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Abstract

Pathology, the field of medicine and biology interested in studying and diagnosing
diseases, is on the brink of a revolution with technological advances in artificial in-
telligence and machine learning. Traditionally, in this field, the medium which has
been used for research and diagnosis is a glass slide on which tissue and cell samples
are applied and later analyzed under an optical microscope. Dedicated scanners are
nowadays able to digitize these glass slides into large digital images called whole-
slide images which can then be reviewed on a computer. This new medium also offers
unprecedented opportunities for computers to assist practitioners by automating the
most time-consuming and tedious analysis tasks. The field which is interested in these
digitization, automation and related topics is called digital pathology.

Machine and deep learning methods are great candidates for tackling these au-
tomation tasks thanks to their ability to automatically learn models and capture com-
plex patterns directly from data. However, digital pathology presents several chal-
lenges for learning methods. In particular, the field is suffering from data scarcity as
data, especially annotated, is difficult to obtain because of privacy concerns, cost of
annotations, etc.

In this thesis, we explore different machine learning techniques tailored for tack-
ling data scarcity. We first study different deep transfer learning techniques, a family
of methods which consist in re-using a model that has been learned on a different task
than the target task. We investigate best practices regarding how deep convolutional
neural network models pre-trained on ImageNet, a dataset of photographs, can be
transferred to digital pathology image classification tasks. We notably show that, in
digital pathology, fine-tuning outperforms feature extraction and draw other practi-
cal conclusions regarding transfer from ImageNet. Motivated by the fact that transfer
performs better when the source and target tasks are close, we then use multi-task
learning to pre-train a model on pathology data directly. We show that this technique
is efficient for creating a transferrable model tailored for pathology tasks. Finally, we
move to the topic of self-training, a family of methods where a model being learned
is used to annotate unlabeled data that is then incorporated into the training process.
In particular, we apply this technique to image segmentation for exploiting a dataset
which has been only sparsely-labeled. We show that our approach is able to make use
of the sparsely-labeled data better than a supervised approach.
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1 Chapter

Introduction

1.1 Context

Machine learning (ML), the sub-field of artificial intelligence (AI) which is concerned
with how to make a computer learn from data, has been through quite a journey since
its inception in the 1940s and 1950s. From a small research domain, it has grown into
a massive rapidly-developing field of research and applications with ramifications in
many branches of science and technology. This growth is not surprising in a world
where computers become more and more powerful and data, the bread-and-butter of
machine learning, increasingly structured and queryable. Applications of machine
learning are as varied as they are numerous: spam filtering, fraud detection, face
recognition, self-driving cars, robotics and automation, medical data analysis and di-
agnosis, simulation in particle physics... to name only a few. While it has already rev-
olutionized many domains, machine learning research has still a bright future ahead.
In the last decade only, several new families of techniques have been (re-)discovered
and have enabled unexpectedly fast progress (e.g. deep learning, convolutional neural
network, generative adversarial networks, transformers). One can only expect that
the next ground-breaking ML method is on the brink of being discovered in a research
lab somewhere around the world. Aside from that, research is still ongoing on many
fronts such as understanding, applying or improving existing methods.

Medicine is among the numerous fields where machine learning is showing great
promises. Although often misrepresented in the mainstream media as a tool that will
eventually replace practitioners, the real potential of machine learning in medicine ac-
tually lies in its capacity to become a strong, resilient and consistent assistant to the
physicians [159], assisting them for tasks ranging from diagnosis and analysis to pa-
perwork. Rather than replacing physicians, an AI-based diagnosis system would be
able to complement their opinion and advise them based on experiences of millions
of other patients and colleagues. Moreover, such a system would be able to produce
these advice based on a very large number of parameters and sources of data that a
human could not realistically consider (imaging, written reports, laboratory values,
vital signs). However, the road to an AI-assistant is still long and many questions
and challenges have yet to be addressed. From a scientific standpoint, current re-
search mostly focuses on improving solutions for tasks of significantly smaller scale
and scope (e.g. outlining organs in x-rays, detecting disease in CT-scans, classifying
skin cancer as malignant or benign). Many recent contributions, some of which the
generalization can be questioned [146], have claimed to have matched or surpassed
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FIGURE 1.1: A typical whole-slide image of size 163840 × 95744 pixels and file size of 2.3
gigabytes. To the left is the original slide and to the right is a structure of interest at zoom

level ×130 (size in pixels: 1354 × 736, source: ULB, Erasme).

human experts accuracies by applying machine learning methods on different medi-
cal tasks. Whereas progress is certain, many challenges have yet to be solved.

One of these major challenges is data scarcity. Not that data itself is lacking as Pra-
manik, Pal, and Mukhopadhyay [157] reported that the amount of health data stored
worldwide could reach 2,258 exabytes in 2020. What is scarce is actually data that is
at least partially annotated and of good-enough quality to be used to train machine
learning models. Data scarcity has many causes: privacy concerns prevent sharing
patient data, the annotation process is time-consuming and expensive, etc. This is ag-
gravated by the fact that recent machine learning methods (i.e. deep learning) require
a significant amount of data to perform optimally.

In this thesis, we are interested in one specific field of medicine: digital pathology
(DP). Microscope have been used in medicine to analyze samples (e.g. cells, tissue or
blood) since the 17th century [74] but recent technological progress has enabled the
digitization of microscope glass slides into images called whole-slide images (WSI).
Digital pathology concerns all the aspects of acquiring, managing, sharing and in-
terpreting these WSIs [50]. With the help of image management systems, modern
visualization tools (e.g. Cytomine [132], uliege.cytomine.org) and image analysis
algorithms, WSIs have the potential to revolutionize the daily work of pathologists
and biologists but the transition process is complex and expensive. Therefore, only a
few hospitals and facilities took the leap towards a full digital environment (e.g. [191,
53, 207]). Among the greatest promises of digital pathology is the possibility to au-
tomate diagnosis tasks with computer vision techniques including machine learning
[42]. Such automation would not only accelerate the diagnosis process but could also
improve its accuracy by delegating time-consuming and tedious but simple tasks to
algorithms (e.g. counting cells, measuring area of tumor) therefore allowing practi-
tionners to focus on the challenging aspects of their work and ultimately improving
patient care and treatments. The use of such techniques would also contribute to ac-
celerating drug and pathology research relying on whole-slide image analysis.

The subfield of digital pathology focusing on automating the analysis of pathology

uliege.cytomine.org
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data is called computational pathology (CPATH) and faces many interesting challenges.
A WSI is typically a very large image that can reach few billion pixels at maximum
zoom level (see Figure 1.1, a single file can weight several gigabytes) therefore making
classical computer vision methods inapplicable without adaptation. The image con-
tent is usually complex which excludes the use of simplistic computer vision methods.
This explains why machine learning is currently so popular among computational
pathology researchers because of its ability to cope with the complexity by automati-
cally learning from data. However, efficient use of machine learning is hampered by
data scarcity of which the field is not spared since billion-pixels images are as tedious
to analyze as to annotate exhaustively, even for trained pathologists. The data scarcity
problem is worsened by the variability introduced by the transformation process of a
biological sample into a slide and then into a whole-slide image.

