreme AO (xAO), focusing on a small region of the sky in
order to further improve the achievable Strehl ratio via a higher density DM and a fast
RTC. As can be seen in Figure1.7, the xAO installed in the VLT/SPHERE instrument
can achieve a Strehl ratio of about 90 % in the H-band (1.6µm), meaning that around
90 % of the maximal intensity of the aberration-free PSF can be recovered for nominal
turbulence conditions (to be compared to about 5 % without AO). A more complete
review of the AO systems used in high contrast imaging can be found in Milli et al.
(2016a).

1.3.2 Contrast and coronagraphy

Having dealt with the question of the angular resolution limit, we now turn to the large
difference in terms of brightness between exoplanets and their host stars. The high

7This is explained by the smaller coherence time in the visible with leads to more severe phase
shifts for a given optical path
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Figure 1.7: Example of a long exposure image of a star in H-band (1.6µm) taken
with the VLT/SPHERE instrument in nominal turbulence seeing conditions (Seeing
of 0.85 arc sec and wind speed of 12.5 m s−1), without AO correction (left), where
the size of the seeing pattern is around λ/r0; and with AO correction (right) where
the instrument resolution is closer to the diffraction limited resolution of λ/D (with
D = 8m for the VLT). Credits: (Sauvage et al. 2016).

Figure 1.8: Optical layout of the classical Lyot coronograph. Credits: M. Kenworthy
(Leiden University).

contrast challenge is addressed by the use of coronagraphic techniques, which aim to (i)
create a dark region around the host star to avoid detector saturation, and (ii) cancel
the diffracted starlight in the off-axis region where planets may orbit. Coronagraphs
can remove starlight by acting at different levels on the amplitude or the phase8, in
the focal plane or in the pupil plane. Coronagraphy is a very active field and different
strategies acting on these different levels have been investigated. The original concept
dates back to Lyot (1939), and consists in an opaque disk blocking the starlight at
the focal plane (Lyot mask), combined with a second annulus-shaped opaque mask
(the Lyot stop) placed at the following pupil plane to remove most of the remaining
diffracted starlight (Airy rings not blocked by the Lyot mask). The Lyot coronagraph
acts on the amplitude of starlight at both focal and pupil plane.

8When acting on the phase, the coronagraph creates destructive interferences via phase shift to
remove the starlight.
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The main drawback of the classical Lyot coronograph is the reduced throughput of
planetary signal due to the Lyot stop, as well as the large inner working angle (IWA)9,
and the non perfect cancellation of the diffracted starlight. More advanced designs
have been proposed to cope with these limitations, taking into account additionally
the spectral bandwidth at which the coronagraphic mask operates, as well as reducing
the sensitivity of the set-up to potential instrumental aberrations. Among corona-
graphic concepts operating in current state-of-the-art observatories, we may note for
instance the vortex coronograph (Mawet et al. 2005; Mawet et al. 2013), which creates
destructive interferences via a phase-shift of the on-axis starlight, rather than block-
ing the starlight. This design improves significantly the throughput and reduces the
IWA, however at the cost of a higher sensitivity to instrument misalignments (tip-tilt).
We also note the apodized pupil Lyot coronagraph (APLC, Soummer 2004) which is
the most commonly used coronagraphic device to reach high contrast at small IWA.
The APLC is an hybrid coronagraph combining a Lyot coronagraph and a pupil plane
apodizer, which helps further reduce the on-axis light intensity. Other designs such
as apodized vortex coronagraphs are currently under development and foreseen for
current and future ground-based instruments. A detailed review of most of these
coronagraphic technologies may be found in Mawet et al. (2012).

High contrast imaging instruments are often equipped with multiple coronagraphic
devices and multiple masks to cover a wide range of observational constraints, as well as
a broader range of wavelengths. These coronagraphic devices are often coupled with
a tip-tilt sensor to center the source and limit instrumental misalignments, further
reducing the IWA. The VLT/SPHERE instrument is equipped with a classical Lyot
coronagraph, a four-quadrant phase mask and an APLC, along with a differential
tip-tilt sensor (DTTS, Baudoz et al. 2010).

1.3.3 Speckle noise

In spite of the AO system and the coronagraph, some stellar light always makes its way
to the detector, in part due to residual aberrations coming from non corrected atmo-
spheric turbulences, or to instrumental aberrations appearing after the beam splitter
(also called non-common path aberrations, NCPA, see Figure 1.6), which can hinder
the detectability of faint exoplanets. Part of these aberrations can be corrected via
careful calibration. However, some of them are time dependent due to mechanical
stress evolution, thermal variations during the observation, unfiltered vibrations, or
imperfections in the moving parts of the instrument. These time-dependent aberra-
tions lead to the appearance of quasi-static speckles, which are difficult to remove
in post-processing because their variability is driven by the slow variation of the in-

9 The IWA is the smallest angle at which the required contrast is achieved with a throughput
higher than 0.5.
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Figure 1.9: Graphical representation of the angular differential imaging observing
strategy. Credits: Christian Thalmann.

strument mechanical characteristics on timescales of several minutes to several hours
(Milli et al. 2016a; Goebel et al. 2018). Different image processing techniques, along
with observing strategies have been proposed in the last decade to deal with these
quasi-static speckles, whose shape and intensity (about 10−4 raw contrast to the star)
are similar to potential companions.

1.4 Observing strategies

We start by considering the different observing strategies, i.e., how the data is ac-
quired at the instrument level, before considering in the next section the various data
processing techniques that have been built upon these observing strategies. All three
observing strategies presented in this section refer to ’differential imaging’, which relies
on an observing sequence of a single target or multiple targets to define a model of
stellar residuals and speckle noise, which are then removed from the observations. The
modelling of the speckle field and its subtraction from the science images represents
the corner stone of most post-processing techniques. The different observing strategies
are designed to enable the construction of a model for the speckle field, affecting the
planetary signal as little as possible during the subtraction process.

1.4.1 Angular differential imaging

Angular differential imaging (ADI, Liu 2004; Marois et al. 2006) is nowadays the
most commonly used observing strategy to mitigate quasi-static speckles in HCI. This
observing strategy consists in acquiring images in pupil-stabilised mode, i.e., with the
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instrument derotator keeping the pupil orientation fixed with respect to the detector.
The aim of this approach is to keep the quasi-static speckles fixed in the focal plane,
so that they can easily be identified with respect to astrophysical objects rotating
around the star along with the Earth rotation. Indeed, the instrumental aberrations
and diffraction effects causing quasi-static speckles are mainly locked to the pupil.
By using this angular diversity, a model of the speckle field, often referred to as the
reference point spread function (reference PSF), may be built from the data. This
reference PSF is then subtracted from the set of ADI images. The resulting subtracted
frames are eventually aligned and combined to detect the signal of potential exoplanets
or disks, which should not have suffered too much from the reference PSF subtraction,
while the residual noise should average out incoherently. The main limitations of
the ADI observing strategy are the significant observing time required to obtain a
sufficient angular diversity (usually around one hour), as well as the planetary signal
self-subtraction observed at close separation (see Chapter 3 for a discussion about
self-subtraction and mitigation procedures). The main assumption behind the ADI
approach is that speckles remain mostly static within the observing sequence. However,
this assumption holds only partially, as small temporal changes in the wavefront quality
due mainly to NCPA, can affect the speckle field modelling. ADI also has a limited
sky coverage to achieve the required total parallactic angle rotation for an acceptable
observing time.

1.4.2 Spectral differential imaging

Spectral differential imaging (SDI) seeks to decouple the planetary signal from the
speckle field, based on their wavelength dependence rather than azimuthal rotation
(ADI), overcoming one of the shortcomings of ADI by considering observations taken
simultaneously. The initial concept was first proposed by Racine et al. (1999), who
relied on two images taken in adjacent bands. Their idea was to select carefully the
two wavelengths to insure the presence of the exoplanet in one image but limit its
brightness in the other (the methane absorption line is commonly used, e.g. Lenzen
et al. 2004; Marois et al. 2005). This allows to effectively suppress the speckle noise
but avoid any self-cancelling of the planetary signal during the subtraction.

A more advanced multi-spectral SDI approach (requiring integral field spectro-
graphs) proposed by Sparks & Ford (2002) relies on the fact that, at first order, the
speckles expand radially in the field of view as the wavelength increases, while po-
tential planetary signals remain fixed (although their PSF broadens slightly). Indeed,
since speckles originate from diffraction of on-axis residual light from the host star,
their spatial distribution scales with wavelength as for any diffraction effect, while
their shape remains constant (in the absence of chromatic aberrations). It is therefore
possible to rescale the images taken at different wavelengths to a common reference



1.5. DATA PROCESSING TECHNIQUES 23

wavelength, using the linear scaling of diffraction with wavelength from which we de-
rive the scale S(λ) = λref/λ. The speckles being aligned in the rescaled images, a
model of the speckle field can be created and subtracted from them, before scaling
back and mean-combining the resulting images. Because of the radial shift of the com-
panion during the rescaling process, the self-subtraction of the planetary signal should
be limited. SDI is often used along ADI to enjoy a larger diversity for the computation
of the speckle field model (see among others, Zurlo et al. 2016; Flasseur et al. 2020;
Kiefer et al. 2021).

1.4.3 Reference-star differential imaging

Reference-star differential imaging (RDI, Lafrenière et al. 2009; Soummer et al. 2011;
Ruane et al. 2019) is an alternative approach to ADI and SDI that relies on observations
of different stars to build a model of the speckle field. The speckle field model is then
subtracted from science images after adapting its brightness. RDI tries to alleviate
one of the main shortcomings of both ADI and SDI observing strategies, i.e. the
over-subtraction observed especially at close separation (due lower parallactic angle
rotation for ADI, and the less effective rescaling for the SDI).

However, the RDI observing strategy comes also with important constraints. As
it relies on different stars to build the speckle field model, a high stability of the
instrument is needed. RDI is therefore preferentially used with the Hubble space
telescope (e.g., Golimowski et al. 2006; Schneider et al. 2008) which avoids the time-
variable aberrations due to uncorrected atmospheric turbulences. It also requires a
procedure to precisely determine the flux scaling factor used to match the magnitude
of the stars and avoid the apparition of artefacts.

1.5 Data processing techniques

In the last decade, the field of HCI has been very active and a large number of data
processing techniques have been developed to identify and characterise planetary can-
didates. Data processing represents one of the corner stones of high contrast imaging,
along with instrumentation and observing strategies. The most common approach
makes use of both angular differential imaging (ADI, Marois et al. 2006) observing
strategy and reference PSF subtraction.

Data processing of HCI data sets is a multi-step procedure, which can be divided
between pre-processing and post-processing of the FITS files produced by the tele-
scope10. The pre-processing step involves the calibration of the images, with dark
current subtraction, flat field correction (to treat possible non-uniformity inside the

10FITS files are the IAU standard for storing astronomical data (https://fits.gsfc.nasa.gov/iaufwg)
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Figure 1.10: Representation of the typical data processing pipeline for PSF-subtraction
techniques, from the set of raw images coming from the telescope until the final residual
image.

field of view), subtraction of the thermal background radiation of the sky (important
when the observations are done in the thermal infrared), and bad pixels removal (dead
or hot pixels). Bad frames caused by star/coronagraph misalignments, bad observing
conditions or AO correction errors are then identified by a correlation analysis of the
images or by a pixel statistics analysis for a subregion of the field of view, and removed
from the data set. The last pre-processing step is the recentering of all images to avoid
any misalignment of the central star that could affect reference PSF modelling during
the post-processing steps. This step is not mandatory for last generation instruments,
such as VLT/SPHERE, which has real-time coronagraphic centering capabilities.

The post-processing of the pre-processed FITS files then aims to maximise the
planetary signal to noise ratio (SNR), by tackling the noise resulting from NCPA, AO
correction errors or residual diffracted light from the coronagraph. Post-processing
techniques can be divided in three main categories: (i) speckle subtraction techniques,
(ii) maximum likelihood techniques, and (iii) supervised machine learning techniques.
We present here a non-exhaustive list of HCI post-processing techniques to illustrate
these different approaches.

1.5.1 PSF-subtraction techniques

Speckle subtraction techniques, also called PSF-subtraction techniques, are the most
commonly used approach in the HCI community, and follow the steps outlined in
Figure 1.10: estimation of a model of the speckle field (also called reference PSF),
subtraction of this model from each science image, de-rotation (ADI) and/or rescal-
ing (SDI) of the PSF-subtracted images, and finally combination of these images to
generate a so-called residual image. Several methods using this framework have been
proposed to maximize the noise reduction by optimizing the estimation of the reference
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PSF.

Median subtraction

The most simple approach to model the speckle field is the median combination of the
entire set of calibrated science images. This simple approach was proposed along with
the original ADI observing strategy by Marois et al. (2006). Because of its rotation in
the set of science images, the planetary signal affects only marginally the estimation
of the median. The median of the science images provides therefore a good first
approximate of the speckle field. After the subtraction of the median, the residual
noise is centred around zero, such that when all the PSF-subtracted images are de-
rotated and combined, the residual noise should average out (the noise being mainly
Gaussian from the central limit theorem, see for more details Marois et al. 2008a).
More advanced versions of this approach involve a field rotation criterion to reduce
self-subtraction of the planetary signal (Smart-ADI, Marois et al. (2006)) or the use of
the centro-symmetry of the speckles to form the PSF model (IRS, Ren et al. (2012)).
Despite these improvements, median combination does not perform well in the close
vicinity of the host star, as self-subtraction is strong at these close separations and
residual speckle noise remains strong even after subtraction. More advanced PSF-
subtraction techniques have been proposed to mitigate these drawbacks by creating
a model of the speckle field for each individual science image (see Figure 1.11 for an
illustration of the main steps of these PSF subtraction techniques).

Figure 1.11: Graphical representation of the main steps of the post-processing frame-
work of PSF-subtraction techniques, with from left to right, the calibrated science
images (A), the frame-wise reference PSF (B), the residual images (C), the derotated
residual images and final residual map. Adapted from C. Gomez Gonzalez (2018).



26 CHAPTER 1. INTRODUCTION

Locally Optimised Combination of Images (LOCI)

The locally optimized combination of images (LOCI, Lafreniere et al. 2007b) derives
directly from the median combination approach as it also considers a combination of
images to generate a model of the speckle field. However, unlike the median combi-
nation approach, LOCI computes a frame-wise reference PSF based on a linear com-
bination of a set of reference images (a subset of the science images selected based on
a field rotation criterion). Indeed, the correlation from one image to another should
not be equivalent for every pair of frames and some frames should be favoured when
estimating the frame-wise reference PSF. On top of being frame-wise, this approach
treats independently sub-regions of the field of view to take into account local spatial
correlation of the speckle noise. The coefficients of the linear combination are com-
puted via a least square minimization of the residuals after subtraction of the speckle
field. A region larger than the one for which the reference PSF is computed, is used for
the least square minimization. This allows to limit the potential impact of a planetary
signal during the coefficients estimation. Different flavour of LOCI have been pro-
posed, such as damped LOCI (D-LOCI, Pueyo et al. 2012), template LOCI (T-LOCI,
Marois et al. 2013), or adaptive LOCI (A-LOCI, Currie et al. 2012) among others.
For a detailed presentation of the original approach, see Lafreniere et al. (2007b) or
Section 3.2.2.

Principal Component Analysis (PCA)

PCA-based techniques (Soummer et al. 2012; Amara & Quanz 2012) rely on the de-
composition of a set of reference images into their eigen-modes to construct the refer-
ence PSF. More precisely, the frame-wise reference PSF is defined as the projection of
the considered image onto a lower-dimensional orthogonal basis (the principal compo-
nents) computed from the reference images via PCA. The principal components are
defined by a truncation of an orthogonal basis obtained using either eigen decompo-
sition, a singular value decomposition (SVD), or a Karhunen-Loève transformation
(KLIP, Soummer et al. 2012). The first few modes in the basis account for the larger
fraction of the information content of the reference frames. The movement of a planet,
when relying on ADI or SDI observing strategies, makes it a highly variable feature,
observed only in the higher order modes. The main parameter of PCA-based PSF sub-
traction techniques is therefore the truncation order, i.e. the number of eigen modes
kept for the reference PSF computation. The definition of the truncation order results
from a trade-off between the quality of the speckle field representation (the amount
of residuals) and the self-subtraction of the planetary signal contained in the high or-
der modes. In the case of the RDI observing strategy, the principal components are
learned from a reference star and used as basis for the projection of the science images.

As shown in Amara & Quanz (2012), full-frame PCA brings improvements both in



1.5. DATA PROCESSING TECHNIQUES 27

Figure 1.12: Representation of the different components of the local low-rank plus
sparse plus Gaussian decomposition (Gonzalez et al. 2016).

terms of signal to noise ratio (SNR) and detectability of companions at close separa-
tions compared to LOCI. A more advanced annulus-wise PCA algorithm introduced
by Absil et al. (2013), allows to treat more locally the speckle noise, further improving
the SNR.

Non-negative Matrix Factorization (NMF)

The non-negative matrix factorization (NMF) algorithm shares the same low-rank
matrix approximation approach as PCA. However, NMF relies on an additional non-
negativity constraint on both the input matrix (cube of images) and the projection
matrices. NMF aims to define a k-dimensional approximation of the input matrix in
terms of non-negative factors W and H via the minimization of their Frobenius norm
(Lee & Seung 1999). Ren et al. (2018) demonstrated its interest when dealing with
extended structures such as debris disks.

LLSG

The Local Low-rank plus Sparse plus Gaussian-noise decomposition (LLSG, Gonzalez
et al. 2016) derives again from the same low-rank matrix approximation family as
PCA and NMF. LLSG applies a decomposition of the set of science images into low-
rank, sparse and Gaussian components, adapting to HCI the approach proposed by
Bouwmans & Zahzah (2014) in the context of computer vision. LLSG relies on the
Go Decomposition robust PCA algorithm developed by Zhou & Tao (2011). The use
of robust PCA decomposition, which considers multiple subspaces, enhances residual
speckle noise suppression by considering an additional Gaussian components. The
sparse term then mainly contains the planetary signal as demonstrated experimentally
by Gonzalez et al. (2016). The LLSG algorithm improves the detectability of faint
planets especially at close separations compared to full-frame PCA, but it is sensitive
to outliers that can appear in the sparse term along with planetary signals.
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1.5.2 Maximum likelihood techniques

We have so far presented different approaches to model the speckle field and subtract
it from the set of science images to eventually unveil planetary signals. These PSF-
subtraction techniques did not account for potential distortion of the planetary signal
due to the subtraction of the speckle field model. The subtraction of the reference PSF
or the decomposition in multiple components leads indeed to a self-subtraction of the
planetary signal. Another family of post-processing algorithms replace or complement
the reference PSF subtraction by a forward modelling of the planetary companion
along with a maximum likelihood based estimation of the planetary flux. These tech-
niques model and track the planetary signal based on the knowledge of the speckle
noise statistics, the expected planetary movement (depending on the observing strat-
egy), and the impact of the speckle field modelling. Based on this knowledge and on
assumptions about the speckle noise distribution, these techniques rely on a maximum
likelihood approach to provide an estimated contrast for every position within the field
of view, alongside a SNR-based detection map.

ANDROMEDA

Figure 1.13: Planet signatures generated after performing the ADI pairwise subtraction
(Cantalloube et al. 2015).

The ANgular DiffeRential OptiMal Exoplanet Detection Algorithm (ANDROMEDA,
Mugnier et al. 2009; Cantalloube et al. 2015) relies on pairwise subtraction of adjacent
images to reduce speckle noise, making the assumption that the speckle noise in adja-
cent images is highly correlated. The pairwise frame differencing ensures a sufficient
stability of the speckle noise to allow an effective noise suppression, the autocorrelation
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of images in HCI being often very high on short timescales 11. It also allows to create a
very specific signature for the planetary signal as can be seen from Figure 1.13. Based
on the known signature of the planetary signal (forward model) after pairwise subtrac-
tion, ANDROMEDA uses a maximum likelihood approach to compute an estimated
planetary flux for every position within the field of view. The residual noise after
subtraction is assumed to follow Gaussian statistics, allowing the use of an analytical
expression for the planetary flux estimation.

KLIP FMMF

One of the main drawbacks of the PCA-based PSF-subtraction techniques is the par-
tial suppression of the planetary signal via self-subtraction (and over-subtraction, see
Section 3.2 for more information). The KLIP forward-model matched filter approach
developed by Pueyo (2016) and further improved by Ruffio et al. (2017), derives from
the Karhunen-Loève transformation an analytical expression to compute a forward-
modeled planetary template for the KLIP PSF-subtraction technique (Soummer et al.
2012). The forward-modeled planetary template incorporates, to the first order, the
perturbations of the PSF due to the subtraction of the speckle field model estimated
with KLIP (self-subtraction and over-subtraction). A Gaussian maximum likelihood
approach similar to ANDROMEDA is then used alongside the forward-modeled plan-
etary template to compute the flux at any point in the field of view.

PACO

The exoplanet detection algorithm based on PAtch COvariances (PACO, Flasseur
et al. 2018) differs from the other techniques by the fact that it directly tries to
model the speckle noise without any reference PSF-subtraction, avoiding self and over-
subtraction of the planetary signal at short separations. Based on the set of science
images, the PACO algorithm tries to infer both local spatial correlations and speckle
noise statistics via a nonstationary multi-variate Gaussian model. In the case of the
ADI observing strategy, it considers for each point within the field of view and each
frame, the set of patches centred on the considered pixel in all the other science images
to infer the speckle noise statistical properties. It then relies on a maximum likelihood
estimator based on a multi-variate Gaussian model to compute the estimated flux using
the off-axis PSF as a planetary template. The existence of a planetary candidate is
then infered at a predefined level via a generalized likelihood ratio test.

11This pairwise subtraction can be seen as a PSF-subtraction technique using the second image as
a reference PSF for the first one



30 CHAPTER 1. INTRODUCTION

TRAP

TRAP (Samland et al. 2017) tracks the planetary signal along the temporal axis and
models locally the speckle field by considering specific areas that share similar noise
statistics. A temporal model of the behaviour of the speckle pattern is estimated for
each pixel, by considering a set of carefully chosen pixels that should share similar noise
statistical properties but do not include the planetary signal. A model of transiting
exoplanet is then fitted alongside the obtained temporal model describing the speckle
noise to best fit the temporal evolution of the pixel intensity and determine the presence
or absence of planetary signal. The TRAP algorithm aims to improve the reachable
contrast at small angular separations (<3λ/D) compared to models based on spatial
correlations between de-rotated images.

Half-sibling regression

Gebhard et al. (2022) proposed recently an image processing technique relying also on
an inverse problem approach but without using likelihood maximization. Similarly to
TRAP (Samland et al. 2017), the speckle noise associated to the times series of a given
pixel is modelled based on a set of pixels situated in specific areas that should ensure
some mutual information. Two regions of interest are considered, a circular region
symmetrically across the origin from the studied pixel and a region around the pixel
itself, but not causally linked to it. Half-sibling regression is then used to learn a model
of the pixel speckle noise, based on the information contained in these two regions,
and predict the systematic noise associated to the selected pixel. In order to avoid
overfitting and self-subtraction, a model of the planet or a mask is applied on the time
series. The position of the planet being not known, different models are estimated with
the planet signal/mask positioned at different time step. These different noise models
are then used to construct an hypothesis map, by estimating for each pixel the most
probable temporal position for a planetary signal. A detection map is finally computed
by confronting this hypothesis map with every possible planetary trajectories.

1.5.3 Supervised machine learning techniques

Another very promising research avenue for HCI consists in reformulating the exo-
planet detection task as a supervised binary classification problem. This approach,
which relies on machine learning techniques such as decision trees or deep neural
networks, was first proposed by Gomez Gonzalez et al. (2018) in the context of di-
rect imaging, with the Supervised exOplanet detection via Direct Imaging with deep
Neural Networks (SODINN) algorithm. The main difficulty associated to the use of
machine learning techniques pertains to the large number of labelled samples required
for training. This difficulty is exacerbated with direct imaging, by the large imbal-
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ance between positive and negative classes (resp. planets and speckle noise), due to
the lack of confirmed exoplanet detections. Two different approaches have been pro-
posed to generate the negative class, either by relying on standard machine learning
data-augmentation techniques (Gomez Gonzalez et al. 2018) or by using a Generative
Adversarial Network (Yip et al. 2020). This latter approach should help removing
potential undetected exoplanets from the samples of speckle noises. Regarding the
positive class, the samples are obtained by injecting, in negative class samples, syn-
thetic exoplanets at different SNR levels, using an off-axis PSF of the host star as
planetary model. The approaches proposed by Gomez Gonzalez et al. (2018) and Yip
et al. (2020) apply then a neural network based on convolutional layers for pattern
recognition to finally generate a detection map.

SODINN

The deep neural network in SODINN is fed by Multi-level Low-rank Approximation
Residual (MLAR) samples estimated at every position within the field of view. The
3D MLAR samples are square residual patch sequences with a size of two FWHM,
obtained by subtracting from ADI sequences reference PSFs computed at different
ranks via PCA. The idea behind this multi-rank estimation is that a planetary signal
is expected to show up consistently at different ranks, whereas residual noise patterns
evolve with the number of principal components.

A multilevel information aggregation scheme is then applied to reduce drastically
the information content of the 3D MLAR cubes. The proposed two-level aggregation
scheme is composed of one layer of convolutional Long-Short Term Memory networks
(LSTM, Shi et al. 2015) and a pooling layer. The resulting aggregated information is
then sent to a fully connected layer featuring 128 hidden units followed by a rectified
linear unit (Nair & Hinton 2010) activation. A sigmoid function is eventually used
as output layer to allow a binary classification at a given threshold for each pixel
(i.e., each MLAR sequence), providing the final detection map. The neural network
is trained by considering two classes, one regrouping MLAR samples in which fake
planetary signals have been injected, and one regrouping MLAR samples of speckle
noise. The training and validation of the neural network requiring a large number of
samples, standard machine learning data-augmentation techniques are used to increase
the number of samples in the two classes.

Generative Adversarial Network and Convolutional Neural Network

Yip et al. (2020) take advantage of the presence of speckle noise in all direct images
to train a Deep Convolutional Generative Adversarial Network (DCGAN) to learn a
model of the speckle pattern and avoid possible contamination by undiscovered exo-
planets, which could be wrongfully included in the negative class by standard data-
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augmentation techniques. Multiple Convolutional Neural Network (CNN) classifiers
are then trained and tested on negative and positive classes generated by the DCGAN
based on images from the Hubble Space Telescope (HST) instrument NICMOS. Syn-
thetic exoplanets are injected across a wide range of SNRs to test the ability of the
CNNS to uncover planetary signal. The tested CNN classifiers exhibit a good per-
formance in terms of Precision and Recall map and allow to re-confirm bright source
detections in HST images.

1.6 Scope and outline of the dissertation

In this introduction, we have highlighted the many advantages of direct imaging and its
complementarity with indirect methods, both in terms of retrieved physical properties
and exoplanet population. With the future 20-40m class ground-based telescopes (e.g.
ELT, TMT, or GMT) and the JWST space telescope, researchers will soon have access
to an entire new population of medium to small-size planets via direct imaging. These
bright perspectives, as well as the technological revolution of the past decades helped by
facilities such as the VLT or the Keck observatory, contributed to the growing attention
given to HCI by the scientific community. The various developments in adaptive optics
systems, coronagraphic devices and advanced data processing techniques covered in
this introduction, allowed to reach in recent years unprecedented contrast, below 10−6.

This PhD thesis builds upon these recent advances, focusing on the development
of new data processing techniques to make the most of current hardware technologies
and prepare for the future. More specifically this thesis is devoted to the development
of new post-processing techniques to unveil fainter planetary signals from both ADI
and SDI calibrated sequences, and to retrieve their observed properties (position and
flux).

The existence of a large number of different HCI post-processing techniques (as
seen in Section 1.5) with their own peculiarities motivated my initial search for an
algorithm that could take advantage of their strengths, while mitigating at least partly
their drawbacks. I started with the simple observation that most PSF-subtraction
techniques include a common final step to compute detection maps (SNR map) based
on their PSF-subtracted images, relying mainly on the approach of Mawet et al. (2014).
The main idea was therefore to start from the cubes of residuals generated by different
post-processing techniques, and replace the estimation of the SNR map by a new
aggregation scheme. Each PSF-subtraction technique treating differently the speckle
field, their optimal combination should boost the strength of planetary signals, and
further reduce the residual speckle noise.

Other approaches have been proposed to replace the SNR map estimation, such
as the weighted angular differential imaging of Bottom et al. (2017), or the STIM
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map of Pairet et al. (2019), which accounts for the non-Gaussianity of the residual
speckle noise when computing the SNR map. However, these approaches are applied
on a single PSF-subtraction technique at a time and do not consider the potential of
combining several residuals map to enhance the achievable contrast.

The second chapter of this thesis explores the possibility of combining the in-
formation of several cubes of residuals (before their mean-combination, see Figure
1.10), using a Markov regime-switching model to generate a single probability de-
tection map. Based on concatenated series of pixel-wise time sequences, the model
estimates annulus-wise the probability associated with two regimes, the first one ac-
counting for the residual noise and the second one for the planetary signal in addition
to the residual noise. This first version of the so-called RSM map algorithm relies
on three PSF-subtraction techniques: Annular PCA, LLSG and NMF. The perfor-
mance of the algorithm is tested on data sets from two instruments, VLT/NACO and
VLT/SPHERE, and the results indicate an overall better performance in the receiver
operating characteristic (ROC) space when compared with standard SNR maps.

The third chapter is devoted to several improvements of the RSM map framework,
first by considering, forward-modelled PSFs to account for the distortions resulting
from reference PSF subtraction. Two forward-model versions of the RSM map al-
gorithm are implemented, one based on the LOCI and the other on the KLIP PSF-
subtraction techniques. We also investigate the added value of a forward-backward
approach for the probability estimation. The forward-backward approach leads to a
clear improvement of the astrometry precision at the cost of a reduced performance
in terms of faint planetary signal detection. A new framework to generate contrast
curves based on probability maps is also proposed in this third chapter.

Considering the improvements made in the third chapter, seven different PSF-
subtraction techniques, including two forward-model versions, can be used within the
RSM framework. As a result, the selection of the optimal parameters for these PSF-
subtraction techniques as well as for the RSMmap is not straightforward, time consum-
ing, and can be biased by assumptions made on the underlying data set. We propose
in chapter four, an unsupervised optimization framework for both the PSF-subtraction
techniques and the RSM map algorithm, which allows a data-driven estimation of the
optimal parameters. The optimisation procedure, called auto-RSM consists of three
main steps, (i) the definition of the optimal set of parameters for the PSF-subtraction
techniques using contrast as performance metrics, (ii) the optimisation of the RSM
algorithm, and (iii) the selection of the optimal set of PSF-subtraction techniques and
ADI sequences used to generate the final RSM probability map. The results obtained
by applying this optimization framework on the data sets of the exoplanet imaging
data challenge (EIDC, Cantalloube et al. 2020b) demonstrate clearly the interest of
the proposed optimisation procedure, with better performance metrics compared to
the earlier version of RSM, as well as to other HCI data processing techniques.
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Chapter two to four allowed the development of a robust detection algorithm, un-
supervised to a large extent thanks to the auto-RSM framework, and which has the
ability of characterizing planetary candidates. In chapter five, we apply the auto-RSM
framework to the SHARDDS survey to bring an additional piece to the exoplanet puz-
zle, by contributing to the characterisation of planetary population via the estimation
of occurrence rate maps. The SHARDDS survey gathers observing sequences generated
with the VLT/SPHERE insrument for 55 main-sequence stars within 100 pc, known
to host a high-infrared-excess debris disk. The definition of constraints for planet pop-
ulation in terms of physical properties such as mass or semi-major axis is necessary to
better understand planet formation and evolution, and try to develop a global forma-
tion model. Alongside the estimation of detection limits, a planetary characterisation
algorithm based on the auto-RSM framework is developed to determine more precisely
the astrometric and photometric properties of planetary candidates. This last chapter
is also an opportunity to better characterise the auto-RSM framework by determining
the degree of similarity existing between the optimal parametrisations obtained for
different observing sequences. This should help us assess the necessity to consider
multiple optimal parametrisations for large surveys and the potential impact in terms
of reachable contrast. Finally, Chapter six summarises and concludes on the work
done, providing as well future perspectives for potential improvements of the RSM
framework and its future use in other surveys.

Chapter two to five are partial reproductions of articles that have been published
in the Astronomy and Astrophysics journal (see appendix E for a the articles abstracts
and references). Their introduction and conclusion have been modified to allow for
a smooth transition between the different chapters. Redundant definitions have been
removed and more detailed descriptions have been included, especially in chapter five.
The mathematical notation has also been modified to ensure its coherence throughout
the thesis manuscript.



Chapter 2

RSM detection map for direct
exoplanet detection in ADI sequences

2.1 Introduction

In this first chapter, we propose a novel approach dealing with the last step of the
reference PSF-subtraction based post-processing framework (see Figure 1.10). Instead
of averaging the set of de-rotated images obtained after the reference PSF subtraction
and compute an S/N map, we propose to consider the entire set of residual frames
and rely on a regime-switching algorithm to classify the pixels into two categories,
regrouping either the planetary signals or the quasi-static speckles. The probability
associated with the planetary regime then allows the creation of a detection map. The
algorithm derives from the Markov regime-switching model first proposed by Hamil-
ton (1988), which is widely applied to analyse economic and financial time series. The
aim of our new detection algorithm is to treat more effectively the residual noise still
observed in the cube of residuals provided by ADI methods, increasing our ability
to disentangle faint signals from bright speckles. The flexibility of the algorithm al-
lows the use of ADI cubes treated with most post-processing methods. The cubes of
residuals obtained from the different post-processing methods may be used separately
but also together, improving further the sensitivity of the detection algorithm to faint
companions.

This chapter is organized as follows. In Section 2.2, we describe the new regime-
switching model for the detection of exoplanets. Section 2.3 presents in detail the
model estimation and the definition of the different parameters. The ability of our
model to disentangle faint planetary signals from bright speckles is tested in Section 2.4,
by injecting fake companions into two different data sets and by comparing the results
with state-of-the-art ADI-based post-processing techniques, using receiver operating
curves.

35
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2.2 Regime-switching model

The proposed detection algorithm derives from the Markov-switching regressions in-
troduced by Goldfeld & Quandt (1973) and Cosslett & Lee (1985), further improved
by Hamilton (1988, 1994), who developed an iterative inference algorithm to estimate
the model parameters, namely the Markov Regime-Switching Model (RSM). This ap-
proach is one of the most popular non-linear time series models in the econometric
literature and many variants have been proposed. The aim of the RSM is to take into
account possible dramatic changes in the behaviour of time series such as the transi-
tion between economic expansion and contraction in the case of financial time series.
The regime-switching model relies on several linear equations to describe the different
states in which a system described by a time series can be. The probability of being in
a given state depends on both a pre-defined transition probability and on the ability
of the different equations to describe properly the evolution of the time series. One of
the model outcomes is the probability associated with the different regimes. The RSM
provides for each element of the time series, the probability of being in the different
regimes. Our detection map derives directly from these probabilities.

In the case of our RSM detection map, the time series is built from the de-rotated
cube of residuals obtained after the reference PSF subtraction and de-rotation steps
of the ADI sequence post-processing. Several cubes of residuals treated with different
ADI PSF subtraction techniques may be stacked in the time axis to provide additional
information and increase the ability of the model to detect faint companions. To allow
for the detection of planetary signals, we rely on two different regimes to model the
pixels’ intensity in the de-rotated cube of residuals: a regime in which the residuals
time series is described by speckle noise and a second regime with speckle noise plus
a planetary signal. The planetary signal may be modelled as the measured off-axis
PSF1 or as a forward model of the off-axis PSF after the subtraction. We consider in
this chapter the measured off-axis PSF for simplicity, although the algorithm may be
easily adapted to a forward modelled off-axis PSF, as demonstrated in chapter 3.

The regime-switching model we propose here is a modified version of the original
Markov-switching model, in which only one parameter is determined via a maximum
log-likelihood estimation. We rely on the characteristics of the data set to define the
other model parameters. Having presented the basic principles behind our regime
switching model, we may now describe the detailed procedure for our RSM detection
map computation.

1For coronagraphic imaging, an off-axis non-coronagraphic image of the target is routinely ac-
quired before and after the observing sequence. This PSF reference is used to calibrate the flux
of the star and provide a model of the planetary signal for forward model-based algorithm. For
non-coronagraphic imaging, this reference PSF is the unsaturated exposure.
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Figure 2.1: The residuals time series for a given annulus a is obtained by stacking the
pixels values of the considered annulus along the time axis.

2.2.1 Building the time series

The first step of our estimation procedure is to build the time series that the regime
switching model will try to model. As the noise properties are expected to evolve
with radial distance, the regime switching model is applied annulus-wise. For each
annulus a, a specific residuals time series Xia is built by vectorizing that part of
the cube of residuals, indexed by ia the flattened pixel number. The length of the
time series Xia depends on the number of pixels in the considered annulus La but
also on the number of frames in the original de-rotated cube of residuals T . We in-
deed take advantage of all the individual frames contained in the de-rotated cube
of residuals instead of collapsing the cube as it is usually done when estimating an
S/N map. As can be seen from Figure 2.1, the time series Xia is built by con-
catenating the set of T observations for every pixel contained in the annulus a, i.e.
Xia = {X1,1, X2,1, . . . , XT,1, X1,2, . . . , XT,2, . . . , XT,La} with ia ∈ {1, . . . , T × La}. The
first subscript of X indicates the selected frame in the de-rotated cube of residuals,
while the second one provides the position of the considered pixel in the selected an-
nulus a. Both subscripts are replaced by a single index ia to form the residuals time
series that feeds the regime-switching model.

We consider first the time axis and then the spatial axis in order to stay, during
the iterative process used to build the detection map, in the planetary regime during
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Figure 2.2: The time series Xia is created by considering matrices of dimension θ × θ
centred on every Xia in the cube of residuals. The figure shows the residuals matrices
obtained from the first frame of the cube of residuals for the last three pixels of the
annulus with θ equal to 3.

T steps instead of switching T times between both regimes when a planetary signal is
present in a given annulus. Indeed, when travelling through the residuals time series,
the planetary signal observed in a given pixel will act on the regime-switching model
during T steps, allowing the probability to be in the planetary regime to build up
thanks to the short term memory of the model. This helps to enhance the sensitivity
of the algorithm to faint signal as it allows the probability to built up for a longer
period.

2.2.2 Model description

The second step of the RSM detection map computation consists in defining the set of
equations describing the residuals time series for the two considered regimes. In the
first regime, the time series Xia is described by a residual noise following the statistics
of the quasi-static speckle residuals contained in the annulus. In the second regime, the
time series Xia is described by both the residual noise and the planetary signal model
(off-axis PSF). The PSF being two-dimensional, we consider not only one pixel at a
time but a batch of pixels in a square of size θ equal to the full width at half maximum
(FWHM) of the PSF. In order to define the probability of observing a planetary signal
at a given pixel xia , we therefore need to consider a number of neighbouring pixels
depending on the value of θ. As depicted in Figure 2.2, we define xia , the residuals
matrices of dimension θ× θ centred on xia , which will replace the time series Xia used
so far. Larger values of θ may be considered in the case of a forward modelled off-axis
PSF to take into account the signal self-subtraction, which, for instance, could create
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negative wings in the azimuthal direction. Our regime switching model is therefore
characterized by the following equations:

xia = µ+ βFiam+ εs,ia =

µ+ ε0,ia if Sia = 0

µ+ βm+ ε1,ia if Sia = 1
(2.1)

where β provides the strength of the planetary signal, µ the mean of the quasi-static
speckle residuals and εs,ia their time and space varying part characterized by the quasi-
static speckle residuals statistics (see Table A.1 for a summary of all the variables used
in the regime switching model). m is the model of the planetary signal, which is the
normalized off-axis PSF in the FWHM region.

