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Abstract: Handcrafted radiomics features (HRFs) are quantitative features extracted from medical
images to decode biological information to improve clinical decision making. Despite the potential of
the field, limitations have been identified. The most important identified limitation, currently, is the
sensitivity of HRF to variations in image acquisition and reconstruction parameters. In this study, we
investigated the use of Reconstruction Kernel Normalization (RKN) and ComBat harmonization to
improve the reproducibility of HRFs across scans acquired with different reconstruction kernels. A
set of phantom scans (n = 28) acquired on five different scanner models was analyzed. HRFs were
extracted from the original scans, and scans were harmonized using the RKN method. ComBat
harmonization was applied on both sets of HRFs. The reproducibility of HRFs was assessed using
the concordance correlation coefficient. The difference in the number of reproducible HRFs in each
scenario was assessed using McNemar’s test. The majority of HRFs were found to be sensitive to
variations in the reconstruction kernels, and only six HRFs were found to be robust with respect
to variations in reconstruction kernels. The use of RKN resulted in a significant increment in the
number of reproducible HRFs in 19 out of the 67 investigated scenarios (28.4%), while the ComBat
technique resulted in a significant increment in 36 (53.7%) scenarios. The combination of methods
resulted in a significant increment in 53 (79.1%) scenarios compared to the HRFs extracted from
original images. Since the benefit of applying the harmonization methods depended on the data
being harmonized, reproducibility analysis is recommended before performing radiomics analysis.
For future radiomics studies incorporating images acquired with similar image acquisition and
reconstruction parameters, except for the reconstruction kernels, we recommend the systematic use
of the pre- and post-processing approaches (respectively, RKN and ComBat).
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1. Introduction

Recent decades have witnessed an exponentially increasing number of studies inves-
tigating the potential of quantitative imaging features to extract additional information
from medical images not detectable by human eyes [1,2]. Handcrafted radiomics refers
to the high-throughput extraction of quantitative imaging features from medical images
to decode biologic information [3,4] and, today, more than 5000 studies can be returned
on the PubMed database using “radiomics” as a search word. The handcrafted radiomics
approach “involves manual segmentation of the region of interest (e.g., the tumor) on
medical imaging and extraction of thousands of human-defined and curated quantitative
features from the region of interest” [5].

The hypothesis in radiomics studies is that handcrafted radiomic features (HRFs)
can be used singularly or collectively as clinical biomarkers [3]. Many studies have in-
vestigated and reported on the potential of HRFs to predict clinical endpoints, such as
overall survival [6–8], tissue histology [9–13] and response to therapy [14,15]. These studies
highlighted the potential of such approaches to be applied in clinical settings, since they
could present non-invasive, reliable, readily available and cost-effective alternatives to
current invasive clinical procedures, such as tissue biopsies. Moreover, with proper appli-
cation, radiomics could provide reproducible predictions, which are quantitative and less
dependent on the subjective interpretation of medical examinations [16,17].

With the development of handcrafted radiomics as a research field, the limitations
the field faces have been increasingly investigated during recent years [4,18]. The most
important identified limitation currently is the sensitivity of HRFs to variations in image
acquisition and reconstruction parameters [19–24]. For an HRF to be used as a clinical
biomarker (solely or in combination with other HRFs), it has to be reproducible across
different imaging parameters for generalization purposes [24]. However, many studies
have reported on the sensitivity of HRFs to variations in time (test–retest) [25–29] and to
variations in imaging acquisition and reconstruction parameters [30–37]. Studies have also
reported that the degree of variation in a single acquisition or reconstruction parameter
affects the reproducibility of HRFs variably [31,34]. A number of studies have reported
the significant effects of variations in reconstruction kernels on the reproducibility of
HRFs [20,38].