1.2 Contributions and outline

In this thesis, we explore different ways of tackling data scarcity in digital pathology
using deep learning, a sub-field of machine learning which focuses on deep neural net-
works. Our contributions leverage transfer learning (TL), multi-task learning (MTL)
and self-training which we apply to the tasks of image classification and segmentation.
The manuscript is structured in three parts which are preceded by this introduction.

Part I introduces machine learning and digital pathology. Chapter 2 focuses on
machine learning and presents the different concepts and techniques used throughout
this thesis. It is not intended to explain the matter in depth but rather to give sufficient
background for a reader with a basic knowledge of machine learning to understand
the contributions. This chapter also presents works related to ours. More precisely, we
discuss how similar techniques are used for general purpose problems (i.e. not specific
to medical imaging). Chapter 3 focuses on digital pathology and presents the field
from the perspective of a computer scientist. It presents how a biological sample is
transformed and ultimately becomes a whole-slide image in order to explain how this
crucial preparation step can impact the image analysis down the line. We present three
example diagnosis tasks that would greatly benefit from automation with computer
vision techniques. We also introduce the challenge that is data scarcity more in depth
and present works related to ours. Unlike in Chapter 2, the related works are focused
on medical and pathology application of methods similar to ours.

Part II presents our first and second contributions which are both related to transfer
learning. In Chapter 4, we first review, compare and study different deep transfer
learning techniques using 8 classification datasets in order to evaluate the viability
and best practices of transfer learning in digital pathology. We confirm the current
scientific consensus that using neural networks pre-trained on a dataset unrelated to
digital pathology (i.e. ImageNet [48]) is indeed interesting in terms of performance.
We draw guidelines from our experiments on how the transfer should be performed.
In Chapter 5, we then propose a multi-task learning architecture and training scheme
for pre-training a network based on an ensemble of potentially-small datasets rather
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than a single large dataset. We use these in order to pre-train a neural network on
22 classification digital pathology datasets and show that our resulting models yield
competitive results compared to networks pre-trained on ImageNet.

Part III and Chapter 6 present our third contribution. We use a machine learn-
ing technique called self-training to train an image segmentation model on sparsely-
labeled data. With our approach, the machine learning model is trained and then used
to predict missing annotations in the dataset. We show that our approach is able to
make efficient use of the sparsely-labeled data to improve the segmentation perfor-
mance. Moreover, we show that it is not always necessary to exhaustively label a
dataset to obtain competitive performance.

The manuscript ends with Chapter 7 which presents our conclusions and discus-
sion of future works.

1.3 Publications

This thesis is based on the following publications, considered respectively in Chapters
4, 5 and 6:

• Romain Mormont, Pierre Geurts, and Raphaël Marée. “Comparison of deep
transfer learning strategies for digital pathology”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 2262–
2271

• Romain Mormont, Pierre Geurts, and Raphaël Marée. “Multi-task pre-training
of deep neural networks for digital pathology”. In: IEEE journal of biomedical and
health informatics 25.2 (2020), pp. 412–421

• Romain Mormont, Mehdi Testouri, Raphaël Marée, and Pierre Geurts. “Re-
lieving pixel-wise labeling effort for pathology image segmentation with self-
training”. In: Proceedings of the European Conference on Computer Vision (ECCV)
Workshops. Accepted for publication. 2022

During the course of my PhD, I have contributed to the development of Biaflows
(biaflows-doc.neubias.org), a platform built on top of Cytomine designed for stan-
dardized benchmarking of bioimage analysis workflows. This work resulted in the
following publication:

• Ulysse Rubens∗, Romain Mormont∗, et al. “BIAFLOWS: A collaborative frame-
work to reproducibly deploy and benchmark bioimage analysis workflows”. In:
Patterns 1.3 (2020), p. 100040 (∗ these authors contributed equally).

Although I consider this work as a significant contribution of my PhD, it will not be
discussed in this manuscript as it does not fit into our narrative around data scarcity
in digital pathology. The abstract of this article is however provided in Appendix E,
together with a link to the full paper.

Throughout my PhD, I have frequently used and updated the SLDC framework
which was originally created in the context of my master thesis:

biaflows-doc.neubias.org
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• Romain Mormont, Jean-Michel Begon, Renaud Hoyoux, and Raphaël Marée.
“SLDC: an open-source workflow for object detection in multi-gigapixel im-
ages”. In: The 25th Belgian-Dutch Conference on Machine Learning (Benelearn). 2016

1.4 Code and models

The code and models for our publications are also publicly available online with per-
missive licenses:

• Chapter 5: https://github.com/waliens/multitask-dipath (code and models)

• Chapter 6: coming soon (code)

• Biaflows: https://github.com/Neubias-WG5

• SLDC: https://github.com/waliens/sldc

https://github.com/waliens/multitask-dipath
https://github.com/Neubias-WG5
https://github.com/waliens/sldc
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Background





2 Chapter

Machine learning

Overview

The goal of this chapter is to provide machine learning background and keys
to understand our contributions. It is not aimed at being an exhaustive tour of
the field of machine learning but rather an overview of topics relevant to this
thesis. For the readers who would still like to deepen their knowledge about
these methods, we provide pointers to relevant literature. In this chapter, we
also introduce the notations that we use throughout this thesis.
Section 2.1 provides a short definition of machine learning and a first example of
an ML problem. Section 2.2 explores different ways the field of machine learn-
ing can be structured (e.g. supervised vs. unsupervised learning, classification
vs. regression, classical machine vs. deep learning...) in order to position our
work in its context. Section 2.3 discusses what guides machine learning model
training from a theoretical point of view. Then, it presents practical concerns re-
garding model selection and evaluation. It finally provides a description of dif-
ferent evaluation metrics used in this thesis. This chapter then shifts its focus on
specific machine learning methods and algorithms: support-vector machine in
Section 2.4, tree-based methods in 2.5 and deep learning in Section 2.6 in which
we also discuss more thoroughly deep transfer learning (see Section 2.6.4). In the
final Section 2.7, we wrap up by positioning our work in the context of machine
learning.