As can be seen from Eq. 2.1, there exist two possible states Sia , which are reflected
in the value taken by the parameter Fia , with Fia = 1 in the case of a planetary signal
detection and Fia = 0 in the other case. Sia is not directly observable, but we see its
effect on the behaviour of xia via the realization Fia .

The parameter Fia is a realization of a two-states Markov chain allowing a short
term memory. This implies that we only consider the state Sia−1 in which the system
was at index ia − 1 to define the probability of being in a given state Sia for the
current index ia. The fact that the realization Fia is a probabilistic outcome implies
that we cannot consider being in only one of the two regimes. We have instead a given
probability of being in each of them. Our regime switching model tries to describe the
behaviour of the time series xia via a probability weighted sum of the values generated
by the equation describing each regime.

2.2.3 Definition of the model probabilities

The probability of xia being in a state or regime Sia = s is characterized by the set of
parameters of Eq. 2.1, i.e. m the planetary signal model, and µ and β, the statistical
properties of the residual noise εs,ia . We make here the simplifying assumption that
the quasi-static speckles residuals εs,ia may be characterized to a good level of precision
by their mean µ and variance σ. We write the probability of observing xia in the state
s at step ia as follows:

ξs,ia = P(Sia = s|Ωia ,m, µ, β, σ), (2.2)

where m, µ, β, σ and Ωia = {xia ,xia−1} provide the parameters of the model.
This probability ξs,ia is the key element of our RSM detection map as the map

is constructed based on the value taken by ξ1,ia for every pixel of every annulus.
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Indeed, ξ1,ia provides a detection probability for each pixel and each frame of the de-
rotated cube of residuals. The final RSM detection map is created by averaging these
probability along the time axis of the cube of residuals.

In the case of a two-state Markov chain, the computation of ξs,ia necessitates the
estimation of (i) the probability ξq,ia−1 of observing the system in the state q at step
ia− 1, (ii) the transition probability pq,s from state q to state s and (iii) the likelihood
of observing xia in state s at step ia, which we note ηs,ia . The probability of being in
a state s at index ia can be computed as the normalized likelihood of being in state s
at index ia multiplied by the probability of having been in either of the two states at
index ia − 1 and by the transition probability pq,s, which accounts for the short term
memory of the algorithm. The expression of the state probability ξs,ia is therefore
given by the following expression (Hamilton 1988):

ξs,ia =
1∑
q=0

ηs,iapq,s ξq,ia−1
f(xia|Ωia−1,m, µ, β, σ)

, (2.3)

with the sum f of conditional densities for index ia given by:

f(xia |Ωia−1,m, µ, β, σ) =
1∑
q=0

1∑
s=0

ηs,iapq,s ξq,ia−1, (2.4)

and the transition probabilities given by:

pq,s = P(Sia = s | Sia−1 = q), (2.5)

with q, s ∈ {0, 1}. We consider the two possible states describing the system at index
ia − 1 via the sum over q. The function f(xia|Ωia−1,m, µ, β, σ), which represents the
numerator summed over the two possible states taken at index ia, ensures that the
sum of the probability ξs,ia equals one for every index ia.

2.2.4 Transition probabilities estimation

For our two-regime model, the transition probability pq,s regroups the probabilities of
staying in either regimes along with the probabilities of switching to the other regime.
The estimation of pq,s is relatively straightforward by imposing to the algorithm the
potential existence of no more than one planetary signal per annulus. A number of
planetary signal per annulus in the interval ]0, 1] may therefore be considered. Fol-
lowing our testing, a value of one companion per annulus must be privileged in the
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case of faint companions as lower values decrease both the residual speckles and the
companion intensities in our model. Considering the number of pixels La and the
number of frames T , the parametrization of pq,s translates as follows in the case of one
planetary signal per annulus:

pq,s =

(
p0,0 = 1− 1/(T × La) p1,0 = 1/T

p0,1 = 1/(T × La) p1,1 = 1− 1/T

)
. (2.6)

2.2.5 Likelihood function definition

The determination of the likelihood is the key step of the model estimation. The
challenge is to select the right probability distribution function to describe properly
εs,ia , the residual noise due to the quasi-static speckles. Indeed, the value taken by ηs,ia
depends directly on the position of the elements of xia , or the elements of xia−βm, in
the probability distribution of the quasi-static speckle residuals. Considering the small
transition probabilities p0,1, the probability of planetary signal detection ξ1,ia depends
heavily on the value taken by η1,ia . The parametrization of the selected probability
distribution function plays as well an important role.

Different probability distribution functions may be used. For the sake of clarity, we
illustrate the likelihood function definition with a simple Gaussian distribution as it
is done in Hamilton (1988). However, the next section will allow us to investigate the
question of the optimal probability distribution function selection as different post-
processing algorithms provide different noise distributions for different separations.
The Gaussian distribution allows us to construct a likelihood function for state s at
index ia in the following manner:

ηr,ia =
θ2∑
n

1

θ2
1√
2πσ

exp

[
−

(xnia − Fiaβm
n − µ)2

2σ2

]
, (2.7)

with n the index of the matrix elements for xia and m. The sum over the matrix
elements allows us to get only one value per considered θ × θ patch.

2.2.6 Model estimation

Since the estimation of ξs,ia depends on its value at the previous step, we rely on
an iterative procedure to estimate the entire set of ξs,ia . This iterative procedure
requires the definition of an initial condition for ξq,0. Assuming that the considered
Markov chain is ergodic, we can simply set ξq,0 = P(St = q | m, µ, β, σ) equal to
the unconditional probability ξq,0 = P(St = q). Following the approach proposed
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by Hamilton (1994), the two initial probabilities ξ0,0 and ξ1,0 may be estimated via
following system of equations:

ξ0,0 = ξ0,0p0,0 + ξ1,0p1,0

ξ1,0 = ξ1,0p1,1 + ξ0,0p0,1

ξ1,0 + ξ0,0 = 1

(2.8)

which translates in terms of matrices in:

Aξ = ψ (2.9)

with ξ = [ξ0,0, ξ1,0] the set of initial probabilities, ψ = [0, 0, 1] and A given by:

A =

(
I2×2 − P

1 1

)
, (2.10)

with P the matrix of pq,s, I2×2 a diagonal matrix of dimension 2 × 2. Solving the
system of equations (eq.2.8) to obtain the initial probabilities ξ, is then equivalent to
taking the third row of the matrix (AtA)−1At.

2.3 Detection map estimation

We propose in this section a procedure to produce a RSM detection map. The model
we developed so far necessitates the computation of cubes of residuals along with the
definition of several parameters: the probability distribution function of the quasi-
static speckles residuals εs,ia and its first two moments, the planetary signal model
m, the intensity parameter β, and the transition probability pq,r. The transition
probability pq,r is already defined in Section 2.2.4, we therefore consider the remaining
three model parameters.

2.3.1 Computation of de-rotated cubes of residuals

The first step to create a RSM detection map, is the production of the de-rotated
cubes of residuals for the selected ADI-based post-processing techniques feeding our
regime-switching algorithm. As an illustration of the ability of our model to improve
the detection when considering several methods at once, we consider in this chapter
three different post-processing techniques: annular PCA, NMF and LLSG. For the two
first approaches, the estimation of the cubes of residuals starts with the definition of a
reference PSF. Annular PCA follows the PCA principles by computing the directions
of maximal variance from the main matrix representing the ADI sequence,M ∈ Rn×p,
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with n the number of frames and p the number of pixels in the considered annulus.
The determination of a reference PSF is done via the estimation of the eigenvectors
V of the matrix M by taking Vk, the first k components of V . Annular PCA relies
on a separate estimation for each annulus composing the original cube of data to take
into account the radial evolution of the noise distribution. It allows to consider the
local structure of the speckle noise instead of the entire frame. The cube of residuals
is then obtained via the subtraction of the low rank matrix MV T

k Vk from the initial
ADI sequence M .

As for Annular PCA, NMF can be understood as a low rank approximation, with
an additional non-negativity condition. This method consists in the decomposition of
a matrix into two factors of non-negative values via the minimization of the Frobenius
norm:

argminW ,H

1

2
‖M −WH‖2FN =

1

2

∑
i,j

(Mi,j −WHi,j)
2, (2.11)

where W ∈ Rn×k and H ∈ Rk×p. The method allows the definition of a matrix
WH with rank k lower than the one of original matrix M , keeping only the main
components of M . The matrix WH provides a reference PSF for the entire set of
frames representing the structure of the residual starlight. As for annular PCA, this
matrix is subtracted from the original ADI sequence to obtain the cube of residuals,
M −WH .

Finally, the LLSG estimation is based on the decomposition of the cube intensities
in three separate components, L a low rank matrix, S a sparse matrix expected to
contain the potential planetary signal and G the Gaussian part of the background
noise. This explains partly why the distribution of the resulting residuals, observed in
Figure 2.3, is far from being Gaussian, the Gaussian part of the noise having already
been removed. More information about the algorithm may be found in Gonzalez et al.
(2016). The cube of residuals is directly provided by S.

2.3.2 Probability distribution function

We then move to the model parameters definition by first considering the selection
of the probability distribution function describing the speckles residuals. Figure 2.3
(a-d) provides the distribution of the residuals for a VLT/NACO ADI sequence (see
Section 2.4 for a description of the data set) obtained with respectively the annular
PCA, the Non-negative Matrix Factorization (NMF) and the Local Low Rank plus
Sparse plus Gaussian (LLSG) methods. We see from these graphs that the distribution
of the residuals is either close to a Lapacian or to a Gaussian distribution depending
on the selected post-processing techniques and on the angular separation. At small
angular separations, the tails of the distributions of the residuals seem to be closer
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to a Laplacian, while at larger separation they seem closer to a Gaussian, except for
LLSG processing. This radial evolution is mainly due to the higher (relative) number
of intense speckles, the lower number of pixels and the lower field rotation at small
separation. Overall, the distribution of the residuals is close to a Gaussian for annular
PCA and NMF, and close to a Laplacian for LLSG. This confirms partially the findings
of Pairet et al. (2019), who demonstrated that the residuals were closer to a Laplacian
than a Gaussian distribution, especially when looking at the tails of the distribution.

The results of Figure 2.3 illustrate the difficulty of defining the residuals distribution
as there exists a dependence on both the separation and the post-processing technique
along with differences between the tails and the core of the distribution. We propose
therefore to consider both the Gaussian and Laplacian distributions in the performance
assessment of Section 2.4.

The proposed regime-switching model provides a local detection probability as it
considers one annulus at a time. The parameters of the residuals probability distri-
bution should therefore be estimated locally. We have seen in the previous section
that we considered not a single pixel at a time but a θ × θ matrix of pixels centred
on the pixel of interest. We therefore estimate empirically the pixel-wise mean and
variance of the residuals by considering an annulus with a width of θ pixels, centred
on the selected annulus. The entire set of frames is used for the estimation of these
two parameters. Although planetary signal may be included in the annulus, the effect
of this signal on the estimation of the mean and variance is limited and decreases with
angular separation.

2.3.3 Intensity parameter

For the estimation of the intensity parameter β, we propose to rely on the estimated
variance of the pixel intensity in the annulus. We were inspired here by the signal to
noise ratio maps that are usually created using the final frame provided by most of
the PSF-subtraction techniques. We define the intensity parameter β as a multiple of
the estimated variance σ:

β = δσ. (2.12)

The β parameter is the only parameter we propose to estimate via a maximum
log-likelihood. Several values of δ are tested in a given interval starting at δ = 1, as
δ = 0 would imply a single regime model. The optimal δ in an annulus a is the one
leading to the highest log-likelihood sum

∑La×T
ia

log [f(Xia |Ωia−1,P , µ, β, σ)] in the
considered interval.

Relying on this definition of β allows to get information about the position of the
detected planetary signal inside the probability distribution of the residual speckles. A
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(a) Annular PCA at 1λ/D
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(b) Annular PCA at 8 λ/D
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(c) NMF at 1λ/D
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(d) NMF at 8 λ/D
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(e) LLSG at 1λ/D
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Figure 2.3: Distribution of the residuals for a VLT/NACO data set after PSF subtrac-
tion by Annular PCA (top), NMF (middle) and LLSG (bottom) along with a Gaussian
(orange line) and Laplacian (green line) fit at small (left) and large separations (right),
with respectively 20 components for the Annular PCA and the NMF and a rank of 5
for the LLSG.
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higher δ implies that the detected signal is farther in the distribution tails, which indi-
cates a higher level of confidence (which will generally translate as a higher probability
in the RSM map) about the detected planet and a higher flux for a given noise dis-
tribution. However, the β parameter does not provide an estimation of the planetary
flux as we are not using a forward model of the PSF for the planetary signal.

2.3.4 Planetary signal model

Using a forward model for the planetary signal would allow us to take into account the
distortions (such as self-subtraction) created by ADI-based post-processing treatment
when estimating cubes of residuals. Although a forward-modelled PSF should provide
more accurate results, it should be noted that some PSF-subtraction techniques do
not lend themselves to the analytical computation of a forward model (eg., LLSG,
NMF). A more universal numerical way to compute a forward model is to compare
the initial cube of residuals and the one in which a fake companion has been injected.
Following this approach, we have tested numerical estimation of forward-modelled PSF
for generating RSM detection maps but without managing to improve the algorithm
accuracy compared to the use of measured off-axis PSF. We therefore decided to only
consider measured off-axis PSFs in the rest of this chapter. However, a forward model
variant of the proposed algorithm will be proposed in the next chapter, providing good
results at short separations, at the expense of the computation time.

2.3.5 RSM detection map estimation

Now that we have defined the procedure to estimate the cubes of residuals feeding the
RSM algorithm as well as the model parameters, we may summarize the main steps
of the algorithm as follows:

1. Compute the residuals cubes for the selected ADI techniques and de-rotate all
the resulting frames;

2. Define the separation to the star for the first and last annuli, respectively aini =

FWHM/2 + 1 and afin = (fsize − FWHM)/2 with fsize the size of the frame;

3. Define the series xia for the first annulus;

4. Estimate the mean and variance of the residuals inside the annulus separately
for each residuals cube;

5. Using the iterative procedure described in Section 2.2, estimate ξr,ia for each
index ia for the set of tested δ;
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6. Include the probability of planetary signal ξ1,ia providing the maximum likelihood
in a three-dimensional matrix U ∈ RLa×T ;

7. Repeat steps 2 to 6 for the next annulus (a+ 1) until afin is reached;

8. Average the detection probability contained in U along the time axis to obtain
the final RSM detection map.

The resulting detection map provides the averaged probability of observing a plan-
etary signal in a given cube of data, along with the optimal β. The next section will
explore the effectiveness of this new approach when applied to observational data sets.

2.4 Performance assessment

2.4.1 Data

We propose to use two ADI sequences acquired with two instruments of the Very Large
Telescope (VLT): NACO and SPHERE. It will allow us to investigate the ability of
our model to deal with the different noise profiles produced by these instruments.

The first data set focuses on β Pictoris and its planetary companion β Pictoris b.
It was obtained in L′ band in January 2013 with NACO in its AGPM coronagraphic
mode (Absil et al. 2013). The ADI sequence is composed of 612 individual frames
obtained by averaging 40 successive individual exposures, each frame providing an
effective integration time of 8 s. The parallactic angle ranges from -15◦ to +68◦. We
use every third frame to reduce the CPU time and cropped the central 101×101 pixels
region to consider mainly the first arc-second.

The second data set is an ADI sequence on Eri51 produced by the SPHERE-
IRDIS instrument, using an apodized pupil Lyot coronagraph (Samland et al. 2017).
The sequence was taken in K1 band in September 2015 and regroups 194 frames with
16 s of integration time. The parallactic angle ranges from 297◦ to 339◦. The data set
was pre-processed using the SPHERE Data Center pipeline (for more details about
the reduction see Delorme et al. 2017; Maire et al. 2019).

2.4.2 Detection maps

We start our analysis by considering the RSM detection map generated with the pro-
posed algorithm, based on the residual cubes provided by annular PCA, NMF and
LLSG, and compare it with the S/N map obtained with the same three post-processing
algorithms. The post-processing as well as the S/N detection maps are generated for
all three methods with the VIP package developed by Gomez Gonzalez et al. (2017)
using the standard parametrization. Both Annular PCA and LLSG are performed
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annulus-wise, with each annulus being divided into four segments in the case of LLSG.
Other parametrizations are possible as the proposed approach works with any de-
rotated cube of residuals. The three cubes of residuals obtained with the selected
post-processing techniques are then stacked to create a single cube to feed the RSM.
The variance and the mean of the residuals are estimated separately for each sub-
cube as their noise profiles are specific, as demonstrated in the previous section when
looking at the residual distributions.

Figure 2.4 displays the RSM detection map and the S/N maps obtained for the
SPHERE-IRDIS Eri51 data set (see Figure A.1 for similar detection maps for the
NACO β Pictoris data set). As can be seen, the difference in intensity between the
planetary signal and the background speckles is much higher with our new approach
than with the usual S/N maps. Eri51 b (contrast of 6.73 × 10−6 ± 9.02 × 10−7 at a
separation of 453.4 ± 4.6 mas, Samland et al. 2017; Maire et al. 2019) can be clearly
identified on the lower left quadrant with RSM, annular PCA and LLSG, although we
observe a higher number of false positives in the case of LLSG. The visual identification
becomes more difficult when looking at the S/N map provided by NMF, which shows
brighter wind-driven halo residuals.

To illustrate the computation of the RSM map, Figure 2.5 shows how the prob-
ability ξ1,ia builds up when getting closer to a planetary signal. It reports the RSM
map probabilities along the radial axis crossing the peak value attributed to Eri51 b,
along with the optimal δ for the respective annuli. The data includes 7 pixels × 197
frames × 3 ADI-based post-processing techniques and is centred on the pixel show-
ing the highest probability. As can be seen, no signal may be found in the first 591
patches representing the first pixel. The probability builds up steadily for the next
three pixels until reaching a peak probability of over 95 percent. The value of the
optimal δ increases as well with a peak value of 4 reached at the fifth pixel, illustrating
the displacement of the signal farther in the residuals distribution tail due to the in-
creasing flux coming from the planetary candidate. We then observe a decrease of the
probability and optimal δ, which eventually gets back to the background speckle noise
level. The stacked cube of residuals encompasses the cubes of residuals generated first
by the annular PCA, then by the NMF and finally by the LLSG. Looking at the sharp
increase observed at the beginning of every pixel, we see that the strongest signal may
be found in the annular PCA cube of residuals, confirming the visual analysis of the
S/N maps. However the signal is still strong in the two other cubes of residuals to be
able to maintain the high probability observed for the three central pixels.

2.4.3 Receiver operating characteristic curves

In order to explore in more detail the properties of our new approach and compare
its performance with other state-of-the-art methods, we generate synthetic data sets
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Figure 2.4: Probability map obtained for the SPHERE-IRDIS Eri51 data set, with
the RSM using a Gaussian distribution along the S/N map generated with the cube
of residuals obtained with Annular PCA, LLSG and NMF with respectively 20 com-
ponents for the Annular PCA and the NMF and a rank of 7 for the LLSG. The colour
scale indicates the probability for the RSM map and the signal-to-noise ratio for the
three S/N maps (Mawet et al. 2014). The maps are centred on the star Eri51 while
Eri51 b is identified by the white circle in the lower left quadrant.
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Figure 2.5: Evolution of the probability in the RSM detection map around the location
where Eri51 is detected along with the optimal δ for the respective annuli.

based on the two ADI sequences presented in the previous subsection. We rely on
the injection of fake companions in the initial ADI sequences, an approach widely
accepted by the HCI community for generating synthetic data to assess the sensitivity
of post-processing methods. Since the contrast that can be reached as well as the
noise structure both depend on the angular separation, we consider three different
annuli as described in Table 2.1. The comparison with the other methods is based on
Receiver Operating Characteristic (ROC) curves, which are widely used to assess the
performance of binary classifiers. In these curves, one axis provides the true positive
rate and the other the false positive rate. When using ROC curves for performance
assessment, the main proxy for the classifier performance is the area under the ROC
curve: the better the classifier, the higher the area under the ROC curve, i.e. the higher
the true positive rate for a given false positive rate. We replace the false positive rate
by the number of false positive for the entire frame, averaged over the number of test
data sets considered for a given separation as it is done in Gomez Gonzalez et al.
(2018).

The fake companions are defined as the normalized off-axis PSF, generally mea-
sured by offsetting the target star from the coronograph, multiplied by flux values from
a predefined interval defined to challenge the set of tested methods. Five different flux
values are tested for each separation with step size of 0.5 times the initial value. For
each flux values, eight positions are tested to mitigate the impact of bright speckles
or local minima. The resulting 40 test data sets are then used to estimate the ROC
curves for each separation. The contrasts for the three selected separations are pro-
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Table 2.1: Injected companions contrast range for the three considered separations.

NACO (β Pic) SPHERE (51 Eri)
Separation Contrast Contrast
2 λ/D 3.3-8.2 ×10−4 1.0-2.6 ×10−4

4 λ/D 0.5-1.3 ×10−4 1.2-3.1 ×10−5

8 λ/D 1.3-3.3 ×10−5 2.1-5.2 ×10−6

vided for the NACO and SPHERE data sets in Table 2.1. Before injecting the fake
companion, we removed the known companions and some bright disk structures for
the β Pictoris data set, using the negative fake companion technique (Lagrange et al.
2010). We consider as false positive a detected companion at any other location than
the one selected for the fake companion injection.

The exoplanet detections for the annular PCA, the NMF and the LLSG method are
based on S/N map generated using the procedure of Mawet et al. (2014). The detection
of a true or false positive is done on the de-rotated median-combined individual frame
by estimating for every pixel a signal-to-noise ratio. This estimation is done annulus-
wise in order to take into account the evolution of the residuals distribution. The
signal to noise ratio is calculated using the procedure developed by Mawet et al.
(2014), by comparing the flux inside an aperture with a diameter of one FWHM
centred on the considered pixel (i.e., 5 pixels for both data sets) with the flux of all
the other apertures included in the annulus. This procedure implements a small-sample
statistics correction, relying on a student t-test to determine the S/N. Increasing S/N
or probability thresholds are applied to generate the different ROC curves for all the
considered methods. Once the S/N map is computed, successive thresholds are applied
onto the S/N map to create the ROC curves. For each threshold, the detection of the
fake companion as well as the number of false positives are recorded and averaged over
the entire set of synthetic data sets generated for the considered annulus to construct
our false and true positive rates. We follow a similar procedure for the RSM detection
map, replacing simply the S/N thresholds by successive percentage thresholds applied
on the detection map.

The parameters of the different post-processing techniques have been selected to
maximize the area under the ROC curves, i.e., maximize the true positive rate while
minimizing the number of false positives. For annular PCA and NMF, the number
of principal components used to construct the reference PSF have been set to 20 for
both data sets. As for LLSG, we selected a rank value of 5 for the estimation of the
matrix S for the β NACO data set and 7 for the SPHERE-IRDIS data set. As regards
the RSM, the mean and variance of the residuals distribution are again estimated
annulus-wise. The fake companions injected into our simulations having relatively low
flux values, we tested δ in the interval [1, 5] and kept the one leading to the highest
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total log-likelihood to generate the final RSM map.

As an illustration of the detection maps calculation for the ROC curves generation,
Figure 2.6 shows the probability and S/N maps obtained by injecting fake companions
with high contrast values at three different separations from the star Eri51 (2, 4 and 8
λ/D). As can be seen, apart from the signal injected at 8 λ/D which appears relatively
clearly in the S/N for all three post-processing methods, the RSM map is the only map
providing a clear detection for all three fake companions. A set of detection maps is
shown in Figure A.2 for the NACO β Pictoris data set, leading to similar conclusions.

Influence of the probability distribution

We now turn to the estimation of the ROC curves which will provide more compre-
hensive results. We start by considering two different variants of RSM to investigate
the choice of the probability distribution for the likelihood function definition. The
two variants presented in Figure 2.7, use respectively the Gaussian and Laplacian dis-
tribution to construct the likelihood function appearing in ηr,ia . The ROC curves are
estimated for different separations as we have seen in the previous section that the
probability distribution describing the residuals evolves with angular separation. As
can be seen from Figure 2.7, the results of the two variants are very close in the case
of the β Pictoris data set, while the distance between them becomes significant for
the Eri51 data set. In both cases, the RSM model using the Laplacian distribution
performs better for small separation while the Gaussian distribution leads to better
results for larger separations.

These results confirm the findings made with Figure 2.3 and the importance of tails
fit when selecting the optimal probability distribution. It demonstrates the interest
of considering the residuals distribution evolution along the radial axis to optimally
parametrize our model. We therefore propose to start the RSM detection map estima-
tion with an analysis of the noise profile to select the right probability distribution for
every separation. This additional step has been included in the RSM detection map
python package that we have developed based on the model presented in this chapter2.
The function allows (i) to select one of the two distributions, (ii) to automatically
select the best distribution based on a best fit approach, or (iii) to create a hybrid
distribution consisting in a weighted sum of both distributions. This last possibility
can be useful when facing asymmetrical probability distributions as the parameters of
both distributions may be estimated separately based on a best fit approach.

2The RSM detection map python package is available on GitHub:
https://github.com/chdahlqvist/RSMmap
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Figure 2.6: Detection map obtained after injecting three fake companions in the
SPHERE-IRDIS Eri51 reference cube used for the ROC estimation, at a distance of
2, 4 and 8 λ/D with respectively a contrast of 1.0 ×10−4, 1.2 ×10−5 and 3.7 ×10−6.
The colour scale indicates the probability for the RSM map and the signal-to-noise
ratio for the three S/N maps. The maps are centred of the star Eri51 while the fake
companions are identified by the white circles.
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(a) Beta Pictoris at 2 λ/D
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Figure 2.7: ROC curves for the Beta Pictoris and Eri51 data sets, with the Regime
Switching Model using respectively a Gaussian (blue) and Laplacian (red) distribution
to construct the likelihood function.
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Comparison with S/N-based detection

We now address the question of the performance of our algorithm compared to the three
post-processing methods using S/N maps. Figure 2.8 reports, for the two data sets, the
ROC curves of all four methods for the same separations as before. Considering the
results presented in Figure 2.7, we have selected for each data set and each separation
the distribution that provided the highest area under the ROC curve. The results
demonstrate the interest of the new approach considering that the RSM performs
better in every case. This may be explained by the ability of our model to be fed
with multiple cubes of residuals, but also by its ability to focus only on relevant data
thanks to the regime-switching feature. This allows our model to take advantage of
the strength of the different post-processing methods used to produce the cubes of
residuals. As speckles are not treated equally by these post-processing techniques,
it is easier to remove them by taking into account several cubes of residuals. This
ability to remove speckles is further improved by the memory of the RSM. Indeed, the
dependence of ξs,ia on the transition matrix pq,s and on the probabilities at step ia− 1

(see Eq. 2.3) partly mitigates the effect of speckles on the detection map. Outliers
caused by quasi-static speckles do not lead to a clear regime switch while, when facing
a planetary signal, the detection probability builds up along the time axis as we have
seen in Figure 2.5. The dependence on the past observation reduces significantly the
noise in the final detection map.

Furthermore, the possibility of selecting the right probability distribution to de-
scribe the residuals allows us to describe more precisely the behaviour of these residual
speckles, which is not possible with the S/N approach. The more significant improve-
ments for the Eri51 data set may be explained by the lower level of noise inside this ADI
sequence, which suggests that our model should perform better with last generation
instruments.

2.5 Conclusion

We explored in this chapter the possibility of improving exoplanet detection using
a Regime Switching Model deriving from the field of econometrics, with one regime
representing the planetary signal in addition to the speckle noise and the other only
the speckle noise. This novel approach allows the creation of probability maps based
on cubes of residuals obtained with different PSF-subtraction techniques. The RSM
algorithm can be associated with any PSF-subtraction techniques as it can be fed
with different cubes of residuals separately or jointly. The short memory process at
the heart of our RSM detection map allows quasi-static speckles to be treated more
effectively when using several cubes of residuals provided by different post-processing
algorithms and thereby to reach better detection performance.
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(f) Eri51 at 8 λ/D

Figure 2.8: ROC curves for the Beta Pictoris and Eri51 data sets, with in blue the
Regime Switching Model using the likelihood function that provided the highest area
under the ROC curve, in red, yellow and green the detection based on signal to noise
ratio using respectively the annular PCA, the NMF and the LLSG as post-processing
techniques for the estimation of the cube of residuals.
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The RSM is easy to use as most of the parameters are estimated empirically. The
only parameter that may need to be tuned is δ, which defines the strength of the
signal coming from the planetary candidates. The model selects automatically this
parameter via a maximum log-likelihood approach. However an upper value has to be
defined for the interval.

We demonstrated the interest of our approach by injecting fake companions into two
data sets provided by the VLT/NACO and VLT/SPHERE instruments. We compared
the proposed RSM map with standard S/N maps obtained with three state-of-the-art
methods, annular PCA, NMF and LLSG. The ROC curves demonstrate clearly the
interest of our model as it outperforms all the other methods for the three angular
separations we considered, and for both data sets. The results also confirm that the
probability distribution of the residuals evolves with radial distance and that it should
be taken into account in our model when defining the likelihood function used to
estimate the probability of being in one of the two regimes. Indeed, the Laplacian dis-
tribution performs clearly better for close separations while the Gaussian one provides
better results for larger angular distances. The possibility of optimally selecting the
probability distribution based on the residual noise profile has been included in the
RSM detection map framework.
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Chapter 3

Improving the RSM map algorithm:
PSF forward modelling and optimal
selection of PSF subtraction
techniques

3.1 Introduction

The goal of this third chapter is to further develop the RSM approach by considering
a larger set of PSF subtraction techniques that includes the forward modelling of the
point source. Indeed, as for ANDROMEDA and KLIP-FMMF, the RSM map relies
on a matched filter to infer the existence of planetary candidates in residuals images.
However, the initial version of the algorithm, presented in chapter 2, uses solely an
off-axis PSF for the detection. Forward modelling could significantly improve the
sensitivity of the algorithm to faint companions by taking into account the distortion
generated by the speckle field subtraction. We propose a method that would rely on
the KLIP forward model (KLIP-FM) developed by Pueyo (2016) as well as a forward
model version of LOCI for investigating the added value of forward-modelled point
sources. Section 3.2 is devoted to the development of the two forward-model versions
of the RSM algorithm, while Section 3.3 provides a performance assessment of these
versions.

As seen in chapter 2, the RSM map can accommodate several PSF subtraction
techniques to generate a final probability map. That raises questions regarding the
selection of the optimal set of techniques to reach the highest sensitivity as well as
its dependence on the HCI instrument and on the radial distance. We compare, in
Section 3.4, the performance of several set of techniques via ROC curves and investigate
the impact of the considered instruments on this selection, considering three state-of-
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the-art HCI instruments: NACO, SPHERE, and LMIRCam.
In Section 3.5, we propose an improved method for the probability estimation,

relying on a forward-backward approach that allows the use of both past and future
observations within the cube of residuals to generate the RSM map. The original RSM
map uses a simple forward approach, which considers only past observations to build
up the probabilities. We compare the performance of both approaches with standard
S/N maps through the use of ROC curves. Finally, in Section 3.6, we present a new
framework developed to compute contrast curves, as it is not possible when dealing
with probability maps to rely on the standard procedure used for S/N maps.

3.2 Using forward models in RSM

The original RSM map relies on an off-axis PSF to model the planetary signal. A
promising development of the current method would be to take into account, via a
forward model, the effects of the PSF subtraction techniques on the planetary sig-
nal. Indeed, most PSF subtraction techniques lead to distortions of the planetary
signal, such as over-subtraction and self-subtraction (Pueyo 2016). Over-subtraction
is attributable to quasi-static speckles inside the set of reference frames, while self-
subtraction is due to the presence of the planetary signal itself inside the same set of
reference frames. The signature of self-subtraction is specific to planetary candidates,
as quasi-static speckles coming from the optical train do not rotate with the field.
Because of field rotation, the evolution of the reference frames composition leads to
the appearance of a negative wing travelling in time from one side of the planet to the
other in the azimuthal direction. The temporal motion of this negative wing should
therefore help disentangling a planetary candidate from a bright speckle.

We investigate, in this section, two forward model versions of the RSM map relying
on the KLIP and LOCI algorithms. Both algorithms can accommodate an analytical
estimation of the forward-modelled PSF, which is not the case for other ADI-based
techniques such as NMF and LLSG. This avoid the complex task of choosing the
fake companion intensity when constructing a forward-modelled PSF empirically by
comparing an initial cube of residuals and one in which a fake companion has been
injected.

3.2.1 KLIP-based forward modelling

Karhunen-Loève image processing (KLIP) is a popular speckle subtraction technique
first proposed by Soummer et al. (2012) and further improved by Pueyo (2016) who
developed its forward model version. Similarly to PCA, KLIP estimates the reference
PSF via a low-rank approximation of a reference library built to limit the impact of
potential planetary signal on the speckle field estimation. For each frame of an ADI
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sequence, the KLIP algorithm computes the directions of maximal variance from the
reference library. It keeps the principal components up to a rank, K, that is smaller
than the dimension of the reference library, discarding the higher order modes that
should contain more of the planetary signal. The principal components are found via
a decomposition of the covariance matrix of the mean-subtracted reference frames R
via the Karhunen-Loève transform. They are given by:

ZK =
√

Λ−1VKR, , (3.1)

with Λ = diag(µ1, µ2, ..., µk)
> as the diagonal matrix with the eigenvalues of the image-

to-image sample covariance matrixRR> withR the mean-subtracted reference library
matrix and VK = [v1,v2, ...,vk] as the respective eigenvectors up to the order K ≤ NR,
NR being the number of images in the reference library used to compute the reference
PSF (see Table B.1 for a summary of all the variables used in the KLIP-based forward
modelling). The reference PSF is then found by projecting the initial science image,
i, or a subsection of this science image, onto the selected principal components. The
reference PSF is subtracted from the science image yielding the residual image x as
follows:

x = i−Z>KZKi. (3.2)

The selection of the reference library is done via the definition of a minimal field
of view (FOV) rotation between the science image, i, and the set of selected reference
images, R. The minimal FOV rotation should be large enough to limit the distortion
due to the planetary signal contained in the library (see Marois et al. 2010) but not
too large so that it is possible to keep a sufficient correlation between the speckle
field contained in the science image and the reference library. Pueyo (2016) proposed
to model the distortion via an analytical expansion of the principal components to
account for the presence of planetary signal inside the reference library. In the case of
self-subtraction, the planetary signal appears in the principal components estimation
via the covariance matrix and therefore the distortion is non linear as a result of the
projection ofm onto the perturbed components ∆ZK . In contrast, the distortion due
to over-subtraction is linear in m as it is defined as the projection of the planetary
signal, m, on the unperturbed components, ZK . The forward model of the planetary
signal considers both type of subtractions as follows:

p = m−Z>KZKm−
(
Z>K∆ZK + (Z>K∆ZK)>

) i
β
, (3.3)

wherem represents the normalised planetary signal before reference PSF subtraction,
typically the instrument off-axis PSF, and p is the forward model of the planet after
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Figure 3.1: KLIP forward-modelled PSF for a NACO β Pictoris ADI sequence taken
at a distance of 2λ/D, cropped at two FWHM and summed along the time axis.

subtraction. The second term on the right provides the over-subtraction of the point
source while the third term gives the self-subtraction due to rotation via ∆ZK (see
Pueyo 2016, for the detailed derivation of this expression).

Having documented the estimation of the forward-modelled planetary signal and
of the cube of residuals, we now consider how to include these elements in the RSM
map framework. We rely on an annulus-wise estimation but in contrast with annular
PCA or LLSG (Gomez Gonzalez et al. 2017), we do not estimate the speckle field
for consecutive non-overlapping annuli. We estimate instead a specific speckle field
for every radial distance, a. The self-subtraction wings appearing azimuthally, the
brightest part of the planetary signal is contained in an annulus segment of width equal
to one full width at half maximum (FWHM). The selected annulus with a width of one
FWHM is centred on a and shifted by one pixel between each radial distance a instead
of being shifted by one FWHM in the case of annular PCA or LLSG. This approach
simplifies the forward model PSF estimation, provides a more accurate estimation of
the speckle field, and avoids any non-linearities due to transitions between annuli.

The reference PSF and the forward-modelled PSF computation is done via Eq. 3.2
and Eq. 3.3, respectively. The resulting forward-modelled PSF is then derotated and
cropped to form a set of patches, pia , where all the elements outside the selected
annulus segment is set to zero as can be seen in Figure 3.1. Several crop sizes, from
one to two FWHM, are tested in the next section. Once injected in the expression of
the likelihood given in Eq. 2.7, this allows us to focus the model only on the region
where strong intensity variations occur. The expression of the likelihood of being in
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the state, s, for every patch, ia, becomes (in the Gaussian case):

ηs,ia =
θ2∑
n

1

θ2
1√
2πσ

exp

[
−

(xnia − Fiaβp
n
ia − µ)2

2σ2

]
, (3.4)

where xia are the derotated and cropped patches obtained from the residual image, x.
When relying on a forward-modelled PSF, the intensity parameter β directly pro-

vides an estimation of the planet luminosity, which may be helpful for characterizing
the planetary candidate beyond its detection. Two methods are considered for esti-
mating this intensity parameter. The first method is similar to the one proposed in
the previous chapter, with β defined as a multiple of the estimated standard deviation
of the pixel intensity in the annulus, β = δσ. In this case, the standard deviation σ
is estimated empirically by considering all the frames and an annulus with a width of
one FWHM centred on the annulus of interest, a. The δ parameter is defined via the
maximisation of the total likelihood of the annulus. The second method relies on the
definition of the intensity via a Gaussian maximum likelihood (see Cantalloube et al.
2015; Ruffio et al. 2017, for more details) before the computation of the RSM map
itself, which allows the use of the following analytical form for the flux parameter β :

β̃ =

∑T
j i
>
j pj/σj∑T

j p
>
j pj/σj

, (3.5)

with the standard deviation σj computed separately for each frame by considering an
annulus with a width equal to one FWHM centred on a.

The main advantage of this second method is the simplicity of the intensity compu-
tation. It provides also a specific intensity for each pixel, which may help the algorithm
to differentiate bright speckles from planetary candidates. The only drawback of this
approach is that it makes the assumption of a Gaussian residuals distribution, which
is not always the case especially near the host star. As for the parametrisation of the
RSM likelihood function in this second case, the standard deviation used for the flux
estimation is taken and the computation of the mean is also done frame-wise using the
same procedure. Both approaches are investigated in Section 3.3.

3.2.2 LOCI-based forward modelling

The second PSF subtraction technique that we propose for investigating the RSM
framework is a forward model version of LOCI, the locally optimised combination of
images (Lafreniere et al. 2007b). Specifically, LOCI relies on a linear combination of
reference images to model the speckle field in a given science image, i. As for the
KLIP algorithm, the definition of the reference library is based on the definition of
a minimal FOV rotation between the frames composing the reference library and the
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selected science image, that is, a minimal distance by which a potential point source
in the science image would be displaced in the frames composing the reference library.