Different methods have been investigated to address the issue of reproducibility of
HRFs across scans acquired differently. ComBat harmonization [39] is one of the post-
processing methods that have recently been extensively investigated in radiomics analy-
ses [40–42]. ComBat harmonization is a method that was developed for removing batch
effects—attributed to the use of different machinery—from gene expression arrays. A
number of studies have reported on the applicability of ComBat harmonization in different
scenarios, such as scans acquired with varying degrees of differences in CT image acqui-
sition and reconstruction parameters, scans acquired with a single variation in an image
reconstruction parameter (in-plane resolution) and scans of different contrast-enhancement
phases [31,35,43,44]. These studies reported that the performance of ComBat in radiomics
analyses is dependent on the variations in the data being harmonized. A number of studies
have also investigated the potential of ComBat in different scenarios [45–48]. However,
the potential of ComBat to remove batch effects attributed solely to the variations in the
reconstruction kernel has yet to be thoroughly investigated. Other investigated methods
include pre-processing of the images to minimize effects due to differences in slice thickness,
reconstruction with convolutional kernels, etc. Normalization of chest CT data minimized
the variability that resulted from different reconstruction kernels [49]. The authors devel-
oped a method that targeted reducing the variations in the quantification of emphysema
by normalizing the reconstruction kernel (Reconstruction Kernel Normalization—RKN).
The CT scans obtained from different scanners that were reconstructed with varying ker-
nels showed reduced variability in emphysema quantification after the proposed iterative
normalization. However, the effect of this normalization method on the reproducibility of
HRFs has not been investigated.
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In this study, we hypothesize that the use of RKN and ComBat could improve the
reproducibility of HRFs across scans acquired with different reconstruction kernels de-
pending on the variations in the data being analyzed and/or harmonized. We further
hypothesize that the combination of both methods (RKN and ComBat) would give superior
results in terms of “number of reproducible HRFs” compared to no or only one harmoniza-
tion method. Given that variations in the convolution kernel impact the reproducibility
of HRFs the most, we investigate the reproducibility of HRFs extracted from phantom CT
scans acquired with different reconstruction kernels on different imaging vendors. We
also investigate the potential of ComBat harmonization, RKN and the combination of both
methods to reduce the variations in HRF values attributed to differences solely in the
reconstruction kernels of the original scans.

2. Materials and Methods
2.1. Imaging Data

The phantom data used in the study were obtained from the public Credence Car-
tridge Radiomics (CCR) phantom dataset [50] from the Cancer Imaging Archive site
(TCIA.org) [51]. A total of 251 scans were acquired using different scanners, acquisition
and reconstruction parameters. For this study, we included scans that were acquired using
the same imaging acquisition and reconstruction parameters, except for the convolution
kernel. After applying the inclusion criteria, 28 scans from five different scanner models
were used in this study (Table 1).

Table 1. Acquisition and reconstruction parameters for the imaging dataset.

Manufacturer Scanner Model Number of
Scans

X-ray Tube
Current (kV)

Convolution
Kernels

Slice Thickness
(mm)

Pixel Spacing
(mm2)