2.1 What is machine learning ?

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E [140]. Machine learning concerns the study of such
programs, commonly referred to as models, and how to build them by learning. A
model h can be seen as a function taking an input x ∈ X (a.k.a. observation, example,
instance) and producing an ouput h(x) or ŷ ∈ Y . Entities x and h(x) are n-dimensional
tensors and can encode many kind of data types: data record, image, graph, time
series, text... When x is a vector, its components are commonly called features, variables
or attributes. A model can have several inputs (resp. outputs) in which case x (resp. y)
is a tuple.
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In machine learning, a model is built by a learning algorithm. Formally, a learning
algorithm is defined by a set H of candidate models called the hypothesis space, a per-
formance measure P for a model and an optimization strategy. As input, the algorithm
is provided with training data (the experience E, a.k.a. learning or training set) that it
uses to build and optimize the model. The algorithm output is a model h ∈ H that
maximizes the performance criterion. A model being built by a learning algorithm is
said to be in the training phase. When this model has been trained and is used on new
data, it is said to be in the inference phase.

As an example, a common task is natural image classification where the model must
assign a label to a picture. For instance, one would want to detect whether a picture
contains a human, an animal or an inanimate object. In this case, considering that the
images are encoded with integers, the input space is the set of all possible color images:
X ⊂ Nr×c×b where r, c and b are respectively the image width, height and number
of channels (which equals to 3 in the case of RGB color images). The output space is
composed of the 3 labels of interest: Y = {human, animal, object}. The model would
take an image x ∈ X as input and, based on its content, output ŷ, one of the predefined
labels. This label ŷ might be false if the model makes a mistake. Therefore, for the sake
of distinction, the correct label is denoted y (a.k.a. ground truth). As a performance
measure P, one could assess the correctness of the ouput label by assigning 0 to correct
predictions and 1 to errors. This performance measure is called the zero-one loss and is
written as:

ℓ0−1(y, ŷ) = 1y ̸=ŷ (2.1)

There are numerous tasks beyond natural image classification to which machine
learning can be applied nowadays. In the next sections, we will discuss some of them
and dive a little deeper into algorithms and topics related to learning which are rele-
vant to this thesis.

2.2 Families of learning methods

There are many ways to structure the ecosystem of machine learning methods. This
section explores some of them.

2.2.1 Supervised learning

Supervised learning (SL) regroups methods where the learning process is guided by an
output signal. We formalize a supervised task as the tuple (X ;Y ; p(x, y)) whereX and
Y are respectively the input and output spaces and p(x, y) is a probability distribution
over those joint spaces. The learning algorithm is provided with a training set

D = {(xi, yi) | i = 1, ..., n; (xi, yi) ∼ p(x, y)} (2.2)
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where yi ∈ Y is the output signal for the observation xi ∈ X . The learning algorithm
objective is to find a model h ∈ H that approximates at best the output. In general,
one wants to train a model that minimizes the generalization error (see Equation 2.9
and Section 2.3.1 for more details) or, alternatively, that performs well on unseen data
by predicting the most appropriate output.

When the output space is a finite set of discrete values Y = {v1, v2, ..., vC}, the
problem is called classification. The vi elements are called the classes (or label) and
C denotes the cardinality of the set Y (i.e. the number of classes). When C = 2, the
problem is said to be binary. In classification, in order to minimize the zero one loss for
instance, the model should predict the most probable output class given an example:

ŷi = arg max
yk∈Y

p(y = yk|x = xi). (2.3)

Examples of classification tasks are for instance assigning a label to an image (i.e. the
example presented in Section 2.1) or detecting whether an email is a spam or not.

When the output space is continuous and the output is a real scalar value, the
problem is called regression. In this case, in order to minimize the squared loss

ℓsquared(y, ŷ) = (y− ŷ)2 (2.4)

for instance, the model should predict the expected value y given any input xi:

h(xi) = E [y|x = xi] . (2.5)

Examples of regression problems are trying to predict the price of a house given its
area, the amount of product generated by a factory in a given time period or the review
score of a product on an e-commerce platform.

Some models can also predict structured outputs. This is the case with image seg-
mentation which focuses on classifying each pixel of an image (i.e. answering the ques-
tion: what kind of object does this pixel belong to in the image?). The output of the
model is a segmentation mask where pixel at row i and column j of the image is classi-
fied as ŷij ∈ Y . For some tasks, a mask is not always necessary, one is rather interested
in the coarse location of the objects. This kind of task is called detection for which the
output of the model, the location, can be encoded as image coordinates (i, j) represent-
ing the object’s center of gravity or any of its points. Another common representation
is the bounding box, a box containing exactly the object of interest, encoded by the
position of a corner of the box in the image and its height and width.

In supervised learning, the training signal is often created by humans manually
annotating examples. Such guidance allows using well-studied methods and usually
helps learning strong models but also comes at the cost of human intervention. This is
especially aggravated when the target task is difficult as, the more complex, the more
data is required to sample sufficiently the input space. In some domains, annotations
are particularly cumbersome to obtain because one lacks raw data, or because the an-
notation process requires the intevention of experts (e.g. medical data). This issue is
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referred to as data scarcity. In general, the lack of data hampers successful applica-
tion of supervised learning but several approaches exist to work it around which are
presented briefly in Sections 2.2.5 and 2.2.6.

2.2.2 Unsupervised learning

In opposition to supervised learning, unsupervised learning (USL) regroups methods
where no output signal is provided to guide the learning process. The learning algo-
rithm is provided with

D = {xi | i = 1, ..., n; xi ∼ p(x)} (2.6)

and attempts to extract information from this dataset. A common unsupervised task is
density estimation where the goal is to model the generating distribution p(x) but there
also exist other types of methods. With clustering, for instance, the algorithm searches
for natural groups of observations or features. Another example is dimensionality re-
duction where the algorithm projects high-dimensional data into a lower-dimensional
space while attempting to preserve as much information as possible. An interested
reader will find more information about these methods in [76].

There exists another family of unsupervised learning methods that was first ex-
plored in the 1980s with autoencoders [13, 113, 26] but has gained much traction re-
cently. It is called self-supervised learning [114]. The idea behind this family of meth-
ods is to exploit supervised learning algorithms but rather than guiding the learning
process with human annotations, the training signal is found in the data itself. An ex-
ample of such methods is image reconstruction. Random parts of the input images are
truncated (e.g. replaced by black squares) and the model must be able to re-generate
the truncated parts. In this case, input and output signals are respectively the trun-
cated and the original image. The model input can be generated from the original data
without human intervention.

2.2.3 Between supervised and unsupervised learning

The families discussed in Sections 2.2.1 and 2.2.2 do not cover all existing machine
learning methods but are rather at the ends of a spectrum. There also exist interme-
diate families of methods. Halfway between supervised and unsupervised learning is
semi-supervised learning (SSL) which focuses on methods that use a dataset where only
a part of the observations have an associated output signal. The dataset is composed
of two subsets:

Dl = {(xi, yi) | i = 1, ..., na; yi ∼ p (y|xi) ; xi ∼ pa(x)} (2.7)
Du = {xi | i = 1, ..., nu; xi ∼ pu(x)} (2.8)

These methods make some assumptions about the “closeness” of the input distribu-
tions pa(x) and pu(x) [36] which allow exploiting both sets to solve some particular
tasks. One of the earliest forms of semi-supervised learning is self-training [178, 226]
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which consists in an iterative process of which a typical iteration, or round, is com-
posed of two steps. First, the teacher model is used to generate pseudo-labels for un-
labeled samples from Du. Then, these samples are used alongside samples from Dl
to train a model, the student. We will discuss self-training more thoroughly in Section
2.6.6. Self-training is not to be confused with self-supervised learning (discussed in
the previous section) as the latter involves finding the training signal in the input data
rather than producing pseudo-labels for unlabeled data with the model being trained.