Besides this angular distance, LOCI relies on the definition of two different subsec-
tions within the ADI sequence. A first section, OK , is used for the computation of the
linear combination factors, while a second smaller subsection RK is selected for the
speckle field subtraction1. The use of a larger section OK aims to reduce the weight of
the potential planetary candidate in the estimation of the linear combination. Once
the reference library is defined, the computation of the linear combination factors is
simply done via the minimisation of the sum of squared residuals (Lafreniere et al.
2007b):

ε2 =

Np∑
j=0

[
oji −

NR∑
k

cko
j
k

]2
, (3.6)

with oi the section of the frame for which a model of the speckle field is computed via
the factors ck, and ok the section of the reference frame k (see Table B.1 for a summary
of all the variables used in the LOCI-based forward modelling). The minimum of this
last expression has an analytical form obtained by setting all the partial derivatives
with respect to ck equal to zero, which is equivalent to solving a simple system of linear
equations of the form Ax = b given by:

NR∑
k

ck

[
Np∑
j=0

ojlo
j
k

]
=

[
Np∑
j=0

ojlo
j
i

]
, (3.7)

which holds ∀l ∈ K.
Once obtained, the factors, ck, are multiplied by the subsection of the reference

frames, rk, and subtracted from the subsection of the science image, i, to get the
residual, x, as follows:

x = i−
NR∑
k

ckrk , (3.8)

i defined here as the subsection of the science image corresponding to the reference
frames, rk.

The forward model of the planetary signal is easily computed using the same fac-
tors, ck, and the planetary signal, m:

p = mi −
NR∑
k

ckmk . (3.9)

1We consider an annulus of three FWHM for OK and one FWHM for RK .
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As in the case of the KLIP forward model, for both the residual image and the
forward model PSF, an annulus with a width of one FWHM is used to focus on the
region where the planetary signal is the most visible. The forward model PSF, p, and
the residuals images, x, are again derotated and cropped to from the time series ,xia
and pia . The two methods used to estimate the flux parameter β are again considered.

3.2.3 Forward model RSM map: summary

We briefly summarise the main steps for the RSM map estimation when relying on
the LOCI and KLIP forward-model approach as follows:

1. Compute the residuals for an annulus centred on a for each frame using the KLIP
or LOCI procedure.

2. Compute the PSF forward model for every frame and every position within the
annulus, a.

3. Derotate the resulting annuli and crop the forward-modelled PSF and science
image to form the times series, xia and pia.

4. Estimate the mean and variance of the residuals for every frame, considering the
annulus of width equal to one FWHM centred on a.

5. Using the iterative procedure described in Section 2.2, estimate, ξ1,ia for each
index, ia, using the forward model version of the likelihood (see Eq. 3.5).

6. Repeat steps 1 to 5 for every annulus.

7. Average the resulting probability matrix along the time axis to obtain the final
RSM detection map.

3.3 Performance assessment of a forward-modelled
RSM map

3.3.1 Data sets

We propose to rely on data sets provided by three different instruments to assess the
performance of the two forward model versions of the RSM map. The two first ADI
sequences are the same as the ones used in the first chapter and were acquired with
two instruments of the Very Large Telescope (VLT), NACO, and SPHERE, while the
third sequence was acquired with the LMIRCam instrument of the Large Binocular
Telescope (LBT). This choice of data sets aims to investigate the behaviour of the
algorithm when facing different noise profiles generated by a variety of instruments.
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The first data set is an ADI sequence on β Pictoris and its planetary companion β
Pictoris b obtained in L band in January 2013 with NACO in its AGPM coronagraphic
mode (Absil et al. 2013). The ADI sequence is composed of 612 individual frames
obtained by integrating 40 successive individual exposures of 200 ms. Every third
frame was selected here to reduce the computation time, resulting in a final cube of
204 frames. The parallactic angle ranges from -15◦ to +68◦.

The second ADI sequence focuses on Eri51. It was obtained in K1 band in Septem-
ber 2015 with the SPHERE-IRDIS instrument, using an apodised pupil Lyot coron-
agraph (Samland et al. 2017). The data set regroups 194 frames pre-processed using
the SPHERE Data Center pipeline (for more details about the reduction see Delorme
et al. 2017; Maire et al. 2019). The integration time is 16 s and the parallactic angle
ranges from 297◦ to 339◦.

The last data set is an ADI sequence on HD183324 produced by the LMIRCam
instrument of the LBT. The images were obtained in October 2018 in L’ band with-
out coronograph using a single telescope. The pre-processed data set2contained 1394
frames with integration time of 109 ms. They were binned over 10 successive individual
exposures to reduce the computation time, leading to 139 frames with an integration
time of 1.09 s. The parallactic angles range from -13◦ to -39◦. A region with a radius
of one arcsecond is considered for all three data sets, which corresponds to around 16
λ/D for the SPHERE data set and 8 λ/D for the NACO and LMIRCam data sets.

3.3.2 Results

The performance assessment of the two forward model versions of the RSM map is
done via the estimation of ROC curves. In contrast to the ROC curve usually used
for assessing the performance of binary classifiers, the false positive rate (FPR) is re-
placed by the number of false positive (FP) for the entire frame, averaged over the
number of test data sets used for the ROC curve computation (see previous chapter
and Gomez Gonzalez et al. (2018)). Synthetic data sets are generated based on the
three selected ADI sequences by injecting fake companions at two different angular
separations to account for the radial evolution of the noise profile. The known com-
panions and some bright disk structures for the β Pictoris data set were removed via
the negative fake companion technique (Lagrange et al. 2010) prior to generating the
synthetic data sets. The fake companions, which are simply defined as the normalised
off-axis PSF, are injected at 16 different position angles with five different flux values
for a given angular separation. This allows us to test the sensitivity of the forward
model RSM map to different contrasts and mitigates the impact of local speckles on
the estimation of the ROC curves. The contrasts used for the three ADI sequences
are given in Table 3.1. The relatively low contrasts used for the LMIRCam data set

2Courtesy of Arianna Musso-Barcucci.
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Table 3.1: Injected companions contrasts range for the two considered separations and
the three ADI sequences.

NACO SPHERE LMIRCam
Separation Contrast Contrast Contrast
2λ/D 3.3-8.2 ×10−4 1.0-2.6 ×10−4 3.4-8.6 ×10−3

8λ/D 1.3-3.3 ×10−5 2.1-5.2 ×10−6 3.4-8.6 ×10−4

arise from the short integration time, the low number of frames after binning as well as
the small angular rotation, all of which affect the performance of the PSF subtraction
techniques. This provides an interesting way of exploring the algorithm performance
in different HCI regimes.

We consider a true positive (TP) for a given threshold to be a peak value above
the threshold in a circle with a diameter of one FWHM centred on the position of the
injected fake companion. A value above the selected threshold at any other location
is considered as a FP. In order to avoid double counting, we impose the condition
that peak values outside the fake companion region should be separated by a minimal
distance of one FWHM.

KLIP-FM RSM map

The forward model version of the KLIP algorithm was developed along a Gaussian
matched filter to detect potential planetary candidates in the cube of residuals using
the PSF forward model. We propose therefore to compare the performance of the
forward model RSM map with the performance of the KLIP forward model matched
filter (KLIP-FMMF) developed by Ruffio et al. (2017). We include additionally the
original RSM map applied on the cube of residuals generated by the KLIP PSF sub-
traction techniques and the S/N map obtained with KLIP. In the last case, the S/N
map is generated annulus-wise using the procedure of Mawet et al. (2014).

The parameters of the KLIP algorithm, namely, the number of principal compo-
nents and minimum FOV rotation, were selected to optimise the ROC curves3 for the
two considered angular separations. A single set of parameters was defined for each
data set. The number of principal components was set to 20 for the SPHERE and
NACO data sets while a value of 18 principal components was chosen for the LMIR-
Cam data set. The FOV rotations expressed in terms of FWHM are respectively 0.5,
0.3, and 0.3.

We start by considering for all three data sets the impact of the selected crop size
for the forward-modelled PSF used in the KLIP-FM RSM map. As can be seen from
Figure 3.2, the larger crop sizes seem to outperform the crop size of one FWHM for

3We mean by optimizing the ROC curve, maximizing the true positive rate (TPR) while mini-
mizing the number of FPs for the set of considered thresholds.
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(a) NACO at 2λ/D

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Full-frame mean FPs

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

0.720

0.640

0.485

0.365

0.210

0.110

0.075

0.030

0.005

0.120

0.065

0.030

0.005

0.015

0.005

0.005

RSM KLIP FM 5
RSM KLIP FM 7
RSM KLIP FM 9
RSM KLIP FM 11

(b) NACO at 8λ/D
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(c) SPHERE at 2λ/D
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(d) SPHERE at 8λ/D
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Figure 3.2: ROC curves for the NACO, SPHERE, and LMIRCam data sets, with the
KLIP-FM RSM map using respectively a crop size for the froward modelled PSF of 5
(red), 7 (blue), 9 (green), 11 (orange) pixels (FWHM≈ 5 pixels for all three data sets).
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Figure 3.3: KLIP forward-modelled PSF for the NACO β Pictoris ADI sequence
taken at a distance of 2λ/D with the same azimuthal orientation as in Figure 3.1 and
cropped at one FWHM. The two images correspond respectively to the first and the
last frame.

the small angular separation while the reverse is true for the large angular separation.
However, we observe a much larger gap for the largest separation, especially in the
case of the NACO data set. This may be explained by the reduced self-subtraction
observed at large angular separations, the movement of potential astrophysical signals
increasing linearly with the angular separation. This implies that the brightness of
the negative lobes appearing on the sides of the main peak reduces with the angular
separation. This makes the larger crop sizes unnecessary and more prone to speckle
noise.

Considering the previous results, we select for the NACO data set a crop size of five
pixels (one FWHM) and a crop size of seven pixels for the other two data sets. This
provides a good performance trade-off between small and large angular separations.
As can be seen from Figure 3.3, a crop size of one FWHM still captures part of the
negative wing azimuthal translation. The results for the two versions of KLIP-FM
RSM map, as well as KLIP-FMMF, KLIP RSM map and the KLIP using S/N map
are given in Figure 3.4. We see from these plots that, at small separation, the KLIP-
FM RSM map seems to slightly outperform KLIP-FMMF, while the reverse is true at
large separation. The KLIP approach using S/N map has a higher ability to detect
faint companions at large radial distances but it is no match to the other methods
at small separations. The KLIP RSM map provides surprisingly good results, being
often the closest to the KLIP S/N map for large separations and being relatively close
to KLIP-FM RSM and KLIP-FMMF at 2λ/D from the host star. A combination of
both KLIP RSM and KLIP-FM RSM could be interesting to keep the high sensitivity
of KLIP-FM RSM at close separations while improving the sensitivity at larger radial
distances. It seems also clear from Figure 3.4 that the version of the KLIP-FM RSM
map using the Gaussian approximation for estimating the flux parameter β (Eq. 3.5)
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outperforms the one relying on the maximum likelihood approach proposed in chapter
2, providing in all cases equivalent or better results. We also tested the maximum
likelihood based approach and the Gaussian approximation with the KLIP RSM map
with similar results (see Appendix B.2 for a comparison between the two approaches
in the case of KLIP RSM), demonstrating the efficiency of this new way of estimating
β on top of its faster estimation.

LOCI-FM RSM map

Turning to the RSM LOCI FM map, the tolerance level for the square-residuals min-
imisation and the minimum FOV rotation were also selected to provide the best overall
performance. A tolerance of 9 ×10−3 was chosen for NACO and SPHERE and a tol-
erance of 1 ×10−2 for LMIRCam. The minimum FOV rotations are respectively, 0.6,
0.2 and 0.2 FWHM. The analysis of the ROC curves obtained with different crop sizes
leads to similar conclusions to the case of KLIP-FM RSM. The crop size of one FWHM
performs better, in a global sense, even though larger crop sizes lead to slightly better
results at small angular separations. The ROC curves corresponding to the crop sizes
performance comparison are presented in Appendix B.3. Regarding the performance
of LOCI-FM RSM, the results in Figure 3.5 demonstrate again the interest of the
Gaussian maximum likelihood to define the flux parameter β mainly for the largest
separation. Both LOCI-FM RSM and LOCI RSM outperform clearly the LOCI S/N
map for the 2λ/D angular separation, while the reverse is true for the 8λ/D angular
separation. The ordering is similar to that of the KLIP case with LOCI-FM RSM
leading at 2λ/D and LOCI RSM being closer to the LOCI S/N map at 8λ/D, which
again seems to favour a combination of both the LOCI and LOCI-FM to benefit from
their respective strength. The search for an optimal mix between the different PSF
subtraction techniques is investigated in the next section.
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(b) NACO at 8λ/D
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(c) SPHERE at 2λ/D
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(d) SPHERE at 8λ/D
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Figure 3.4: ROC curves for the NACO, SPHERE and LMIRCam data sets, with
respectively, the KLIP-FM RSM map using the Gausssian maximum likelihood for
the pre-optimisation of the flux parameter β (red), the KLIP-FM RSM map with no
flux pre-optimisation (NF), which relies on the standard maximum likelihood used in
the original RSM map for the estimation of flux parameter β (blue), the forward model
matched filter KLIP-FMMF (green), the RSM map using KLIP (orange) and KLIP
using the standard S/N map (black).
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(a) NACO at 2λ/D
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(b) NACO at 8λ/D
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(c) SPHERE at 2λ/D

0 2 4 6 8 10 12 14 16
Full-frame mean FPs

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

0.865

0.825

0.760

0.670

0.545

0.315

0.060

0.005

0.380

0.215

0.155

0.075

0.010

0.005

0.875

0.815

0.750

0.680

0.525

0.280

0.105

0.025

7.000

6.000

5.000

4.000

3.000
2.000

RSM LOCI FM 5
RSM LOCI FM 5 NF
RSM LOCI
LOCI

(d) SPHERE at 8λ/D

0 1 2 3 4 5
Full-frame mean FPs

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

0.935

0.895

0.850

0.800

0.705

0.590

0.090

0.015

0.540

0.450

0.380

0.275

0.205

0.135

0.080

0.045

0.015

0.765

0.590

0.435

0.330

0.180

0.105

0.040

0.015

7.000

5.500

4.500

3.500

3.000

RSM LOCI FM 5
RSM LOCI FM 5 NF
RSM LOCI
LOCI

(e) LMIRCam at 2λ/D

0 5 10 15 20 25
Full-frame mean FPs

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

0.725

0.615

0.395

0.295

0.115

0.050

0.010

0.005
0.005

0.575

0.365

0.185

0.075

0.025

0.005

8.500

7.500

6.500

5.500

4.500

3.500

2.500

RSM LOCI FM 5
RSM LOCI FM 5 NF
RSM LOCI
LOCI

(f) LMIRCam at 8λ/D

Figure 3.5: ROC curves for the NACO, SPHERE and LMIRCam data sets, with,
respectively, the LOCI-FM RSM using the Gausssian maximum likelihood for the pre-
optimisation of the flux parameter β (red), the LOCI-FM RSM map with no flux
pre-optimisation (NF), which relies on the standard maximum likelihood used in the
original RSM map for the estimation of flux parameter β (blue), the RSM map using
LOCI (orange) and LOCI using the standard S/N map (black).
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3.4 Optimal PSF subtraction techniques selection

Having demonstrated the added value of the forward model versions of the RSM map,
at least at small angular separations, we are now left with five different PSF subtraction
techniques (annular PCA, KLIP, NMF, LLSG, LOCI) plus two forward model versions
to generate the RSM maps. Given that the Annular PCA and KLIP are relatively close
in their definition, we decided to focus solely on KLIP, as preliminary results demon-
strated their similarities in terms of performance and their non-complementarity. We
address in this section the difficult question of optimally selecting these PSF subtrac-
tion techniques to optimise the overall performance of the resulting RSM maps. In
particular, we investigate the dependence of the optimal combination on the instru-
ment and radial distance. We rely again on ROC curves to assess the performance of
the various combinations we considered.

In order to speed up the multiple RSM map estimations, we slightly modified the
original RSM map procedure as presented in chapter 2, with, however, no impact
on the final outcome of the algorithm. We divided the procedure into two separate
steps, the first one being the estimation of the likelihood provided in Eq. 2.7 and the
second one the estimation of the probability of being in the planetary regime given by
Eq. 2.3. A separate likelihood cube is estimated for every considered PSF subtraction
technique for the entire set of annuli. Some of these likelihood cubes are then stacked
along the time axis depending on the selected combination. The probabilities are
eventually estimated annulus-wise for every pixel of every frame and averaged along
the time axis to generate the final probability map4. This allows us to estimate only
once the likelihood cubes for the different PSF subtraction techniques, with the second
step, which is also the fastest, as the only one to be repeated for each combination.
The parametrisation of the underlying PSF subtraction techniques were selected to
maximise the overall performance for each data set.

4This architecture is implemented in the PyRSM python package, which includes all the develop-
ments presented here, and is available on GitHub: https://github.com/chdahlqvist/RSMmap.
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Figure 3.6: ROC curves for the NACO, SPHERE and LMIRCam data sets, with the
four best combinations of PSF subtraction techniques used to generate the RSM map
algorithm.
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The ROC curve computation follows the same procedure as in the previous section
with a region of one arcsecond considered for all three data sets and the curves being
computed for the two same angular separations. The main characteristics of the ROC
curves for the 16 selected combinations of PSF subtraction techniques may be found
in Appendix B.4. The two parameters we used to select the best combinations, are
the maximum TPR reached without any FP, and the average number of FPs inside
the entire frame at TPR=15. The first parameter is the most important one, as
it gives clues about the highest contrast the algorithm can reach without any false
detection. The second gives a measure of the number of bright background structures
that have not been properly treated by both the PSF subtraction techniques and the
RSM algorithm.

The results presented in appendix B.46 show large differences in terms of perfor-
mance between the considered combinations highlighting the importance of the PSF
subtraction techniques selection. Based on the two metrics introduced in the previous
paragraph, we selected the four best combinations for each data set. The ROC curves
for the two considered angular separations are presented in Figure 3.6. When compar-
ing these curves with the ones in Figures 3.4 and 3.5, we see that the improvement of
the RSM map performance occurs mainly at larger separations when considering mul-
tiple PSF subtraction techniques. The ROC curves are indeed very close to the ones
obtained with the KLIP-FM RSM and LOCI-FM RSM for the 2λ/D radial distance,
while the gap is much wider for the 8λ/D. Apart from the combinations 7 and 14
(see Figure B.3), which are selected for multiple data sets, the other combinations are
specific to each data set. This seems to demonstrate that the selection of an optimal
combination should be done at least on an instrument-specific basis. The definition
of a single optimal combination for the entire set of annuli seems also difficult, as we
often observe that higher performance at short separations goes hand in hand with
lower performance at large separations. A last element to consider for the selection
of the optimal combination is the threshold value for which the first false positive is
observed, which should be as small as possible since large values imply the presence
of bright structures in the probability map. We conclude from Figure 3.6 that in a
global sense, the best combinations are the combinations 3, 11, and 10 for the NACO,
SPHERE, and LMIRCam data sets, respectively. Looking at these three combina-
tions, we see that they share a common structure, being composed of the LLSG and
NMF PSF subtraction techniques, in addition to a LOCI- or KLIP-based PSF sub-
traction technique. The performance of this particular combination is probably due to

5The average number of FPs at TPR=1 is estimated by taking the highest threshold corresponding
to a TPR of 1, or if a TPR of 1 cannot be reached, the smallest probability threshold we considered
in our study, i.e., 0.5%.

6The ROC curves summary for the 16 selected combinations is presented in appendix B.4. via
a table and a set of figures presenting the same results. Figure B.3 provides a graphical comparison
between the combinations via bar charts while Table B.2 provides the detailed results.
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the differences between these PSF subtraction techniques in terms of residuals noise
profile. These differences should help to better average out the speckle noise via the
RSM algorithm. This structure therefore appears to be an interesting starting point
when studying a new data set. We further characterise these three combinations in
Section 3.6 by estimating their contrast curve.

The results presented in this section demonstrate the dependence of the optimal
set of PSF subtraction techniques on the instrument providing the ADI sequence, but
also on the angular separation, although a common underlying structure could be
seen. A larger set of ADI sequences would be needed to determine whether a single
optimal set of PSF subtraction techniques may be identified for a given instrument
or even multiple instruments, which could be very helpful when dealing with large
surveys. We investigate this question in the next chapter, as well as the development
of an automated procedure for the selection of the optimal set of PSF subtraction
techniques to be considered when generating the final RSM map.

3.5 Forward-backward model

In this section, we discuss an additional improvement of the original RSM map by
considering a forward-backward approach for the estimation of the probability, ξ1,ia .
The current approach relies solely on past observations to construct the cube of prob-
abilities while the entire cube of residuals is available for the estimation, that is, of
both past and future observations. We propose therefore to replace the current for-
ward approach by a forward-backward approach, which considers both past and future
observations. This method computes two separate sets of probabilities, the forward
probabilities as done in the original RSM framework:

ξf1,ia =
1∑
q=0

η1,iapq,1 ξ
f
q,ia−1∑1

q=0

∑1
s=0 ηs,iapq,s ξ

f
q,ia−1

, (3.10)

but also the backward probabilities, which rely on the probability estimated at index
ia + 1 instead of index ia − 1 to compute the probability at current index ia as:

ξb1,ia =
1∑
q=0

η1,iapq,1 ξ
b
q,ia+1∑1

q=0

∑1
s=0 ηs,iapq,s ξ

b
q,ia+1

. (3.11)

Once both sets have been estimated, the final probabilities are obtained by multi-
plying the two sequences of probabilities. A normalisation factor is applied, making
sure that the total probability equals 1 for every index ia. The final probabilities are
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therefore given by:

ξ1,ia =
ξf1,iaξ

b
1,ia∑1

s=0 ξ
f
s,ia
ξbs,ia

(3.12)

Because the RSM features a short-term memory, the probability of being in the
planetary regime builds up when we get closer to the planetary signal but with a
small latency. As can be seen from Figure 3.7, this latency leads to a shift of the
main peak towards the future for the forward approach and towards the past for the
backward approach. When relying on the forward-backward approach these shifts
cancel out and the main peak is centred on the true position of the planetary signal.
The forward-backward approach should therefore allow to reach a higher precision in
terms of exoplanet astrometry.
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Figure 3.7: Evolution of the probabilities for the forward, backward, and forward-
backward approaches using KLIP, around the location of a planetary candidate injected
in the Eri51 data set (radial distance of 4λ/D with a contrast of 3.76 ×10−5) .

In order to investigate the ability of both approaches to derive an accurate as-
trometric measurement for the detected planetary signal, we propose performing a
series of simulations based on the SPHERE data set. We study the evolution of the
astrometric precision for a range of contrasts, considering again a radial distance of
2λ/D and 8λ/D. As done in the previous sections, we base our simulation on syn-
thetic data sets, on the basis of which we apply a KLIP RSM map using the forward
and forward-backward version of the RSM algorithm. The negative fake companion
(NEGFC) method (Lagrange et al. 2010; Marois et al. 2010; Wertz, O. et al. 2017)
is also applied on the synthetic data sets, allowing for a comparison with a technique
dedicated to astrometry7. For each radial distance, we inject fake companions at 16

7We relied on the function provided by the VIP package (Gomez Gonzalez et al. 2017) for the
computation of the position via the NEGFC using a simplex (Nelder-Mead) optimisation.
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different position angles. The set of considered contrasts are computed based on the
KLIP RSM contrast curve, estimated using the approach proposed in the next section
(see Figure B.4). We define two sets of contrasts ranging from one to six times the
sensitivity limit at the considered radial distance in Figure B.4, with a step size of
0.5. In the case of the RSM map, the computation of the position is done by fitting
a two-dimensional Gaussian to the detected planetary signal. The astrometric error
bars for the three considered methods are computed as the root mean squared (rms)
position error between the obtained position and the injected fake companion true po-
sition, averaged over the two axes. The rms is estimated over the 16 fake companions
injected at each radial distance, for every contrast.

The results from Figure 3.8 demonstrate clearly the ability of the forward-backward
approach to decrease the position error compared to the original forward approach.
As can be seen from Figure 3.8, the RSM forward-backward approach performs better
than the NEGFC approach at large radial distances and for high contrasts. However,
for lower contrast, the RSM forward-backward approach reaches a noise floor around
4 mas, higher than the noise floor of the NEGFC approach, which is between 1.5 and
2 mas. This higher noise floor may be explained partly by the profile of the planetary
signal in the RSM map. As can be seen from Eq. 2.3, the RSM approach response
to a planetary signal is non linear and dependent on neighbouring pixels, leading
potentially to asymmetries in the azimuthal direction, even in the forward-backward
case. The algorithm architecture also leads to non-linearities along the radial axis
because of the annulus-wise probabilities computation. Finally, as can be seen from
Figure 3.7, the forward-backward approach reduces the amplitude of the planetary
signal within the probability map. All these elements affect the Gaussian fit and
therefore the astrometric precision that the RSM algorithm can reach. Nevertheless,
as demonstrated by the results from Figure 3.8, the RSM forward-backward approach
can reach a higher astrometric precision, especially at large radial distances and high
contrasts. This is due to the better ability of the RSM algorithm to detect faint
companions. It is also worth noting that the computation time is much lower when
using the RSM map than with the NEGFC approach or the more advanced Markov
Chain Monte Carlo version of NEGFC approach. The Gaussian fit of the RSM forward-
backward signal provides therefore a good first estimate, especially for high contrast
targets, which can then be used, for lower contrasts, as an initial position for more
advanced astrometry techniques. A more advanced planet characterisation algorithm
based on the RSM framework and using the NEGFC approach is developed in chapter
5. This new planet characterisation algorithm provides a more accurate estimation of
the planet photometry and astrometry independently for the contrast (see 5.4.1).

Another advantage of the forward-backward approach lies in its ability to reduce
the background speckle noise and smooth the probability curve, the noise being treated
differently by the forward and backward components. Looking at Figure 3.9, we see
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Figure 3.8: RMS position errors averaged over the two axes expressed in mas for
the KLIP RSM map using the forward (blue) and forward-backward (red) versions
of the RSM approach and for the NEGFC approach (orange). The two graphs show
the dependence of the averaged RMS position error on the contrast for respectively a
radial distance of 2λ/D and 8λ/D.

that the level of the residual speckle noise has reduced drastically for the LMIRCam
data set, the brightest speckle probability decreasing by around 40 percent. However
this noise reduction comes along with a reduced brightness of the planetary signal. This
reduced brightness is also illustrated in Figure 3.7, where the peak value obtained with
the forward-backward approach is lower than the one obtained with the two other
approaches, leading to a reduced detection threshold. This reduction of the planet
signal strength does not impact the performance of the forward-backward approach in
terms of ROC curve, with similar results for both the forward and forward-backward
approaches. The forward-backward approach outperforms even slightly the forward
approach at small separation (see Appendix B.2 for a comparison between the original
RSM approach and the forward-backward version in the case of KLIP).
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Figure 3.9: RSM map generated with forward and forward-backward approach for
the LMIRCam data set using KLIP with 18 principal components, a FOV rotation
expressed in terms of FWHM of 0.3 and a Gaussian distribution. A square root-based
scale has been used to increase the background speckle noise brightness.
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3.6 Contrast curve

This section is devoted to the estimation of contrast curves based on our RSM frame-
work. When relying on probability map for exoplanet detection, we cannot use the
traditional procedure to compute the contrast curve. This procedure selects the con-
trast corresponding to a TPR of 0.5 for a given probability of observing a FP (Jensen-
Clem et al. 2017). A 5σ threshold is usually chosen, which corresponds to a 3× 10−7

false alarm probability under a Gaussian noise hypothesis. In the case of the RSM
map, the probability provided as an output by the algorithm is a non linear function
of the underlying likelihoods, past observations, and the transfer matrix (see Eq. 2.3),
which precludes us from defining a similar probability threshold for the FP. We there-
fore rely on a procedure similar to the one we used for the ROC curve computation.
Considering a given flux, we inject fake companions at different position angles for a
given radial distance. The resulting synthetic data sets allow for the computation of a
threshold-dependent TPR. The next step is to select a convenient threshold. As it is
not possible to reach a 5σ confidence empirically, we select the threshold that leads to
the first detection of a FP within the entire frame (as done in Jensen-Clem et al. 2017,
but considering the entire frame instead of the selected annulus). This threshold defi-
nition provides a direct link with the background noise level while avoiding the usual
shortcomings of standard contrast curves, namely, the noise Gaussianity assumption
and the definition of the region used to empirically estimate the first two moments of
the noise.

We repeat the steps presented in the previous paragraphs on sets of fake companions
injected with different flux values until a TPR of 0.5 is found when detecting the first
FP. We use an iterative procedure based on linear interpolations to minimise the
number of flux values to be considered before reaching the TPR of 0.5. The procedure
starts with the estimation of the TPR for a selected pair of upper and lower flux values
(step 1 in Figure 3.10, respectively below and above the TPR of 0.5 preferably). A
linear interpolation then allows the determination of a best guess for the next flux
value to be estimated (step 2). Once the TPR is estimated for this new flux value, a
new linear interpolation is performed with this last flux value as upper bound (resp.
lower bound) if the TPR is above 0.5 (resp. below 0.5) keeping the previous lower
flux value (resp. upper flux value) (step 3). The procedure is repeated until a TPR
∈ [0.45, 0.55] is found using a tolerance interval with a size of 0.1. These steps are
summarised in Figure 3.10.

We estimated contrast curves for the three data sets, considering the original RSM
map using the optimal combination found in Section 3.6, the forward-backward version
of the algorithm, and the simple KLIP S/N map. We computed the contrast from a
radial distance of 2λ/D up to 8λ/D using a step-size of one λ/D and then up to 16λ/D

for the SPHERE data set with a step-size of two λ/D. The resulting contrast curves
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Figure 3.10: Procedure for the estimation of the contrast curve, the orange star
corresponds to the linear interpolation, the black star to the corresponding TPR, the
blue stars to the two previous estimations used for the linear interpolation and the
green star to the flux corresponding to a TPR of 0.5. The red curve makes the link
between the flux and the true positive rate in the case of a single false positive while
the green line shows the tolerance’s interval of [0.45, 0.55] .

may be found in Figure 3.11. These contrast curves confirm the findings made with
the ROC curves, the RSM map reaching in most cases a significantly higher contrast
for small angular separations and providing comparable contrast at larger separations.
The gap between the contrast curves of the KLIP S/N map and the RSM map is
significantly larger for the LMIRCam data set, highlighting the interest of the RSM
approach for this instrument. However, the lower number of frames and the smaller
angular rotation for this particular data set may explain these results. A larger number
of LMIRCam data sets is therefore needed to confirm these findings. We also find that
the RSM map and the forward-backward version have a similar performance for all
angular separations. Considering its higher precision and its lower background noise
level, the forward-backward version seems to be a promising alternative to the standard
RSM map.
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Figure 3.11: Contrast curves for the three data sets using the optimal combination of
PSF subtraction techniques obtained in Section 3.4 (resp. 3, 11, and 10) with the region
[2λ/D, 16λ/D] considered for the SPHERE data set and the region [2λ/D, 8λ/D]
considered for the other two data sets to get the contrast in the first arcsecond.
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3.7 Conclusion

In order to improve the RSM map sensitivity to faint exoplanets, we implemented
several improvements at different levels. We first considered a forward-model version
of the RSM map for two different PSF subtraction techniques, KLIP and LOCI. The
computation of forward-modelled PSFs allowed to take into account PSF distortions
due to the speckle field subtraction. We demonstrated the interest of the forward
model at small angular separations through the estimation of ROC curves. These
ROC curves highlight the radial dependence of the optimal PSF crop size, with larger
crop sizes leading to better results for small angular separations while the reverse is
true for smaller crop sizes. This could be explained by the fact that larger PSF crop
sizes better account for the self-subtraction patterns, whose intensity decreases with
radial distance as the relative movement of astrophysical signals increases with the
distance to the host star.

In a second step, we investigated the question of the optimal selection of the PSF
subtraction techniques to be included in the estimation of the RSMmap. Relying again
on ROC curves, we demonstrated the importance of this selection with sometimes large
differences between the performance of the considered combinations. The optimal
combinations seems to depend on the instrument, but also on the angular separation.

We proposed then an improvement directly related to the way probabilities are
estimated within the RSM algorithm by replacing the original forward approach by a
forward-backward approach. This approach relies on both past and future observations
to compute a final probability. This allows us to deal more efficiently with background
noise as speckles are not treated in the same way when relying on a forward and
backward approach. Another advantage of the forward-backward version of the RSM
map is its ability to extract more precisely the planetary astrometry.

We finally implemented a new framework to compute contrast curves in the case of
probability maps, which cannot be treated as S/N maps. We kept the TPR of 0.5 while
removing the Gaussian based noise threshold definition, replacing it with a threshold
based on the detection of the first FP. Using a procedure based on successive linear
interpolations, we were able to compute the contrast curve for the original RSM map
and the forward-backward version using the optimal combination obtained previously
and compare their performance with the one of a simple KLIP S/N map. The results
highlighted the ability of the RSM map to detect fainter companions at small angular
separations (below 400 mas) and the overall similar results for larger separations.
The contrast curves also confirmed the interest of the forward-backward approach as
it provides similar contrast curves while reducing the speckle background noise and
giving a higher precision in terms of astrometry.



Chapter 4

Auto-RSM: an automated parameter
selection algorithm for the RSM map
exoplanet detection algorithm

4.1 Introduction

The use of one or several PSF-subtraction techniques to generate a S/N map, or a
probability map via the RSM algorithm, requires the definition of multiple parameters,
specific to each method and varying potentially from one ADI sequence to another.
The selected set of parameters can have dramatic effects on the final detection map,
both in terms of noise and algorithm throughput. The selection of the optimal set of
parameters is usually done manually, which requires time and can lead to bias, as the
definition of the optimality of the set is driven by the ability of the user to analyse
properly the generated detection maps. The complexity of the optimal parameter se-
lection can be an obstacle to the use of some HCI data-processing techniques, and can
lead to unreliable results. This makes it also difficult to compare properly the per-
formance of HCI data-processing techniques, as their performance is parameter-driven
to a large extent, and therefore depends on subjective choices made by the user. To
mitigate these issues, we propose in the context of the RSM framework an optimisa-
tion procedure, called auto-RSM, to select automatically the best set of parameters
for the PSF-subtraction techniques, as well as for the RSM algorithm itself. To our
knowledge, such an extensive optimisation procedure has not yet been proposed in the
HCI literature, although some earlier works have already addressed partly the ques-
tion of the parameter optimisation. Approaches such as the S/N based optimisation
of the number of components for PCA (Gomez Gonzalez et al. 2017), or the direct
optimization of the nonlinear S/N function (Thompson & Marois 2021), focus on a
single PSF-subtraction technique, whereas here we proposed a more generic framework
applicable to most PSF-subtraction techniques. The proposed optimisation framework

85
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can be divided into three main steps: (i) the selection of the optimal set of param-
eters for the different PSF-subtraction techniques (and ADI sequences) via Bayesian
optimisation, (ii) the optimal parametrisation of the RSM algorithm, and (iii) the se-
lection of the optimal set of PSF-subtraction techniques (and ADI sequences) to be
considered for the computation of the final RSM probability map. This last step is
motivated by the fact that, when relying on multiple PSF-subtraction techniques and
multiple ADI sequences, some sequences may be noisier while some methods may bet-
ter cope with the noise, independently from their parametrisation. Special attention
should therefore be paid to the choice of the cubes of residuals generating the final
probability map. The optimisation step for the PSF-subtraction technique parame-
ters is not limited to auto-RSM, and can be performed separately if a S/N map is
preferred to the RSM probability map. Besides the development of the auto-RSM, we
therefore propose a variant of the algorithm adapted to the use of S/N maps instead
of RSM probability maps. The auto-S/N relies on the first step of the auto-RSM
algorithm, and on a modified selection framework allowing the optimal combination
of multiple S/N maps. The performance of both optimisation procedures is assessed
using the exoplanet imaging data challenge (EIDC Cantalloube et al. 2020b), which re-
groups ADI sequences generated by three state-of-the-art HCI instruments: SPHERE,
NIRC2 and LMIRCam. The EIDC initiative aims to provide the tools, i.e., the data
sets and performance metrics, to compare properly the various HCI data processing
techniques that have been developed recently. The EIDC first phase, which ended in
October 2020, regrouped and compared the results from 23 different submissions for
the ADI sub-challenge (Cantalloube et al. 2020b), making it a great tool to assess the
performance of a new approach. The results obtained with the different versions of
the proposed optimisation procedure demonstrate its interest when compared to the
results presented in Cantalloube et al. (2020b). The rest of the chapter is organised
as follows. Section 4.2 describes the procedure used to optimise the parameters of the
PSF-subtraction techniques. In Section 4.3, we introduce the RSM map framework
and present the next two steps of the auto-RSM framework: the optimal RSM pa-
rameter selection, and the selection of the optimal set of cubes of residuals used to
generate the final probability map. Section 4.4 is devoted to the performance assess-
ment of the optimisation procedure along with the comparison of different versions of
the optimisation procedure. Finally, Section 4.5 concludes on this work.

4.2 PSF-subtraction techniques optimisation

The proposed optimisation procedure relies on the concept of inverted parallactic an-
gles, which has already been used in the HCI literature (e.g. Gomez Gonzalez et al.
2018; Pairet et al. 2019). The sign of the parallactic angles used to de-rotate the ADI
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Table 4.1: Set of parameters selected for the optimisation of the six considered PSF-
subtraction techniques.

Parameters APCA NMF LLSG LOCI KLIP-FM LOCI-FM
Number of principal components X X X X
FOV minimal rotation X X X X
Number of azimuthal segments X X
Tolerance for error minimisation X X

sequence is flipped, blurring any planetary signal while preserving the noise temporal
correlation and statistical properties. The use of ADI sequences with flipped paral-
lactic angles should allow us to avoid biases due to the contribution from potential
planetary signals during the optimisation process. Although the inverted parallactic
angles approach allows us to blur planetary signals, it is not immune to potential bright
artefacts, which implies that particular attention needs to be paid to the elimination
of outliers from the computed optimal parameters.

Following the development of chapter 3, the RSM map algorithm can accommo-
date up to six different PSF-subtraction techniques: LOCI, annular PCA, KLIP, NMF,
LLSG, and forward-model versions of KLIP and LOCI. Each PSF-subtraction tech-
nique is characterised by its own set of parameters, which strongly affect the quality
of the reference PSF modelling. Table 4.1 presents the parameters that we have iden-
tified as the most relevant for the optimisation of the six considered PSF-subtraction
techniques. Other parameters, such as the annulus width, were tested during the
auto-RSM development, but were discarded from the optimisation framework as their
influence was found to be smaller or because of other practical considerations.

4.2.1 Definition of the loss function

Parameter optimisation requires the definition of a loss function f , which provides, for
a given set of parameters p, an outcome f(p) that can be maximised or minimised.
In the case of reference PSF modelling, the loss function should quantify the ability
of the PSF-subtraction technique to remove the residual noise contained in the ADI
sequence and to identify potential planetary companions. The definition of the achiev-
able planet/star flux ratio or contrast, for a given detection significance, is therefore a
good candidate to measure the PSF-subtraction technique performance. In the context
of HCI, the contrast is defined as follows (Jensen-Clem et al. 2017):

contrast =

(
factor× noise

stellar aperture photometry

)(
1

throughput

)
. (4.1)

The contrast is usually defined at a 5 σ level which implies factor = 5 with noise =

σ. As the parameter optimisation is done for a single ADI sequence at a time, the
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Figure 4.1: Estimation of the noise via the annulus-wise procedure proposed by Mawet
et al. (2014). The dotted white circles indicate the apertures whose flux is used for
the noise computation, while the red circular region is centred on the pixel for which
the noise needs to be estimated.

stellar aperture photometry does not impact the optimisation process and is therefore
irrelevant and set to 1. We rely on the procedure of Mawet et al. (2014) illustrated
in Figure 4.1 to determine the noise annulus-wise. For a given annulus and for an
aperture centred on the pixel of interest, with a diameter equal to the full width at
half maximum (FWHM) of the PSF, the noise is computed by considering the standard
deviation of the fluxes in all the non-overlapping apertures (one FWHM in diameter
each) included in this annulus. The number of apertures being relatively small for small
angular separations, the procedure implements a small statistics correction, relying on
a Student t-test to correct the multiplicative factor for the noise.