GE Discovery STE 5 120 Standard, Detail,
Edge, Soft, Lung 1.25 0.49 × 0.49

Philips Brilliance 64 4 120 A, B, C, L 1.50 0.49 × 0.49

Siemens Sensation 40 6 120 B10f, B20f, B31f,
B50f, B60f, B70f 1.50 0.49 × 0.49

Sensation 64 7 120
B10f, B20f, B30f,

B31f, B50f,
B60f, B70f

1.50 0.49 × 0.49

SOMATOM
Definition AS 6 120 I26f, I30f, I40f,

I44f, I50f, I70f 1.50 0.49 × 0.49

2.2. Volume of Interest and HRFs Extraction

Each layer of the phantom was segmented as a single volume of interest (VOI), with
the dimensions 8 × 8 × 2 cm3. A total of 10 VOIs were segmented per scan, resulting in a
total of 280 VOIs. HRFs were extracted using the open source PyRadiomics software version
2.2.0 [52]. HRFs were extracted at two different stages: directly from the original scans; and
after image pre-processing. Image intensities were binned in all of the three scenarios with
a binwidth of 25 Hounsfield units (HUs) to reduce noise levels and texture matrix sizes and
the amount of computational power needed. No other image pre-processing was applied in
any of the scenarios. Extracted HRFs were HU intensity features and texture features of five
matrices: gray-level co-occurrence (GLCM); gray-level run-length (GLRLM); gray-level size
zone (GLSZM); gray-level dependence (GLDM); and neighborhood gray-tone difference
(NGTDM) matrices. A more detailed description of PyRadiomics HRFs can be found
online at: https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on 13
October 2021).

https://pyradiomics.readthedocs.io/en/latest/features.html
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2.3. Reconstruction Kernel Normalization

The CT scan Io is decomposed into a series of frequency components Fi. Image Io is
convoluted with the Gaussian filter at σi scale (σi = 0, 1, 2, 4, 8, 16) to get a filtered image
Lσi . The frequency component for i = 0, 1, 2, 3, 4 is given by Fi+1 = Lσ+1 − Lσi+1 and for

i = 5 it is given by Fi+1 = Lσi . The normalized image IN is obtained by IN = F6 +
5
∑

i=1
λi·F5.

λi is given by ri
ei

, where ri and ei are the standard deviations of the intensity values in the
band Fi of the reference image and image Io, respectively. This process is repeated until
λi is within the range [0.95, 1.05]. This method was proposed for reducing the effects of
varying reconstruction kernels for emphysema quantification in chest CT scans [49]. We
investigated the effect of applying this normalization method on feature reproducibility.

2.4. Image Pre-Processing and HRF Post-Processing

Four scenarios were analyzed in this study (Figure 1): (i) HRFs extracted from orig-
inal images; (ii) HRFs extracted from pre-processed scans with the method described in
Section 2.3; (iii) HRFs extracted from original images and harmonized with ComBat; and
(iv) the combination of both methods. In scenario (ii), image pre-processing was performed
using the method previously described in [49]. Each set of images (n = 5) was normalized
to a reference scan from the set. HRFs were extracted following image pre-processing. In
scenario (iii), ComBat harmonization was applied on HRFs extracted from the original
scans without pre-processing. ComBat harmonization in radiomics has been previously
described [43]. In scenario (iv), HRFs were extracted from images normalized with the
RKN method and harmonized using ComBat harmonization.
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2.5. Statistical Analysis

All statistical analyses were performed using R [53] on RStudio (V3.6.3) [54]. For each
scanner model, scans were compared in a pair-wise manner. The concordance correlation
coefficient (CCC) was used to assess the reproducibility of HRFs across different pairs [55]
(epiR package V. 2.0.26) [56]. The CCC assesses the agreement in the value and rank for each
HRF across the pairwise scenarios. HRFs with CCC > 0.9 were considered reproducible in
a given scenario. The CCC was calculated in each of the investigated scenarios described
in Section 2.4.

To assess the statistical significance of the differences in the number of reproducible
HRFs in each scenario, the McNemar test was used [57]. The McNemar test is used to assess
whether marginal frequencies are equal before and after an intervention. In this study, we
calculated McNemar’s p-values using the HRFs extracted from the original images and
after RKN, ComBat, and the combination of both. We also calculated the p-values among
the methods, as well as the p-values for each method compared to the combination of
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methods. For each pair, the difference in the number of reproducible HRFs was labeled
“significant” or “not significant” depending on the p-value.