Closer to supervised learning is weakly-supervised learning (WSL) which focuses on
methods where the annotations are noisy (e.g. y can be incorrect or imprecise), incom-
plete (similar to unsupervised learning) or coarse. With coarse annotations, the model
must produce more information than contained in the training signal y. Coming back
to our example of Section 2.1, a weakly-supervised problem would consist in locating
the human, animal or object in the image using only the class as the coarse training
signal.

2.2.4 Shallow versus deep learning

Many things in our world can be viewed as hierarchies of concepts. For instance, a
human body is composed of body parts like the head. The head itself includes the
face which is itself composed of several elements: cheeks, eyes, nose, etc. This kind of
decomposition could also be applied to other concepts. Grasping hierarchies is key for
understanding and learning efficiently. As humans, our visual cortex process informa-
tion in a hierarchical manner [209]. Similarly, this can be applied to computer vision.
An image can be seen as a hierarchy going from the actual objects it contains down to
the pixels. Direct interpretation of individual pixels is rarely enough for learning any-
thing meaningful. However, pixels combined together make edges, which themselves
make textures, which are eventually combined in several rounds to reach meaningful
semantic elements (see Figure 2.1). Therefore, being able to somewhat exploit these
inherent hierarchies is relevant to achieve image understanding by learning.

Most of the machine learning methods developed until recently can arguably be
considered “shallow” which means that they are not complex enough or their learning
process does not include a mechanism to learn or exploit such hierarchies. In order
to successfully apply these methods to complex data with hierarchical structures, one
usually needs to help the learning algorithm by pre-processing the data and extracting
meaningful information using field knowledge. This process is called manual feature
extraction or engineering and has been an important part of the application of machine
learning algorithms. In computer vision, a great body of work has been focused on
creating complicated pipelines of feature extraction that produce hundreds of different
features that can be used for image understanding (e.g. SURF [17], ORB [173]). How-
ever, more recently “deep learning” methods based on neural networks have shown
that manual feature extraction was usually not the best performing approach for a
wide variety of tasks.

Although neural network research is as old as machine learning itself, the real
breakthrough of deep learning happened in 2012 at the occasion of the third iteration



14 Chapter 2. Machine learning

FIGURE 2.1: A custom hierarchical model illustrating the compositionnality and hierarchical
nature of vision tasks (source: [117]).
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of a machine learning challenge called ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [176]. One of the tasks was image classification and all but the best method
used combinations of shallow learning algorithms and feature extraction. However,
the winning team followed a different approach. Building upon neural network re-
search form the previous decades, they used a deep convolutional neural network,
AlexNet, trained on the raw images directly [107]. They beat the second best method
by a margin of 11% error rate. This extraordinary improvement revived the inter-
est of the machine learning community for neural networks and launched the “deep
learning revolution”. The success of this method can be partly attributed to some
particularly beneficial inductive bias, a set of assumptions that narrow the search of a
good model in the hypothesis space. This inductive bias includes the use of a trainable
multi-layered (hence “deep”) structure that can automatically learn hierarchical con-
cepts from the data directly. In other words, instead of manual feature engineering,
features are learned automatically. Nowadays, deep learning is a thriving research
field that has grown far beyond image classification. Section 2.6 dives a little further
into deep learning concepts relevant to this thesis.

2.2.5 Transfer learning

As humans, we have extraordinary learning capabilites. Throughout our lives, we
learn to move, communicate, interact with our environments and more. One specific
learning ability that we possess is to use knowledge we have acquired in a given con-
text to learn faster in a different context. For example, someone who already plays the
violin will probably feel it easier to learn to play the piano than someone who has no
music education at all. In a way, we “transfer” knowledge and skills from a task to
another.

This idea has been applied in machine learning and from this application emerged
transfer learning (TL) [225]. This field studies the ways knowledge learned from one or
more tasks, called the source tasks, can be exploited to learn more effectively on another
task, the target task. This subject has been researched for few decades now, as the first
contributions about transfer learning date back to the end of the 1970s [28]. A surge of
interest happened in the 1990s notably with a NIPS-95 workshop called “Learning to
Learn: Knowledge Consolidation and Transfer in Inductive Systems” which discussed the
importance of retaining previously-learned information for efficient learning. Since
then, the interest has only been growing and the emergence of deep learning has cre-
ated new opportunities for transfer learning.

Transfer learning methods are organized based on the properties of the source and
target tasks. The different types of supervision (or lack thereof) discussed in Sections
2.2.1 and 2.2.2 also apply to transfer learning in which case the supervision qualifier
relates to the target task only. In other words, in supervised transfer learning, the
target task is a supervised dataset as described in Equation 2.2. For the remainder of
the section, we will assume that the source tasks are also supervised.
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Definition 2.2.1. Transfer learning between a source task (Xs,Ys, ps(x, y)) and a target task
(Xt,Yt, pt(x, y)) is said to be homogeneous when Xs = Xt and Ys = Yt but ps(x) ̸= pt(x)
or ps(y|x) ̸= pt(y|x).

Transfer learning can be homogeneous (see Definition 2.2.1) when the source and
target tasks only differ by the distributions of their data. As an example, let us suppose
we would want to classify pictures taken with a camera equipped with a certain sensor
(target dataset B) and that we also have at hands another dataset of pictures taken with
a camera equipped with another type of sensor (source dataset A). Each captor has
a certain noise pattern which results in dataset A and B to have a slighlty different
distributions in the pixel intensities (i.e. pA(x) ̸= pB(x)). This specific setup where
only the input distributions differ is called domain adaptation.

Definition 2.2.2. Transfer learning between a source task (Xs,Ys, ps(x, y)) and a target task
(Xt,Yt, pt(x, y)) is said to be heterogeneous when Xs ̸= Xt and/or Ys ̸= Yt.

Transfer learning can be heterogeneous (see Definition 2.2.2). An example that will
be addressed later in this thesis is the transfer of a model trained for natural image
classification to medical image classification. In this case, the tasks are different as
the first consists in identifying the presence of a type of object in the image whereas
the other consists in assessing the malignancy of a tumor from an image of a tissue,
for instance. The input distributions also differ as medical images have completely
different content and appearance.