The throughput quantifies the attenuation of the planetary signal due to reference
PSF subtraction. In practice, the throughput is estimated by injecting a fake compan-
ion at a predefined position and computing the ratio between the injected aperture
flux and the recovered aperture flux after the reference PSF subtraction. Contrast
curves can be computed by averaging the sensitivity limit in terms of planet-to-star
contrast obtained by injecting several fake companions at different position angles for
a series of angular separations. Relying on several azimuthal positions and averaging
the associated contrasts reduces the impact of the residual speckles on the estimated
contrast. We follow this approach, but instead of injecting individual fake companions
separately to compute the average contrast, we inject several fake companions at once,
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which drastically reduces the computation time. We impose a minimum separation of
one FWHM between the apertures containing the fake companions, and a maximum
of eight fake companions per annulus, in order to limit potential cross-talk between
the injected fake companions. This safety distance, as well as the small intensity of
the injected fake companions1, provides a good approximation of the average contrast
(see Appendix C.3 for a comparison between sequential and multiple injections) while
limiting the computation time, which is crucial here as parameter optimisation re-
quires a large number of contrast estimations. The loss function computation may be
summarised as follows:

1. Reference PSF estimation using the selected post-processing technique and set
of parameters;

2. reference PSF subtraction from the original ADI sequence, de-rotation of the
cube of residuals, and median combination of the resulting frames;

3. computation of the fluxes for the entire set of apertures within the selected
annulus in the median-combined frame obtained in step 2, and estimation of the
noise relying on a Student t-test;

4. injection of fake companions at the selected set of azimuths with flux value
defined as five times the noise computed in step 3;

5. computation of the cube of residuals for the ADI sequence containing the fake
companions and median combination;

6. computation of the throughputs by comparing the aperture flux of the injected
companions to that of the retrieved companions after PSF subtraction (difference
between final frame of step 5 and step 2);

7. estimation of the contrasts via Eq. 4.1 and computation of the average contrast.

4.2.2 Parameter selection via Bayesian optimisation

The NMF and LLSG PSF-subtraction techniques have integer parameters that are,
in practice, restricted to a small range of possible values. One can therefore easily
select their optimal parameters by going through their entire parameter space, and
simply applying steps 1-7 to compute the contrast for each set of parameters. The
optimal set of parameters is the one that minimises the contrast. However, for the
other PSF-subtraction techniques, part of the parameter space is continuous, which

1Following the methodology of Gomez Gonzalez et al. (2017), the intensity of the injected com-
panions represents only a few percent of the pixel intensity within the ADI sequence for a given
annulus, which limits the impact of the multiple injections on the estimation of the reference PSF.
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prevents exploration of the entire parameter space. A more advanced minimisation
algorithm is therefore needed. The derivatives and convexity properties of our loss
function are unfortunately unknown. However, it is expected that our loss function,
i.e. the function describing the evolution of the annulus-wise contrast in terms of the
selected parameters, is non-convex and most probably non-linear. This implies that we
cannot rely on mainstream minimisation approaches (e.g. Newton-Conjugate-Gradient
algorithm or Nelder-Mead Simplex algorithm). In addition, evaluating the annulus-
wise contrast is expensive, because of the numerous steps involved in its estimation.
We therefore cannot simply rely on Monte Carlo simulation or random searches to
explore the parameter space.

Considering all these constraints, we decided to rely on Bayesian optimisation to
select the optimal set of parameters for the remaining PSF-subtraction techniques.
Bayesian optimisation is a powerful strategy to limit the number of loss function
evaluations needed to reach an extremum (see, e.g. Mockus et al. 1978; Jones et al.
1998). This strategy belongs to a class of algorithms called sequential model-based
optimisation (SMBO) algorithms. This class of algorithms uses previous observations
of the loss function to determine the position of the next point inside the parameter
space to be evaluated. It is called Bayesian optimisation because it relies on Bayes’
theorem to define the posterior probability of the loss function, on which the sampling
strategy is based. Bayes’ theorem states that the posterior probability associated with
a model, given a set of observations, is proportional to the likelihood of the observations
given the model, multiplied by the prior probability of the model:

P (f | O1:t) ∝ P (O1:t | f)P (f), (4.2)

where f is the loss function to optimise and O1:t = {p1:t, f(p1:t)} is the set of obser-
vations of the loss function, with p1:t being the set of tested points (see Table C.1 for
a summary of all the mathematical notions used throughout the chapter). In the case
of Bayesian optimisation, we assume a Gaussian likelihood with noise, as follows:

P (O1:t | f) ∼ N (f(p), σ2
ε ), (4.3)

where Ot = f(pt) + ε with ε ∼ N (0, σ2
ε ).

Regarding the prior distribution for our loss function, Mockus (1994) proposed re-
lying on a Gaussian process (GP) prior as this induces a posterior distribution over
the loss function that is analytically tractable2. A GP is the generalisation of a Gaus-

2This implies that it is possible to update the posterior probability with the observations made



4.2. PSF-SUBTRACTION TECHNIQUES OPTIMISATION 91

sian distribution to a function, replacing the distribution over random variables by a
distribution over functions. A GP is fully characterised by its mean function m(p),
and its covariance function K, where

f(p1:t) ∼ GP (m(p1:t),K) ∼ N (m(p1:t),K). (4.4)

The GP process can be seen as a function that returns the mean and variance of a
Gaussian distribution over the possible values of f at p, instead of returning a scalar
f(p). We make the assumption that the prior mean is the zero function m(p) = 0 and
we select a commonly used covariance function, the squared exponential function:

[K]i,j = k(pi,pj) = exp

(
− 1

2l2
‖ pi − pj ‖2

)
, (4.5)

where l is the length scale of the kernel.

Having documented the posterior probability computation for our loss function,
we need to define a sampling strategy. Bayesian optimisation relies on an acquisition
function to define how to sample the parameter space. This function is based on the
current knowledge of the loss function, i.e. the posterior probability. The acquisition
function is a function of the posterior distribution over the loss function f , which
provides a performance metric for all new sets of parameters. The set of parameters
with the highest performance is then chosen as the next point of the parameter space to
be sampled. A popular acquisition function is the expected improvement (EI, Mockus
et al. 1978; Jones et al. 1998) which is defined as follows:

EI(pt+1) = E [max {0, f(pt+1)− f(p̂)}] , (4.6)

where E is the expected value and p̂ = argmaxpi∈p1:tf(pi) is the current optimal set
of parameters. We see that in the case of Bayesian optimisation, we look for the
maximum value of the loss function. As we are trying to minimise the contrast for a
given set of parameters, we simply define our loss function f(p) as the inverse of the
contrast averaged over the selected set of azimuths (see Section 4.2.1).

An interesting feature of the EI is that it can be evaluated analytically under the
GP model, yielding (see Appendix C.2 for more details about the derivation of these
expressions)

with a new set of parameters. This will help us to create a continuous function to select the next
point to sample in the parameter space.



92 CHAPTER 4. AUTO-RSM

EI(pt+1) =(µ(pt+1)− f(p̂))Φ(Z) + σ(pt+1)φ(Z) if σ(pt+1) > 0

0 if σ(pt+1) = 0
, (4.7)

where Φ(Z) and φ(Z) are respectively the cumulative distribution and probability
density function of the Gaussian distribution, µ(pt+1) and σ(pt+1) are the mean and
variance of the Gaussian posterior distribution, and Z = [µ(pt+1)− f(p̂)] /σ(pt+1).
We see from this last expression that the EI is high either when the expected value
of the loss µ(p) is larger than the maximum value of the loss function f(p̂) or when
the uncertainty σ(pt+1) around the selected set of parameters pt+1 is high. The EI
approach aims to minimise the number of function evaluations by performing a trade-
off between exploitation and exploration at each step. The EI exploits the existing set
of observations by favouring the region where the expected value of f(pt+1) is high,
while it also explores unknown regions where the uncertainty associated with the loss
function is high.

Bayesian optimisation starts with the initialisation of the posterior probability by
estimating the loss function for several sets of parameters via random search in the
parameter space. Once this initial population of observations is computed, the rest of
the algorithm can be summarised as follows.

• Based on the GP model, use random search to find the pt+1 that maximises the
EI, pt+1 = argmax [EI(pt+1)];

• compute the contrast for the new set of parameters pt+1;

• update the posterior expectation of the contrast function using the GP model
(see Appendix C.2);

• repeat the previous steps for a given number of iterations.

The number of random searches to compute the initial GP and the number of
iterations for the Bayesian optimisation depend on the size of the parameter space
associated with the considered PSF-subtraction techniques. A specific number of ran-
dom searches and iterations are therefore selected for each PSF-subtraction technique.
At the end of the Bayesian optimisation, the minimal average contrast for a given
annulus a and PSF-subtraction technique m is stored in a matrix element Ca,m, along
with the set of parameters p in another matrix Pa,m.

This first step of the auto-RSM algorithm may be used outside the RSM framework,
allowing the production of S/N maps based on the cubes of residuals generated by op-
timised PSF-subtraction techniques. A S/N-based version of the auto-RSM framework
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called auto-S/N has been developed and is presented in Appendix C.4. Auto-S/N op-
timally combines S/N maps computed from the cubes of residuals generated by the
optimised PSF-subtraction techniques, relying on the same greedy approach as for
auto-RSM (see Section 4.3.2). The performance of auto-S/N is assessed in Appendix
C.4.2 using the same metrics as for auto-RSM (see Section 4.4). The lower performance
of auto-S/N implies that auto-RSM should preferred, despite its longer computation
time, although the two approaches can be complementary to some extent.

4.3 RSM map optimisation

4.3.1 Parameter selection for the RSM map

Following the optimisation of the PSF-subtraction techniques to be used in the RSM
model (Section 4.2), the next step is to consider the parametrisation of the RSM
algorithm itself. The use of the RSM algorithm requires the definition of four main
parameters. These parameters are (i) the crop-size θ for the planetary model m, (ii)
the definition of the region of the cube of residuals considered for the computation of
the noise properties, whose estimation can be done (iii) empirically or via best fit, and
(iv) the method used to compute the intensity of the potential planetary candidate β.
When defining the flux parameter β as a multiple of the noise standard deviation, an
additional parameter δ has to be used to determine how far into the noise distribution
tail we are looking for potential planetary candidates.

An optimal set of parameters for the RSM algorithm is computed separately for
each PSF-subtraction technique, and is based on a performance metric computed using
the generated RSM map. We do not rely on multiple simultaneous injections of fake
companions at different azimuths, as done previously, as the RSM approach assumes a
single planetary signal per annulus. Injecting the fake companions sequentially would
largely increase the computation time. We therefore define, annulus-wise, a single
median position in terms of noise intensity, common to all PSF-subtraction techniques.
This allows a fair comparison between the PSF-subtraction techniques when selecting
the best set of likelihood cubes to generate the final RSM map in the last step of
the auto-RSM framework. The determination of this median position starts with de-
rotation of the original ADI sequence and the median-combination of the resulting
set of frames. We then compute the flux of every aperture contained in the selected
annulus, each aperture centre being separated by a single pixel in contrast with the
approach of Mawet et al. (2014), where the apertures centre are separated by one
FWHM. We define the fake companion injection position as the centre of the aperture
for which the flux is the median of all the apertures fluxes. We decided to compute
this median-flux position in the original ADI sequence, as the median-flux position
inside the PSF-subtracted final frame differs from one PSF subtraction technique to
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the other, although a single common position is required for the final step of the auto-
RSM algorithm. Regarding the contrast used for the optimisation of the RSM map
parameters, for each PSF-subtraction technique, we select the average contrast Ca,m
obtained with the optimal set of parameters (see Table C.2 for a summary of the
mathematical notation used to describe the auto-RSM framework). Here, we make
the assumption that taking the median-flux position and the average contrast should
provide a balanced optimised parametrisation that works for brighter as well as fainter
planetary signals.

The performance metric used for the RSM algorithm optimisation is then defined
as the peak probability in a circular aperture with a diameter of one FWHM centred
on the position of the injected fake companion in the final RSM map divided by the
maximum probability observed in the remaining part of the annulus of width equal
to one FWHM. This allows us to account for potential bright speckles within the
probability map as well as for the intensity of the planetary signal. Having defined
the loss function used for the RSM parameter selection, we now consider the different
parameters that should be optimised.

Crop size

The crop size θ is one of the parameters affecting the final probability map the most.
This is especially true when relying on forward-model versions of the PSF-subtraction
techniques, where a larger crop size should be considered to take advantage of the
modelling of the negative side lobes appearing on either side of the planetary signal
peak , which are due to self-subtraction associated with PSF-subtraction techniques.
As seen in chapter 3, self-subtraction depends on the relative position of the planetary
candidate compared to the host star, with stronger self-subtraction at small angular
separations and almost no self-subtraction at large angular separations. Indeed, the
apparent movement of the planetary candidate increases linearly with the distance to
the host star as the parallactic angles remain fixed but the radius increases. Larger
apparent movement between two frames goes along with reduced self-subtraction. This
implies that the optimal crop size for forward-modelled PSF should decrease with
angular separation, as the negative side lobes appearing on either side of the planetary
signal peak are replaced by noise. The selection of the optimal crop size should account
for this effect as well as the range of parallactic angles, which is specific to each data
set and also affects self-subtraction patterns. For PSF-subtraction techniques relying
on the off-axis PSF to model the planetary signal, we consider a smaller range of crop
sizes, as we do not take into account the distortion due to reference PSF subtraction.
A maximum size of one FWHM is considered when relying on off-axis PSFs compared
to the two FWHMs used for foward-model PSF-subtraction techniques. The definition
of a proper crop size is nevertheless still important, because considering the shape of
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the PSF peak should help in disentangling planetary signals from speckle noise.

Parametrisation of the noise distribution

One of the corner stones of the RSM algorithm is the proper definition of the likeli-
hood function associated with every patch contained in a given annulus. Four potential
noise distribution functions are considered to compute these likelihoods, namely the
Gaussian and the Laplacian distribution, the Huber loss (Pairet et al. 2019), and a
hybrid distribution built as a weighted sum of Gaussian and Laplacian distributions
(see chapter 2). The first two noise distribution functions require estimation of the
noise mean and variance, whereas the other two require additional parameters. Se-
lection of the optimal distribution is done automatically within the RSM algorithm
via a best-fit approach. However, the estimation of the parameters characterising the
residual noise distribution function necessitates proper definition of the set of pixels
to be considered. Different approaches are tested in auto-RSM to determine the most
relevant set of pixels inside the cube of residuals. We have selected five possible ways
to evaluate the noise properties:

• Spatio-temporal estimation: The set of pixels incorporates the pixels inside the
selected annulus3 for all the frames contained in the cube of residuals (see ’Spatio-
temporal’ in Figure 4.2). The distribution function parameters depend solely on
the radial distance a (µa and σ2

a).

• Frame-based estimation: The set of pixels incorporates the pixels of a given
frame inside the selected annulus (see ‘Frame’ in Figure 4.2). The distribution
function parameters depend on both the radial distance a and the time-frame t
(µa,t and σ2

a,t).

• Frame with mask-based estimation: The set of pixels incorporates the pixels of
a given frame inside the selected annulus, apart from a region with a diameter
of one FWHM centred on the pixels for which the likelihood is estimated (see
‘Frame with mask’ in Figure 4.2). The distribution function parameters depend
on both the radial distance a and the pixels index ia (µa,ia and σ2

a,ia).

• Segment with mask-based estimation: The set of pixels incorporates the pixels
of all frames inside a section (of length equal to three FWHMs) of the selected
annulus, apart from a region with a diameter of one FWHM centred on the pixels
for which the likelihood is estimated (see ‘Segment with mask’ in Figure 4.2).
The distribution function parameters depend on both the radial distance a and
the pixels index ia (µa,ia and σ2

a,ia).

3 By selected annulus, we are referring to the annulus of one FWHM in width centred on the
radial distance of interest a.
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• Temporal estimation: The last method is inspired by the approach developed
in Flasseur et al. (2018). This approach relies on the cube of residuals before
de-rotation. For a given patch inside the selected annulus, the pixels selected
for computation of the distribution function parameters are the ones sharing
the same position within the cube of residuals before de-rotation but taken at
different times (see ‘Temporal’ in Figure 4.2). All the frames except for the frame
containing the selected patch are therefore considered. The distribution function
parameters depend on both the radial distance a and the pixels index ia (µa,ia
and σ2

a,ia).

(a) Spatio-temporal (b) Frame (c) Frame with mask

(d) Segment with mask (e) Temporal

Figure 4.2: Graphical representation of the estimation of residual noise properties
using the five proposed approaches. The red circle/point indicates the pixel for which
the likelihood is estimated. White and blue circles encompass the set of pixels used for
computation of the noise properties. White circles indicate that the entire set of frames
from the derotated cube are used for the computation, while blue circles indicate that
the estimation is done frame-wise. Black circles define a mask, i.e. pixels that are not
considered in the estimation.

The use of these different methods allows us to investigate which part of the neigh-
bourhood around the patch is relevant in order to correctly estimate the noise profile.
This explains the wide variety of proposed methods both in terms of temporal and
spatial position.
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Depending on the region selected to compute the noise properties, a specific noise
distribution function and parametrisation can be selected for a single patch, a single
frame, or the entire set of frames and patches contained in the considered annulus.
The estimation of noise distribution parameters can be done empirically or via best
fit. The choice between empirical estimation and estimation via best fit represents an
additional parameter to be considered during the RSM parameter optimisation.

Estimation of the planetary intensity

Two different methods were proposed to compute the planetary intensity parameter
β in chapter 2 and 3. The first one relies on an additional parameter δ to define the
expected position of the potential planetary signal intensity in the noise distribution.
The intensity parameter β is defined as δ multiplied by the estimated noise standard
deviation. A set of δ is tested and the optimal one is selected via maximisation of
the total likelihood associated with a given angular distance (see Eq. 2.7). In the
case of auto-RSM, this last step is removed and the optimal δ is selected during the
auto-RSM optimisation process. Preliminary tests have shown that the optimisation
of δ using the auto-RSM performance metric can significantly reduce the background
noise in the RSM probability map compared to the total likelihood-based optimisation
proposed in chapter 2, while leaving planetary signals almost unaffected for δ ≤ 5.

The second approach relies on Gaussian maximum likelihood to define a pixel-
wise intensity. The estimation of the intensity parameter β via Gaussian maximum
likelihood requires the computation of a frame-wise standard deviation. The expression
for the pixel-wise intensity is

β̃ =

∑T
j i
>
j mj/σj∑T

j m
>
j mj/σj

, (4.8)

with σj being the noise standard deviation, i>j the observed patch, andmj the planet
model for frame j. Frame-wise computation of the standard deviation implies that the
mean and variance computation described in the previous section should be performed
via the frame-based estimation, the frame with mask-based estimation, or the temporal
estimation, while for the other intensity computation methods, all five approaches can
be used.

Sequential parameter optimisation

While optimisation of the PSF-subtraction techniques is done in a single step, optimi-
sation of the RSM parameters is done partly sequentially. The estimation of the RSM
map is indeed much slower than the estimation of the contrast. Depending on the
region considered for the estimation of the noise properties, the computation time can
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further increase, especially when relying on the frame with mask-based estimation or
the temporal estimation, preventing optimisation of all the parameters in a single step.
The selection of the optimal region to compute the noise properties is therefore treated
separately. The selection of the optimal set of RSM parameters starts with computa-
tion of the RSM map performance metric for the two methods used to determine the
intensity parameter β using the frame-based estimation of the noise properties4. For
both methods, a separate performance metric is estimated for the selected range of
crop sizes, but also for the selected range of δ for the method defining the intensity
as a multiple of the noise standard deviation. The selection of the optimal value for
all three parameters (i.e. δ, the crop size θ and the method to compute the intensity)
is performed by comparing the obtained RSM performance metric. The faster com-
putation of the RSM map when relying on the frame-based estimation of the noise
properties allows optimisation of these three parameters in a single step. The next
step involves the selection of the optimal region for estimation of the noise properties.
Depending on the method selected to compute the intensity, a reduced set of regions
may be considered. Optimisation of the RSM parameters ends by determining whether
the noise properties are optimally computed empirically or via a best fit.

4.3.2 Optimal combination of the likelihood cubes

Having optimised the parameters of the PSF-subtraction techniques as well as the ones
of the RSM algorithm, we are now left with a series of optimal cubes of likelihoods.
One of the most interesting features of the RSM framework is its ability to use several
cubes of residuals generated with different PSF-subtraction techniques to maximise
the planetary signal, while minimising the residual speckle noise. The RSM algorithm
takes advantage of the diversity of noise structures in the different cubes of residuals.
This diversity is reflected in the noise probability distribution but also in the repartition
of maxima and minima in the different speckle fields. By taking both aspects into
account, the RSM algorithm is able to better average out the noise and improve the
ratio between potential planetary signals and the residual speckle noise.

Despite optimisation of the parameters, some PSF-subtraction techniques may be
less suited to generating a clean cube of residuals for some data sets. Redundancies in
the information contained in several cubes of residuals may also degrade the perfor-
mance of the RSM map by increasing the relative importance of some speckles. When
dealing with several ADI sequences of the same object, some sequences can also be
much noisier depending on the observing conditions. All these elements necessitate
proper selection of the likelihood cubes used to generate the optimal final RSM map.

4The frame-based estimation of the noise properties has been selected as initial guess because it
is shared by the two approaches used to compute the intensity parameter β, and is much faster than
the frame with mask and the temporal estimations.
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We propose the investigation of two possible approaches to select the set of likelihood
cubes used for computation of the final probability map, a bottom-up approach and a
top-down approach, making use of a greedy selection framework.

As the RSM algorithm relies on spatio-temporal series of likelihoods to compute
annulus-wise probabilities (see Eq. 2.3), we start by defining the set of available series
of likelihoods for a given radius a by Y a =

{
Y a
c,m, ∀c ∈ [0, Nsequence],m ∈ [0, Ntechnique]

}
.

The Y a
c,m time-series corresponds to the set of likelihoods ηs,ia given in the Gaussian

case by Eq. 2.7, generated for the cube c with the PSF-subtraction techniques m for
all pixel indices ia of the annulus a. This last step of auto-RSM is used to define
a subset Za ⊂ Y a regrouping the series of likelihoods maximising the performance
metric of the RSM probability map for annulus a. This selection step shares the same
performance metric as the RSM parameters optimisation step. To compute the perfor-
mance metric, a single fake companion injection is used for each annulus for the entire
set of PSF-subtraction techniques5. The selected set of time-series of likelihoods Za

are then concatenated to form a single time-series per annulus and used to compute
the probabilities via Eq. 2.3. The RSM performance metric, estimated based on these
probabilities, allows us to select the optimal set Za.

Bottom-up approach

When relying on a bottom-up approach, the iterative selection algorithm starts with
an empty set Za. At each iteration, the series of likelihoods Y a

c,m that leads to the
highest performance metric increase is added to the set Za. The procedure is repeated
until no additional series of likelihoods leads to an increase in the performance metric.
The bottom-up greedy selection algorithm can be summarised by the following steps.

• For each series of likelihood contained in Y a, compute the corresponding RSM
map performance metric using the set of series of likelihoods Za∪Y a

c,m for annulus
a.

• At each iteration, select the series of likelihoods providing the largest incremental
performance metric increase and include the considered series of likelihoods Y a

c∗,m∗

in the set of selected series Za. Remove from Y a the selected series Y a
c∗,m∗, as

well as any other series included in Y a that did not lead to an increase in the
performance metric.

• Repeat the previous two steps until Y a is empty.

5For a given annulus a∗, the largest contrast in the set Ca∗,m is used for the bottom-up approach
and the smallest for the top-down, as they provide the best performance based on tests
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Top-down approach

In contrast with the bottom-up approach, the top-down iterative selection algorithm
starts with a set Za = Y a and relies on pruning steps to reduce the number of series
of likelihoods included in Za until an optimum is reached. The steps of the top-down
greedy selection algorithm are the following.

• For each series of likelihood contained in Za, compute the RSM map performance
metric corresponding to the set of series of likelihoods Za \ Y a

c,m for annulus a.

• At each iteration, select the series of likelihoods providing the largest incremental
performance metric increase and remove the considered series of likelihoods Y a

c∗,m∗

from the set of selected series Za.

• Repeat the two previous steps until no more incremental performance metric
decrease can be observed.

Pseudo codes of both approaches are provided in Tables C.3 and C.4. The po-
tential redundancies in the information contained in different cubes of likelihoods,
as well as the iterative procedure used by the RSM algorithm to generate the final
probability map, mean that the set of series of likelihoods are not truly independent,
which prevents us from finding the global optimum while using a greedy approach.
However, these bottom-up and top-down greedy selection algorithms provide a good
approximation of the global optimum in a reasonable amount of time.

4.3.3 Practical implementation

After having presented the different steps of the proposed optimisation framework for
the RSM map algorithm, these steps can now be merged into a single optimisation
procedure, which is implemented in the PyRSM package6. Two different modes of
this optimisation procedure are proposed: the full-frame mode and the annular mode.
The two modes share a common structure but their output dependence on the angular
separation is different. In the full-frame mode, there is no dependence between the
optimal set of parameters and the angular separation to the host star, with a single
set of parameters being used for every annulus. In the annular mode, the frames are
divided into successive annuli of pre-defined width, and a set of optimal parameters
is defined for each annulus. As the noise distribution and parameters evolve with the
angular separation, this second mode accommodates possible evolutions of the optimal
parametrisation with the angular separation to the host star. Figure 4.3 provides a
graphical representation of the two different modes in the case of optimisation of the
FOV minimum rotation used for the annular PCA estimation.

6https://github.com/chdahlqvist/RSMmap.
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Figure 4.3: Graphical representation of the optimisation of the FOV minimal rotation
for the annular PCA with the two modes of the auto-RSM algorithm for the SPHERE
1 data set of the EIDC. The full-frame version (illustrated in the bottom left corner)
considers a set of annuli of width equal to one FWHM to provide a single set of optimal
parameters. The annular version (top left) considers successive annuli of width equal
to one FWHM to provide annulus-wise sets of optimal parameters.

As illustrated in Figure 4.3, in both cases the frames are divided into successive
annuli of one FWHM7 in width. The red dotted circles represent the centres of the
selected annuli on which the apertures for the optimisation of the PSF-subtraction
techniques are centred, and for which probabilities are computed to optimise the pa-
rameters of the RSM algorithm and select the optimal set Za. We do not consider
all angular separations but a subset of them separated by one FWHM, as we expect
a slow evolution of the parameters. This should give a good representation of the
evolution of the parameters or a good overview in the case of the full-frame mode,
while reducing the computation time8.

In the case of the full-frame mode, we consider a subset of the annuli of the annular

7A width equal to one FWHM often provides the best performance, but other widths can be used.
8A mode considering all angular separations has been tested and provides results close to the

other modes while requiring a much longer computation time.
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mode, with an increasing distance between the selected annuli as we move away from
the host star. This allows us to increase the relative weight of small angular separa-
tions, the noisier region being located near the host star, and reduce the estimation
time. The proposed annulus selection rule for the full-frame mode can be summarised
as

∆a =


FWHM if a ∈ [ FWHM, 4 FWHM]

2 FWHM if a ∈]4 FWHM, 8 FWHM]

4 FWHM if a ∈]8 FWHM, amax]

, (4.9)

where ∆a is the separation between two successive annuli used in the optimisation
procedure, and amax is the largest annulus to be considered in the RSM map computa-
tion. Selection of the optimal parameter set for the PSF-subtraction techniques in the
full-frame mode is achieved by comparing the normalised contrasts generated with the
different tested parametrisations summed over the selected angular separations. We
start by computing contrasts for a common set of parametrisations9 for each consid-
ered angular separation. For a given angular separation, the median of the obtained
contrasts is then computed and used to normalise all the contrasts. The normalised
contrasts are finally summed over the selected angular separations provided by Eq. 4.9
for each considered parametrisation. The optimal set of parameters is then the one
that minimises the summed normalised contrast10. As the contrast decreases with the
angular separation, the normalisation allows a proper summation of the contrasts gen-
erated at the different angular distances. A similar approach is used for optimisation
of the RSM algorithm and selection of the optimal likelihoods, although no normal-
isation is required according to the definition of the performance metric. As regards
the annular mode, no normalisation is required as the optimisation is done separately
for each selected annulus.

The complete auto-RSM optimisation procedures for the two considered modes are
summarised in Tables C.5 and C.6. As can be seen from both tables, the optimisation
procedures can be divided into four main steps, (i) optimisation of the PSF-subtraction
techniques, (ii) optimisation of the RSM algorithm, (iii) optimal combination of models
and sequences, and (iv) computation of the final RSM probability map (respectively
the opti_model, opti_RSM, opti_combination, and opti_map function of the PyRSM
class). In both modes we include the estimation of a background noise threshold for
every annulus, by taking, for each annulus, the maximum probability observed in

9We consider all the tested parametrisations for the NMF and LLSF and the parametrisations
tested during the initialisation of the Gaussian process for the other PSF-subtraction techniques.

10The inverse of the normalised average contrast summed over the considered angular separation
is used as loss function for the Bayesian optimisation.
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the map generated with the reversed parallactic angles. Following subtraction of the
angular separation-dependent thresholds, we set all negative probabilities to zero to
generate the final map. The threshold subtraction should help to reduce the noise,
especially near the host star where most residual speckles are observed. However, these
thresholds should not be used as detection thresholds, as the noise statistics properties
of the original ADI sequence are not exactly equivalent to the ADI sequence with sign-
flipped parallactic angles.

Considering the existence of potential bright artefacts in the map generated with
the reversed parallactic angles, we rely on a Hampel filter and a polynomial fit to
smooth the radial evolution of the thresholds in the full-frame mode. As the parametri-
sation of the RSM algorithm has a large impact on planetary signals and background
noise levels, we do not apply the threshold fit for the annular mode, as the RSM
parametrisation evolves with the angular separations. However, we do apply a smooth-
ing procedure for the parameters of the PSF-subtraction techniques by applying a
moving average after a Hampel filter. This helps in smoothing potential discontinu-
ities between annuli in the set of optimal parameters and provides a more consistent
final probability map. As computation of the residual cubes is done annulus-wise11,
we need a single set of parameters12 for a number of angular separations equal to the
width of the annulus. However, the RSM map computation requires the definition of a
set of parameters for every considered angular separation. A radial basis multiquadric
function (RBF) is used to perform an interpolation (Hardy 1971) of the RSM opti-
mal parameters for the annular mode to provide a set of parameters for each angular
distance.

4.4 Performance assessment

4.4.1 Description of the data sets

As mentioned in the introduction, we base our performance analysis on the data set of
the EIDC ADI subchallenge (Cantalloube et al. 2020b). This data set regroups nine
ADI sequences, three for each considered HCI instrument, namely VLT/SPHERE-
IRDIS (Beuzit et al. 2019), Keck/NIRC2 (Serabyn et al. 2017), and LBT/LMIRCam
(Skrutskie et al. 2010). The ADI sequences were obtained in H2-band for SPHERE
and Lp-band for the two other instruments. For each ADI sequence, a set of four fits
files is provided: the temporal cube of images, the parallactic angles variation corrected
from true north, a non-coronagraphic or non-saturated PSF of the instrument, and

11An annular version of the NMF algorithm has been developed for the annular mode of the
auto-RSM. The other PSF-subtraction techniques rely already on an annulus-wise estimation of the
residuals.

12The set of parameters that has been optimised based on the set of apertures centred on the
annulus
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the pixel scale of the detector. The ADI sequences are pre-reduced using the dedicated
pre-processing pipeline for the three instruments (more details about the reduction are
provided by Cantalloube et al. 2020b).

As the LMIRCam ADI sequences regroup between 3219 and 4838 frames, we relied
on moving averages to reduce this number to around 250 frames in order to limit the
computation time. The reduction of the number of frames starts with the de-rotation
of the original cube of images using the parallactic angle variations provided. A moving
average is then applied on the de-rotated cubes along the time axis with a window
and step size of 20 frames for the LMIRCam sequence 1 and 3, and 15 frames for the
LMIRCam sequence 2. The same is done on the set of parallactic angle variations. The
inverse reduced parallactic angle variations are then used to re-rotate the resulting ADI
sequences. In addition to reducing the computation time, the moving average allows
part of the noise to be averaged out in advance. More details about the nine ADI
sequences are provided in Table C.7.

To assess the performance of the HCI data-processing techniques, fake companions
were injected by the EIDC organisers using the VIP package (Gomez Gonzalez et al.
2017). Between 0 and 5 point sources were injected into each ADI sequence for a total
of 20 planetary signals within the entire EIDC ADI subchallenge data set. These point
sources were injected using the opposite parallactic angles, avoiding any interference
with potential existing planetary signals while keeping the speckle noise statistics13.
The separation, the azimuth, and the contrast of the injected fake companions were
chosen randomly. The contrasts range between 2σ and 8σ based on a contrast curve
computed with the regular annular PCA implemented in the VIP package (Gomez
Gonzalez et al. 2017), which is referred to as the ‘baseline’ in the performance analysis
presented in Cantalloube et al. (2020b). The detection maps of the baseline consist in
S/N maps computed using the approach of Mawet et al. (2014). The detection maps
generated with the baseline approach are used in our model comparison.

4.4.2 Performance metrics

The performance assessment of HCI data-processing techniques is done via the def-
inition of a classification problem, counting detections and non-detections on a grid
of FWHM-sized apertures applied to the detection maps. A true positive (TP) is
defined as a value above the threshold provided by the user along with the S/N or
probability maps within the FWHM aperture centred on the position of the injected
fake companion. Any values above the provided threshold that are not in the set of
apertures containing injected fake companions are considered as false positives (FPs).

13As the auto-RSM relies on reversed parallactic angles to optimise the model parameters, the
optimisation is done on the original ADI sequences in the case of the EIDC data sets. However,
the ADI sequences selected for the EIDC do not contain any known planetary candidates. The
optimisation should therefore not be affected.
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The false negatives (FNs) regroup all the non-detections at the position of injected
fake companions, while the true negatives (TNs) are the non-detections at any other
position. Different performance metrics are computed using these four categories:

• True positive rate: TPR = TP
TP+FN

• False positive rate: FPR = FP
FP+TN

• False discovery rate: FDR = FP
FP+TP

• F1 score: : F1 = 2TP
FP+FN+2TP

In addition to the F1 score computed at the pre-defined threshold, we follow the
same approach as in Cantalloube et al. (2020b) and also consider the area under the
curve (AUC) for the TPR, FPR, and FDR as a function of the threshold to classify
the different versions of the proposed optimisation procedure. The AUCs of the TPR,
FPR, and FDR are preferred to the values of these latter at the provided threshold,
as this allows us to mitigate the arbitrariness of the threshold selection by considering
their evolution for a range of thresholds. The AUC of the TPR should be as close as
possible to 1 and the AUCs of the FPR and FDR as close as possible to zero. The F1
score being the harmonic mean of the recall and precision of the classification problem,
it ranges between 0 and 1, with values close to 1 being favoured (perfect recall and
precision).

4.4.3 Results

We have now all the elements to apply the auto-RSM optimisation procedure described
in Sects. 4.2 and 4.3 to the nine selected ADI sequences. Only PSF-subtraction
techniques relying on an off-axis PSF (and not on forward models) are considered
during the optimisation procedure in order to reduce the computation time, considering
the large set of ADI sequences on which the method is tested, and the numerous
parametrisations of the auto-RSM algorithm that we consider. This also allows a
fair comparison with the results of the RSM algorithm already used in Cantalloube
et al. (2020b), which relied only on the PSF-subtraction techniques based on off-axis
PSFs. We note however that the PyRSM Python package also accommodates the
use of a forward-model version of KLIP and LOCI, where a parameter defines the
maximum angular separation above which the forward model is no longer considered.
This allows us to take advantage of the higher performance of forward-modeled PSF-
subtraction techniques at small angular separations, while limiting their impact on the
computation time at larger separations.

For the Bayesian optimisation of APCA and LOCI, the contrast is computed for
respectively 80 and 60 points of the parameter space to initialise the Gaussian process,
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while 60 iterations of the minimum-expectation Bayesian optimisation are used to
determined the optimal set of parameters. The smaller number of points for the
initialisation of LOCI comes from its smaller set of parameters compared to APCA.
The number of points for the initialisation and the number of iterations have been
chosen to ensure the convergence to the global optimum14. The ranges of possible
values that have been selected to define the parameter space for the PSF-subtraction
optimisation are shown in Table C.8. Most ADI sequences share a common range of
possible values. However, differences may be found in the definition of the parameter
space boundaries for the NIRC2 ADI sequences due to the reduced number of frames.

Full-frame and annular auto-RSM parametrisation

Regarding the parameters of the full-frame version of auto-RSM, the set of selected
annuli is truncated at amax = 10λ/D to favour small angular separations during the
optimisation, the region close to the host star being more noisy15. The order of the
polynomial fit of the annular threshold is set to three in order to limit the impact of
small artefacts appearing in the RSM map generated with inverted parallactic angles,
while keeping the main characteristics of the angular evolution of the noise. The full-
frame (FF) auto-RSM was tested with three different parametrisations, allowing the
comparison between the bottom-up (BU) and top-down (TD) selection of the optimal
cubes of likelihoods, as well as the comparison between the forward (F) and forward-
backward (FB) approaches to compute the final probabilities.

The annular version of auto-RSM requires the definition of two additional pa-
rameters: the window sizes for the Hampel filter and the moving average used to
smooth the PSF-subtraction parameters (see Table C.6). The window sizes are re-
spectively equal to 3 and 5, and the window is centred on the angular distance for
which the filtered value or the moving average is computed. Two different flavours
of the annular auto-RSM were tested, one relying on the annular framework for the
optimisation of the entire set of parameters (A), and one using the annular framework
for the PSF-subtraction parametrisation and the full-frame framework for the RSM
parametrisation and the selection of the optimal set of cubes of likelihoods. The hybrid
approach mixing full-frame and annular frameworks (AFF) aims to reduce the angular
variability of the background residual probabilities, which are mainly affected by the
parametrisation of the RSM model.

14This parametrisation of the Bayesian optimisation algorithm ensures that the same set of optimal
parameters is found when the algorithm is applied several times to the same ADI sequence.

15It also allows us to reduce the computation time, the larger angular separations being computa-
tionally more expensive.
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Performance metric computation and model comparison

Having presented the five tested parametrisations of the full-frame and annular auto-
RSM, we now turn to the estimation of the detection maps and the computation
of the performance metrics, which will allow us to rank these parametrisations and
compare them with both the original RSM algorithm and the baseline presented in
Cantalloube et al. (2020b). All parametrisations of the auto-RSM were applied to the
nine data sets of the EIDC. Figure 4.4 presents the detection maps generated with
the full-frame auto-RSM using the bottom-up greedy algorithm to select the optimal
set of cubes of likelihoods and the forward approach to compute the probabilities
(auto-RSM FF_BU_F). The detection maps for all five parametrisations of the auto-
RSM are provided in Appendix C.8. As can be seen from Figure 4.4, the contrast
between detected targets and background residual probabilities is very high compared
to standard S/N maps, demonstrating the ability of the proposed approach to easily
disentangle planetary signals from residual speckles and ease the selection of a detection
threshold. As an illustration, the ratio between the peak probability (or S/N) of the
target and the mean of the background probabilities (or S/Ns) in the detection map
of the SPHERE 1 data set is larger than 3000 for the auto-RSM FF_BU_F, and only
2 for the baseline16.