3. Results
3.1. The Effect of Differences in Convolution Kernels on the Reproducibility of HRFs

The Pyradiomics toolbox provides a set of 91 original HRFs from each VOI. These
HRFs are divided into First Order Statistics (n = 18), GLCM (n = 22), GLRLM (n = 16);
GLSZM (n = 16), NGTDM (n = 5) and GLDM (n = 14). The number of reproducible
HRFs varied across kernels and scanner models. Six HRFs were found to be robust
to changes in convolution kernels across all scanner models: “Firstorder_10Percentile”,
“Firstorder_Energy”, “Firstorder_Mean”, “Firstorder_Median”, “Firstorder_RootMeanSquared”
and “Firstorder_TotalEnergy”.

On the Discovery STE scanner model (GE Medical Systems), the number of repro-
ducible HRFs varied between 6 (6.59%) and 78 (85.71%). The greatest number of repro-
ducible HRFs was observed across scans acquired with Detailed and Standard kernels
(Figure 2).
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Figure 2. The number of reproducible HRFs across different kernels on the Discovery STE
scanner model.

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs
varied between 6 (6.59%) and 91 (100%). The greatest number of reproducible HRFs was
observed across scans acquired with B60f and B70f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible
HRFs varied between 6 (6.59%) and 65 (71.4%). The greatest number of reproducible HRFs
was observed across scans acquired with I44f and I50f kernels (Figure 4).
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scanner model.

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs
varied between 6 (6.59%) and 91 (100%). The greatest number of reproducible HRFs was
observed across scans acquired with B60f and B70f kernels (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs var-
ied between 14 (15.4%) and 48 (52.7%). The greatest number of reproducible HRFs was
observed across scans acquired with A and B kernels (Figure 6).
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3.2. The Effects of Pre- and Post-Processing
3.2.1. Reconstruction Kernel Normalization (RKN)

The number of HRFs that became reproducible following the application of the de-
scribed method varied with the variations in kernels being harmonized and the scanner
model used. In most of the investigated scenarios (58 out of 67; 86.6%), the use of this
method has resulted in an increment in the number of reproducible HRFs. However, only
19 scenarios (28.4%) showed statistically significant increments. In a number of scenarios
(6 out of the analyzed 67 scenarios (9%)), there was a net loss in the number of reproducible
HRFs compared to the original, 2 (3%) of which were statistically significant (Figures 2–6).
In three (4.5%) scenarios, there was no difference between the number of reproducible
HRFs extracted from the original and the normalized images.

On the Discovery STE scanner model (GE Medical Systems), the number of repro-
ducible HRFs extracted from the scans after image pre-processing varied between 8 (8.8%)
and 82 (90.1%). The greatest increment in the number of reproducible HRFs compared
to the original images was observed across scans acquired with Edge and Lung kernels
(Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs
extracted from the scans after image pre-processing varied between 8 (8.8%) and 84 (92.3%).
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In this scenario, the highest number of reproducible HRFs decreased compared to those
extracted from the original images for the scans acquired with B60f and B70f. The greatest
increment in the number of reproducible HRFs compared to the original images was
observed across scans acquired with B50f and B70f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible
HRFs extracted from the scans after image pre-processing varied between 7 (7.7%) and
69 (75.8%). The greatest increment in the number of reproducible HRFs compared to the
original images was observed across scans acquired with I50f and I70f kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs
extracted from the scans after image pre-processing varied between 7 (7.7%) and 86 (94.5%).
In this scenario, the highest number of reproducible HRFs decreased compared to those
extracted from the original images (B60f vs. B70f) (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs ex-
tracted from the scans after image pre-processing varied between 18 (19.8%) and 49 (53.8%).
The greatest increment in the number of reproducible HRFs compared to the original
images was observed across scans acquired with L and C kernels (Figure 6).

3.2.2. ComBat Harmonization

In 65 out of the 67 investigated scenarios (97%), there was a net increase in the number
of reproducible HRFs compared to the original, with 36 (53.7%) scenarios witnessing
significant statistical increments. In two scenarios, the same number of reproducible HRFs
was found before and after ComBat harmonization. In 46 (68.7%) scenarios, ComBat
harmonization outperformed the RKN method, 17 (25.4%) of which were statistically
significant. In 13 (19.4%) scenarios, the RKN method outperformed ComBat harmonization,
5 (7.5%) of which were statistically significant increments.