There exist many different transfer approaches. Based on how they operate, [225]
have identified four different categories of transfer learning algorithms. The case
when knowledge transferred corresponds to the weights attached to the source ex-
amples is called instance-based transfer learning. Is referred to as feature-based transfer
learning the case when knowledge is represented by a subspace spanned by the fea-
tures in the source and target domains. The transferred knowledge can also be embed-
ded as part of the source domain model: this is model-based transfer learning. Finally,
when the knowledge is transferred as rules specifying the relations between examples
in the source domains, transfer is referred to as relation-based.

Transfer learning performance is influenced by several factors including how well
the method is able to capture and use transferable knowledge. The task-relatedness
is also an important factor: usually the more similar the tasks, the better the perfor-
mance. Sometimes, performance are worsened by the use of transfer learning. This
happens for instance when the source and target tasks are not related enough. More-
over, the training process on the target task can cause some of the previously-learned
knowledge to be lost as most machine learning methods do not have an explicit mem-
ory mechanism to retain information. These two phenomena are respectively called
negative transfer [236] and catastrophic interference [57]. Although some methods have
been proposed to tackle these challenges, how to anticipate and correct them are still
open research questions.

We explore further transfer learning in the context of deep learning in Section 2.6.4.
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2.2.6 Multi-task learning

In transfer learning, the transfer process happens in two steps. First, knowledge is
extracted from the source tasks one way or another, then later used for learning the
target task. A similar approach is multi-task learning (MTL) where, rather than per-
forming the transfer in two steps, everything happens at once: a model is trained on
all tasks simultaneously. Compared to learning each task individually, this approach
has several advantages: it increases the total amount of data available for training a
model, a more robust and universal representation can be learned by sharing knowl-
edge between tasks and, to a certain extent, it prevents the model to overfit1 a specific
task. In the best scenarii, the use of multi-task learning improves the performance of
each individual task compared to a setup where the tasks are treated independently.
In opposition, it happens that antagonistic tasks worsen the resulting individual tasks
performance. This issue is related to negative transfer and catastrophic interference
introduced in Section 2.2.5.

Similarly to transfer learning, multi-task learning methods can be either hetero-
geneous when the tasks are of different types (e.g. supervised, unsupervised, classi-
fication, regression), or homogeneous when tasks have only one type. In supervised
multi-task learning, Zhang and Yang [238] have identified three families of methods.
Feature-based multi-task learning is about sharing knowledge through learning fea-
tures common among all tasks. With instance-based multi-task learning, knowledge is
shared through examples deemed useful. Finally, model or parameter-based multi-task
learning use learned models as proxies to extract information about tasks relatedness.

We explore further multi-task learning in the context of deep learning in Section
2.6.5.

2.3 Model evaluation and selection

As stated in Section 2.1, evaluation is a core principle of machine learning as a learn-
ing algorithm should select a model that maximizes a performance criterion. In this
section, we introduce different concepts related to the evaluation and selection of ma-
chine learning models. In Sections 2.3.1 and 2.3.2, we discuss the importance of gener-
alization for machine learning models and the related topics of bias-variance trade-off
and overfitting. In Section 2.3.3, we discuss further practical consideration related to
model selection. In Section 2.3.4, we finally introduce different metrics used in this
thesis.

1More on overfitting in Section 2.3.2.
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2.3.1 Empirical risk minimization

As stated in the introduction, the objective of a learning algorithm is to find a model
h ∈ H that maximizes a performance measure or, alternatively, minimizes the ex-
pected risk R(h) (for a supervised problem) [212]:

R(h) = EX ,Y {ℓ (y, h(x))} (2.9)

where ℓ : Y × Y → R is a loss function which measures the closeness between h(x)
and y. The expected risk is also called the generalization error. The model that min-
imizes R(h) is therefore the best possible model for the task and is called the Bayes
model hB. In practice, it is rarely possible to directly minimize the expected risk as
one does not have access to the true distributions. It is therefore more convenient to
work with an unbiased estimator of the estimated risk, the empirical risk, which is
evaluated using the available supervised training set D:

Re(h) =
1
n

|D|
∑
i=1

ℓ (yi, hD(xi)) , (xi, yi) ∈ D (2.10)

The empirical risk minimization (ERM) principle suggests that a learning algorithm
should pick a model that minimizes the emprical risk in order to approximate hB as
well as possible. Most machine learning algorithms apply this principle.

2.3.2 Bias-variance trade-off and overfitting

Whereas it can be shown that the empirical risk, under some assumptions, converges
to the expected risk when the training set grows (n → ∞), in practice, one does not
have access to an infinitely-large dataset. Therefore, the learned model will often dif-
fer from hB and its expected risk will often be larger. The effect of the “choice” of a
finite training set on the generalization error can be studied using the bias-variance
decomposition [59, 60, 76]:

ELS {EX ,Y {ℓ (y, hD(x))}} = noise(x) + bias2(x) + variance(x) (2.11)

where ELS is the expectation over all training sets of size n that can be extracted from
p(x, y) and hD ∈ H is the model learned from a learning set D ∈ LS. This additive
decomposition can be exactly demonstrated when using the squared loss (see Equa-
tion 2.4) as ℓ. For other losses, the decomposition may not apply but the intuition is
similar. The noise term is the error of hB and is therefore irreducible. The bias is the
error of the average model (over models generated from LS) with respect to hB. The
variance measures the variability of the predictions around the average model caused
by the training set randomness.

Several elements have a direct impact on these error terms such as: model capacity,
training set size, noise in the data, etc. The capacity or complexity of a model is related
to its ability to capture complex relationships in the data. Linear models (see Section
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Trade-off

FIGURE 2.2: The bias-variance trade-off illustrated.

2.4) are examples of low-capacity models as they are only able to capture linear rela-
tionships. Non-linear models such as random forests (see Section 2.5) or deep neural
networks (see Section 2.6) have a higher complexity or capacity compared to linear
models.

Low-capacity models usually have low variance as their limited expressiveness
does not allow them to change much based on the training data but they also have
high bias as failing to capture complex relationships prevents the model from approx-
imating hB correctly. This behavior is called underfitting. In opposition, high-capacity
models have low bias as their expressiveness allow them to approximate hB more ac-
curately but this expressiveness also leads to high variance as the model can learn a
function which is too expressive compared to hB and can fit the noise in the train-
ing data. Such models suffer from overfitting which hampers generalization, although
these models typically present a low empirical risk. The bias-variance trade-off results
from these observations and states that finding a model that generalizes consists in
finding the trade-off between low- and high-capacity or underfitting and overfitting.
In Figure 2.2 is plotted the classical representation of this trade-off.

2.3.2.1 Over-parametrized models

With the advent of deep learning, model complexity has exploded as typical deep
learning models have millions or even billions of parameters (see Section 2.6.3). The
bias-variance trade-off tells us that these models should be extremely prone to over-
fitting but the reality is different. Typically, it is not uncommon to find tasks for which
deep learning models reach an empirical risk close to zero but actually generalize
well to unseen data [235]. Although the models are able to basically memorize the
training data, the learned function is actually very robust and generalizes well. This
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phenomenon is currently being investigated and several explanations have been pro-
posed, such as the deep double-descent [20].