Following the EIDC procedure, a single threshold was selected for all data sets,
for each parametrisation of the auto-RSM. This threshold allows estimation of the F1
score. As mentioned in Section 4.4.2, in addition to the F1 score, the AUCs of the
TPR, FPR, and FDR are also computed. Figure 4.5 illustrates the computation of
the different performance metrics for the nine data sets, relying on the detection maps
generated with the auto-RSM FF_BU_F. The TPR, FPR, and FDR are computed for
different threshold values ranging from zero to twice the selected threshold. The AUCs
of the TPR, FPR, and FDR are computed in this interval. Apart from the NIRC2
data sets and LMIRCam-2, the AUC of the FDR is very small for the remaining data
sets compared to the baseline. The AUC of the FPR is close to zero for all data
sets, especially for the SPHERE data sets for which the AUC values are below the
considered 0.001 limit.

16In the case of the baseline S/N map, the minimum S/N value has been added to the S/N map
to have only positive values.
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Figure 4.4: Detection maps corresponding to the nine data sets of the EIDC, generated
with the full-frame version of auto-RSM using the bottom-up approach for the selection
of the optimal set of cubes of likelihoods, as well as the forward approach for the
computation of the probabilities. The yellow circles are centred on the true position
of the detected targets (TP) and the red circles give the true positions of FNs.
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Figure 4.5: True positive rate (green), false discovery rate (red) and false positive
rate (dash-dotted blue line) computed for a range of thresholds varying from zero to
twice the selected threshold (represented by a dotted vertical line). These curves are
computed for the nine data sets of the EIDC, relying on the detection maps estimated
with the full-frame version of auto-RSM using the bottom-up approach for the selection
of the optimal set of cubes of likelihoods, as well as the original forward approach for
the computation of the probabilities. The green line representing the TPR should be
as close as possible to 1 for the entire range of thresholds, while the red and dash-
dotted blue line representing respectively the FDR and the FPR, should be as close
as possible to zero.
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Having illustrated the computation of the performance metrics for the different
data sets, we now consider aggregated results to compare the performance of the five
auto-RSM parametrisations with the baseline and RSM algorithm submission to the
EIDC. The different rankings for the four considered performance metrics are shown in
Figures 4.6 and 4.7. The light, medium, and dark colours correspond to the three in-
struments, with the VLT/SPHERE-IRDIS, Keck/NIRC2, and LBT/LMIRCam data
sets, respectively. Figures 4.6 and 4.7 highlight the fact that the RSM-based ap-
proaches largely outperform the baseline with much higher F1 scores, a much larger
AUC of the TPR, and much lower AUCs of the FDR and FPR. Regarding the five
considered auto-RSM parametrisations, they all present a smaller F1 score compared
to the RSM algorithm parametrised manually, except for the auto-RSM FF_BU_F,
which performs slightly better. However, when considering the other performance
metrics, the auto-RSM approach seems to perform better in most cases, especially
when considering false positives. These results demonstrate the ability of the auto-
RSM approach to better cope with residual speckle noise, while maintaining a high
detection rate. This is a key element in reducing arbitrariness in the selection of the
detection threshold. The selection of a detection threshold is indeed often a complex
task, especially when relying on S/N maps, as the noise probability distribution is
often non-Gaussian.

Looking in more detail at the five parametrisations of the auto-RSM, we see clearly
that the auto-RSM FF_BU_F leads to the best performance metrics in most cases,
and should therefore be favoured for detection when using the auto-RSM approach.
The results for the annular and hybrid annular full-frame auto-RSM seem to demon-
strate that considering the radial evolution of the optimal parameters does not lead
to a significant improvement in performance. The slightly degraded performance of
the annular mode can be explained by the fact that the auto-RSM optimisation relies
on the inverted parallactic angle approach. The noise structure being similar but not
equivalent when inverting the parallactic angles, the annular optimisation is more af-
fected by local differences in the noise structure. These local differences in the noise
structure prevent the algorithm from improving the overall performance. Considering
the longer computation time required for the annular auto-RSM, and its performance,
the full-frame version should clearly be preferred.

As regards the difference between the bottom-up and top-down approaches, the
better results obtained with the bottom-up approach may be explained by its ability
to select the cube of likelihoods in the right order. Indeed, the probability associated
with a planetary signal increases along the temporal axis when computing the RSM
detection map. This probability increases faster and stays high for longer when select-
ing first the cube of likelihoods providing the highest probability ratio between injected
fake companion peak probability and background residual probabilities. Sorting the
cubes of likelihoods in descending order of quality leads to a higher average probabil-
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ity for the planetary signal, while it should not affect the probability associated with
residual noise.

In addition to the automated selection of the optimal parameters, the results ob-
tained with the auto-RSM FF_BU_F show a clear performance improvement com-
pared to the set of RSM detection maps originally submitted to the EIDC (Cantalloube
et al. 2020b). We observe an overall reduction of 76% and 33% compared to the RSM
submission for the AUC of the TPR and the AUC of the FDR, respectively, as well as
an increase of 19% and 2% for the AUC of the TPR and the F1 score, respectively.
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Figure 4.6: Ranking of the different parametrisations of the full-frame and annular
versions of the auto-RSM along the original RSM and baseline presented in Cantalloube
et al. (2020b). Figure (a) provides the ranking based on the F1 score obtained at the
selected threshold. Figure (b) gives the ranking based on the AUC of the TPR. FF
stands for full-frame, A for annular, AFF for annular full-frame (annular approach
used to optimise the PSF-subtraction parameters and full-frame approach used for
the RSM parameter optimisation and the selection of the optimal set of cubes of
likelihoods), and BU, TD, F, and FB. The light, medium, and dark colours correspond
to VLT/SPHERE-IRDIS, Keck/NIRC2, and LBT/LMIRCam data sets, respectively.
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Figure 4.7: Ranking of the different parametrisations of the full-frame and annular
versions of the auto-RSM along the original RSM and baseline presented in Cantalloube
et al. (2020b). Figure (a) gives the ranking based on the AUC of the FPR, while
Figure (b) provides the ranking based on the AUC of the FDR. FF stands for full-
frame, A for annular, AFF for annular full-frame (annular approach used to optimise
the PSF-subtraction parameters and full-frame approach used for the RSM parameter
optimisation and the selection of the optimal set of cubes of likelihoods), and BU, TD,
F, and FB. The light, medium, and dark colours correspond to VLT/SPHERE-IRDIS,
Keck/NIRC2, and LBT/LMIRCam data sets, respectively.
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4.4.4 Commonalities in optimal parametrisations

The proposed auto-RSM optimisation procedure is relatively time consuming even
when relying on the full-frame mode, which may potentially preclude its use for very
large surveys. In this section, we therefore investigate the possibility of using a smaller
set of ADI sequences to generate an optimal parametrisation, which could then be
applied to a larger set of ADI sequences. This requires a homogeneity in the sets
of optimal parameters selected for different ADI sequences generated by a given HCI
instrument, as surveys generally consider multiple observation sequences generated by
a single HCI instrument. Sources of heterogeneities in the parametrisation of ADI
sequences for a common instrument can originate from the number of frames, the
observing conditions, the parallactic angle range, or the target position in the sky.

As the EIDC data set contains multiple ADI sequences generated with different
instruments under different observing conditions and with different characteristics (see
C.7 for the frames number, FOV rotation), it should allow us to estimate the homogene-
ity of the parametrisations for a common instrument, and potential heterogeneity be-
tween instruments. As the full-frame version of the optimisation algorithm provides the
best performance, we rely on the set of parameters generated by this mode to conduct
our analysis. We define a heterogeneity metric, which differs for the PSF-subtraction
techniques and the RSM algorithm. We use the distance between parametrisations as
a metric with which to gauge the performance of the PSF-subtraction techniques. This
distance is defined as the difference between the optimal values of all the parameters
(see Table C.9) for each pair of ADI sequences. For each parameter, we normalise the
absolute value of the distance between the two considered ADI sequences with the mean
of the two optimal values used to compute the distance. This allows proper comparison
of the relative weight of the different parameters. For the RSM parametrisation, most
parameters are non-numerical and we therefore replace the notion of distance by the
notion of similarity. For a given pair of ADI sequences, as a metric for each parameter
we use the percentage of dissimilarity within the entire set of PSF-subtraction tech-
niques, i.e. the number of PSF-subtraction techniques for which the parameter values
are different divided by the total number of PSF-subtraction techniques.

Figure 4.8 shows the cumulative normalised distances for every pair of ADI se-
quences within each instrument, along with the relative weight of all the parameters.
The black line gives the mean distance computed based on the 36 possible pairs of ADI
sequences. A cumulative distance below the back line indicates a higher homogeneity
of the parameters for the considered pair of ADI sequences. As can be seen from
Figure 4.8, the ADI sequences generated by the SPHERE and LMIRCam instruments
seem to be characterised by a relatively homogeneous set of parameters, which implies
that a common set of parameters could be defined and used for larger surveys. The
larger heterogeneity for the NIRC2 samples, which seems to be mainly driven by the
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Figure 4.8: Normalised distances between PSF-subtraction-technique parameter sets
for nine pairs of ADI sequences. The different coloured bars provide the contribution
of the different parameters to the cumulative normalised distance. The considered
pairs of ADI sequences are generated by the same instrument. The black horizontal
line represents the normalised distances averaged over the 36 possible pairs of ADI
sequences.

NIRC2-2 sequence, may be explained by the ADI sequence characteristics (see Table.
C.9), or by differences in terms observing conditions.
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Figure 4.9: Percentage of dissimilarity between RSM parameter sets for nine pairs of
ADI sequences. The different coloured bars provide the contribution of the different
parameters to the cumulative dissimilarity. The selected pairs of ADI sequences are
generated by the same instrument. The black horizontal line represents the percentage
of dissimilarity averaged over the 36 possible pairs of ADI sequences.

Considering now the parametrisation of the RSM algorithm, the results presented
in Figure 4.9, demonstrate again the larger parametric heterogeneity for the NIRC2
samples, with the NIRC2-3 sequence affecting the dissimilarity measures the most.
This confirms the particularity of the NIRC2-3 sequence, which seems to have a dif-
ferent noise structure compared to the other ADI sequences. The crop size of 3 pixels
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Table 4.2: Selected PSF-subtraction techniques for the computation of the final RSM-
detection map for the nine ADI sequences in the case of the full-frame version of the
auto-RSM procedure using the bottom-up approach.

ID/Selected model APCA NMF LLSG LOCI
SPHERE 1 X X X X
SPHERE 2 X X X X
SPHERE 3 X X X X
NIRC2 1 X X
NIRC2 2 X
NIRC2 3 X X
LMIRCam 1 X X
LMIRCam 2 X X X
LMIRCam 3 X X X

as well as the use of a best-fit approach to estimate the noise properties are com-
mon to all ADI sequences (see Table C.9). The heterogeneity is mainly driven by the
definition of the region used for computation of the noise properties, which tends to
demonstrate the advantage of considering multiple approaches for estimation of the
noise properties. We finally consider the set of selected PSF-subtraction techniques
used to generate the final RSM map when relying on the full-frame bottom-up auto-
RSM. We see from Table 4.2 that the SPHERE ADI sequences share the same set of
PSF-subtraction techniques while the set is different for the other ADI sequences.

In addition to the estimation of relative distances and dissimilarity measures, we
also applied a K-means clustering algorithm to classify the nine ADI sequences into
three clusters based on the set of parameters used for the PSF-subtraction techniques
and the RSM algorithm, as well as the likelihood cubes selected for the detection map
computation. Using these 32 parameters to characterise each ADI sequence17, the
K-mean algorithm classified NIRC2-1 and NIRC2-3 into the first group, NIRC2-2 into
the second group, and the remaining sequences into the third group. As expected, the
NIRC2-2 is not in the same group as the other sequences generated with the NIRC2
instrument (see Figure 4.8 and Table 4.2). For the other sequences, we reach the same
conclusion as before, apart from the fact that both SPHERE and LMIRCam data
sets are regrouped into a single cluster whose centre is close to the SPHERE-1 ADI
sequence. Increasing the number of clusters does not lead to clear separation between
the SPHERE and LMIRCam instruments, demonstrating the similarity of the ADI
sequences generated by both instruments.

We eventually tested the feasibility of using a single set of parameters for a given

17The categorical parameters such as the RSM parameters and the optimal set of likelihood cubes
have been binarised. A standard normalisation, using the parameters mean and variance, has been
applied on the data before the clustering algorithm. The K-means clustering algorithm relying on
euclidean distance, a proper scaling of the parameters is necessary to avoid favouring some parameter.
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instrument, allowing us to investigate the sensitivity of the detection map estimation
to the parametrisation. We selected the optimal parametrisation of the SPHERE-1
data set as this parametrisation is the closest to the centre of the SPHERE-LMIRCam
cluster, and estimated the detection maps for the SPHERE-2 and SPHERE-3 data sets.
Despite the inhomogeneity of the SPHERE data sets in terms of observing conditions
and selected wavelengths, the obtained detection maps differed only slightly from the
one presented in Figure 4.4, with a reduced probability for one of the five targets in
the SPHERE-3 data set but with a similar background noise level. As can be seen
from Figure 4.10, the change in terms of AUC of the FPR and FDR is negligible,
while the F1 score and the AUC of the TPR reduce a little when considering the 0.45
probability threshold but remain similar if the threshold is adapted.
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Figure 4.10: True positive rate (green), False discovery rate (in red), and False positive
rate (dash-dotted blue line) computed for a range of thresholds varying from zero to
twice the selected 0.45 detection threshold (represented by a dotted vertical line).
These curves are computed for the SPHERE-2 and SPHERE-3 data sets of the EIDC,
relying on the detection maps estimated with the SPHERE-1 optimal set of parameters
along with the full-frame version of auto-RSM using the bottom-up approach .

Considering all these results, the use of a reduced number of parametrisations for
large surveys seems feasible, especially for the SPHERE and LMIRCam instruments.
As demonstrated by the ADI sequences generated by NIRC2, when large dissimilarities
are observed in terms of background noise level, a more refined subdivision should
be considered. The subdivision of large ADI sequence data sets in subgroups and
the definition of representative ADI sequences for the computation of local optimal
parametrisations will be investigated in the next chapter.
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4.5 Conclusion

In this chapter, we presented a new automated optimisation framework for the RSM
approach, called auto-RSM. The proposed automated parameter selection aims to
reduce the complexity and sometimes arbitrariness of parameter selection when using
HCI post-processing techniques and provide, to users, a simple framework to compute
reliable detection maps. Based on a single or multiple ADI sequences, auto-RSM
generates, after parameter optimisation, a single detection map with a high contrast
between planetary candidates and residual speckles.

The proposed multi-step parameter optimisation framework can be divided into
three main steps, (i) the selection of the optimal set of parameters for the considered
PSF-subtraction techniques, (ii) the optimisation of the RSM approach parametrisa-
tion, and (iii) the selection of the optimal set of PSF-subtraction techniques and ADI
sequences to be considered when generating the final detection map. The selection
of the optimal set of parameters for the PSF-subtraction techniques is based on the
minimisation of the mean contrast within the selected set of annuli, while the optimi-
sation of the RSM approach and selection of the optimal set of cubes of likelihoods
are based on the probability ratio between injected fake companions peak probabil-
ity and background residual probabilities. Some PSF-subtraction techniques having a
continuous parameters space, a Bayesian optimisation framework is proposed to ex-
plore the parameter space and select the optimal set of parameters. Two different
versions of the auto-RSM algorithm are proposed, a full-frame version where a single
set of parameters is selected for all angular separations, and an annular version where
the set of optimal parameters evolves with radial distance. Different parametrisations
of the full-frame and annular auto-RSM are tested to investigate the added value of
different methods to select the optimal set of cubes of likelihoods or to compute the
final probabilities.

The data sets of the EIDC and the performance assessment framework proposed in
Cantalloube et al. (2020b) are used to compare the performance of the different ver-
sions and parametrisations of the auto-RSM. The performance assessment is performed
via the computation of a data set-dependant F1-score at a predefined threshold, as
well as the estimation of the AUC of the TPR, FPR and FDR. The auto-RSM re-
sults demonstrate the interest of the approach, as it provides, in most cases, better
performance than the original RSM detection map submitted to the EIDC, while the
original RSM map was already at, or close to the top of the ranking for all performance
metrics in the EIDC. The full-frame auto-RSM using the bottom-up approach to select
the optimal set of cubes of likelihood and the forward approach to compute the RSM
probabilities provides overall the best performance in terms of detection. Consider-
ing the longer computation time and lower performance of the annular version, the
full-frame auto-RSM should be preferred.
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Auto-RSM being computationally expensive even when using the full-frame version,
we investigate the possibility of using a common set of parameters for each instrument.
We studied the commonalities existing between the parametrisations of the nine data
sets of the EIDC, and found that the distance between the parametrisations for a
common instrument is smaller than the distance with the parametrisations of other
instruments. Potential differences in the noise characteristics of different data sets
generated with a common instrument should nevertheless be taken into account, as
illustrated by the NIRC2 data sets. However, the use of a limited number of parametri-
sations for large surveys seems possible and will be further investigated in the next
chapter.

The auto-RSM framework is not limited to the RSM algorithm and the first step
of the algorithm may be used separately to optimise the parametrisation of PSF-
subtraction techniques and generate S/N maps. A S/N version of the proposed optimi-
sation framework, called auto-S/N was developed. Despite the degraded performance
compared to auto-RSM, auto-S/N is characterised by a reduced computation time and
can sometimes be a good complement to auto-RSM. All these versions of the proposed
optimisation framework are available in a single python package called PyRSM 18. This
python package offers a parameter free detection map computation algorithm with a
very low level of residual speckles, especially for the auto-RSM, allowing a simple
detection threshold selection.

18https://github.com/chdahlqvist/RSMmap
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Chapter 5

SHARDDS Survey: Limits on Planet
Occurrence Rates Based on Point
Sources Analysis via the auto-RSM
Framework

5.1 Introduction

Following the development of the auto-RSM framework, we propose in this last chap-
ter to rely on this new post-processing pipeline to perform an in-depth analysis of
the SHARDDS survey. The SPHERE High-Angular Resolution Debris Disks Survey
(SHARDDS) gathers 55 main-sequence stars within 100 pc, known to host a high-
infrared-excess debris disk. Those disks are a natural place to look for exoplanets
because planet formation succeeded at least to form large planetesimals in those sys-
tems. This is one of the reasons why direct imaging surveys generally include many
debris disk host stars, such as in the SPHERE-SHINE survey (Desidera et al. 2021)
or the GPI-GPIES survey (Nielsen et al. 2019b). Meshkat et al. (2017) found indeed
a tentative evidence that giant planets have a higher occurrence rate in debris disks
hosts, and the first emblematic directly imaged planets were found in the massive de-
bris disks system β Pic (Lagrange et al. 2009b) or HR8799 (Marois et al. 2008). The
SHARDDS survey already revealed debris disks resolved for the first time in scattered
light: HD114082 (Wahhaj et al. 2016, Engler et al. in prep.), 49 Ceti Choquet et al.
(2017), HD105 (Marshall et al. 2018) as well as a substellar companion (HD206893 B)
close to the deuterium burning limit (Milli et al. 2016b; Delorme et al. 2017; Romero
et al. 2021).

In this context, our study aims to detect and characterise new exoplanets and
brown dwarfs within these debris disks, allowing us to potentially better understand

121
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the complex interactions between substellar companions and disks. We rely on the
auto-RSM framework to compute detection maps and contrast curves. The auto-RSM
framework being computationally expensive, a clustering approach is used to divide
the set of targets into multiple subsets. For each subset, the cluster center is identified
and the auto-RSM framework is applied onto it to provide the optimal parametrisation
for the entire cluster.

Detection maps are then computed via the RSM approach, relying on these optimal
parametrisations. The detection maps are used to identify potential planetary compan-
ions, and a new companion characterisation framework based on the RSM approach is
introduced. This new framework is tested successfully, showing a higher astrometric
and photometric precision for faint sources compared to standard approaches. We un-
cover the companion around HD206893, but do not detect any new companion around
other stars.

The detection maps are then used to compute contrast curves. A correlation study
between achievable contrasts and parameters characterising high contrast imaging se-
quences highlights the importance of the Strehl ratio, wind speed at a height of 30
meters and presence of wind-driven halo to define the quality of high contrast images.
Planet detection and occurrence rate maps are eventually generated based on these
contrast curves and on well-known evolutionary models, namely AMES-DUSTY and
AMES-COND. These maps show, for the SHARDDS survey, a high sensitivity between
10 and 100 au for substellar companions with masses >10MJ .

The remainder of this chapter is organised as follows. Section 5.2 describes the
target selection for the SHARDDS survey. In Section 5.3, we present our data reduction
pipeline involving the definition of clusters along with cluster centres on which the
auto-RSM optimisation procedure is applied. The computation of detection maps and
contrast curves follows the estimation of the optimal parametrisations. Section 5.4 is
devoted to the characterisation of potential planetary candidates. In Section 5.5, we
consider the contrast curve as a performance metric and analyse the potential drivers
of this performance. Section 6 focuses on the estimation of the planetary detection
probability from which we derive an estimated planetary occurrence rate associated
to the SHARDDS survey. Finally, Section 5.7 concludes this work.

5.2 Survey description

The SHARDDS survey was designed to image circumstellar disks around bright nearby
stars (within 100 pc from the Earth) in the near-infrared using the VLT SPHERE in-
strument. The aim of the survey is to better understand the scarcity of debris disks
detection in scattered light, by targeting disks without any scattered-light detection at
the time of the survey design (2014), either because the target was not observed with
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high-contrast instruments, or because the disk might be too compact and faint to be
accessible with first-generation high-contrast instruments such as HST/NICMOS or
VLT/NaCo, having poor performance below 0.5”. The underlying goals are to char-
acterise the disks architecture and properties, and statistically link these properties
to the stellar age, spectral type, and potential presence of companions. This chapter
contributes to the achievement of these objectives by applying the RSM detection al-
gorithm on the data sets, to detect potential planetary candidates. The RSM detection
algorithm was designed to unveil point-like sources and is therefore not fitted to detect
extended features such as debris disks. The detection of companions can bring valu-
able information to better understand the secular interactions between debris disks,
and companions and whether such interactions are always needed to explain particular
signatures in disks such as azimuthal asymmetries, warps or sharp edges (see Mouillet
et al. 1997; Lagrange et al. 2012; Lestrade & Thilliez 2015, for emblematic examples
of signatures within debris disks attributable to a companion).

The SHARDDS survey includes 55 main-sequence stars visible from the Southern
hemisphere, covering spectral types A-M and ages 10 Myr - 6 Gyr . This diverse sample
of debris systems aims to provide a comprehensive view of planetary system properties
and their time evolution. These stars were selected for the expected brightness of
their disks (fractional luminosity above 10−4) and because they were not yet resolved
in scattered light. All stars that were not observable from Paranal with an airmass
below 2, were excluded from the sample. The SPHERE-IRDIS instrument was used
with the broad-band H filter (λ = 1.625µm,∆λ = 0.290µm), as well as an apodised
Lyot coronagraph with a radius of 92 mas (N_ALC_YJH_S) to reach a high contrast
in the innermost regions. The broad-band H filter was selected for its wide spectral
band-pass allowing to collect more disk photons, but also because the performance of
the extreme adaptive optics system improves at longer wavelengths and the dust from
debris disks typically displays a red colour, while the thermal background is not as
high as in the K band and does not dominate the noise budget at large separations.
The observations were made in pupil-stabilised mode, using the Angular Differential
Imaging observing strategy (ADI, Marois et al. 2008a). The targets were observed
around meridian passage with a total execution time of one hour per target, which
ensured a sufficient field rotation with about 40 minutes long coronagraphic images.
The observations were grouped in two programs1, 46 sources were imaged during P96
(1 October 2015 - 31 March 2016) and 9 during P97 (1 April 2016 - 30 September 2016).
Due to adverse observing conditions, multiple observation sessions were required for
some targets, leading to an actual data set of 73 ADI sequences. Tables 5.1-5.3 provides
details on the set of targets, including the number of observation sequences acquired
for each target (epoch). The distances, magnitudes and spectral types were taken from

1Based on observations collected at the European Southern Observatory under ESO programmes
096.C-0388(A) and 097.C-0394(A)
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the Hippparcos and GAIA catalogues (van Leeuwen 2007; Gaia Collaboration et al.
2016). The target Fomalhaut C, part of the SHARDDS sample, was excluded from
our analysis as the observing conditions were very bad for all three epochs (data set
published in Cronin-Coltsmann et al. 2021).
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Table 5.1: Age, distance, spectral-type and magnitude distributions along with the number of ADI sequences for each SHARDDS
target. For the definition of the star age multiple papers have been used: 1 (Zuckerman & Song 2004), 2 (Zuckerman et al. 2001),
3 (Chen et al. 2014), 4 (Moór et al. 2011), 6 (Rodriguez & Zuckerman 2012), 7 (FernÃ¡ndez et al. 2008), 8 (Rhee et al. 2007), 9

(Malo et al. 2013), 10 (Casagrande, L. et al. 2011), 11 (Torres et al. 2008), 12 (Metchev & Hillenbrand 2009), 13 (Zuckerman et al.
2011), 14 (da Silva, L. et al. 2009), 15 (Vican 2012), 16 (Moor et al. 2006), 17 (King et al. 2003), 18 (Tabernero et al. 2012), 19 (Zorec
& Royer 2012), 20 (Mamajek et al. 2002), 21 (Mamajek & Hillenbrand 2008), 22 (Delgado Mena, E. et al. 2014), 23 (van Leeuwen
2007), 24 (Kim et al. 2005), 25 (Matthews et al. 2018), 26 (Mamajek & Bell 2014), 27 (West et al. 2008), 28 (Smith et al. 2008) , 29

(Meshkat et al. 2017) , 30 (Gullikson et al. 2016), 31 (Delorme et al. 2017).

Name RA DEC V mag H mag Sp. type Age (My) Distance (pc) # Epochs
HD105 00:05:53 -41:45:11 7.53 6.19 G0V 301 38.85 1
HD203 00:06:50 -23:06:27 6.17 5.33 F3V 232 39.97 1
HD377 00:08:26 +06:37:00 7.59 6.15 G2V 1703 38.52 1
HD3003 00:32:44 -63:01:53 5.09 5.16 A0V 301 45.89 1
HD3670 00:38:57 -52:32:03 8.21 7.15 F5V 304 77.58 1
HD9672 01:34:38 -15:40:34 5.61 5.53 A1V 406 57.08 1
HD10472 01:40:24 -60:59:56 7.61 6.69 F2IV/V 307 71.17 2
HD10638 01:44:23 +32:30:57 6.73 6.19 A3 1008 68.68 1
HD13246 02:07:26 -59:40:45 7.50 6.30 F7V 409 45.60 1
HD14082B 02:17:25 +28:44:30 7.74 6.36 G2V 219 39.75 1
AG-Tri 02:27:29 +30:58:24 10.12 7.24 K8 231 41.05 4
HD15257 02:28:10 +29:40:09 5.29 4.82 F0III 10008 49.93 1
HD16743 02:39:08 -52:56:05 6.77 5.97 F1III/IV 2008 57.94 1
HD17390 02:46:45 -21:38:22 6.47 5.63 F3IV/V 61010 48.19 1
HD21997 03:31:54 -25:36:50 6.37 6.12 A3IV/V 3011 69.64 1
HD22179 03:35:30 +31:13:37 8.93 7.49 G5IV 6312 70.37 1
HD24636 03:48:11 -74:41:38 7.13 6.22 F3IV/V 3013 57.05 1
HD25457 04:02:37 -00:16:08 5.38 4.34 F6V 7013 18.77 1
HD31392 04:54:04 -35:24:16 7.61 5.89 G9V 369010 25.77 1
HD35650 05:24:30 -38:58:10 9.05 6.11 K6V 701 17.48 1
HD274255 05:30:14 -42:41:50 9.71 6.47 M0V 100029 19.15 1
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Table 5.2: Age, distance, spectral-type and magnitude distributions along with the number of ADI sequences for each SHARDDS
target. For the definition of the star age multiple papers have been used: 1 (Zuckerman & Song 2004), 2 (Zuckerman et al. 2001),
3 (Chen et al. 2014), 4 (Moór et al. 2011), 6 (Rodriguez & Zuckerman 2012), 7 (FernÃ¡ndez et al. 2008), 8 (Rhee et al. 2007), 9

(Malo et al. 2013), 10 (Casagrande, L. et al. 2011), 11 (Torres et al. 2008), 12 (Metchev & Hillenbrand 2009), 13 (Zuckerman et al.
2011), 14 (da Silva, L. et al. 2009), 15 (Vican 2012), 16 (Moor et al. 2006), 17 (King et al. 2003), 18 (Tabernero et al. 2012), 19 (Zorec
& Royer 2012), 20 (Mamajek et al. 2002), 21 (Mamajek & Hillenbrand 2008), 22 (Delgado Mena, E. et al. 2014), 23 (van Leeuwen
2007), 24 (Kim et al. 2005), 25 (Matthews et al. 2018), 26 (Mamajek & Bell 2014), 27 (West et al. 2008), 28 (Smith et al. 2008) , 29

(Meshkat et al. 2017) , 30 (Gullikson et al. 2016), 31 (Delorme et al. 2017).

Name RA DEC V mag H mag Sp. type Age (My) Distance (pc) # Epochs
HD37484 05:37:40 -28:37:34 7.25 6.29 F3V 3014 59.10 2
HD38207 05:43:21 -20:11:21 8.47 7.55 F2V 53415 110.99 1
HD38206 05:43:22 -18:33:26 5.73 5.84 A0V 30 14 71.43 2
HD40540 05:57:53 -34:28:34 7.54 6.93 A8IV 1703 88.26 1
HD53842 06:46:14 -83:59:29 8.62 6.40 F5V 3016 57.87 1
HD60491 07:34:26 -06:53:48 8.14 6.14 K2V 50017 23.51 1
HD69830 08:18:24 -12:37:55 5.95 4.36 G8V 567015 12.56 1
HD71722 08:26:25 -52:48:26 6.04 5.91 A0V 3243 69.35 1
HD73350 08:37:50 -06:48:24 6.73 5.32 G5V 60018 24.34 1
HD76582 08:57:35 +15:34:52 5.68 5.21 F0IV 53819 48.80 1
HD80950 09:17:28 -74:44:04 5.86 5.92 A0V 13819 77.34 1
HD82943 09:34:51 -12:07:46 6.53 5.25 F9V 4303 27.61 4
HD84075 09:36:18 -78:20:41 8.59 7.24 G2V 4013 64.10 1
HD107649 12:22:25 -51:01:34 8.78 7.76 F5V 1720 108.34 1
HIP63942 13:06:15 +20:43:45 9.40 6.21 K5 450027 18.80 1
HD114082 13:09:16 -60:18:30 8.21 7.23 F3V 1720 95.69 1
HD120534 13:50:40 -31:12:23 7.02 6.33 A5V 32016 86.81 3
HD122652 14:02:32 +31:39:39 7.15 5.94 F8 5008 39.54 2
HD133803 15:07:15 -29:30:16 8.12 7.36 A9V 1620 110.74 2
HD135599 15:15:59 +00:47:46 6.91 5.12 K0V 130021 15.82 2
HD138965 15:40:11 -70:13:40 6.42 6.34 A1V 34825 78.08 1
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Table 5.3: Age, distance, spectral-type and magnitude distributions along with the number of ADI sequences for each SHARDDS
target. For the definition of the star age multiple papers have been used: 1 (Zuckerman & Song 2004), 2 (Zuckerman et al. 2001),
3 (Chen et al. 2014), 4 (Moór et al. 2011), 6 (Rodriguez & Zuckerman 2012), 7 (FernÃ¡ndez et al. 2008), 8 (Rhee et al. 2007), 9

(Malo et al. 2013), 10 (Casagrande, L. et al. 2011), 11 (Torres et al. 2008), 12 (Metchev & Hillenbrand 2009), 13 (Zuckerman et al.
2011), 14 (da Silva, L. et al. 2009), 15 (Vican 2012), 16 (Moor et al. 2006), 17 (King et al. 2003), 18 (Tabernero et al. 2012), 19 (Zorec
& Royer 2012), 20 (Mamajek et al. 2002), 21 (Mamajek & Hillenbrand 2008), 22 (Delgado Mena, E. et al. 2014), 23 (van Leeuwen
2007), 24 (Kim et al. 2005), 25 (Matthews et al. 2018), 26 (Mamajek & Bell 2014), 27 (West et al. 2008), 28 (Smith et al. 2008) , 29

(Meshkat et al. 2017) , 30 (Gullikson et al. 2016), 31 (Delorme et al. 2017).

Name RA DEC V mag H mag Sp. type Age (My) Distance (pc) # Epochs
HD145229 16:09:26 +11:34:28 7.44 6.06 G0 65024 33.74 1
HD157728 17:24:06 +22:57:37 5.72 5.22 A7V 10016 42.74 1
HD164249A 18:03:03 -51:38:56 7.01 6.02 F6V 180023 49.60 1
HD172555 18:45:26 -64:52:16 4.77 4.25 A7V 2026 28.79 1
HD181296 19:22:51 -54:25:26 5.02 5.15 A0V 1228 47.37 1
HD182681 19:26:56 -29:44:35 5.64 5.66 B8.5V 10730 71.42 1
HD192758 08:18:16 -42:51:36 7.03 6.30 A5V 4516 66.53 2
HD201219 21:07:56 +07:25:58 0 46.5 G5 537010 37.89 1
HD205674 21:37:21 -18:26:28 7.17 6.25 F4IV 85010 56.40 2
HD206893 21:45:22 -12:47:00 6.67 5.69 F5V 25031 40.80 1
HD218340 23:08:12 -63:37:41 8.44 7.07 G3V 205022 56.18 1
HD221853 23:35:36 +08:22:57 7.34 6.44 F0 2016 65.40 1
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5.3 Data reduction

5.3.1 Pre-processing and extraction of environmental data

The first reduction steps consist in applying standard calibrations to the raw IRDIS
images (sky subtraction, flat-field correction, and bad-pixel correction), and register-
ing the frames. This was done using a dedicated pipeline in python 2. The frame
registration was done using the four satellite spots imprinted on the IRDIS images by
a specific waffle pattern applied on the deformable mirror of SPHERE. The ouput of
the pre-processing consists of a temporal cube of frames (individual detector integra-
tions), cosmetically cleaned and recentered, called hereafter an ADI sequence. This
cube is accompanied by the corresponding list of parallactic angles for the dedicated
high-contrast image processing steps (see section 5.3.2).

For the clustering of data and to guide the interpretation, we also extracted en-
vironmental data from either the adaptive optics telemetry3 or the Astronomical Site
Monitor (ASM) of the Cerro Paranal Observatory4. We collected, among other, data
on the seeing, coherence time, relative humidity, temperature, wind speed and direc-
tion at various heights above the platform, Strehl ratio, precipitable water vapour.

5.3.2 Image processing

The resulting corrected sets of ADI sequences have been cropped to a 199 × 199 pixels
size, corresponding to the innermost region of the field of view (FOV). We consider
angular separations below 1.25 arcsec to take advantage of the higher sensitivity of the
RSM map algorithm in the region near the host star, while limiting the computation
time. Indeed the increased performance of the RSM map algorithm compared to other
PSF-subtraction techniques reduces above 1 arcsec, which makes it less suitable for
larger angular distances when considering its high computational cost.

The computation time is also reduced by limiting the size of the ADI sequences to
a maximum of 300 frames. We relied on image binning to reduce the size of the ADI
sequence. The images were binned by pair (resp. by three) for sequences containing
between 300 and 600 images (resp. between 600 and 900 images). The binning proce-
dure started by the derotation of the images based on the parallactic angles. Then the
pixel-wise average was computed along the temporal axis with a common step size and
window size of two for sequences containing between 300 and 600 images and three for
sequences containing between 600 and 900 images. The same procedure was applied

2available at https://github.com/jmilou/sphere_pipeline.git
3The SPHERE real time controller called SPARTA stores a summary of the adaptive optics

telemetry during each observation. Those files are available on the ESO archive as described in Milli
et al. (2017). We developed an automatic script to query and analyse the SPARTA and ASM data
available at https://github.com/jmilou/sparta.git

4http://archive.eso.org/cms/eso-data/ambient-conditions.html
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on the parallactic angles. The resulting set of images were then rotated back to their
original orientation. The noise content of these ADI sequences should be reduced by
the binning procedure via partial time-averaging.

5.3.3 Clustering

In order to take full advantage of the RSM algorithm, we rely on the auto-RSM opti-
misation framework to define the optimal sets of parameters for the PSF-subtraction
techniques and the RSM algorithm itself. This optimisation pipeline being compu-
tationally expensive, we propose to apply it on a subset of targets representative of
the whole data set. The obtained optimal parametrisations can then be used to com-
pute the RSM detection maps for all targets. The analysis of Section 4.4.4 showed a
relatively high degree of similarity in the optimal parametrisations of both the PSF-
subtraction techniques and the RSM algorithm, when using ADI sequences generated
with the VLT SPHERE instrument. Dividing the SHARDDS data set into multi-
ple subsets should nevertheless allow to account for small variations in the optimal
parametrisations depending on the ADI sequence characteristics.

The subdivision of the SHARDDS data set in multiple subsets is based on a set of
observables characterising the ADI sequences. The subdivision itself is done via the
K-means algorithm, a centroid-based clustering procedure aiming to find the centroids
that minimise the within-cluster sum-of-squares, also called inertia:

n∑
i=0

min
ui∈C

(‖xi − uj‖2), (5.1)

where ui is the centroid of the cluster j and xi a member of cluster j. The inertia can
be seen as a measure of the internal coherence of the clusters. The K-means algorithm
consists of three main steps. It starts with an initialisation step during which initial
centroids are randomly drawn from the data set. Each sample is then assigned to the
nearest centroid and the centroids positions are updated. The algorithm loops between
these last two steps until convergence.

The K-means algorithm was selected as it provides a good estimate of the centroids
positions. This is a key element to define properly which ADI sequence within a
cluster is the most representative. These centroids being often not associated to a
sample, we define the most representative ADI sequences as the ones closest to the
cluster centroids. Once defined, the auto-RSM optimisation framework is applied on
the selected set of ADI sequences. The optimal parametrisations are then used to
compute the RSM detection maps for the remaining ADI sequences of each cluster,
following the standard RSM map procedure.
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Table 5.4: Set of performance indicators selected for the subdivision of the SHARDDS
Survey data set via clustering.

Mean seeing Strehl ratio Coherence time
Number of images Field rotation Raw contrast
Autocorrelation Mean wind speed WDH

Clustering parameters

The K-means algorithm needs to be applied on a set of parameters that characterise the
properties of the ADI sequences. For our cluster analysis, we chose metrics providing
information about the sequence, the observing conditions, and the noise distribution
within the set of frames. This set of observables consists in the mean seeing, the Strehl
ratio, the mean coherence time, the number of images, the total field rotation in term
of parallactic angle, the raw contrast at 200, 500 and 700 mas, the autocorrelation
timescale between images, the mean wind speed at 30 meters, and the wind driven
halo strength and asymmetry(Cantalloube et al. 2020a).

The seeing, Strehl ratio, and coherence time are commonly used performance in-
dicators to assess the observing conditions. Considering the 40 minutes integration
time used for the SHARDDS survey, the number of images contained in the ADI se-
quence affects the sampling frequency, and therefore both the performance and the
parametrisation of the PSF-subtraction algorithm (e.g. optimal number of principal
components). The field rotation also impacts the performance because of the higher
self-subtraction of the signal in the case of small field rotation. When mitigating
self-subtraction, it translates into a reduced set of available images to compute the
reference PSF.