On the Discovery STE scanner model (GE Medical Systems), the number of repro-
ducible HRFs extracted from the scans after ComBat harmonization varied between 9 (9.9%)
and 79 (86.8%). The greatest increment in the number of reproducible HRFs compared
to the original images was observed across scans acquired with Edge and Lung kernels
(Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs
extracted from the scans after ComBat harmonization varied between 11 (12.1%) and 69
(75.8%). The greatest increment in the number of reproducible HRFs compared to the
original images was observed across scans acquired with B50f and B60f kernels (Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible
HRFs extracted from the scans after ComBat harmonization pre-processing varied between
7 (7.7%) and 69 (75.8%). The greatest increment in the number of reproducible HRFs
compared to the original images was observed across scans acquired with I44f and I70f
kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs
extracted from the scans after ComBat harmonization varied between 8 (8.8%) and 91
(100%). The greatest increment in the number of reproducible HRFs compared to the
original images was observed across scans acquired with B50f and B70f kernels (Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs ex-
tracted from the scans after ComBat harmonization varied between 18 (19.8%) and 53
(58.8%). The greatest increment in the number of reproducible HRFs compared to the
original images was observed across scans acquired with L and C kernels (Figure 6).

3.2.3. The Combination of Pre- and Post-Processing

In 63 (95.5%) out of the 67 investigated scenarios, there was a net increase in the number
of reproducible HRFs compared to the original, 53 (79.1%) of which were statistically
significant. Three (4.5%) showed a lower number of reproducible HRFs, with one (1.5%)
scenario showing significantly fewer (p < 0.05). The same number of reproducible HRFs
was observed in one (1.5%) scenario. In 66 (98.5%) scenarios, the combination of methods
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outperformed the RKN method, with 42 (62.7%) being significantly higher. The same
number of reproducible HRFs was observed in one (1.5%) scenario. With regards to ComBat
harmonization, the combination of methods resulted in a higher number of reproducible
HRFs in 56 (83.6%) scenarios, 27 (40.3%) of which were statistically significant. A higher
number of reproducible HRFs was obtained using only ComBat harmonization in 10
(14.9%) scenarios, only one (1.5%) of which was statistically significant. The same number
of reproducible HRFs was observed in one (1.5%) scenario.

On the Discovery STE scanner model (GE Medical Systems), the number of repro-
ducible HRFs extracted from the normalized scans after ComBat harmonization varied
between 17 (18.7%) and 84 (92.3%). The greatest increment in the number of reproducible
HRFs compared to the original images was observed across scans acquired with Edge and
Lung kernels (Figure 2).

On the Sensation 40 scanner model (Siemens), the number of reproducible HRFs
extracted from the normalized scans after ComBat harmonization varied between 16 (17.6%)
and 84 (92.3%). The greatest increment in the number of reproducible HRFs compared
to the original images was observed across scans acquired with B50f and B70f kernels
(Figure 3).

On the SOMATOM definition scanner model (Siemens), the number of reproducible
HRFs extracted from the normalized scans after ComBat harmonization pre-processing
varied between 9 (9.9%) and 70 (77%). The greatest increment in the number of reproducible
HRFs compared to the original images was observed across scans acquired with I50f and
I70f kernels (Figure 4).

On the Sensation 64 scanner model (Siemens), the number of reproducible HRFs
extracted from the normalized scans after ComBat harmonization varied between 11 (12.1%)
and 87 (95.7%). The greatest increment in the number of reproducible HRFs compared
to the original images was observed across scans acquired with B50f and B70f kernels
(Figure 5).