2.3.3 Model selection and evaluation in practice

These considerations have direct consequences on practical applications of machine
learning. In particular, the presence of overfitting causes the empirical risk to reflect
poorly the generalization error of a model. There are two common tasks where using
the empirical risk only is not reliable which are model selection and model evaluation.
The former consists in finding the model that would generalize best among a set of
candidates and the latter consists in evaluating the expected performance of a model
when it will be used on new data. Both tasks involve evaluating the generalization
error of a model. There exist several approaches to solve these tasks.

The simplest one is the use of an independent test set: the source dataset is split into
two subsets, the train and test sets, which are used to respectively train and evaluate
the model. The size of the subsets should be made such that the train set is large
enough for the model to be able to learn but the test set should be large enough for the
estimate of the error to be reliable. Those two objectives are obviously antagonistic.
Therefore, this approach is not viable if the source dataset is too small as reducing
even more the size of the sets will make both the training and evaluation unreliable.
The test-set approach actually evaluates the generalization error of the model for the
given dataset but not the expected generalization error presented in Equation 2.11.

Another approach that actually estimates the expected generalization error is cross-
validation (CV) which simply repeats the train-test approach with different splits of
the source dataset. For each train-test split, a model is trained on the train set and
evaluated on the test set. The cross-validation score is computed by averaging the test
scores of all splits. There exist several approaches for cross-validation which differ by
how they generate their splits. A common approach is k-fold cross-validation where the
data is randomly split into k subsets and each subset is selected in turn to be the test
set while the remaining folds make the train set.

An important consideration is to never use a model selection score as the evalua-
tion score of a model. Indeed, optimizing the choice of a model usually results in the
selection score to be an overly optimistic estimator of the generalization performance
of the model. In practice, this results in a three-way split of the training dataset: one
extracts some train, validation and test sets. The models are trained on the train set,
selected on the validation set and the final model is evaluated on the test set. When
the dataset is too small for such a three-way split, a common approach consists in
extracting a test set from the whole dataset and then performing cross-validation on
the train set. As a general rule, every decision influenced one way or another by the
output y should be done within a validation loop to avoid overfitting (using either
cross-validation or an independent test-set).

These two approaches are based on a strong assumption that the extracted sets
are independent. If they are not, this would most probably lead to overfitting and
the resulting selection or evaluation scores being overly optimistic. Therefore, it is
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sometimes not enough to split the sets randomly and domain knowledge must be used
during the splitting procedure to enforce sets independence. This issue is sometimes
called data leakage [95] as information “leaks” between the sets. This topic will be
discussed in Section 3.4.1 as digital pathology datasets must be treated carefully to
avoid this issue.

2.3.4 Metrics

The metrics presented in this section are mostly supervised classification performance
measures. Given a supervised dataset as described in Equation 2.2, the metrics evalu-
ate how the predicted class ŷi compares to the ground truth class yi. In the remainder
of the thesis, when the higher the better for a metric, we will call it a score. In opposi-
tion, when the lower the better, we will call it a loss. In terms of notations, a loss and a
score averaged over a set of data will respectively be denoted L andM.

2.3.4.1 Accuracy

The accuracy was introduced in our first example of a machine learning problem in
Section 2.1 with its dual, the zero-one loss. The accuracy assigns 1 to correct pre-
dictions and 0 to misclassified samples. The accuracy score can be computed over a
dataset:

Macc =
1
n

n

∑
i=1

(1− ℓ0-1(yi, ŷi)) (2.12)

It has the advantage of being simple to interpret, to compute and it applies to
both binary and multi-class problems. However, it is affected by class imbalance. This
phenomenon designates the situation when there is a disparity in the numbers of ex-
amples belonging to each of the problem classes in the dataset. For instance, given
binary dataset where n− 1 examples belong to class A and the last example to class B,
a classifier predicting only class A would obtain an accuracy close to 1 which seems
very good but in reality the classifier did not learn anything from the data.

2.3.4.2 Area under the ROC curve

In binary classification, a specific name is given to each type of successful or unsuc-
cessful predictions and these different types of successes and errors form what is called
the confusion matrix (see Table 2.1). Each element of this table can be either a number
or a proportion of samples falling in the category. The accuracy presented in Section
2.3.4.1 can be re-expressed based on this confusion matrix: TN+TP

N+P . In some context,
however, it is more informative to look at other types of errors. For instance, when the
target task consists in diagnosing cancer, one is more interested in assessing the num-
ber of false positives and negatives of the method using, for instance, the specificity or
sensitivity (a.k.a. recall) scores.
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Predicted (ŷ)
Actual (y) 0 1 Total

0 True Negative False Negative Negative
1 False Positive True Positive Positive

TABLE 2.1: A confusion matrix for a binary classification problem.

Specificity =
TN

TN + FP
= 1− FP

N
(2.13)

Sensitivity =
TP
P

(2.14)

Sensitivity and (1− Specificity) are also called true positive rate (TPR) and false posi-
tive rate (FPR) respectively. These metrics should always be studied together as it is of-
ten possible to optimize one at the expense of the other. Therefore a common analysis
consists in plotting a model as a point (TPR, FPR) in a two-dimensional graph. Some
classification models are able to produce class probabilities instead of just a class. In
this case, one can vary a threshold applied to these probabilities in order to generate
several points to plot. These points form a visual metric called the receiver operating
characteristic (ROC) curve (see Figure 2.3) which can be derived into a score: the area
under the ROC curve (ROC AUC). This score can only be computed for models which
produce a meaningfully thresholdable number and it only applies to binary classifica-
tion in its basic form. However, it provides a measure which is not impacted by class
imbalance which is a very interesting property in domains where this issue is com-
mon. Another advantage of the ROC AUC is its finer grasp of how a model performs
as it evaluates the probabilities, unlike the accuracy where the model is either wrong
or right but there is no in-between.

2.3.4.3 Cross-entropy loss

Cross-entropy is rooted in information theory and measures the similarity of two
probability distributions p and q that, when defined over a finite and discrete set of
events X , is given by:

H(p, q) = − ∑
xi∈X

p (xi) log q (xi) (2.15)

When the model outputs class probabilities, this similarity measure can be used
to evaluate the discrepancy between the prediction and the ground-truth. The cross-
entropy becomes a loss function called the categorical cross-entropy:

Lce = −
1
n

n

∑
i=1

|Y|
∑
c=1

y(c)i log ŷ(c)i (2.16)
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FIGURE 2.3: A ROC curve. The red points correspond to different threshold values applied
to the probabilities produced by the model. The area of the light blue zone under the curve

is the ROC AUC score.

where ŷ(c)i is the probability predicted by the model for example i and class c and y(c)i
is the one-hot encoding of the ground truth:

y(c)i =

{
1, if yi = c
0, otherwise

(2.17)

In the case of binary classification, the metric falls back to the binary cross-entropy
(BCE):

Lbce = −
1
n

n

∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) (2.18)

Similarly to ROC AUC, the cross-entropy evaluates probabilities and therefore has
a fine grasp on how the model performs. Another important advantage is its differen-
tiability as it can be used as a loss for directly training differentiable models (e.g. deep
learning models, see Section 2.6.2).