The raw contrasts were estimated by placing apertures of 1 FWHM diameter in the
selected annuli and computing the ratio between the mean encircled flux and the star
flux. The autocorrelation timescale between the ADI sequence images was estimated
by considering the region between 300-600 mas, where the adaptive optics is affecting
the most the performance. The flux within a one FWHM aperture was computed for
each pixel in the selected region and for each image. An exponential function was
then fitted on the temporal autocorrelation of these fluxes and its exponential factor
was kept as a measure of the autocorrelation decay rate. We expect that a slower
autocorrelation decay will result in lower performance.

The wind-driven halo (WHD) strength and asymmetry were computed using the
method presented in Cantalloube et al. (2020a). The WDH is a feature observable
when atmospheric turbulence, mainly in the jet stream layer, vary faster than the
adaptive optics can compensate. The WDH appears as a bright elongated structure
centred on the coronagraph in post-processed high contrast images. The WDH is char-
acterised by a direction, a strength and an asymmetry of the lobes. The WDH cannot
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be easily treated with standard PSF-subtraction techniques and affects therefore the
achievable contrast at small angular separations (below 1000 mas). Along with the
WDH, the low wind effect (LWE, Milli et al. 2018) is also a wind-driven phenomenon
degrading the performance of high contrast imaging. LWE arises from uncorrected
wavefront aberrations due to air temperature inhomogeneities in large telescope pupil,
caused by the radiative cooling of the spiders, which dominates in the absence of wind.
We included the wind speed at 30 m to account for this potential effect.

The number of images included in the ADI sequences was identified as a key metrics
for the definition of the optimal parametrisation during the development of the auto-
RSM framework. We have therefore decided to divide the SHARDDS data set into two
subsets before applying the clustering algorithm. We defined a threshold of 151 frames
to separate the two subsets, as this value ensures that the standard deviation of the
number of images within each subset is equivalent. This ensures a similar distribution
in terms of sequence size within the two subsets.

Application and results of the K-means clustering

The K-means algorithm being based on Euclidean distance, the selected set of metrics
must be standardised before applying the clustering algorithm, to avoid that metrics
with larger values dominate the calculation. Before applying the K-means algorithm,
we looked for possible multicollinearity between the selected set of observables. Rely-
ing on the variance inflation factor and Pearson correlations, we removed the contrast
at 200 and 700 mas, which led to multicollinearity, affecting potentially the definition
of the clusters. The initialisation of the K-means algorithm consisting in the random
selection of initial centroids, the results may lack consistency and differ from one esti-
mation to another. The algorithm can also be affected by the order of the observables.
In order to tackle these two issues, we initialised our estimation by running the K-
means algorithm 100 times, selecting at each iteration a different permutation of the
parameters. We then took the mean of these centroids positions to initialise the final
cluster definition.

We finally defined the number of clusters. This definition was based on the analysis
of the evolution of the total squared distance between cluster members and their
centroid when changing the number of clusters. Looking at Figure 5.1, we see that the
largest fraction of the total squared distance reduction occurs between 1 and 4 clusters.
We therefore selected for both subsets a number of clusters equal to 4, implying a total
of 8 ADI sequences on which auto-RSM will be applied. The 8 cluster centroids, as
well as the composition of their respective clusters are presented in Table 5.5.

After the subdivision of the data set into 8 clusters, we made several consistency
checks by relying on principal component analysis to reduce the dimensionality of our
set of observables and eliminate residual correlations between the variables. We tested
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Figure 5.1: Evolution of the standardised total square distance between every cluster
member and their centroid, depending on the number of cluster for the two subsets
(i.e. ADI sequences with a number of images higher or lower than 151 frames)

the K-means algorithm with different numbers of principal components and retrieved
almost every time the same set of clusters. Figure 5.2 illustrates the repartition be-
tween the different clusters in the space formed by the first two principal components.
As can be seen, the different clusters are relatively well defined except for cluster 2-2
and 2-4, for which a larger set of principal components are necessary to make a clear
distinction. We finally applied a Gaussian mixture model instead of the K-means algo-
rithm as a last consistency check. The Gaussian mixture model considers on top of the
number of clusters and the centroid position, the standard deviation of the distance
between cluster members to characterise clusters. The obtained cluster repartitions
were very close although not exactly the same.

Two targets were excluded from these clusters, HD133803 and HD205674. They
were treated separately as they were imaged at two epochs separated by only a couple
of days. We therefore took advantage of the ability of the RSM algorithm to deal with
multiple ADI sequences at once to generate a single detection map per target. This was
not possible for the other multi-epoch targets due to the longer time span separating
the image sequences, implying a potential movement of planetary candidates.

5.3.4 High contrast image processing

This section is devoted to the computation of RSM detection maps for all the tar-
gets included in the SHARDDS survey, as well as the computation of the contrast
curves. This computation starts with the optimisation of the model parameters via
the auto-RSM framework for the 8 selected targets (see cluster center in Table 5.5).
The auto-RSM framework requires the selection of the PSF-subtraction techniques as
well as the definition of the parameter ranges to be considered during the optimisa-
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Figure 5.2: Projection of the SHARDDS survey targets on the first two principal com-
ponents computed based on their observational characteristics. The top (respectively
bottom) graph provides the targets with a number of frames in their ADI sequence
below 151 (respectively above 151). The colours indicates to which cluster the target
has been assigned.
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Table 5.5: Subdivision of the SHARDDS data set into 8 clusters.

Cluster center Cluster members
Cluster 1-1
HD192758 HD38207, HD37484, HD10472, AG Tri,

HD84075,HD192758 2nd epoch, HD274255
Cluster 1-2
HD3670 HD37484 2nd epoch , HD22179,

AG Tri 2nd epoch, AG Tri 3rd epoch,
HD82943 3rd epoch ,HD114082

Cluster 1-3
HD201219 HD53842, AG Tri 4th epoch, HD218340,

HD221853
Cluster 1-4
HD14082B HD82943, HD107649
Cluster 2-1
HD21997 HD24636, HD15257, HD10472 2nd epoch,

HD145229 2nd epoch
Cluster 2-2
HD206893 HD40540, HD35650, HD31392, HD25457,

HD17390, HD16743, HD9672, HD105,
HD69830, HD71722,HD120534, HD182681,
HD120534 2nd epoch, HD164249A

Cluster 2-3
HD181296 HD14082B 2nd epoch, HD13246, HD203,

HD60491, HD122652, HD135599 3rd epoch,
HD145229, HD172555, HD181296

Cluster 2-4
HD3003 HD377, HD73350, HD76582, HD80950,

HD82943 2nd epoch, HD82943 4th epoch,
HD138965, HD157728, HIP63942,
HD122652 2nd epoch

tion. We considered in this chapter all the PSF-subtraction techniques that the RSM
algorithm can accommodate: annular PCA (APCA, Gomez Gonzalez et al. 2017),
non-negative matrix factorisation (NMF, Ren et al. 2018), the local low rank plus
sparse plus Gaussian decomposition (LLSG, Gonzalez et al. 2016), locally optimised
combination of images (LOCI, Lafreniere et al. 2007b), and forward-model versions of
KLIP and LOCI (see chapter 3). In order to further improve the RSM map algorithm
performance, we considered for APCA, NMF, LLSG and KLIP two different ranges
for the number of principal components/ranks, which are considered as separate mod-
els by the algorithm. Planetary signals and residual speckle noise evolve differently
with the number of principal components used to generate the reference PSF. We take
advantage of this differentiated evolution to further boost the ability of the RSM map
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algorithm to disentangle faint planetary signals from residuals speckle noise, following
to some extent the approach proposed in Gomez Gonzalez et al. (2018).

The considered ranges of principal components for APCA, NMF and KLIP, the
ranks for LLSG, and the tolerance for LOCI are selected by a new function of the
PyRSM python package which regroups the different functions of the auto-RSM frame-
work. This function studies the evolution of the contrast at different angular sepa-
rations when modifying the number of principal components/ranks/tolerance. The
upper boundary of the considered ranges is defined as the value for which the con-
trast, averaged over the different angular separations, reaches a peak. We performed
this analysis for all cluster centroids, with for APCA, NMF, LLSG and KLIP the final
ranges divided in two equal size ranges, to form two separate models. For HD201219,
the range of considered ranks being limited to [1, 5], a single LLSG model was con-
sidered with range [1, 5]. Regarding the other parameters of the PSF-subtraction
techniques, a single range was defined for all cluster centroids. The range for the num-
ber of of segments was fixed to [1, 4], the FOV rotation threshold to [0.25, 1] and the
crop size to [3,5] for standard PSF-subtraction techniques and [7,9] for the forward
model versions to account for the side lobes due to self-subtraction (see chapter 2-4
for more information about these parameters).

The computation of the PSF forward model being computationally very intensive
and side lobes due to self-subtraction becoming fainter for increasing angular separa-
tion, we considered the forward model versions for only the first 400 mas. Indeed the
main interest of PSF forward modelling is to account for the signature of over- and
self-subtraction of the PSF due to the reference PSF subtraction. This effect becoming
weaker when the angular separation increases, due to larger field rotation, it is not
necessary to use such advanced model at large distance from the host star. Having
defined all the parameters, the auto-RSM optimisation framework was applied on each
centroid, using the full frame mode to optimise the PSF-subtraction techniques and
RSM algorithm parameters, the forward model to compute the RSM detection maps,
and the bottom-up approach to select the optimal set of likelihoods. Following the
original auto-RSM framework, the parameters optimisation was performed using the
reversed parallactic angles. Considering the low probability of detecting a planet, we
also tried to use the original parallactic angle to optimise the parameters, but it did
not lead to a performance increase in terms of contrast. We therefore relied on re-
versed parallactic angles to avoid any potential planetary signal suppression during
the optimisation process.

We investigate in Appendix D.1 the similarities existing between the optimal
parametrisations obtained for the 8 cluster centroids, as well as the relationships be-
tween these optimal parameters and the set of metrics characterising the ADI se-
quences. The comparison of the optimal parametrisations is done via the computation
of dissimilarity measures between cluster centroids, for both the PSF-subtraction tech-
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niques and the RSM algorithm. The results demonstrate a relatively high degree of
similarity between the different parametrisations, confirming the conclusions drawn in
chapter 4 about the high stability of the ADI sequence imaged by the VLT/SPHERE
instrument. The Pearson correlations between the 10 observables characterising our
ADI sequences, and the PSF-subtraction techniques parameters show a sensible corre-
lation for some observables, with the contrast at 500 mas showing the highest average
correlation rate, and the exponent of the autocorrelation function the lowest one.

Detection maps

Following the definition of the optimal set of parameters for the cluster centroids, we
computed the RSM detection maps for every target of the SHARDDS survey. Two sets
of detection maps were computed using the original and the reverse parallactic angles.
The detection maps with the reversed parallactic angles allowed the computation of
a radially dependent residual noise measure5. A polynomial fit was applied on the
obtained values to limit the influence of potential outliers (see below) and smooth the
curve. This residual noise measure was finally subtracted from the original detection
maps and any negative value was set to zero. This subtraction reduces the background
residual noise and therefore eases the detection of potential planetary candidates.

The resulting detection maps were then analysed to uncover potential planetary
signals or other bright structures. From this analysis, we rejected HD107649 due
to the presence of extended speckle-like bright structures. For other targets, some
redundant epochs presenting a high degree of residual noise were also removed6. From
the remaining ADI sequences, we identified 16 targets containing a point-like source
or an extended bright structure above a probability threshold of 0.05. To insure that
these detections were not the result of a sub-optimal parametrisation of the RSM
algorithm, we applied the auto-RSM algorithm to 15 of these targets7.

We performed a correlation analysis similar to the one made in Appendix D.1 on
these 15 targets, in order to assess the influence of a stronger speckle field on the op-
timal parametrisations. We found much lower correlation rates between these optimal
parameters and the set of metrics characterising the ADI sequences. We also observed
a higher degree of dissimilarity between the parametrisations of these 15 targets, es-
pecially for the PSF-subtraction techniques parameters. These results highlight the
limit of a clustering approach based solely on the parameters characterising the ADI
sequence, when facing noisier samples. They also demonstrate the necessity to adopt

5The residual noise measure is estimated by taking, for each annulus, the largest value observed
in the detection map generated with reversed parallactic angles.

6These ADI sequences include AG Tri, AG Tri 2nd epoch, AG Tri 3rd epoch, HD82943 and
HD82943 3rd epoch

7From the set of 16 targets including detections above a 0.05 probability threshold, one was a
cluster centroid (HD206893) for which we kept the original RSM detection maps.
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an empirical approach, such as the auto-RSM optimisation framework, to optimise the
parametrisation when the samples noise structure cannot be well captured by the set
of ADI sequence characteristics. However, the low residual noise level in the detec-
tion maps shown in Figures D.2-D.4, as well as the large fraction of the survey data
set (70%) that did not require the use of auto-RSM, still favour the use of a limited
number of optimal parameter sets computed for well chosen targets.

Following this individual optimisation, the analysis of the resulting 16 detection
maps allowed the detection of three already known point-like sources that will be
further analysed in the next section (see Figure 5.5). The detection maps containing
no plausible planetary candidates are shown in Appendix B. As can be seen from
Figures D.2-D.4 , the residual noise level is most of the time very low, except for
bright structures observed in HD53842 and HD80950. These structures are diffraction
patterns due to the presence of a bright companion just outside the 199 × 199 pixels
window considered in this analysis8.

As mentioned earlier, a threshold was computed based on the detection map gen-
erated with the reversed parallactic angles. This threshold should however not be
considered as a sufficient condition to classify any signal above it as a planetary can-
didate. As can be seen from Figure 5.3, bright structures may appear in the detection
map generated with the reversed parallactic angles (right), which explains the use of
a polynomial fit when estimating the threshold. Most of the time, the residual noise
distributions are similar in the two detection maps, as illustrated with HD122652 (2nd

epoch). But in some cases, very bright artefacts appear in the detection map with
reversed parallactic angles although only a weak level of noise is visible in the original
detection map (see HD157728). Considering all ADI sequences, around 20% of the
detection maps computed with the parallactic angles reversed show point-like sources
or bright structures above a 0.05 threshold while this percentage falls to 9% for the
original detection maps. It is therefore preferable to avoid using reversed parallactic
angles to define a detection threshold. Detection maps generated with reversed paral-
lactic angles may however be used to reduce the level of residual noise in the original
detection maps, as described in the beginning of this section.

Contrast curves

Following the computation of the detection maps, we relied on an optimised version of
the approach proposed in chapter 3 to compute contrast curves for every target. When
relying on probability detection maps, standard S/N-based approaches involving the
estimation of the throughput and the noise standard deviation (Mawet et al. 2014)

8For HD80950, the companion is situated at a projected separation of 130 au with an apparent
magnitude in H band of 9.97. HD53842 is a very young binary system, with a primary spectral type
F5 star and a secondary M-dwarf situated at a projected separation of 82 au, with an estimated
orbital period of 300 years (C. del Burgo, in prep).
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Figure 5.3: RSM detection maps with and without the parallactic angles reversed for
2 data sets (RPA stands for reversed parallactic angles). A square root scale has been
selected to highlight residual speckle noise.

cannot be used. We replace this definition by an empirical estimation of the contrast
corresponding to a predefined detection rate (also called true positive rate) computed
at a specific threshold. As it is not possible to reach a 5σ confidence level empirically,
this threshold corresponds simply to the first detection of a false positive within the
entire detection map. The detection rate is computed, for a given angular separation,
via the injection of fake companions at different azimuths. The computation of the
contrast follows the iterative procedure, where the contrast is increased or decreased
depending on the obtained detection rate and the previously tested contrasts (see
Section 3.6 for more details).

We selected a detection rate of 95%, which is the traditional completeness level
for the computation of planet detection probability or occurrence rate (see Section
5.6). This detection rate requires the successive injection of 20 fake companions per
considered annulus. We considered nine angular separations ranging from 60 to 1150
mas. When multiple epochs where available, the lowest contrast was kept for each
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Figure 5.4: Contrast curves computed for the set of considered targets (gray) and
median contrast curve (thick red) computed at a 95% completeness level.

considered angular separation, to generate a single contrast curve per target. A radial
basis multiquadric function (RBF) was then used to perform the interpolation (Hardy
1971) between the nine angular separations for which a contrast was estimated.

Figure 5.4 provides a consolidated view of the contrast curves, with gray curves
showing the individual contrast curves corresponding to each target and the red line
providing the median. As can be seen from these curves, the contrast decreases quickly
with the angular separation, with a median contrast below 10−5 at already 300 mas.
Considering the high completeness level we have selected, it demonstrates the good
performance of the RSM map algorithm at angular separations below 1 arcsec. How-
ever, we observe a relatively high dispersion of the contrasts at close separations, with
the contrast ranging from 3× 10−1 to 3× 10−4 at 100 mas. This high dispersion can
be directly linked to the observing conditions. This relationship between the perfor-
mance in terms of contrasts and the observing conditions will be further investigated
in Section 5.5.

5.4 Identification of planetary candidates

Figure 5.5 presents the two ADI sequences containing a signal above the previously
defined threshold of 0.05, after having applied auto-RSM on the 16 sequences for which
a signal was previously detected. The two ADI sequences contain already known
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targets, with HD206893 B identified in Milli et al. (2016b) , and the debris disk from
HD114082 in Wahhaj et al. (2016) which includes also two background stars. In the
rest of the section, we propose a new way to extract the photometry and astrometry of
point-like sources based on the RSM framework, and apply it to these two data sets.
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Figure 5.5: RSM detection maps generated using auto-RSM. These detection maps led
to the detection of one or multiple planetary candidates. The color scale is expressed
in terms of inferred detection probabilities. A square root scale has been selected to
highlight potential residual speckle noise.

5.4.1 RSM NEGFC algorithm

Like in the negative fake companion (NEGFC) approach (Lagrange et al. 2010; Marois
et al. 2010; Wertz, O. et al. 2017), the astrometry and photometry are determined by
injecting a fake companion at the expected position of the planet, with a negative flux
providing the photometry. Multiple positions and fluxes are tested and their optimum
is defined as the values minimising a loss function defined as the average probability
inside an aperture of two FWHM centred on the expected location of the planet. The
minimisation relies on a particle swarm optimisation (PSO) framework (Kennedy &
Eberhart 1995). A series of particles, each defining a set of parameters, travel within
the parameter space following an iterative procedure. At each step the velocity of these
particles in the parameter space is updated based on the knowledge of the particle’s
own optimum and the global optimum of the entire swarm. The velocity equation is
given by

vi,t = αvi,t−1 + βprp(li,t−1 − xi,t−1) + βgrg(gi,t−1 − xi,t−1) (5.2)
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where vi,t is the velocity at time t, α is the inertia factor, βp and βg are respectively the
cognitive and social coefficients, li,t−1 and gi,t−1 the local and global optimum, xi,t−1 the
position at previous step t−1, and rp and rg two random numbers drawn from a uniform
probability with support [0, 1]. The PSO framework was chosen as it showed, during
tests, a higher convergence rate than Bayesian optimisation and allowed multi-core
estimation9, reducing the computation time. More standard minimisation frameworks
(Nelder-Mead, Newton, or Broyden-Fletcher-Goldfarb-Shanno) were tested without
success because of the non linear behaviour of the selected loss function near the
optimum and the presence of multiple local optima. The inertia, the cognitive and
social coefficient of the PSO help defining the right balance between exploitation of
known minima and exploration of the parameter space. Several sets of parameters
were tested and the set [α = 0.5, βp = 1, βg = 1] was selected, as it led to a high
convergence rate while avoiding local minima.

The algorithm is initialised by relying on a detection map generated with the
RSM map algorithm using the forward-backward mode, which considers both past and
future observations to infer the detection probability. This mode has demonstrated
a higher precision in terms of astrometry in chapter 3. A Gaussian fit similar to
the one used in Section 3.5 allows the determination of the initial target astrometry.
Once the initial astrometry has been defined, a range of fluxes is tested to get an
initial estimation of the photometry. The PSO framework is then used to minimise
the average probability in the two-FWHM aperture centred on the expected position.
We relied on 10 particles with a maximum number of iterations equal to 20. At the
end of the PSO minimisation, the global minimum is kept and a confidence interval is
computed based on the computation of the inverted Hessian matrix10.

We have tested several versions of this planetary signal characterisation algorithm.
We tried to replace the average probability within a FWHM aperture by a more ad-
vanced metrics based on the noise probability distribution. We relied on the detection
probabilities within the annulus containing the signal to compute this probability
distribution of non detection. We then estimate the probability that the detection
probabilities within the aperture is part of this Gaussian distribution to generate our
loss function. However, this approach was unsatisfactory, leading to much higher as-
trometric and photometric errors during the performance comparison. We also tried
to subtract from the average probability within the aperture, a local measure of the
noise. This local noise was computed as the detection probabilities averaged over two
sections of the annulus with a width of one FWHM containing the signal, situated at
a distance of 1.5 FWHM on either sides of the expected target position. We did not
consider the entire annulus, as local features may be observed in the detection map,

9Multi-core optimisation is not possible with usual minimisation algorithms such as Nelder-Mead,
Newton or Broyden-Fletcher-Goldfarb-Shanno.

10The Hessian matrix is calculated with finite difference derivative approximation.
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leading to a potential bias. We finally considered replacing the PSO minimisation by
a Bayesian optimisation. We tested these different versions along with the NEGFC
function provided by the VIP package (Gomez Gonzalez et al. 2017) which relies on
Nelder-Mead minimisation.

We based our performance comparison on the ADI sequence obtained on HD3003,
considering an intermediate angular separation of 4λ/D. We injected fake compan-
ions at eight different azimuths and considered eight different contrasts ranging from
1× 10−5 to 8× 10−5. This range goes from a non detection in a traditional S/N map
(a detection just above the background with the RSM map) to a very bright planetary
signal. This should allow to investigate the behaviour of the planetary signal charac-
terisation algorithms in two very different regimes. The astrometric error is computed
as the root mean squared (rms) position error between the obtained position and the
injected fake companion true position, averaged over the eight considered azimuths.
The photometric error follows the same approach but comparing in terms of rms the
estimated photometry and the true underlying one.
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Figure 5.6: Astrometric and photometric errors for the RSM based planetary signal
characterisation algorithm using the PSO approach with and without subtraction of
the local mean noise (resp. red and green) and using Bayesian optimisation (blue). The
left graph shows the dependence of the averaged rms position error on the contrast,
while the right one shows the dependence of the photometric rms error (computed at
a angular separation of 4λ/D).

Figure 5.6 shows the evolution of the astrometric and photometric mean error with
the contrast. The left graph shows a higher performance of the PSO approach with-
out local mean subtraction, except for the highest contrast value. When comparing
with the NEGFC algorithm in Figures 5.7, we see that our approach provides a more
accurate estimation of the astromery and photometry for low contrast values, while
breaking at high contrast values. This lower performance for very bright companions
comes from the fact that a slight shift of the negative injected fake companion com-
pared to the true underlying position, leads to the appearance of bright artefacts near
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the companion position, and therefore to a high loss function value which prevents
its effective minimisation. This is explained by the very high sensitivity of the RSM
map algorithm, which is a drawback in this particular case. A way to prevent this
behaviour is to apply as an initialisation step the NEGFC algorithm and then use
the RSM-based PSO approach. We see from Figures 5.7, that this approach reduces
drastically the error for very bright companions, while unfortunately decreasing the
astrometric accuracy when facing faint signals (but increasing the overall photometric
accuracy). The optimal solution would be one combining both approaches, relying
on the NEGFC approach to initialise the PSO algorithm as from a given brightness
threshold.
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Figure 5.7: Astrometric and photometric errors for the NEGFC approach (purple) and
for RSM based planetary signal characterisation algorithm using the PSO approach
with and without the initialisation step relying on the NEGFC approach (resp. yellow
and green). The upper graph shows the dependence of the averaged rms position error
on the contrast, while the bottom one shows the dependence of the photometric rms
error (computed at a radial distance of 4λ/D).

5.4.2 Point-source characterisation

We applied the RSM-based planetary signal characterisation algorithm on the two tar-
gets for which signals were detected. The results are presented in Table 5.6. Besides
the astrometry and photometry, we estimated contrast curves for HD206893 at two
additional completeness levels, 50% and 5%. This could further help us classifying
the detected signal between planetary candidates and bright speckle, by considering
its relative distance to these contrast curves. In contrast with S/N-based analysis,
which relies on Gaussian assumption, there is no linear relationship between compan-
ion brightness and completeness level in RSM detection map. The distance between
a companion and contrast curves estimated at different completeness levels should
therefore give information about the uncertainty associated with the detection. The
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Table 5.6: Detected targets photometry and astrometry.

Target Radial distance (mas) Position Angle (◦) Contrast
Confirmed detections
HD 206893 b 266.58± 3.25 159.76± 0.65 4.59± 0.37× 10−5

HD 114082 BKG (1) 803.93± 1.06 332.10± 0.08 7.49± 0.11× 10−6

HD 114082 BKG (2) 1082.67± 0.93 56.75± 0.05 1.69± 0.01× 10−5

contrast curves were computed after removing the detected signal via the negative fake
companion subtraction technique, using the parameters from Table 4.1. Figure 5.8
presents the contrast curves along with the detected signal positioned at its estimated
contrast and angular separation. No contrast curves were computed for HD114082
pertaining to the difficulty of removing the disk via fake companion injections.
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Figure 5.8: Contrast curve of the data set for which one or multiple planetary can-
didates have been detected. The contrast curves have been computed at a 95%, 50%
and 5% completeness level. The planetary candidate is indicated by a red star at its
respective contrast and angular separation from the host star.

We finally computed additional detection maps. We ran the Auto-RSM framework
replacing the bottom-up approach by a top-down selection method to define the set
of likelihoods cubes used to generate the final RSM detection maps. We also relied on
the Auto-SNR framework (Dahlqvist et al. 2021) to generate optimised SNR maps.
This framework uses the optimised parameters of the Auto-RSM framework for the
PSF-subtraction techniques, but relies on dedicated function to select and combine
the optimal set of SNR maps. We eventually computed SNR maps with APCA, NMF,
LLSG and LOCI and simply mean combined them to generate an averaged SNR map.
All these detection maps are presented in Figures D.5, with a yellow circle indicating
the position of the detected signals.
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HD206893

The first detection of HD206893 B dates back to 2015 (Milli et al. 2016b), with
numerous papers devoted to its characterisation published since (e.g. Grandjean, A.
et al. 2019; Kammerer et al. 2021). We see from Figures 5.8 and D.5 that HD206893
B is a very bright companion, located well above the 95 % completeness contrast
curve, and visible in all detection maps. We estimate a contrast of 4.59± 0.37× 10−5,
which translates into a mass of 24.76+0.67

−0.62 MJup and 33.22+0.37
−0.34 MJup for respectively the

AMES-COND and AMES-DUSTY evolutionary models, using an estimated stellar age
of 0.25 Gy. These estimated masses lie inside or close to the [5−30] MJup range defined
in(Kammerer et al. 2021), while the estimated angular separation of 266.58±3.25 mas
(10.88 au) is very close to the one determined for the same epoch in Milli et al. (2016b).

HD114082

Although the RSM approach is not designed to unveil large structures, the de-
bris disk around HD114082, first detected by Wahhaj et al. (2016), is clearly visible.
Two point-like sources are also visible. They are situated at an estimated distance of
803.93± 1.06 mas and 1082.67± 0.93 mas from HD114082. These signals are visible
in all detection maps from Figure D.5. HD114082 being in a dense field, we rely
on TRILEGAL stellar population model (Girardi et al. 2012) to infer the density of
background stars around HD114082. This density is then used to estimate the prob-
ability of observing two or more background stars at a distance below 1082.67 mas
from HD114082, using a spatial Poisson point process. This probability is equal to
63.5 %, and increase to 88.5 % when considering the probability of observing one or
more background stars. Considering these high probabilities and the high inclination
of these objects compared to the debris disk, these detections are most likely back-
ground stars. A second-epoch follow-up and an astrometric analysis is presented in
Engler et al. (submitted) and confirmed that those two sources are background sources
without proper motion.

5.5 Contrast curves analysis

The contrast curves computed in Section 5.3.4 are used throughout this section as a
measure of the ADI sequences quality, as well as a metric for the RSM map algorithm
performance.
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5.5.1 Influence of clustering

We start by comparing the contrast curves obtained for the cluster centroids and the
ones obtained by applying the centroids optimal parameters on the remaining targets
of the cluster. The comparison aims to determine if the cluster centroids, for which the
optimal parametrisations were computed, do perform better than the other members
of the cluster in terms of achievable contrast. This should provide an idea of how far
from the optimum we are, the optimum being the case where auto-RSM is applied on
every target. We have estimated the difference between each of the members and their
cluster centroid in terms of ∆ mag11, and report in Figure 5.9 the radial evolution of
this measure averaged, for each cluster, over their set of members.
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Figure 5.9: Angular evolution of the average contrast difference between cluster mem-
bers and their cluster center expressed in terms of ∆ mag. A positive ∆ mag indicates
a poorer contrast for the cluster members.

Looking at the seven curves12, the center seems to perform better for some clusters
(see clusters 11, 13 and 23), while for others the cluster members show a higher per-
formance (see clusters 12, 21, 22, and 24). Surprisingly, we observe on average a small
increase of the performance in terms of contrast for the cluster members at close an-
gular separations. The average performance gain is close to zero at larger separations.
This seems to support the use of a reduced number of optimal parameters, as it does
not seem to negatively impact the performance within the different clusters.

11We expressed both contrast curves in terms of magnitude and then subtracted the magnitudes
of the members from the one of the cluster center.

12The cluster composed of HD14082B, HD82943, HD107649 was not included in the analysis as
two of the three cluster members were rejected, due to the presence of multiple extended speckle-like
bright structures in the HD107649 detection map and the existence of better epochs for HD82943.
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We used the same approach to assess the necessity to rely on multiple optimal
parametrisations instead of a single one for the entire survey. This allows us to inves-
tigate also the impact of the degree of dissimilarity between optimal parametrisations
on the performance, measured in terms of contrast. We considered two sets of clusters,
one set of clusters close in terms of parametrisation, cluster 11 and 12 and one set of
clusters presenting a larger level of dissimilarity, cluster 23 and 24 (see Figure D.1).
We computed for cluster 11 and 23, a new set of contrast curves using respectively
the optimal parameters of cluster 12 and 24 (obtained for respectively HD3670 and
HD3003). We then estimated the difference between these new contrast curves and
the contrast curves obtained with the optimal parametrisation of their own cluster cen-
troid (respectively HD192758 and HD181296). These contrast differences, expressed
in terms of ∆ mag, are shown in Figures 5.10. As can be seen from the mean curves,
using the optimal parameters estimated for their own cluster centroid leads on average
to a better performance, especially at small angular separation. We see also that the
mean distance is larger for the cluster 23, which showed a higher degree of dissim-
ilarity in Figure D.1. These results highlight the added value, at close separation,
of the definition of local optimal parametrisation via auto-RSM. The reasons for this
higher performance are twofold. First, regions with a high level of background residual
noise are more difficult to treat and are therefore more sensitive to parametrisation.
Secondly, auto-RSM focuses mainly on close separations to optimise the model pa-
rameters, which explain its better performance at these distances compared to other
approaches. This confirms the interest of computing several sets of optimal parameters
for a large survey to account for dissimilarities in the ADI sequences’ characteristics.

5.5.2 Influence of environmental parameters

We perform a similar correlation analysis as the one made in Appendix D.1, but
focusing here on the relationships existing between the parameters characterising the
ADI sequences and the performance in terms of achievable contrast. We start by re-
expressing every contrast curve in terms of magnitude and average these magnitudes
over the set of considered angular distances. We then compute the Pearson correlations
between the parameters characterising the ADI sequences and the median contrast,
considering the entire SHARDDS data set. As can be seen from from Figure 5.11, the
raw contrast at 500 mas, the Strehl and the WDH asymmetry show relatively high
correlations and have the expected sign. A higher asymmetry of the WDH is indeed
more difficult to treat by the PSF-subtraction techniques, which do not cope well with
anisotropy in the speckle field. Despite their lower correlation, the other parameters
show also the expected sign. As in Table D.1, the lowest correlation is associated
to the autocorrelation measure, indicating that the decay rate of the autocorrelation
function is not the best measure of the temporal relationships between the frames.
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Figure 5.10: Angular evolution of the contrast difference, for the cluster 11 (top) and
23 (bottom), between the contrast obtained with their optimal parametrisation (corre-
sponding to the optimal parametrisation of their respective cluster center, HD192758
and HD181296) and the contrast obtained with the optimal parametrisation of an-
other cluster center (resp. HD3670 and HD3003, i.e. the center of the cluster 12
and 24), expressed in terms of ∆ mag. A positive ∆ mag indicates a poorer contrast
achieved with the optimal parametrisation of the other cluster centres compared to
their own cluster center. The black curve provide the ∆ mag averaged over the set of
considered targets.
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Figure 5.11: Pearson correlations between the contrast curve median values expressed
in ∆ mag and the parameters characterising the ADI sequences.

In order to further investigate the relationship between the achievable contrast and
parameters characterising the ADI sequences, we propose to rely on linear regression
to highlight the parameters contributing the most to the quality of the ADI sequences.
Considering the relatively low number of data points with only 60 fully treated targets,
and the potential co-linearities existing between the parameters, we rely on a bottom-
up approach based on the Akaike information criterion (AIC) to select one by one the
parameters to be included in our model. The AIC provides a measure of the amount
of information lost by a model. This measure includes a penalty term increasing with
the number of parameters, providing a good trade-off between the model complexity
and its goodness of fit. We start by computing the AIC for every parameter and
select the parameter having the lowest AIC. We include this parameter to the model
and compute again the AIC of this model after adding one at a time each of the
remaining parameters. The parameter leading to the highest reduction of the AIC is
then included in the model. This procedure is repeated until no more reduction of the
AIC is observed.

Table 5.7 gives the set of parameters that were selected using this method, along
with the parameter values in the linear regression, their standard error, and p-value.
We retrieve all three parameters that were already identified as highly correlated to the
contrast in Figure 5.11, with in addition the wind speed showing a positive coefficient
most probably attributable to the low wind effect. All the selected parameters show
a high significance, especially the raw contrast at 500 mas and the WDH asymmetry.
This highlights the importance of finding mitigation strategies to tackle the WDH
to increase the quality of the ADI sequences (see Cantalloube et al. 2020a). With a
R2 adjusted for the number of parameters equal to 0.699, this simple model provides
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already a good indication of the expected contrast, relying on only four parameters
that can be quickly computed or are already available in the metadata.

Table 5.7: Linear regression coefficients, standard error, and p-value for the five param-
eters selected via the minimisation of the AIC with as dependent variable the contrast
curve median values expressed in ∆ mag. The minimum AIC and the adjusted R2 are
respectively equal to 60.04 and 0.699.

Parameters Coefficient Standard error p-value
Contrast at 500 mas 0.5863 0.082 0.000
WDH asymmetry -0.0468 0.013 0.001
Strehl 2.2234 1.020 0.034
Wind speed 0.0192 0.010 0.063

Following this analysis of the parameters driving the most the quality of the ADI
sequences in terms of achievable contrast, we propose to look at existing observation
quality ratings. In Figure 5.12, we report the different ADI sequences of the SHARDDS
survey classified in terms of ESO observation quality grading and their respective mean
contrast. As can be seen from this graph, apart from a single ADI sequence graded C
showing a very low mean contrast, there are no major differences between the contrast
distribution among the three grades. The ESO grading system used for this survey
was mainly based on the seeing. A more robust multi-factor grading system was
introduced in April 2018 (Milli et al. 2019). However, a more HCI-oriented grading
system based on a multi-factor linear regression, such as the one presented in Table
5.7, could be an interesting tool to grade HCI observations at the telescope, and/or
inform the post-processing of large surveys.

5.6 Survey Sensitivity

5.6.1 Target detection probability

The median contrast curves provide a good metric for the quality of the ADI sequences
of the SHARDDS survey, and its relationship with the observing conditions. However,
this analysis did not provide information about the global sensitivity of the SHARDDS
survey to planets. In this section, we translate these contrast curves into upper limits
on the detectability of planets depending on their semi-major axis and their mass, using
respectively an astrodynamic and an evolutionary model. The astrodynamic model
relies on Keplerian motion to determine the range of angular separations covered by
a planet depending on its orbital elements. The evolutionary model describes how
planets cool down over time depending on their mass.

Different evolutionary models were developed and refined in the past decades. For
the sake of continuity with previous studies, we choose two well-known models, namely
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Figure 5.12: Distribution of the targets mean contrast (expressed in ∆ mag) in the
different grading categories.

the AMES-DUSTY (Chabrier et al. 2000) and AMES-COND (Baraffe et al. 2003)
models. Both models assume planet formation via direct collapse of part of the disk
due to gravitational instabilities. Direct collapse is much faster than planet formation
via core-accretion. The gas forming the protoplanet retains more of its initial entropy,
explaining the ’hot start’ appellation often associated with the gravitational instability
scenario, although this formation process allows a range of initial entropies (Spiegel &
Burrows 2012). Disk instabilities are assumed to be the main scenario for the formation
of giant planets and brown dwarfs at large distance from their host star (>10 au). The
tables of cloud-free atmosphere AMES-COND, and dusty atmosphere AMES-DUSTY
models for SPHERE were used to convert the contrast curves (∆mag) into planetary
mass curves, knowing the age and the magnitude in H-band of the host star.

Having computed the planetary mass sensitivity curves for all targets, we have now
to determine the accessible range of angular separations corresponding to a given semi-
major axis. This range of angular separations is used alongside the planetary mass
curves to compute the detection probabilities for the set of masses and semi-major axis
which form the grid points of the planetary detection probability map. We define the
range of angular separations for a given semi-major axis, by computing the projected
distance between the planet and the host star, as seen from the Earth, for multiple
sets of randomly generated orbital elements (eccentricity, inclination, argument of the
periapsis, longitude of the ascending node and mean anomaly). The true anomaly is
obtained through the definition of the eccentric anomaly, which is computed via an
expansion in terms of Bessel functions of the mean anomaly. The position vector in
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the perifocal frame is then estimated using the elliptic orbit equation based on the true
anomaly, the eccentricity and the semi major axis. The angular separation is finally
obtained by estimating the norm of the position vector, expressed in equatorial coor-
dinates via three Euler rotations. The detailed computation of the angular separation
is provided in Appendix D.4.

For each target of the survey, 150 semi-major axes, ranging from 0.1 to 1 000 au
and 100 planetary masses, ranging from 0.1 to 100 MJup are uniformly distributed in
log space to form our grid. For each point in the grid, 5000 sets of orbital elements are
defined, using a uniform distribution for the inclination, the argument of the periapsis,
the longitude of the ascending node, and the mean anomaly. For the inclination, we
rely on a uniform distribution in sine to take into account the higher number of con-
figurations for near edge-on orientations compared to face-on orientations, and ensure
isotropy. The eccentricity follows a Beta distribution with parameters α = 0.95 and
β = 1.30, corresponding to the best fit to the full sample of wide substellar companions
obtained by Bowler et al. (2020). The planetary detection rate is then computed for
each target and each grid point, as the fraction of the 5000 drawn angular distances
for which the considered mass lies above the planetary mass sensitivity curves. The
obtained values are then averaged over the entire set of targets and multiplied by 0.95
to account for the selected completeness of the contrast curves.