On the Brilliance 64 scanner model (Philips), the number of reproducible HRFs ex-
tracted from the normalized scans after ComBat harmonization varied between 20 (22%)
and 52 (57.2%). The greatest increment in the number of reproducible HRFs compared to
the original images was observed across scans acquired with L and C kernels (Figure 6).

4. Discussion

In this study, we analyzed the effects of difference in convolution kernels on five
different scanner models, when all other CT acquisition and reconstruction parameters were
fixed on a phantom dataset. We further investigated the ability of an image pre-processing
(iterative normalization by frequency decomposition) method, and an HRF post-processing
harmonization (using ComBat harmonization) method. Our results showed significant
differences in the number of reproducible HRFs across the investigated scenarios. Scans
reconstructed with similar convolution kernels showed a higher number of reproducible
HRFs compared to scans reconstructed with significantly different convolution kernels.
Similarly, the performance of both harmonization methods investigated varied with the
differences in convolution kernels of the scans being harmonized.

Siemens scanner models (Sensation 40 and 64) have shown the reproducibility of all
HRFs across the scans acquired with the higher end of convolution kernels (B60 and B70).
Convolution kernels at the opposite end of the spectrum (for example, B10 and B70 on
Siemens scanners) have shown the lowest number of reproducible HRFs. As such, our
results are in line with previous studies that reported that the reproducibility of HRFs can
be significantly affected by variations in convolution kernels [38,58–60].

The use of the RKN method on our dataset has resulted in a range of effects on
the number of reproducible features, from negative to neutral to positive, depending on
the scans being compared. We have observed a significant increase in the number of
reproducible HRFs in most scenarios and a decrease in the number of reproducible HRFs
in some other scenarios. This could be justified by the possibility that the analyzed data
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in this study included a wider range of convolution kernels than those used to develop
the method.

The application of ComBat harmonization resulted in a higher number of reproducible
HRFs compared to those before harmonization in almost all of the investigated scenarios,
which is in line with previous reports [43,44,61]. Moreover, on average, ComBat harmoniza-
tion outperformed the image pre-processing method. The performance of ComBat further
depended on the differences in the convolution kernels of the scans being harmonized.
In general, the number of reproducible HRFs after ComBat harmonization followed a
similar pattern to that of the number of reproducible HRFs before post-processing. These
findings are in line with previous studies that investigated the applicability of ComBat
harmonization in radiomics analyses [31,34]. The results add to the evidence on the need
for reproducibility analyses in radiomics studies, including scans acquired differently, as
well as the need for radiomics-specific harmonization methods.

The combination of RKN and ComBat harmonization methods resulted in a higher
number of reproducible HRFs across the majority of the investigated scenarios. This
indicates that each method could be addressing the reproducibility of HRFs in different
manners, with their having been shown to be complementary to each other in many of
the investigated scenarios. Nevertheless, the combination resulted in a lower number
of reproducible HRFs in an appreciated percentage of scenarios compared to ComBat
harmonization only. This suggests the need for reproducibility analysis before applying
harmonization methods in radiomics analyses.

We identified six HRFs that were robust with respect to variations in convolution ker-
nels across all the investigated scenarios. These HRFs were first-order statistics, and their
robustness could be justified by the standardization of HUs across scanners. However, the
majority of texture HRFs were sensitive to the majority of variations in convolution kernels.
Clear to the eye, the standardization of image acquisition and reconstruction parameters
would be the cornerstone for the translation of radiomic signatures to clinical practice. The
findings of this study, and previous experiments, have shown that the reproducibility of
HRFs significantly depends on imaging acquisition and reconstruction parameters. There-
fore, reproducibility analysis is needed for a proper understanding of their performance or
generalizability [19]. Another potential solution would be the development of radiomic
signatures specific to a set of imaging acquisition and reconstruction parameters. However,
this solution limits the generalizability of radiomic signatures.