2.3.4.4 Dice score

As opposed to the previous metrics, the dice score is a set similarity measure that is
used to evaluate binary image segmentation. Considering two sets A and B, the dice
score is defined as:

Dice =
2 |A ∩ B|
|A|+ |B| (2.19)

When working with image segmentation, A and B become the sets of true and pre-
dicted binary labels for the pixels in the image and the intersection falls back to a dot
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product. The resulting formula is:

Mdice =
2 ∑i ∑j yijŷij + ϵ

∑i ∑j yij + ∑i ∑j ŷij + ϵ
(2.20)

where ϵ is a small value added for numerical stability, yij is the actual class of pixel
(i, j) and ŷij the predicted class for this pixel. The predicted ŷij can either be binary or
a probability. In the latter case, the metric is called the soft dice score which is differen-
tiable. When the model outputs class probabilities, instead of using the soft dice score,
ŷij can be binarized using a threshold.

2.3.4.5 Rankings of metrics

In Part II of this thesis, we use a relatively large set of image classification datasets to
study transfer learning. In order to compare the different methods, we evaluate how
it performs on those datasets. Unfortunately, for reasons that will be explained later,
it is not possible to use the same metric for all datasets. Moreover, a metric computed
on a dataset is not always comparable to the same metric computed on a different
dataset. For this reason, we resort to using rankings of methods. First, for each dataset
in our pool, we evaluate the methods each with their most appropriate metric and
then rank them: the best method gets rank m and the worst gets rank 1 (where m is
the number of methods). This convention is used in Chapter 4. Finally, in order to
draw general conclusions, we average the rankings over all the datasets. The average
ranks therefore provide a single metric for comparing the methods across datasets. In
Chapter 5, we use the opposite convention for ranks as the best method is attributed
rank 1 whereas the worst is attributed rank m. However, this change of convention
does not change the interpretation of rankings except that they can be considered a
loss rather than a score.

2.4 Support vector machines

The support-vector machine (SVM) binary classification algorithm was invented in the
early 1990s [24]. It is originally a linear binary classification method that has been
extended for regression and multi-class classification. By using the kernel trick, SVM
can also learn non-linear models but it is out of the scope of this thesis. An interested
reader will learn more about kernel methods and the kernel trick in [76].

In general, assuming a supervised dataset where inputs are such that x ∈ Rm

where m is the number of features, a linear model is an hyperplane:

f (x; θθθ) = θ0 +
m

∑
j=1

θjxj (2.21)

where θ0 and the θj are the learnable parameters, respectively called the bias and the
weights. This model can be used for regression in which case the model h(x) = f (x). A
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linear model can also be used for binary classification in which case the linear function
is called the decision boundary and is considered to separate positive from negative
samples in the input space: h(x) = sign( f (x)) (i.e. Y = {−1, 1}). Linear methods
differ from each other by the way they learn and generate these weights.

Support vector machines optimize the parameters θ0 and θj to generate f in such
a way that the minimal distance from the hyperplane to the nearest points from the
learning set is maximized. These nearest points are called the support vectors and the
margin between the support vectors is called the gutter. An example of a SVM hyper-
plane is given in Figure 2.4. It can be shown that the SVM optimization problem falls
back to the Lagrange dual:

max
α

n

∑
k=1

αk −
1
2

n

∑
i,j=1

αiαjyiyjxT
i xj (2.22)

subject to 0 ≤ αk ≤ C, ∀k = 1, ..., n (2.23)
n

∑
i=1

αiyi = 0 (2.24)

which can be solved efficiently with classical solvers such as LIBLINEAR [55]. When
the optimal solution has been found, the weights can be derived by solving the system:

αk

(
yk

(
θTxk + θ0

)
− 1
)
= 0, ∀k = 1, ..., n (2.25)

and the final model written as:

h(x) =
m

∑
i=1

αiyixT
i x + θ0 (2.26)

In Equation 2.25, αk > 0 for the support vectors xk and αk = 0 for the other sam-
ples. This is an interesting property as it implies that only the support vectors and
their weights αk should be stored for future inference. This makes the final model (see
Equation 2.26) very memory efficient for problems where m ≫ n. This property has
also a negative side effect as it means that the model is highly dependent on the sup-
port vectors xk. It can therefore change significantly if the xk are removed or changed
which yields high variance.

The C term in the Lagrange dual formulation is an hyperparameter that relaxes the
need for linear separability of the training data and allows for training examples to lie
within the gutter or to be misclassified. Low values of C make the optimal solution
tolerate more of such examples. Reducing the dependency of the model on very few
points also decreases the variance but increases the bias. In opposition, high values of
C puts a large penalty on points that lie within the gutter or are misclassified which
increases variance but decreases bias.
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FIGURE 2.4: Examples of an hyperplane (the thick black line) learned with SVM applied to
a binary classification task (x = (x1, x2) ∈ X ⊆ R2 and Y = {0, 1}). The support vectors are
delineated with bold colored border. A large value of C penalizes more severely points in

the gutter or misclassified.

2.4.1 Multi-class problems

There exist few approaches to use a binary classification algorithm like SVM in a multi-
class context. One of them is called one-vs-one (OVO) and consists in training K =
C(C−1)

2 binary classifiers (where C is the number of classes), one for each pair of classes
of the dataset. The prediction for a new sample will be the majority class among the
predictions of these K models. This requires learning a model number quadratic with
regard to the number of classes. When C is large, this can be quite inefficient.

Another approach is called one-vs-rest (OVR) and consists in training C models
each of which deals with the classification problem of a class versus all the others. The
final prediction is given by the model of which the decision function returned largest
value. This approach is more computationally efficient than OVO as only C classifiers
have to be trained.