Figure 5.13 shows the resulting planet detection probability maps as a function of
companion mass and semi-major axis. We see that higher detection rates are obtained
for a semi-major axis range of [10, 100] au with masses above 10 MJup. We have su-
perimposed on this plot, the predicted planets derived from the dynamical constraints
presented in Pearce et al. (2022). This study inferred the planet properties (mass,
semi-major axis and eccentricity) if the inner edge of the disk is sculpted by one or
several planets, and modelled the disk morphology based on ALMA, Herschel or the
star spectral energy distribution (SED). We have plotted in Figure 5.13 the minimum
masses and maximum semi-major axes of the planets predicted to be sculpting the
inner edges of the disks if one planet is responsible in each of the 21 systems that are
common between the SHARDDS sample and that of Pearce et al. (2022). These 21
targets are presented in Appendix D.5. These are the minimum masses and maximum
semi-major axes that a single planet would need to sculpt the inner edge of the disk.
Alternatively, a more massive planet located further inwards could also have the same
effect. The planet masses could also theoretically be lower if multiple planets sculpt
each disc, rather than just one planet, or if the inner edge of the disk is smaller
than estimated. The disk inner edge was estimated from either a blackbody fit the
Spectral Energy Distribution (SED) or if available from resolved observation with Her-
schel or ALMA (see Fig. 9 left in Pearce et al. 2022, the data being reproduced here
in Appendix D.5). Considering the conservative limits we computed for the detection
probabilities (95 % completeness), these planets are relatively close to the detection
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limit when considering the AMES-COND evolutionary model.
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Figure 5.13: The figures give the detection probability as function of companion mass
and semi-major axis. The contour plots have been calculated using the AMES-COND
and AMES-DUSTY evolutionary models, relying on the contrast curves generated
for the 53 targets of the SHARDDS survey (Fomalhaut C and HD107649 have been
rejected due to respectively adverse observing conditions and the presence of extended
bright structures). The estimated mass and semi-major axis estimated for 21 targets
of the SHARDDS survey by Pearce et al. (2022) are injected in the probability map
along with the associated uncertainties.

Figure 5.14 shows the contrast curve of HD38206, the most favourable target in
terms of mass and semi-major axis, translated into mass curves using the AMES-
COND and AMES-DUSTY evolutionary models. We computed the probability distri-
bution of the companion’s expected projected separation, using the orbital elements
provided in (Pearce et al. 2022) and assuming a Gaussian distribution for these dif-
ferent orbital elements. As can be seen, the mass curve obtained with AMES-COND
is very close to the expected mass of the companion for the region with the highest
probability for the projected separation.

5.6.2 Occurrence rate

The definition of planetary detection probabilities allows us to derive statistical con-
straints on the planet occurrence rate. We consider the statistical approach proposed
by Lafreniere et al. (2007a) who build confidence intervals for the planet occurrence
rate relying on a Bayesian approach. We start by defining the likelihood of ob-
serving a planet characterised by a mass m ∈ [mmin,mmax] and a semi-major axis
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Figure 5.14: Translation of the HD38206 95 % completeness contrast curve into mass
curves, using the AMES-COND (yellow dashed-dotted line) and AMES-DUSTY (red
dashed line) evolutionary models. The green line provides the expected mass of the
companion (Pearce et al. 2022) and the blue line the probabilities associated with the
considered range of projected separations.

a ∈ [amin, amax] around star i ∈ [1, N ]13 as follows:

L([dj]|f) =
N∏
i=0

(1− fpi)(1−di)(fpi)di (5.3)

where f is the planet occurrence rate we are looking for, pi the previously derived
planet detection probability, and di the detections, with di = 1 for the detection of a
planet with m ∈ [mmin,mmax] and a ∈ [amin, amax] around target i. The occurrence
rates are computed for specific points in the mass-semi-major axis space defined for
the estimation of the planet detection probabilities. We replace therefore each of the
ranges m ∈ [mmin,mmax] and a ∈ [amin, amax] by a single mass and semi-major axis
point.

Following Bayes’ theorem, we estimate the posterior probability distribution from
the likelihood and the prior probability distribution, which we set to p(f) = 1, assum-
ing no prior knowledge about the distribution of the occurrence rate. The posterior
probability reads:

p(f |[dj]) =
L([dj]|f)p(f)∫ 1

0
L([dj]|f)p(f)df

, (5.4)

13For the SHARDDS survey N = 53 as we removed two targets from the initial set of 55 stars
because of adverse observing conditions, i.e. Fomalhaut C and HD107649
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from which we derive the minimum and maximum occurrence rate at a given level of
confidence α by solving:

1− α
2

=

∫ fmin

0

p(f |[dj])df ,
1− α

2
=

∫ 1

fmax

p(f |[dj])df (5.5)

These last expressions simplify for grid points where no detection has been made
within the considered set of targets. This is the case for all grid points except the one
associated with HD206893 B. The simplified expression provides only the maximum
occurrence rate, fmax:

α =

∫ fmax

0

p(f |[dj])df (5.6)

For each considered grid point, the occurrence rates are obtained via simplex minimi-
sation using the Nelder-Mead approach imposing a confidence level α = 0.95.

Figure 5.15 presents the upper limit of the companion occurrence rate obtained for
the two considered evolutionary models, as a function of semi-major axis and mass. We
see that the occurrence rate is especially low (below 10%) for companion with masses
above 20 MJup with a semi major axis ranging between 10 and 60 au, because of the
high sensitivity of our survey to this region. The lower sensitivity towards the larger
semi-major axis, and the sensitivity peak at 30 au are explained by the stellar distances
limited to 100 pc in the SHARDDS survey, as well as the field of view of 1.25 arcsec
used in this study. Having considered a completeness level of 95%, we discarded a large
fraction of the cumulative probability distribution of the contrast versus the detection
probability. This approach is therefore conservative as it considers the lower bound
of the planet detection probability, providing an upper limit of the planet occurrence
rates.

5.7 Conclusion

In this chapter, we present an in-depth analysis of the SHARDDS survey in terms of
point-source detection, based on the auto-RSM framework. Although the SHARDDS
survey was mainly designed to image bright debris disks in near-infrared scattered
light, the detection of point sources may provide a better understanding of the inter-
action between planets and debris disks, and give information about the formation
and evolution of circumstellar systems.

Considering the computational cost of the auto-RSM framework, as well as the
high degree of similarity observed between the optimal parametrisations of different
ADI sequences in chapter 4, we decided to rely on clustering to reduce the number
of required optimisations. We divided our data set into eight clusters using K-means
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Figure 5.15: The two graphs provide the 95% confidence upper limits to the planet
occurrence rate as function of companion mass and semi-major axis. The contour
plots have been calculated using the AMES-COND and AMES-DUSTY evolutionary
models, relying on the contrast curves generated for the 53 targets of the SHARDDS
survey.

clustering algorithm, based on parameters characterising the ADI sequence itself and
the related observing conditions. For each cluster, the most representative ADI se-
quence was selected and the auto-RSM framework was applied on it. The generated
set of optimal parameters for both the PSF-subtraction techniques and the RSM algo-
rithm was then used to generate detection maps for all the ADI sequences contained
in the cluster. The analysis of the obtained detection maps showed the presence of a
higher number of bright speckles when reversing the parallactic angles, providing an
important reminder that care should be taken when computing detection thresholds
based on reversed parallactic angles.

Based on the detection maps, we identified high-probability signals in only two
ADI sequences: HD206893 B which had already been previously detected, and the
bright debris disk around HD114082. Although these astrophysical objects had already
been identified, we proposed a multi-factor detection and characterisation pipeline
to confirm the detections and characterise the signals in terms of astrometry and
photometry.

Following the analysis of the detection maps, we computed for each target a con-
trast curve at a 95% completeness level, subtracting the detected signal via the negative
fake companion approach when necessary. The median contrast curve demonstrated
the high performance of the auto-RSM framework, reaching a contrast of 10−5 at 300
mas and 3× 10−6 at 600 mas. These contrast curves were then used to assess the per-
formance of the proposed clustering approach. Using the contrast as a performance
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metric, we found that on average the optimal parametrisation led to slightly higher
performance for cluster members compared to cluster centroids. Shifting the optimal
parametrisation between clusters led to lower performance in term of contrast, espe-
cially at close separation, highlighting the interest of a clustering approach to account
for dissimilarities in the ADI sequences characteristics. The quality of an ADI sequence
is also shown to be driven by some key observing condition metrics such as the WDH,
the Strehl, the wind speed, or the raw contrast, which could allow to develop a simple
and efficient HCI-oriented grading measure.

A planet detection probability map was then generated based on these contrast
curves and on two different evolutionary models, AMES-COND and AMES-DUSTY.
The planet detection probability map showed a high detection probability for a semi-
major axis range of [10, 100] au with mass above 10 MJup. We finally computed
two planet occurrence rate maps based on the estimated detection probabilities, which
showed a very small occurrence rate for companions with masses above 20MJup having
a semi-major axis between 10 and 60 au.

The analysis of the SHARDDS survey allowed the development of new tools as well
as the improvement of the auto-RSM framework, allowing it to gain in maturity and
become a robust HCI post-processing pipeline, achieving good performance in terms
of contrasts.
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Chapter 6

Conclusion

6.1 Summary

Each chapter of this thesis has contributed to the literature either methodologically or
empirically. While the first three chapters focused on the development of a new post-
processing framework for ADI sequences, leading to increased performance in terms of
detectability and reachable contrast, the last chapter applied this new framework to a
survey in order to infer planetary occurrence rates.

The goal of the second chapter was to introduce the main concepts behind the pro-
posed RSM map algorithm, which aims to improve exoplanet detection using a Regime
Switching Model based on a Markov chain. This approach considers two regimes to
describe the evolution of the pixels intensity within ADI sequences, one regime repre-
senting the planetary signal in addition to the speckle noise, and the other one only
the speckle noise. The Regime Switching Model being based on a Markov chain,
the pixels intensity is modelled via a probabilistic approach. This allows to compute
for each pixel a probability associated to each regime, and therefore the creation of
a probability map for the planetary regime, also called detection map. Beyond the
use of a regime switching framework, one of the main advantages of the RSM algo-
rithm is its ability to accommodate multiple cubes of residuals obtained with different
ADI-based post-processing techniques. The speckle field being treated differently by
different PSF-subtraction techniques, considering several techniques helps reducing
the residual speckle noise level, and therefore better discriminating planetary signals
from residual speckles. This reduction of the residual speckle noise level is attributable
to the short memory process at the heart of our RSM detection map, which allows
quasi-static speckles to be treated more effectively.

The performance of the vanilla RSM map algorithm was tested by injecting fake
companions at different angular separations with different contrasts into two data sets
provided by the VLT/NACO and VLT/SPHERE instruments. The performance of the
RSM detection map was compared to standard S/N maps obtained with three PSF-
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subtraction techniques (annular PCA, NMF and LLSG), using ROC curves. The ROC
curves were computed at three angular separations by considering multiple contrasts
for the injecting fake companions. The ROC curves demonstrate clearly the interest of
our model as it outperforms all the other methods, especially at close separation from
the host star. The performance assessment via ROC curve allowed also to highlight the
importance of selecting the right probability distribution, within the RSM algorithm,
to describe the speckle noise. Indeed, the Laplacian distribution performs clearly better
for close separations while the Gaussian one provides better results for larger angular
distances. The radially dependent optimal selection of the probability distribution was
therefore included in the RSM algorithm, relying on a best fit approach.

Building on the good results obtained with the RSM algorithm, the third chapter
was dedicated to improving the algorithm at different levels. We first considered a
forward-model version of the RSM map for two different PSF-subtraction techniques,
KLIP and LOCI. The computation of forward-modelled PSFs allowed to take into
account PSF distortions due to the speckle field subtraction. We relied again on ROC
curves to assess the added value of forward-modelled PSFs. The results showed a higher
performance of the two forward-model versions of the RSM map algorithm at small
angular separations, while the gap between forward-model and standard approach
reduces at larger angular separations, as the self-subtraction patterns fade away, the
relative movement of astrophysical signals increasing with the distance to the host
star. These ROC curves highlight also the radial dependence of the optimal forward-
modelled PSF crop size, with larger crop sizes leading to better results for small angular
separations while the reverse is true for smaller crop sizes. This could be explained
by the fact that larger PSF crop sizes better account for the self-subtraction patterns,
whose intensity decreases with radial distance.

The third chapter also investigated the question of the optimal selection of the PSF
subtraction techniques to be included in the estimation of the RSMmap. Relying again
on ROC curves, we demonstrated the importance of this selection, with sometimes
large differences between the performance of the considered combinations of PSF-
subtraction techniques. The question of the optimal combination, which seems to
depend on the instrument generating the ADI sequence, is further explored in the
fourth chapter. The next improvement considered in the third chapter relates to the
way probabilities are estimated within the RSM algorithm, by replacing the original
forward approach by a forward-backward approach. This approach relies on both past
and future observations to compute a final probability. This allows us to deal more
efficiently with background noise as speckles are not treated in the same way when
relying on a forward and backward approach. Another advantage of the forward-
backward version of the RSM map is its ability to extract more precisely the planetary
astrometry.

Besides these improvements of the RSM map algorithm, the third chapter allowed
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the development of a new framework to compute contrast curves in the case of proba-
bility maps, which cannot be treated as S/N maps. The 50% true positive rate (TPR)
is kept, but the Gaussian-based noise threshold definition is replaced by a threshold
based on the detection of the first false positive within the entire frame. The contrast
curves are computed using a procedure based on successive linear interpolations to de-
fine, at successive angular separations, the contrast associated with a TPR of 50 % at
the predefined threshold. Contrast curves computed with both forward and forward-
backward version of the RSM map algorithm highlighted the ability of the forward
version to detect fainter companions at small angular separations (below 400 mas),
and the overall similar results for larger separations. However, the forward-backward
approach reduces drastically the speckle background noise and gives a higher preci-
sion in terms of astrometry. It should therefore be considered when characterising a
detected signal, while the forward version of the RSM map algorithm is better suited
for detections.

Following the improvements made in the third chapter, the RSMmap algorithm can
accommodate up to seven PSF-subtraction techniques, increasing the complexity of
the parameter selection and the associated arbitrariness. The fourth chapter addresses
this shortcoming via the development of an automated optimisation framework for the
RSM approach, called auto-RSM, which should provide users with a simple framework
to compute reliable detection maps. The proposed multi-step parameter-optimisation
framework considers the optimisation of the PSF-subtraction techniques, as well as the
optimisation of the RSM approach parametrisation. Building on the findings made in
chapter three, it also considers the selection of the optimal set of PSF-subtraction
techniques and ADI sequences to be considered when generating the final detection
map. The selection of the optimal set of parameters for the PSF-subtraction techniques
is based on the minimisation of the mean contrast within the selected set of annuli,
while the optimisation of the RSM approach and selection of the optimal set of cubes
of likelihoods are based on the probability ratio between injected fake companion
peak probability and background residual probabilities. As some PSF-subtraction
techniques have a continuous parameter space, a Bayesian optimisation framework is
proposed to explore the parameter space and select the optimal set of parameters.

Two versions of the auto-RSM algorithm were considered, an annular version where
the set of optimal parameters evolves with radial distance, and a full-frame version
where a single set of parameters is selected for all angular separations. Different
flavours of the full-frame and annular auto-RSM algorithm were tested to investigate
the added value of different methods to select the optimal set of cubes of likelihoods
(bottom-up or top-down approach), or to compute the final probabilities (forward
or forward-backward approach). The auto-RSM framework being not limited to the
RSM algorithm, we also tested a version of our optimisation framework replacing the
RSM algorithm by the computation of standard S/N maps. The auto-S/N algorithm
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relies on the same first step, i.e., the optimisation of the PSF-subtraction techniques
parametrisation, but replaces the last two steps by the computation of a single S/N
map via an optimal weighted sum of the S/N maps.

The performance of these different versions were assessed by relying on the data
sets of the Exoplanet Imaging Data Challenge and on the performance assessment
framework proposed in Cantalloube et al. (2020b). Several performance metrics were
computed based on the detection maps generated for the nine ADI sequences included
in the EIDC data sets: a data set-dependent F1 score at a predefined threshold,
as well as the estimation of the area under the curve (AUC) for the TPR, FPR,
and FDR. In most cases, auto-RSM provided better performance than the original
RSM-detection map submitted to the EIDC, which was already at or close to the
top of the ranking for all performance metrics in the EIDC. The full-frame auto-RSM
using the bottom-up approach to select the optimal set of cubes of likelihood and
the forward approach to compute the RSM probabilities provided the best overall
performance in terms of detection. Considering the longer computation time and
lower performance of the annular version, the full-frame auto-RSM was selected for
the survey considered in chapter 5. Regarding the auto-S/N algorithm, it showed a
degraded performance compared to auto-RSM, although its reduced computation time
could make it sometimes a good complement to auto-RSM.

Considering the high computational requirement of auto-RSM, we studied the com-
monalities existing between the parametrisations of the nine data sets of the EIDC
in order to investigate the possibility of using a common set of parameters for each
instrument. The computed dissimilarity metrics showed that the distance between
the parametrisations for a common instrument is smaller than the distance between
the parametrisations of different instruments. Potential differences between the noise
characteristics of different data sets generated with a common instrument should nev-
ertheless be taken into account, as illustrated by the NIRC2 data sets. These findings
suggest the possibility of using a reduced number of optimal parametrisations for large
surveys, allowing to reduce sensibly the required computation time.

The last chapter of this thesis was dedicated to an empirical application of the
RSM framework developed in the three previous chapters. The aim of the chapter was
twofold: the first goal was to process an entire survey with the RSM framework in
order to obtain detection maps and contrast curves, allowing the computation of ex-
oplanet occurrence rate maps, and identify potential planetary candidates. Although
the SHARDDS survey was mainly dedicated to near-infrared imaging of bright debris
disks in scattered light, the detection of point sources should help to better under-
stand the interaction between planets and debris disks, and give information about
the formation and evolution of protoplanetary systems. The second objective was to
identify potential shortcomings in the RSM framework, solve them, and improve the
overall performance and reliability of the PyRSM python package.
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Following the findings made in the fourth chapter regarding the high degree of
similarity existing between optimal parametrisations for a given instrument and con-
sidering the computational cost of the auto-RSM framework, we decided to rely on
clustering approach to reduce the number of required optimisations. Relying on the
K-means clustering algorithm, we divided our data set into eight clusters, based on
parameters characterising the ADI sequence and on the observing condition. For each
cluster, we defined the ADI sequence closest to the cluster center as the most repre-
sentative sequence and apply the auto-RSM framework. The obtained set of optimal
parameters for the eight centroids were then used to generate detection maps for all the
ADI sequences contained in their respective cluster. As already suggested in chapter 4,
the optimal parametrisations of the different cluster centroids showed a relatively high
degree of similarity. However, relying on contrast curves as performance metrics, we
showed in the last chapter that using the optimal parametrisation of another cluster
led to degraded performance, especially at close separations. These results demon-
strate the interest of relying on a few well-selected ADI sequences to compute local
optimal parametrisations, instead of relying on a single one for the entire survey.

Looking at the detection maps, only two targets seemed to include a potential
planetary candidate. Although these astrophysical objects had already been identi-
fied, we proposed a multi-factor detection and characterisation pipeline to confirm the
detections and characterise the signals in terms of astrometry and photometry. We
generated for these targets multiple detection maps using several algorithms to con-
firm the detection. We also computed contrast curves at several levels of completeness
in order to compare them with the companion angular separation and contrast that
were estimated using a new planetary signal characterisation algorithm based on the
RSM framework. We identified HD206893 B, which had already been previously de-
tected, as well as the bright debris disk around HD114082, which also contained two
background stars.

Following the identification of potential planetary candidates and bright speckles,
we computed for each ADI sequence a contrast curve at a 95% completeness level,
subtracting the detected signals via the negative fake companion approach when nec-
essary. The median contrast curves demonstrated the high performance of the auto-
RSM framework, reaching a mean contrast of 10−5 at 300 mas and 3 × 10−6 at 600
mas. A planet detection probability map was then generated based on these contrast
curves and on two different evolutionary models: AMES-COND and AMES-DUSTY.
The planet detection probability map showed a high detection probability for a semi-
major axis range of [10, 100] AU with mass above 10 MJup. We finally computed
two planet occurrence frequency maps based on the estimated detection probabilities,
which showed a very small occurrence frequency for companions with masses above 20
MJup having a semi-major axis between 10 and 60 AU. These occurrence rate maps
were generated at a completeness level of 95%, providing an upper limit as only a
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small fraction of the contrast distribution in terms of completeness levels was taken
into account.

6.2 Perspectives

Throughout these four chapters, we went from a simple concept to a complex but
highly efficient post-processing framework for ADI (and SDI) sequences, adding in
each chapter many new features and simplifying its use. The PyRSM package in-
cludes all the functions described along these lines, and offers a parameter-free detec-
tion map computation algorithm with a very low level of residual speckles, allowing
a simple detection threshold selection. This package has largely increased in matu-
rity thanks to the SHARDDS survey and has become a robust HCI post-processing
pipeline, achieving good performance in terms of contrasts.

Several improvements could however be considered in the near future to further
increase the sensitivity of the RSM framework to faint planetary signals. The proba-
bility distribution describing the residual speckle noise and its parametrisation has a
critical impact on the ability of the RSM algorithm to effectively remove background
noise. An annular-based approach was proposed in the second chapter to account for
the radial evolution of the noise statistics, by switching between different probabil-
ity distributions. Different regions were also considered to compute the probability
distribution parameters. Although these different approaches increased significantly
the performance of the RSM framework, more advanced distributions could be con-
sidered such as mixtures of multiple probability distributions, or distributions with
evolving skewness and kurtosis (e.g. CanteroMitjans et al. in prep). The develop-
ment of a faster approach to define the most suitable probability distribution and its
optimal parametrisation should also help reducing the computation time, as this step
represents a large fraction of the RSM likelihood estimation.

The identification of planetary signals in probability maps requires the definition
of a detection threshold. As shown in chapter 5, probability maps with reversed par-
allactic angles cannot directly be used to define such a detection threshold. However,
a probabilistic analysis of a large sample of detection maps with and without reversed
parallactic angles could allow the definition of a threshold probability distribution giv-
ing an uncertainty associated to each threshold value. The main challenge will be
to relate the probability distribution of the maximum probabilities in the detection
maps with and without reversed parallactic angles. We indeed saw in Section 5.3.4
that the probability of having high maximum probabilities increased when using re-
versed parallactic angles, requiring some truncation of the distribution. It could also
be interesting to determine the source of these bright artefacts.

An SDI version of the auto-RSM framework has been included in PyRSM and
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tested successfully on a single SDI data set. A performance assessment of this version
could be considered, relying for example on the EIDC SDI data sets. This performance
assessment could also help defining the right balance between the computation time
and the number of spectral channels to be considered to reach high performance in
terms of achievable contrast. Besides the use of multiple spectral channels, the RSM
framework can also accommodate multiple ADI cubes of a single target, taken at
different epochs. This multi-epoch approach has been tested only on a few targets,
but a more thorough analysis is necessary to determine its potential added value, by
comparing its performance with single epoch estimations.

We estimated in the last chapter exoplanet detection probability maps and oc-
currence rate maps by considering a 95 % completeness level, which provide very
conservative estimate, as we consider only a small fraction of the contrast distribution
in terms of completeness levels. The analysis of future surveys should rather rely on
the full distribution in terms of completeness levels to get a better estimate of the
occurrence rate. In contrast with S/N-based contrast curve estimation, there is no
linear relationship between the considered completeness level and achievable contrast
with the RSM model (see Figure 5.8). The computation of the contrast distribution
in terms of completeness levels should be done empirically by computing the contrasts
for a range of completeness levels and interpolate for intermediate values. A new func-
tion is now included in PyRSM and VIP packages to compute such completeness maps
with the RSM model but also with any PSF-subtraction techniques. This new function
should provide more accurate estimates for the exoplanet occurrence rate computation,
and also give new insights about the radial evolution of the residual noise homogene-
ity, broader contrast distribution in terms of completeness levels indicating a larger
heterogeneity.

Following the good results obtained for the SHARDDS survey, the clustering ap-
proach proposed in the last chapter could be further refined and apply to other surveys
such as the SHINE survey. The list of parameters providing information about the
ADI sequence quality and the observing conditions could be adapted by considering
the correlation analysis performed in the last chapter. The approach used to determine
the optimal number of clusters could also be improved. Building on the findings made
in the last chapter, a new grading system for HCI observations could be developed and
proposed to ESO. Such a grading system should however be tested with other HCI
post processing techniques to confirm its interest.

Considering the maturity of the current RSM framework and the many potential
developments presented along these lines, PyRSM will hopefully be used for many
more surveys and provide unprecedented detection limits, allowing the detection of
many exoplanets with the next generation of telescopes and instruments.
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182 APPENDIX A. RSM DETECTION MAP

A.1 Mathematical notations for the RSM map model

Table A.1: Description of the mathematical notations for the variables used in the RSM de-
tection map computation.

Symbol Dimension Comments
RSM map
Xia TLa Vector of residuals for the annulus a
xia θ × θ × TLa Patches of residuals centred on pixel ia
Fia TLa Realisation of a two-state Markov chain representing the state

in which the system is for pixel ia
m θ × θ Cropped planetary signal (off-axis PSF)
εs,ia 2θ × θ × TLa Error terms associated with the two regimes
Sia TLa State in which the system is for every pixel ia
ξs,ia 2× TLa Probability associated with state s for every pixel ia
ηs,ia 2× TLa Likelihood of being in each state for every pixel ia
pq,s 2× 2 Transition probabilities between the regimes
µ 1 Mean of the residuals contained in an annulus a, with width equal to θ
σ 1 Standard deviation of the residuals contained in an annulus a,

with width equal to θ
β 1 Parameter representing the intensity of the planetary signal in

the cube of residual
a 1 Annulus index
La 1 Number of pixels included in the annulus a
T 1 Number of frames in the cube of residuals
ia 1 Index associated with every pixel from every frame in the annulus a

(ranges from 1 to TLa)
θ 1 Angular size of the considered planetary signal ( set to 1λ/D)
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A.2 NACO β Pictoris

(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Figure A.1: Probability map obtained for the NACO β Pictoris data set, with the
RSM using a Gaussian distribution along the S/N map generated with the cube
of residuals obtained with Annular PCA, LLSG and NMF with respectively 20
components for the Annular PCA and the NMF and a rank of 5 for the LLSG.
The colour scale indicates the probability for the RSM map and the signal-to-noise
ratio for the three S/N maps. The maps are centred on the star β Pictoris while β
Pictoris b is identified by the white circle in the lower left quadrant.
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(a) RSM Probability map (b) Annular PCA S/N map

(c) LLSG S/N map (d) NMF S/N map

Figure A.2: Detection map obtained after injecting three fake companions in the
NACO β Pictoris reference cube used for the ROC estimation, at a distance of 2,
4 and 8 λ/D with respectively a contrast of 3.3 ×10−4, 0.4 ×10−4 and 1.7 ×10−5.
The colour scale indicates the probability for the RSM map and the signal-to-noise
ratio for the three S/N maps. The maps are centred of the star β Pictoris while the
fake companions are identified by the white circles.
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186 APPENDIX B. IMPROVING THE RSM MAP ALGORITHM

B.1 Mathematical notations for the RSM KLIP FM and
LOCI FM

Table B.1: Description of the mathematical notations for the variables used in the RSM KLIP
FM, and LOCI FM computation.

Symbol Dimension Comments
KLIP FM
i Npix Vectorised science image/annulus before speckle subtraction
m Npix Vectorised planetary signal (off-axis PSF) inside the selected annulus
p Npix Vectorised forward-modelled planetary signal inside the selected annulus
x Npix Vectorised processed annulus after speckle subtraction
pia/pj θ × θ Derotated and cropped forward-modelled planetary signal for pixel ia/frame j
R NR ×Npix Reference library matrix
VK K ×NR Eigenvector matrix of the covariance matrix RR>with VK = [v1,v2, ...,vk]
Λ NR ×Npix Diagonal matrix with the eigenvalues of the covariance matrix RR>

with Λ = diag(µ1, µ2, ..., µk)>

ZK K ×NR Karhunen-Loève image matrix
∆ZK K ×NR Perturbation of the Karhunen-Loève image matrix
M NR ×Npix Planet signal component in the reference library R
CMR NR ×NR Covariance Matrix between M and R
Npix 1 Number of pixels in the selected annulus of width equal to one FWHM
NR 1 Number of reference frames used for the speckle field computation
K 1 Number of principal components used for the speckle field computation
LOCI FM
ck NR Factors of the linear combination used to model the speckle field
oi Npix Selected annulus in the science image used for the estimation of ck
ok Npix Selected annulus in frame k of the reference library used for the estimation of ck
rk Npix’ Selected annulus in frame k of the reference library used

for the computation of the speckle field
mi Npix’ Selected annulus in frame corresponding to the science image

in the planetary signal matrix
mk Npix’ Selected annulus in frame k of the planetary signal
Npix 1 Number of pixels in the annulus with width of three FWHM used for

the factors estimation
Npix’ 1 Number of pixels in the annulus with width of one FWHM used for

speckle field computation
NR 1 Number of reference frames used for the speckle field computation
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B.2 Forward-backward model and β parameter estimation
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Figure B.1: ROC curves for the NACO, SPHERE, and LMIRCam data sets, with respectively
the KLIP RSM map using the Gaussian maximum likelihood for the pre-optimisation of the
flux parameter β (red), the KLIP RSM map with no flux pre-optimisation (NF), which relies
on the standard maximum likelihood used in the original RSM map for the estimation of flux
parameter β (blue), and the KLIP RSM map using the forward-backward approach for the
probability estimation instead of the original forward approach (green).



188 APPENDIX B. IMPROVING THE RSM MAP ALGORITHM

B.3 Crop size comparison for FM LOCI RSM
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Figure B.2: ROC curves for the NACO, SPHERE, and LMIRCam data sets, with the LOCI-
FM RSM map using respectively a crop size for the froward modelled PSF of 5 (red), 7 (blue),
9 (green), 11 (orange) pixels (FWHM≈ 5 pixels for all three data sets).
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B.4 PSF-subtraction techniques combinations
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Figure B.3: Cumulative maximum TPR reached without any FP (blue), and cumulative average number of
FPs inside the entire frame at TPR=1 (red) for 16 different combinations of PSF subtraction techniques used
to generate the RSM map and two radial distances. The dark-coloured bars are obtained at a radial distance of
2λ/D while the light-coloured bars correspond to 8λ/D for, respectively, the NACO (top), SPHERE (middle),
and LMIRCam (bottom) data sets. The asterisks for some values of FP at TPR=1 indicate that a TPR of 1 has
not been reached at a distance of 8λ/D and that the smallest probability threshold was chosen instead (highest
TPR). A high performance for a combination of PSF subtraction techniques corresponds to a tall blue histogram
alongside a short red histogram.
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Table B.2: Maximum TPR reached without any FP and average number of FPs inside the entire frame at TPR=1 for 16 different
combinations of PSF subtraction techniques used to generate the RSM map. The left values are obtained at a radial distance of 2λ/D
while the right values correspond to 8λ/D for respectively the NACO, SPHERE and LMIRCam data sets. The asterisks for some values of
FP at TPR=1 indicate that a TPR of 1 has not been reached and that the smallest probability threshold has been taken (highest TPR).

NACO SPHERE LMIRCam
Selected PSF subtraction techniques Max TPR Max FP Max TPR Max FP Max TPR Max FP
1: KLIP-KLIP FM 0.69/0.30 1.36/8.00* 0.76/0.76 1.34/2.86 0.74/0.41 1.20/4.01
2: LOCI-LOCI FM 0.59/0.15 3.26/10.15* 0.46/0.38 4.56/11.34 0.71/0.36 1.40/7.43*
3: KLIP-NMF-LLSG 0.66/0.53 1.28/5.47* 0.46/0.72 3.06/2.72* 0.30/0.49 3.63/2.99
4: KLIP-NMF-LLSG-LOCI 0.54/0.40 3.36/6.53* 0.38/0.68 6.26/4.36* 0.25/0.58 4.59/2.56
5: KLIP-NMF-LLSG-LOCI FM 0.65/0.40 1.74/6.71* 0.54/0.70 2.02/3.28 0.65/0.55 2.15/3.80
6: KLIP-NMF-LLSG-KLIP FM 0.75/0.49 1.42/5.43* 0.64/0.80 1.34/2.28 0.56/0.46 1.64/3.31
7: KLIP-NMF-LLSG-KLIP FM-LOCI FM 0.79/0.49* 1.54/6.35 0.74/0.82 1.20/2.70 0.66/0.49 1.77/3.15
8: KLIP-LLSG-KLIP FM-LOCI FM 0.79/0.45 1.42/7.35* 0.72/0.76 1.24/3.08 0.76/0.43 1.71/3.01
9: NMF-LLSG-LOCI 0.54/0.38 3.31/6.68* 0.22/0.46 6.68/6.20* 0.45/0.38 3.96/6.89*
10: NMF-LLSG-LOCI FM 0.58/0.33 1.39/7.65* 0.64/0.56 1.38/7.40* 0.89/0.53 0.91/5.46
11: NMF-LLSG-KLIP FM 0.81/0.38 0.95/7.70* 0.86/0.70 0.44/4.47* 0.81/0.20 0.84/9.76*
12: NMF-LLSG-KLIP FM-LOCI FM 0.78/0.45 1.24/6.86* 0.78/0.66 0.76/5.34 0.81/0.31 0.89/4.91
13: KLIP FM-LOCI FM 0.80/0.29 1.22/10.01* 0.80/0.52 0.70/8.24 0.85/0.28 0.75/7.59
14: KLIP-KLIP FM-LOCI FM 0.84/0.38 1.41/8.96* 0.76/0.74 1.00/3.78 0.81/0.44 1.19/4.18
15: LOCI-KLIP FM-LOCI FM 0.70/0.21 2.18/9.23* 0.52/0.50 2.52/9.14 0.83/0.46 1.18/5.53
16: KLIP-LOCI-KLIP FM-LOCI FM 0.70/0.24 2.08/8.60* 0.60/0.60 2.66/5.54 0.80/0.52 1.74/3.65



B.5. CONTRAST CURVE FOR THE SPHERE DATA SET USING KLIP RSM 191

B.5 Contrast curve for the SPHERE data set using KLIP
RSM
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Figure B.4: Contrast curves for the SPHERE data set using KLIP RSM with 20 principal
components and a FOV rotation expressed in terms of FWHM of 0.3. The region [2λ/D, 16λ/D]
has been considered to get the contrast in the first arcsecond.
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Appendix C

Auto-RSM: an automated parameter
selection algorithm for the RSM map
exoplanet detection algorithm
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C.1 Mathematical notations for auto-RSM

Table C.1: Description of the mathematical notations for the variables used in the Bayesian
optimisation algorithm, the RSM detection map and auto-RSM optimisation framework.

Symbol Dimension Comments
Bayesian optimisation
O1:t t Set of observations of the loss function
t 1 Number of tested sets of parameters
p1:t np × t Tested sets of parameters
f(p) 1 Loss function evaluated with the set of parameters p
GP (m(p1:t),K) 1 Gaussian process returning the mean and variance of a Gaussian distribution

over the possible values of f at p
m(p) 1 Mean of the Gaussian distribution of the loss function at p
K 1 Covariance function of the tested set of parameters p1:t
µ(pt+1) 1 Mean of the Gaussian posterior distribution at pt+1

σ(pt+1) 1 Variance of the Gaussian posterior distribution at pt+1

p̂ 1 Set of parameters providing the current known maximum value of the
loss function f(p̂)

Table C.2: Description of the mathematical notations for the variables used in the Bayesian
optimisation algorithm, the RSM detection map and auto-RSM optimisation framework.

Symbol Dimension Comments
Auto-RSM
i Npix Vectorised science image/annulus before speckle subtraction
m Npix Vectorised planetary signal (off-axis PSF) inside the selected annulus
amax 1 Largest angular separation considered for the detection

map computation
Ca,m,c La ×Ntechnique ×Nsequence Average contrast obtained with the optimal set of parameters
Ma,m,c La ×Ntechnique ×Nsequence Position of the median contrast aperture within the selected annulus
PPSF
a,m,c La ×Ntechnique ×Nsequence Optimal set of parameters for the reference PSF computation
PPSF,∗
a,m,c La ×Ntechnique ×Nsequence Optimal set of parameters for the reference PSF smoothed

via moving average
PRSM
a,m,c La ×Ntechnique ×Nsequence Optimal set of parameters for the computation of the RSM map
PRSM,∗
a,m,c La ×Ntechnique ×Nsequence Optimal set of parameters for the computation of the RSM map

interpolated via RBF
Y a La Set of likelihood time series available (one per couple of ADI sequence

and PSF-subtraction technique) for the computation of the RSM map
Y a
c,m La ×Ntechnique ×Nsequence Likelihood time series
Y a
h∗ La × T Likelihood time series maximising the RSM performance index at a

given iteration
Za La Selected likelihood time series for the computation of

the final detection map
Ta La Annulus-wise thresholds computed with flipped parallactic angles
T ∗a La Smoothed annulus-wise thresholds computed with flipped

parallactic angles
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C.2 Computation of the expected improvement and
update of posterior probability moments

The objective of the expected improvement approach is to estimate the magnitude of
the improvement that a set of parameters can potentially yield in terms of loss function
value. As the true maximum value of the loss function f(p∗) is not known, Mockus
et al. (1978) propose maximising the expected improvement with respect to a known
maximum f(p̂). They define the improvement function as

I(pt+1) = max {0, f(pt+1)− f(p̂)} , (C.1)

where I(pt+1) is positive when the prediction is higher than the current maximum
loss function value and zero otherwise. The new set of parameters pt+1 is found by
maximising the expected improvement, as follows:

pt+1 = argmaxpt+1E ({0, f(pt+1)− f(p̂)} | O1:t) . (C.2)

The likelihood of improvement I when considering the Gaussian process giving the
posterior distribution is then

1√
2πσ(pt+1)

exp

(
−(µ(pt+1)− f(p̂)− I)2

2σ2(pt+1)

)
, (C.3)

with µ(pt+1) and σ(pt+1) being the mean and standard deviation, respectively, of the
posterior probability f(p1:t) ∼ N (0,K) for the new set of parameters pt+1. The
expected improvement is then simply the integral over this likelihood function:

E(I(pt+1)) =

∫ ∞
0

I√
2πσ(pt+1)

exp

(
−(µ(pt+1)− f(p̂)− I)2

2σ2(pt+1)

)
dI, (C.4)

which gives after integration by part

E(I(pt+1)) = σ(pt+1)[
µ(pt+1)− f(p̂)

σ(pt+1)
Φ

(
µ(pt+1)− f(p̂)

σ(pt+1)

)
+ φ

(
µ(pt+1)− f(p̂)

σ(pt+1

])
. (C.5)

Considering the improvement function definition, we obtain the expression of Eq. 4.7,
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EI(pt+1) =(µ(pt+1)− f(p̂))Φ(Z) + σ(pt+1)φ(Z) if σ(pt+1) > 0

0 if σ(pt+1) = 0
, (C.6)

with Z = µ(pt+1)−f(p̂)
σ(pt+1)

.
We see that the computation of EI requires an estimation of the mean µ(pt+1)

and standard deviation σ(pt+1) of the posterior probability of f(p1:t). Starting from
the posterior probability f(p1:t) ∼ N (0,K) and taking into account the new set of
parameters pt+1 we get

(
f(p1:t)

f(pt+1)

)
= N

(
0,

(
K k

kT k(pt+1,pt+1)

))
, (C.7)

where k = {k(p1,pt+1), k(p2,pt+1), . . . , k(pt,pt+1)}.
We then get the following expression for the posterior distribution using the Sherman-

Morrison-Woodbury formula:

P (f(pt+1) | O1:t,pt+1) = N (µ(pt+1), σ
2(pt+1)), (C.8)

with the mean and variance given by

µ(pt+1) = kTK−1f(p1:t), (C.9)

σ2(pt+1) = k(pt+1,pt+1)− kTK−1k. (C.10)

C.3 Average contrast computation via multiple fake
companion injections

In this section we aim to assess the validity of our approximation when computing the
average contrast by considering the agreement between the average contrasts generated
using multiple injections and sequential injections. When relying on multiple injec-
tion, the self- and over-subtraction associated with an injected fake companion may
affect neighbouring apertures, especially at small angular separations. We impose, for
multiple injections, a minimal separation of two FWHMs between the positions of two
injected fake companions in order to reduce the impact of these interferences on the es-
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timation of the average contrast. The number of injected fake companions is therefore
limited to half the number of apertures contained in a given annulus with a maximum
of eight fake companions, which should provide a reliable estimate of the speckle field
within the annulus while limiting the interference between fake companions. As can
be seen from Figure C.1, the intensity patterns for multiple injections are similar to
the ones observed for sequential injections, with the companions having the smallest
or largest flux positioned at the same azimuth.
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Figure C.1: Comparison of the recovered intensities of eight fake companions injected
sequentially or at once, at a radial distance of 2 λ/D, using the SPHERE 1 data set of
the EIDC, and relying on annular PCA to generate the reference PSF with a number
of principal components equal to 20.