While we tried to analyze all the kernels used in clinical practice, we were limited
by the available data. However, the results have shown a similar pattern across different
scanner models. Future studies that include a wider spectrum of convolution kernels are
recommended. Furthermore, we limited our analyses to the original HRFs as they are
commonly standardized across radiomics platforms. Detailed full HRF reproducibility
analysis could be beneficial for specific tasks. Furthermore, the analysis was performed on
a phantom dataset that was designed to mimic human tissues. However, it only gives an
idea about the reproducibility of HRFs in the given scenarios, and similar analysis is needed
for patient datasets to gain a full understanding. The potential of other harmonization
methods, for example, dynamic range limitation [62], could also be explored in future
studies. Additionally, the sensitivity of HRFs to variations in segmentations could not be
assessed in this study, due to the use of automated segmentations.

5. Conclusions

The reproducibility of the majority of HRFs depended on the variations in reconstruc-
tion kernels in the data being analyzed. Six HRFs were found to be reproducible across all
investigated scenarios. Radiomics analysis of scans acquired with different reconstruction
kernels is not recommended in the absence of reproducibility analysis. We recommend the
systematic use of RKN and ComBat harmonization in future radiomics studies, including
images acquired similarly except for the reconstruction kernel. Nevertheless, their appli-
cation should follow a reproducibility analysis to identify the set of reproducible HRFs
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after harmonization. HRF-specific harmonization methods remain necessities in the field
of radiomics.
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Gabryś, H.S.; et al. Impact of CT convolution kernel on robustness of radiomic features for different lung diseases and tissue
types. Br. J. Radiol. 2021, 94, 20200947. [CrossRef]

59. He, L.; Huang, Y.; Ma, Z.; Liang, C.; Liang, C.; Liu, Z. Effects of contrast-enhancement, reconstruction slice thickness and
convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci. Rep. 2016, 6, 34921.
[CrossRef]

60. Ibrahim, A.; Barufaldi, B.; Refaee, T.; Silva Filho, T.M.; Acciavatti, R.J.; Salahuddin, Z.; Hustinx, R.; Mottaghy, F.M.; Maidment,
A.D.A.; Lambin, P. MaasPenn radiomics reproducibility score: A novel quantitative measure for evaluating the reproducibility of
CT-based handcrafted radiomic features. Cancers 2022, 14, 1599. [CrossRef]

61. Li, Y.; Ammari, S.; Balleyguier, C.; Lassau, N.; Chouzenoux, E. Impact of preprocessing and harmonization methods on the
removal of scanner effects in brain MRI radiomic features. Cancers 2021, 13, 3000. [CrossRef]

62. Lupean, R.-A.; S, tefan, P.-A.; Csutak, C.; Lebovici, A.; Mălut,an, A.M.; Buiga, R.; Melincovici, C.S.; Mihu, C.M. Differentiation
of endometriomas from ovarian hemorrhagic cysts at magnetic resonance: The role of texture analysis. Medicina 2020, 56, 487.
[CrossRef]

https://vps.fmvz.usp.br/CRAN/web/packages/epiR/epiR.pdf
https://vps.fmvz.usp.br/CRAN/web/packages/epiR/epiR.pdf
http://doi.org/10.1007/BF02295996
http://doi.org/10.1259/bjr.20200947
http://doi.org/10.1038/srep34921
http://doi.org/10.3390/cancers14071599
http://doi.org/10.3390/cancers13123000
http://doi.org/10.3390/medicina56100487

	Introduction 
	Materials and Methods 
	Imaging Data 
	Volume of Interest and HRFs Extraction 
	Reconstruction Kernel Normalization 
	Image Pre-Processing and HRF Post-Processing 
	Statistical Analysis 

	Results 
	The Effect of Differences in Convolution Kernels on the Reproducibility of HRFs 
	The Effects of Pre- and Post-Processing 
	Reconstruction Kernel Normalization (RKN) 
	ComBat Harmonization 
	The Combination of Pre- and Post-Processing 


	Discussion 
	Conclusions 
	References