Figure C.2 provides the evolution of the average contrast computed with the se-
quential and multiple injections for an increasing number of fake companions. As
expected the average contrast does not vary significantly for the sequential injections.
However, for multiple injections, the average contrast starts to strongly diverge for dis-
tances between the injected positions of neighbouring companions below two FWHMs.
A distance of two FWHMs corresponds to 9, 18, and 33 companions for an angular
distance of 2, 4, and 8 λ/D, respectively. Looking at Figure C.2, we see that for
eight injected fake companions, the average contrasts generated with the multiple and
sequential injections are very similar.

Besides the distance between the average contrasts generated by the two ap-
proaches, the behaviour of these average contrasts when modifying the parameters
of the PSF-subtraction techniques is the most important element, as it drives the op-
timal parameter selection. We computed the average contrasts for several different
numbers of principal components in the case of annular PCA to determine if the be-
haviour of the contrast curves generated with multiple and sequential injections was
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Figure C.2: Comparison of the average contrasts obtained with sequential and multiple
injections for an increasing number of injected fake companions. The curves have been
computed at three different angular separations (2, 4, and 8 λ/D), using the SPHERE
1 data set of the EIDC, and relying on annular PCA to generate the reference PSF
with a number of principal components equal to 20.
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similar. Figure C.3 shows the evolution of the average contrast with the number of
principal components used for the reference PSF computation for different angular
separations. Although there exists a gap between both curves, the two curves seem
to evolve in parallel, especially for smaller angular distances. We observe high Pear-
son correlations between the curves generated with multiple and sequential injections,
with a correlation of 0.996, 0.992, and 0.704 for an angular distance of respectively 2,
4, and 8 λ/D. This seems to indicate that the same set of parameters will minimise
the average contrast and confirm the validity of our approximation when relying on
multiple injections to compute the average contrast.
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Figure C.3: Comparison of the average contrasts obtained with sequential and multiple
injections for a range of principal components used by the annular PCA to generate the
reference PSF (between 10 and 45 principal components). The curves were computed
at three different angular separations (2, 4, and 8 λ/D) using the SPHERE 1 data set
of the EIDC.
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C.4 Auto-S/N

C.4.1 Algorithm definition

We define in this section, the auto-S/N algorithm which is derived from the auto-RSM
framework. The first step of the auto-RSM algorithm, i.e. the parameter optimisation
of the PSF-subtraction techniques, is used to generate an optimised cube of residuals
for every considered PSF-subtraction technique. As in the case of auto-RSM, the auto-
S/N aims to combine the obtained cubes of residuals to generate a final detection map.
As the cubes of residuals generated by the different PSF-subtraction techniques have
their own noise distribution, a simple mean-combination is not possible. A simple way
to overcome this limitation is to mean-combine the S/N maps instead of the cubes of
residuals. As the dissimilarities in the noise structure of the different cubes of residuals
are reflected in their respective S/N maps, part of the residual speckle noise should
average out. The main difficulty pertains to the proper definition of the throughput to
estimate the contrast used for the optimal selection, as we are combining S/N maps.

Considering the detection map obtained by averaging N different S/N maps, each
pixels S/N is defined as:

S/Nia
=

1

N

N∑
j=1

Fia,j
Na,j

(C.11)

=
1

N

∑N
j=1 Fia,j

∏N
k 6=j Na,k∏N

k=1Na,k

, (C.12)

with Fia,j the flux associated with the aperture centred on pixel ia, where a is the
considered annulus in the mean-combined de-rotated cube of residuals generated with
the PSF-subtraction technique j, and Na,j is the associated noise computed in annulus
a. Following this expression, the throughput obtained from the injection of a fake
companion at pixel ia is given in the case of a combination of N S/N maps:

throughputia =

∑N
j=1 IFia,j

∏N
k 6=j Na,k∑N

j=1 RFia,j
∏N

k 6=j Na,k

, (C.13)

where IF stands for injected flux and RF for retrieved flux. The throughput be-
comes simply a sum of fluxes weighted by the noises of the other considered PSF-
subtraction techniques. This implies that the throughput associated with a less noisy
mean-combined de-rotated cube of residuals has a higher weight as both the injected
flux and retrieved flux are multiplied by larger noise values than the others. The
noise appearing in the expression of the contrast (see eq. 4.1) is then computed as
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the noise averaged over the different S/N maps for the considered angular separation
a. Similarly to the parameter optimisation for the PSF-subtraction techniques, fake
companions are injected at different azimuths to obtain an average contrast. The ob-
tained average contrast is then used to select the optimal set of S/N maps either via
the bottom-up or the top-down approach described respectively in Tables C.3 and C.4.
As for the auto-RSM, the auto-S/N can also use either the full-frame or the annular
optimisation mode.

C.4.2 Performance assessment

We follow the same procedure as the one proposed in Section 4.4 to assess the perfor-
mance of different parametrisations of the auto-S/N. We consider the full-frame case
as well as the annular and annular full-frame optimisation mode along the bottom-up
and top-down approach for the PSF-subtraction techniques selection, similarly to the
auto-RSM performance assessment in Section 4.4. The S/N maps combinations gen-
erated by the four parametrisations of the auto-S/N may be found in Figure C.4 and
C.5. As can be seen from these graphs, the auto-S/N clearly performs better than
the baseline proposed in (Cantalloube et al. 2020b), although the results are degraded
compared to the ones obtained with the auto-RSM (see Figure 4.4). This degraded
performance was expected, considering the higher performance of RSM probability
maps compared to standard S/N maps as demonstrated in Dahlqvist et al. (2020).

These results are confirmed by the performance metrics shown in Figures C.6 and
C.7, with both a lower TPR and a higher FPR for the auto-S/N versions compared
to the full-frame-bottom-up forward auto-RSM. As in the case of the auto-RSM, the
full-frame auto-RSM versions perform better than the annular and hybrid annular
full-frame versions.

Considering the shorter computation time compared to auto-RSM and the better
performance compared to standard S/N based PSF-subtraction techniques, the auto-
S/N can be considered as an interesting alternative to the auto-RSM for large surveys.
The auto-S/N may also represent a good complement to the auto-RSM1, as it may
lead to the identification of planetary signals missed by the auto-RSM as illustrated
by the LMIRCam-3 data set (to be compared with Figure 4.4).

1 The computation time is further reduced when the auto-RSM has already been applied to a
data set.
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Figure C.4: Detection maps corresponding to the SPHERE and NIRC2 data sets generated with
different parametrisations of the full-frame and annular auto-S/N along the baseline model presented
in (Cantalloube et al. 2020b). The SPHERE-2 and NIRC2-3 detection maps are not shown, as no
fake companions were injected in these two data sets. See Section 4.3.1. for the definition of the
acronyms used to characterise the auto-RSM versions. The yellow circles are centred on the true
position of the detected targets (TP) and the red circles give the true positions of FNs.
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Figure C.5: S/N maps corresponding to the LMIRCam data sets generated with different parametri-
sations of the full-frame and annular auto-S/N along the baseline model presented in (Cantalloube
et al. 2020b). See Section 4.3.1. for the definition of the acronyms used to characterise the auto-RSM
versions. The yellow circles are centred on the true position of the detected targets (TP) and the red
circles give the true positions of FNs.
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Figure C.6: Ranking of the different parametrisations of the full-frame and annu-
lar versions of the auto-S/N along the full-frame bottom-up forward auto-RSM and
the baseline presented in (Cantalloube et al. 2020b). Figure (a) provides the ranking
based on the F1 score obtained at the selected threshold. Figure (b) gives the ranking
based on the AUC of the TPR. See Section 4.4.3 for the definition of the acronyms
used to characterise the auto-RSM versions. The light, medium, and dark colours cor-
respond to the VLT/SPHERE-IRDIS, Keck/NIRC2, and LBT/LMIRCam data sets,
respectively.
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Figure C.7: Ranking of the different parametrisations of the full-frame and annular
versions of the auto-S/N along the full-frame bottom-up forward auto-RSM and the
baseline presented in (Cantalloube et al. 2020b). Figure (a) gives the ranking based on
the AUC of the FPR, while Figure (b) provides the ranking based on the AUC of the
FDR. See Section 4.4.3 for the definition of the acronyms used to characterise the auto-
RSM versions. The light, medium, and dark colours correspond to the VLT/SPHERE-
IRDIS, Keck/NIRC2, and LBT/LMIRCam data sets, respectively.
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C.5 Auto-RSM pseudo-code
This Appendix presents first the pseudo-codes of the greedy algorithms used to select
the optimal set of likelihood cubes generating the final RSM detection map (see Ta-
ble C.3 and C.4 for respectively the bottom-up and top-down approaches). Tables C.5
and C.6 then provide the pseudo-codes for the auto-RSM optimisation algorithm in
the full-frame mode and annular mode.

Table C.3: Pseudo-code for the bottom-up greedy selection algorithm. The PI symbol
represents the RSM performance metrics.

1: Y a =
{
Y a
c,m,∀c ∈ [0, Nsequence],m ∈ [0, Ntechnique]

}
2: Za = ∅
3: PIap = 0
4: While Y a 6= ∅ do
5: For h = 1 to length(Y a) do
6: PIah = PI([Za,Y a

h ])
7: End for
8: If max(PIah) > PIap
9: Y a

c∗,m∗ = Y a
h∗ = argmax(PIah)

10: Y a = Y a \
{
Y a
h∗, Y

a
h ∀(PIah − PIap ) < 0

}
11: Za = Za ∪ Y a

h∗
12: PIap = max(PIah)
13: Else
14: Y a = ∅
15: End If
16: End While

Table C.4: Pseudo-code for the top-down greedy selection algorithm. The PI symbol
represents the RSM performance metrics.

1: Za =
{
Y a
c,m,∀c ∈ [0, Nsequence],m ∈ [0, Ntechnique]

}
2: PIac = PI(Za)
3: PIap = 0
4: While PIac > PIap do
5: PIap = PIac
6: For h = 1 to length(Za) do
7: PIah = PI(Za \ Y a

h )
8: End for
9: If max(PIah − PIap ) > 0
10: Y a

c∗,m∗ = Y a
h∗ = argmax(PIah − PIap )

11: Za = Za \ Y a
h∗

12: PIac = max(PIah − PIap )
13: End If
14: End While
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Table C.5: Pseudo-code for the auto-RSM algorithm in full-frame mode.The centre of
the selected set of annuli Rangesel is computed based on the rule provided in eq.4.9,
starting at 1.5 FWHM and ending at amax.

1: Flipping parallactic angle sign: PA = −PA
2: For c = 1 to Nsequence do
3: For m = 1 to Ntechnique do
4: PSF-subtraction technique parameters optimisation
5: For a in Rangesel do
6: Contrast computation via fake companions injection
7: Contrast normalisation
8: End For
9: Optimal parameters and contrast selection based on

summed normalised contrast: [Ca,m,c, P
PSF
m,c ]

10: Optimisation of RSM algorithm parameters
11: For a in Rangesel do
12: Median position computation: Ma,m,c

13: Performance metric computation via fake companion
injection using [Ma,m,c, Ca,m,c, P

PSF
m,c ]

14: End For
15: Optimal parameters selection: PRSM

m,c

16: End For
17: End For
18: Optimal combination Z selection via bottom-up or

top-down approach using [PRSM
m,c ,Ma,m,c, Ca,m,c, P

PSF
m,c ]

19: For a = FWHM to amax do
20: Threshold Ta computation using [PRSM

m,c , PPSF
m,c ,Z]

21: End For
22: Threshold smoothing via polynomial fit: T ∗a
23: Flipping back parallactic angle sign: PA = −PA
24: Final RSM map computation using [PRSM

m,c , PPSF
m,c ,Z, T ∗a ]

25: Threshold subtraction from final RSM map
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Table C.6: Pseudo-code for the auto-RSM algorithm in annular mode.The centre of
the selected set of annuli Rangesel starts at 1,5 FWHM and end at amax with the
centre of every selected annulus separated by one FWHM.

1: Flipping parallactic angle sign: PA = −PA
2: For c = 1 to Nsequence do
3: For m = 1 to Ntechnique do
4: For a in Rangesel do
5: PSF-subtraction technique parameters optimisation
6: Contrast computation via fake companions injection
7: Optimal parameters and contrast [Ca,m,c, P

PSF
a,m,c]

8: End For
9: Outliers suppression in PPSF

a,m,c via Hampel Filter
10: Parameters smoothing via moving average: PPSF,∗

a,m,c

11: For a in Rangesel do
12: Optimisation of RSM algorithm parameters
13: Median position computation Ma,m,c

14: Performance metric computation via fake companion
injection using [Ma,m,c, Ca,m,c, P

PSF,∗
a,m,c ]

15: Optimal parameters selection: PRSM
a,m,c

16: End For
17: Outliers suppression in PRSM

a,m,c via Hampel Filter
18: Interpolation of optimal parameters via RBF: PRSM,∗

a,m,c

19: End For
20: End For
21: Optimal combination Za selection via bottom-up or

top-down approach using [PRSM,∗
a,m,c ,Ma,m,c, Ca,m,c, P

PSF,∗
a,m,c ]

22: For a = FWHM to amax do
23: Threshold Ta computation using [PRSM,∗

a,m,c , PPSF,∗
a,m,c ,Z

a]
24: End For
25: Flipping back parallactic angle sign: PA = −PA
26: Final RSM map computation using [PRSM

a,m,c , P
PSF
a,m,c,Z

a, Ta]
27: Threshold subtraction from final RSM map
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C.6 Description of the ADI sequences
This Appendix provides a description of the data sets of the EIDC ADI subchallenge
used in the performance assessment of the different modes of the auto-RSM optimisa-
tion algorithm (Table C.7).

Table C.7: Characteristics of the nine ADI sequences included in the EIDC ADI
subchallenge. The original number of frames for the LMIRCam ADI sequences was
reduced to limit the computation time, relying on a moving average applied along the
time axis on the de-rotated ADI cubes. The step and window sizes have been set to
20 frames for LMIRCam 1 and 3, and 15 frames for LMIRCam 2.

Instruments/ID Number of frames Frame size Plate-scale (mas/pixel) FOV rotation
SPHERE 1 252 160× 160 12.255 40.3◦

SPHERE 2 80 160× 160 12.255 31.5◦

SPHERE 3 228 160× 160 12.255 80.5◦

NIRC2 1 29 321× 321 20 53.0◦

NIRC2 2 40 321× 321 20 37.3◦

NIRC2 3 50 321× 321 20.2 166.9◦

LMIRCam 1 241 200× 200 10.7 153.4◦

LMIRCam 2 214 200× 200 10.7 60.6◦

LMIRCam 3 231 200× 200 10.7 91.0◦
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C.7 Definition of the parameter ranges
This Appendix provides the boundaries of the parameter space for the different data
sets of the EIDC ADI subchallenge used for the performance assessment of the auto-
RSM optimisation algorithm (Table C.8).
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Table C.8: A range of values is provided for each parameter and each ADI sequence in order to define the size of the parameters
space considered during the PSF-subtraction techniques optimisation.

Parameters/ID NIRC2-1 NIRC2-2 NIRC2-3 SPHERE-1 SPHERE-2 SPHERE-3 LMIRCam-1 LMIRCam2 LMIRCam-3
APCA components [5, 25] [5, 25] [5, 25] [15, 45] [15, 45] [15, 45] [15, 45] [15, 45] [15, 45]
APCA segments [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]
APCA FOV rotation [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1]
NMF components [2, 15] [2, 15] [2, 15] [2, 20] [2, 20] [2, 20] [2, 20] [2, 20] [2, 20]
LLSG rank [1, 5] [1, 5] [1, 5] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10] [1, 10]
LLSG segments [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4] [1, 4]
LOCI tolerance [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2] [10−3, 10−2]
LOCI FOV rotation [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1] [0.25, 1]
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C.8 Detection maps for auto-RSM parametrisations
Here, Figure C.8 and Figure C.9 show the detection maps obtained with four parametri-
sations of the auto-RSM algorithm for the data sets of the EIDC ADI subchallenge.
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Figure C.8: Detection maps corresponding to the SPHERE and NIRC2 data sets generated with
different parametrisations of the full-frame and annular auto-RSM. The SPHERE-2 and NIRC2-3
detection maps are not shown, as no fake companions were injected in these two data sets. See
Section 4.4.3 for the definition of the acronyms used to characterise the auto-RSM versions. The
yellow circles are centred on the true position of the detected targets (TP) and the red circles give
the true positions of FNs.
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Figure C.9: Detection maps corresponding to the LMIRCam data sets, generated with different
parametrisations of the full-frame and annular auto-RSM. See Section 4.4.3 for the definition of the
acronyms used to characterise the auto-RSM versions. The yellow circles are centred on the true
position of the detected targets (TP) and the red circles give the true positions of FNs.
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C.9 Parametrisation for the full-frame auto-RSM
Here, Table C.9 regroups the optimal parameters selected with the auto-RSM FF_BU_F
for the nine ADI sequences of the EIDC ADI subchallenge.
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Table C.9: Optimal set of parameters for the PSF-subtraction techniques and RSM algorithm for the nine ADI sequences obtained
with the auto-RSM FF_BU_F. The ‘fit’ row indicates if the noise properties have been estimated using a best-fit approach while
the β row indicates if a Gaussian maximum likelihood has been used to compute the intensity parameter. The variance row
provides information about the region used for the noise properties computation and translates as follows: ST-Spatio-Temporal
estimation, F-Frame based estimation, FM-Frame with mask estimation, SM -Segment with mask estimation, and T-Temporal
estimation.

Parameters/ID NIRC2-1 NIRC2-2 NIRC2-3 SPHERE-1 SPHERE-2 SPHERE-3 LMIRCam-1 LMIRCam2 LMIRCam-3
APCA components 11 17 25 25 18 23 40 42 21
APCA segments 4 4 4 2 1 3 4 2 2
APCA FOV rotation 0.679 0.296 0.984 0.311 0.261 0.389 0.298 0.300 0.256
NMF components 12 2 14 18 18 12 14 20 18
LLSG rank 4 5 3 8 8 8 8 6 8
LLSG segments 4 4 1 4 2 2 4 2 3
LOCI tolerance 0.00752 0.00138 0.00425 0.00242 0.00128 0.00887 0.00112 0.00104 0.00218
LOCI FOV rotation 0.355 0.268 0.447 0.250 0.267 0.255 0.252 0.261 0.326
APCA δ 5 5 5 5 5 5 5 5 5
NMF δ 5 5 5 5 5 5 5 5 5
LLSG δ 5 5 3 4 1 2 4 2 5
LOCI δ 5 5 2 5 5 5 4 5 5
APCA crop size 3 3 3 3 3 3 3 3 3
NMF crop size 3 3 3 3 3 3 3 3 3
LLSG crop size 3 3 3 3 3 3 3 3 3
LOCI crop size 3 3 3 3 3 3 3 3 3
APCA Fit True True True True True True True True True
NMF Fit True True True True True True True True True
LLSG Fit True True True True True True True True True
LOCI Fit True True True True True True True True True
APCA β True True False False False False False False False
NMF β False False False False False False False False False
LLSG β True True False False False False False False False
LOCI β False True False False False False False False False
APCA variance T FM FM SM T FM ST SM FM
NMF variance FM FM ST SM FM ST ST SM ST
LLSG variance FM FM SM SM SM SM ST FM ST
LOCI variance FM T FM T ST SM SM SM SM
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Appendix D

SHARDDS Survey: Limits on Planet
Occurrence Rates Based on Point
Sources Analysis via the Auto-RSM
Framework

D.1 Parametrisation commonalities and relationship
with ADI sequence characteristics

Following the computation of the optimal set of parameters for the 8 cluster centroids,
we propose to investigate the similarities existing between these 8 optimal parametri-
sations. We also consider the relationships existing between the centroids optimal
parameters and the set of metrics characterising their ADI sequence. We start by
comparing in Figure D.1, the obtained optimal set of parameters via a normalised
distance for the PSF-subtraction techniques and a dissimilarity index for the RSM
algorithm. These measures were computed for each pair of cluster centroids and then
averaged over the three possible pairs within each size subset (e.g. for HD192758, we
have HD192758-HD3670, HD192758-HD201219, and HD192758-HD14082B). The
normalised distance was computed considering the 19 parameters required by the 10
selected PSF subtraction techniques. For each pair of cluster centroids, we computed
the absolute value of the distance between their parameters and normalised them
with the mean values of these pairs of parameters1. We then averaged the resulting
distances over the 19 parameters. The normalisation ensures a proper comparison
between the different parameters when consolidating the distances. For the RSM al-
gorithm, a dissimilarity metric replaces the normalised distance as most parameters
are non-numerical. This dissimilarity index is simply computed as one minus the per-
centage of common RSM parameters between a pair of centroids, averaged over the

1For centroid A with 20 principal components for APCA and centroid B with 24 principal com-
ponents, the normalised distance is equal to 4/22 = 0.18
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five parameters of the RSM algorithm.
Looking at the degree of similarity of the parametrisations within the two size sub-

sets, Figure D.1 shows an overall higher degree of similarity. We observe a lower degree
of dissimilarity for the RSM parametrisation and a lower normalised distance for the
PSF subtraction-techniques for the centroids of the subset containing less than 151 ob-
servations. For the subset containing more than 151 observations, the slightly higher
normalised distance pertain to the high degree of dissimilarity of HD181296, which
affects strongly the averaged normalised distance. The main drivers of the dissimilar-
ity is the number of segments used for APCA and LLSG2, the tolerance parameter
of LOCI and the method used to compute the residual speckle noise statistics within
the RSM algorithm. These results tend to demonstrate the relatively high stability
of the ADI sequence imaged by the VLT/SPHERE instrument and confirm the con-
clusions drawn in Dahlqvist et al. (2021). The impact of the dissimilarities in the
optimal parametrisations on the performance in terms of achievable contrast is further
investigated in Section5.5.
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Figure D.1: Comparison of the optimal parametrisation of the cluster centroids in
terms of dissimilarity index of the RSM algorithm parametrisation and normalised
average distance for the PSF-subtraction techniques, for the subset containing ADI
sequences with less than 151 frames (dark colors) and the one with a number of frames
above 151 images (light colors).

We now turn to the analysis of the relationship existing between the parameters
that we selected in Section 5.3.3 to describe our data set and the parametrisations of
the PSF-subtraction techniques3. We computed the Pearson correlation between the
10 parameters characterising our sample and the PSF-subtraction techniques param-
eters, considering the 8 cluster centroids as data-points. The raw correlations show
a significant correlation between these sets of parameters, with overall, around 25%
of the obtained values over 0.5. Table D.1 gives the absolute values of the obtained
correlations averaged over five classes of parameters, the number of principal compo-

2The number of segments correspond to the number of subdivisions of every annulus during the
estimation of the reference PSF when relying on APCA and LLSG.

3Such an analysis is not possible with the parametrisation of the RSM map algorithm as most
parameters are non numerical.
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nents, the FOV rotation threshold, the number of segments, the rank of LLSG and
the tolerance of LOCI. Looking at these consolidated results, the contrast at 500 mas
shows the highest average correlation rate, while the exponent of the autocorrelation
function has the lowest one. Once averaged over the 5 considered classes, the percent-
age of consolidated correlations above 0.5 reach only 16%, indicating the existence of
some discrepancies between the different PSF-subtraction techniques relying on the
same parameter.
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Table D.1: Average absolute Pearson correlations between the PSF-subtraction techniques parameters and the parameters selected
to characterised the SHARDDS survey data set. WDH S and WDH A stand respectively for wind driven halo strength and
asymmetry.

Parameters # frames Contrast Auto-corr exp PA Coherence Wind speed Seeing Strehl WDH S WDH A
Principal components 0.44 0.41 0.32 0.44 0.36 0.28 0.37 0.39 0.33 0.54
FOV rotation threshold 0.32 0.54 0.36 0.16 0.35 0.7 0.37 0.13 0.55 0.16
Number of segment 0.41 0.34 0.22 0.42 0.33 0.42 0.29 0.45 0.15 0.24
Rank 0.36 0.29 0.14 0.33 0.19 0.14 0.19 0.41 0.17 0.51
Tolerance 0.49 0.6 0.17 0.71 0.24 0.34 0.64 0.31 0.21 0.13
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D.2 RSM detection maps
This section contains the RSM detection maps containing no plausible planetary sig-
nals.
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Figure D.2: RSM detection maps generated using auto-RSM or the optimal parame-
ters obtained with auto-RSM for the data set at the center of the clusters (see Table
5.5)). These detection maps did not lead to the detection of a target. The asterisks
indicate the targets on which the full auto-RSM framework was applied.
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Figure D.3: RSM detection maps generated using auto-RSM or the optimal parame-
ters obtained with auto-RSM for the data set at the center of the clusters (see Table
5.5)). These detection maps did not lead to the detection of a planetary candidate.
The asterisks indicate the targets on which the full auto-RSM framework was applied.
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Figure D.4: RSM detection maps generated using auto-RSM or the optimal parame-
ters obtained with auto-RSM for the data set at the center of the clusters (see Table
5.5). These detection maps did not lead to the detection of a planetary candidate.
The asterisks indicate the targets on which the full auto-RSM framework was applied.
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D.3 Detection maps for planetary candidates
This appendix regroups the RSM detection maps obtained with auto-RSM using either
the bottom-up or top-down approaches to select the optimal set of likelihoods cubes
(each likelihoods cube corresponding to a PSF-subtraction technique), as well as S/N
maps generated via the Auto-S/N approach (Dahlqvist et al. 2021) or obtained by
averaging the S/N maps generated with APCA, NMF, LLSG and LOCI, for the two
samples containing a potential planetary signal.
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Figure D.5: RSM detection maps generated using the auto-RSM with the bottom-up
(left) and top-down (middle left) approaches to select the optimal set of likelihoods
cubes (each likelihood cube corresponds to a PSF-subtraction technique), S/N maps
generated using the Auto-S/N to select the optimal set of S/N maps (middle right) and
S/N maps obtained by averaging the S/N map generated with APCA, NMF, LLSG
and LOCI (right). The expected position of the planetary signal as estimated via the
RSM based planetary signal characterisation algorithm is indicated by a yellow circle.
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D.4 Determination of projected angular separation

The true anomaly is defined as the angle between the direction of the periapsis and
the current position vector of the body in the perifocal plane. Its estimation starts by
the definition of the mean anomaly, which provides the fraction of the elliptical orbit
that was covered since the periapsis expressed in radian [0, 2π]. The mean anomaly is
linked to the eccentric anomaly by the following relationship:

M =
2π

T
t = E − e sin(E), (D.1)

with T the orbital period and e the eccentricity. This transcendental equation relating
time and eccentric anomaly cannot be directly solved. However, there exists a unique
solution for every value of the mean anomaly M . We rely on the expansion of E in
terms of Bessel functions to relate eccentric anomaly and mean anomaly.

E = M +
∞∑
n=1

2

n
Jn(ne) sin(nM), (D.2)

with Jn(x) the Bessel function of the first kind and n = 2π
T
. The sum over n is truncated

to N = 100. The true anomaly θ is then computed via the following relationship:

θ = 2 tan−1

(√
1 + e

1− e
tan(

E

2
)

)
, (D.3)

Once the true anomaly has been estimated, the position vector in the perifocal frame
is computed using the elliptic orbit equation:

rp =
h2

µ

1

1 + e cos(θ)
(cos(θ)p̂+ sin(θ)q̂), (D.4)

where the coordinates are normalised, such as p̂ = [1, 0, 0] and p̂ = [0, 1, 0]. Using
h =

√
µa(1− e2), we get:

rp =
a(1− e2)

1 + e cos(θ)
(cos(θ)p̂+ sin(θ)q̂). (D.5)

We project this position vector in the equatorial frame via three Euler rotations:

re = [Q] rp, (D.6)

with the Euler rotations given by:

[Q] = [R3(w)] [R1(i)] [R3(Ω)] , (D.7)
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where i is the inclination, w the argument of the periapsis, and Ω the longitude of the
ascending node. The normalised distance to the star is then obtained by computing
the norm of the position vector in the equatorial frame.

r = ‖re‖ (D.8)

The angular separation expressed in mas is finally defined as the normalised distance
to the star multiplied by the semi-major expressed in mas:

asep = ra
1000× 3600× 180

(206265πd)
(D.9)

with a the semi-major axis expressed in au and d the distance from the star expressed
in pc.
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D.5 Disks analysed in Pearce et al. (2022)
There are 21 targets in common between the SHARDDS sample analysed in this paper
and the sample of Pearce et al. (2022). We do not consider here Fomalhaut C, part of
SHARDDS and in Pearce et al. (2022) because of the very poor quality of the data.
We present these targets in Table D.2, with the location of the disk inner radius4 used
in the analysis by Pearce et al. (2022) to estimate the planet minimum masses.

Table D.2: The 21 common targets between SHARDDS and the sample analysed in
Pearce et al. (2022). This table is an extract from Table A.1 in (Pearce et al. 2022,
see references therein)

Target Disk data Disk location and extent
HD203 SED 29± 6
HD377 SED 60± 10
HD3003 SED 21± 6
HD3670 SED 100± 20
HD9672 ALMA 62± 4→ 210± 4
HD10472 SED 110± 20
HD13246 SED 80± 30
HD16743 Herschel 100 µm 50± 50→ 260± 70
HD21997 ALMA 68± 4→ 120± 4
HD25457 SED 45± 8
HD37484 SED 70± 20
HD38206 ALMA 0± 20, 140+30 → 190± 30, 320+50

HD69830 SED 0.8± 2
HD107649 SED 15± 3
HD114082 SED 29± 6
HD135599 SED 49± 9
HD172555 SED 15± 3
HD181296 SED 81± 10
HD192758 Herschel 100 µm 40± 40→ 180± 50
HD218340 SED 140± 40
HD221853 SED 47± 9

4The ’Disc location and extent’ column describes the location and shape of the debris disc inner
and outer edges: if the disc is resolved and fitted with an asymmetric model (case of HD38206), then
the column shows the inner edge pericentre, qi, inner edge apocentre, Qi, outer edge pericentre, qo,
and outer edge apocentre, Qo, as ’qi, Qi → qo, Qo’. Alternatively, if the disc is resolved and fitted
with an axisymmetric model, then the column shows the disc inner edge, ai, and outer edge, ao, as
’ai → ao’. Finally, if the disc location is estimated from SED data, then only the corrected blackbody
radius is shown.
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Chapter 2: RSM detection map for direct exoplanet detection
in ADI sequences

Beyond the choice of wavefront control systems or coronographs, advanced data
processing methods play a crucial role in disentangling potential planetary signals from
bright quasi-static speckles. Among these methods, angular differential imaging (ADI)
for data sets obtained in pupil tracking mode (ADI sequences) is one of the foremost
research avenue, considering the many observing programs performed with ADI-based
techniques and the associated discoveries. Inspired by the field of econometrics, we
propose in this chapter a new detection algorithm for ADI sequences, deriving from
the regime-switching model first proposed by Hamilton (1988). The proposed model is
very versatile as it allows the use of PSF-subtracted data sets (residual cubes) provided
by various ADI-based techniques, separately or together, to provide a single detection
map. The temporal structure of the residual cubes is used for the detection as the
model is fed with concatenated series of pixel-wise time sequences. The algorithm
provides a detection probability map by considering for concentric annuli two possible
regimes, the first one accounting for the residual noise and the second one for the
planetary signal in addition to the residual noise. The algorithm performance is tested
on data sets from two instruments, VLT/NACO and VLT/SPHERE. The results show
an overall better performance in the receiver operating characteristic space when com-
pared with standard signal-to-noise ratio maps for several state-of-the-art ADI-based
post-processing algorithms.
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"RSM detection map for direct exoplanet detection in ADI sequences" published in
A&A, 2020, 633, A95.

Chapter 3: Improving the RSM map exoplanet detection algo-
rithm

High-contrast imaging (HCI) is one of the most challenging techniques for exo-
planet detection. It relies on sophisticated data processing to reach high contrasts at
small angular separations. Most data processing techniques of this type are based on
the angular differential imaging (ADI) observing strategy to perform the subtraction
of a reference point spread function (PSF). In addition, such techniques generally make
use of signal-to-noise (S/N) maps to infer the existence of planetary signals via thresh-
olding. An alternative method for generating the final detection map was recently
proposed with the regime-switching model (RSM) map, which uses a regime-switching
framework to generate a probability map based on cubes of residuals generated by dif-
ferent PSF subtraction techniques. In this chapter, we present several improvements
to the original RSM map, focusing on novel PSF subtraction techniques and their opti-
mal combinations, as well as a new procedure for estimating the probabilities involved.
We started by implementing two forward-model versions of the RSM map algorithm
based on the LOCI and KLIP PSF subtraction techniques. We then addressed the
question of optimally selecting the PSF subtraction techniques to optimise the overall
performance of the RSM map. A new forward-backward approach was also imple-
mented to take into account both past and future observations to compute the RSM
map probabilities, leading to improved precision in terms of astrometry and lowering
the background speckle noise. We tested the ability of these various improvements
to increase the performance of the RSM map based on data sets obtained with three
different instruments: VLT/NACO, VLT/SPHERE, and LBT/LMIRCam via a com-
putation of receiver operating characteristic (ROC) curves. These results demonstrate
the benefits of these proposed improvements. Finally, we present a new framework
to generate contrast curves based on probability maps. The contrast curves highlight
the higher performance of the RSM map compared to a standard S/N map at small
angular separations.

"Improving the RSM map exoplanet detection algorithm: PSF forward modelling and
optimal selection of PSF subtraction techniques" published in A&A, 2021, 646, A49

Forward modelled matched filter algorithm for KLIP and LOCI introduced in VIP:
https://github.com/vortex-exoplanet/VIP/tree/master/vip_hci/invprob
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Chapter 4: Auto-RSM: an automated parameter selection algo-
rithm for the RSM map exoplanet detection algorithm

Most of the high-contrast imaging (HCI) data processing techniques used over the
last 15 years have relied on angular differential imaging (ADI) observing strategy,
along with reference point spread function (PSF) subtraction to generate exoplanet
detection maps. Recently a new algorithm, called regime switching model (RSM) map,
has been proposed to take advantage of these numerous PSF-subtraction techniques,
by using several of them to generate a single probability map. The selection of the
optimal parameters for these PSF-subtraction techniques as well as for the RSM map
is not straightforward, time consuming, and can be biased by assumptions made on
the underlying data set. We propose in this chapter a novel optimisation procedure
that can be applied to each of the PSF-subtraction techniques alone, or to the entire
RSM framework. The optimisation procedure consists of three main steps, (i) the def-
inition of the optimal set of parameters for the PSF-subtraction techniques using the
contrast as performance metrics, (ii) the optimisation of the RSM algorithm, and (iii)
the selection of the optimal set of PSF-subtraction techniques and ADI sequences used
to generate the final RSM probability map. The optimisation procedure is applied to
the data sets of the exoplanet imaging data challenge (EIDC), which provides tools
to compare the performance of HCI data processing techniques. The data sets consist
of ADI sequences obtained with three state-of-the-art HCI instruments: SPHERE,
NIRC2 and LMIRCam. The results of our analysis demonstrate the interest of the
proposed optimisation procedure, with better performance metrics compared to the
earlier version of RSM, as well as to other HCI data processing techniques.

"Auto-RSM: an automated parameter selection algorithm for the RSM map exoplanet
detection algorithm" published in A&A 656, A54 (2021)

Python package for the auto-RSM:
https://github.com/chdahlqvist/RSMmap
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Chapter 5: The SHARDDS Survey: Limits on Planet Occur-
rence Rates Based on Point Sources Analysis via the auto-RSM
Framework

In the past decade, HCI surveys provided new insights about the frequency and
properties of substellar companions at separation larger than 5 au. In this context, our
study aims to detect and characterise potential exoplanets and brown dwarfs within
debris disks, by considering the SHARDDS survey, which gathers 55 Main Sequence
stars with known bright debris disk. We rely on the auto-RSM framework to perform
an in-depth analysis of the targets, via the computation of detection maps and contrast
curves. A clustering approach is used to divide the set of targets in multiple subsets, in
order to reduce the computation time by estimating a single optimal parametrisation
for each considered subset. The use of auto-RSM allows to reach high contrast at short
separations, with a median contrast of 10−5 at 300 mas, for a completeness level of
95%. Detection maps generated with different approaches are used along with contrast
curves, to identify potential planetary companions. A new planetary characterisation
algorithm, based on the RSM framework, is developed and tested successfully, showing
a higher astrometric and photometric precision for faint sources compared to standard
approaches. A correlation study between achievable contrasts and parameters charac-
terising HCI sequences highlights the importance of the Strehl, wind speed and wind
driven halo to define the quality of high contrast images. Finally, planet detection and
occurrence frequency maps are generated and show, for the SHARDDS survey, a high
detection rate between 10 and 100 au for substellar companions with mass >10 MJ .

"The SHARDDS Survey: Limits on Planet Occurrence Rates Based on Point Sources
Analysis via the auto-RSM Framework" accepted for publication in A&A

Completeness curve and completeness matrix functions introduced in PyRSM:
https://github.com/chdahlqvist/RSMmap
Completeness curve and completeness matrix functions introduced in VIP:
https://github.com/vortex-exoplanet/VIP/tree/master/vip_hci/metrics
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E.2 Publications as co-author

Exoplanet imaging data challenge: benchmarking the various image pro-
cessing methods for exoplanet detection, SPIE Proceedings Volume 11448,
Adaptive Optics Systems VII; 114485A (2020)

Constraints on the nearby exoplanet ε Indi Ab from deep near- and mid-
infrared imaging limits , A&A, 651 (2021) A89

E.3 Conferences and seminars

RSM detection map for direct exoplanet detection in ADI sequences, AO4ASTRO
workshop, Laboratoire d’Astrophysique de Marseille, France (28/03/2019)

RSM detection map for direct exoplanet detection in ADI sequences (Poster),
In the Spirit of Lyot, Astrobiology Center, National Institutes of Natural
Sciences, Tokyo, Japan (21/10/2019)

Improving the RSM map exoplanet detection algorithm, HCI post-processing
Workshop, Harnack Haus, Max Planck Institut fur Physik, Berlin (28/01/2020)

The SHARDDS Survey: Limits on Planet Occurrence Rates Based on
Point Sources Analysis via the auto-RSM Framework, In the Spirit of
Lyot, University of Leiden,Leiden, The Netherlands (27/06/2022)
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