2.5 Tree-based methods

Tree-based methods are a popular family of methods invented at least twice in the
1980s by the AI [158] and the statistics [29] communities. Section 2.5.1 presents the
basics of decision tree inference and induction, Section 2.5.2 introduces the random
forest algorithm. Section 2.5.3 presents a variant of random forest called extremely
randomized trees (ET) and Section 2.5.4 finally explores how this method can be used
for image classification.
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2.5.1 Decision trees

Let us consider a supervised dataset where each xi is a vector of attributes:

xi =
(

a(i)1 , a(i)2 , ..., a(i)m

)
, a(i)j ∈ Xj (2.27)

and each attribute can be either numerical or categorical (binary or multi-valued). A
decision tree is a model structured as a tree of which the nodes Q are divided in two
subsets: the internal nodes I ⊂ Q and leaf nodes F ⊂ Q. Each internal node q ∈ I
tests an input attribute q.k ∈ {1, ..., m} and its q.E outwards edges are associated with
non-overlapping subsets of this attribute’s domain:

A(q)
l ⊂ Xq.k, l = 0, ..., q.E− 1 (2.28)

which are called splits. A leaf node of the tree is labeled with a prediction ŷ ∈ Y . In
classification, it can also be a probability distribution over Y . In regression, the output
is a real value ŷ ∈ Y . Given xi, predicting an output value consists in a top-down
traversal of the tree. When reaching an internal node q during the traversal, xi will
follow the edge l such that a(i)q.k ∈ A

(q)
l which leads to one of the children nodes of

q. This process is repeated until the algorithm reaches a leaf of which the associated
labeling is the output of the algorithm for xi.

In the remainder of the thesis, we will only consider numerical attributes (xi ∈
R) and binary splits at each internal node (q.E = 2). These splits are defined by a
threshold q.v such that:

A(q)
0 = ]−∞, q.v] (2.29)

A(q)
1 = ]q.v,+∞[ (2.30)

This representation allows for an efficient check at each node as the attribute has just
to be compared to the threshold. The inference algorithm is formalized in Algorithm
1 for classification with numerical attributes.

2.5.1.1 Decision tree induction

Top-down tree induction is the name of the process of building a decision tree from a
supervised dataset. It is a greedy algorithm that, for a node and a set of examples S,
will select an attribute and a split which reduce the most the so-called impurity of the
node. Then, S will be divided in two subsets S0 and S1 based on the selected split and
these will be used to build recursively the left and right sub-trees respectively. This
procedure is repeated until a certain stopping criterion is met. An impurity measure
I(S) evaluates the disparity of the output labels yi in a set S of training examples. For
classification, a common impurity measure is the Shannon entropy computed on the
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Algorithm 1: Inference with a classification tree and numerical attributes.
q.left and q.right denote the left and right children of a node q and the pre-
diction associated with the leaf node f ∈ F is accessed through f .pred. The
regression algorithm only differs by its type of output.

Data: A sample xi =
(

a(i)1 , a(i)2 , ..., a(i)m

)
and the root r of a decision tree.

Result: A probability distribution over Y , the prediction for xi.
1 Function TreeInference(r, xi):
2 q = r
3 while q ̸∈ F do
4 if a(i)q.k ≤ q.v then
5 q = q.left
6 else
7 q = q.right
8 end
9 end

10 return q.pred

class frequencies pi:

I(S) = −
C

∑
i=1

pi log pi (2.31)

The simplest stopping criterion would be to stop developing the tree when the subset
at the node cannot be further divided because either it is pure (e.g. only one class
represented in S) or because all attributes have a constant value. This algorithm is
formalized in Algorithm 2.

A tree built using this simple stopping criterion is said to be fully-developed. Such a
tree is able to capture the training set perfectly which, in practice, hurts generalization
as it usually leads to overfitting. In order to alleviate the problem and reduce the vari-
ance, there exist several methods such as pre-pruning which consists in preventing the
final tree to grow too deep. Simple pre-pruning techniques are, for example, stopping
the induction when a branch reaches a certain depth, or ensuring that all leaf nodes
contain at least a given number of samples (see Figure 2.5). An advantage of decision
trees are their interpretability as the rules learned by the model can be easily under-
stood by looking at the tree. In practice, decision trees are rarely used alone because
of their high variance.

2.5.2 Random forests

Random forests [30] is an ensemble method based on decision trees. Ensemble meth-
ods combine the predictions of several models to produce a final prediction. Random
forest is part of the family of averaging techniques where models are built indepen-
dently and their predictions are averaged (e.g. a majority vote for classification). It
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Algorithm 2: Decision tree induction.

Data: A supervised dataset S where each sample xi =
(

a(i)1 , a(i)2 , ..., a(i)m

)
.

Result: The root node of a decision tree built for S.
1 Function TreeInduction(S):
2 if StopSplit (S) then
3 return a node associated with the most appropriate labeling given S
4 end
5 Find the best split q.v for attribute q.k for new node q:

6 arg min
v,k

[
|S0|
|S| I (S0) +

|S1|
|S| I (S1)

]
: S0 =

{
(xi, yi) | a(i)k < v

}
, S1 = S \ S0

7 q.left = TreeInduction(S0)
8 q.right = TreeInduction(S1)
9 return q

10

11 Function StopSplit(S):
12 return true if either the yi or all the attributes are constant in S, f alse otherwise

can be shown that this approach reduces variance compared to that of the base model
(e.g. decision trees) and the more decorrelated the individual models, the larger the
variance reduction.

In random forests, decorrelation is achieved through bagging (a.k.a. bootstrap ag-
gregating) and random attribute subset selection. The former consists in training each
individual model on a bootstrap sample of the training set: the training set for the tth

decision tree in the ensemble is a set St built by sampling n examples with replacement
from the original training set S. Regarding the attribute subset selection, each tree only
considers a subset of K ∈ {1, ..., m} randomly selected features when looking for the
best split. In other words, only K random features are considered when searching for
q.k at line 6 in Algorithm 2. These two sources of randomness usually increase the
bias as the individual models do not have access to all the original training examples
and attributes. However, the variance reduction resulting from ensembling is usu-
ally of much greater magnitude resulting in a significant performance improvement
compared to using a decision tree alone.

2.5.3 Extremely randomized trees

The extremely randomized trees (ET, a.k.a. extra-trees) [61] are a variant of the random
forests algorithm that introduces yet another source of decorrelation by selecting the
split q.v at random during the induction (instead of optimizing it, see line 6 in Algo-
rithm 2). Moreover, to attenuate the bias increase, each individual tree is built on the
whole training set instead of a boostrap sample. These choices makes the algorithm
particularly computationally efficient as it is not necessary to iterate over the training
samples to optimize the split anymore.



30 Chapter 2. Machine learning

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0
1

(A) Fully-developped

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x 2

0
1

(B) Maximum depth = 3

FIGURE 2.5: Decision tree decision boundary (white line). Pre-pruning using the maximum
depth parameter reduces the complexity of the model.

2.5.4 Image classification with extra-trees

Extra-trees can be used for image classification as presented in [131]. The core idea
behind this algorithm is to represent an image as a set of nw random subwindows.
Subwindows are rectangle patches extracted from the image, resized to have all the
target height tr and width tc and flattened into a vector of dimension tr × tc × b (b,
the number of color channels, or bands, in the image). The original dimensions of
the rectangular patches are drawn uniformly at random in a range of proportions smin
and smax of the image size (0 ≤ smin < smax ≤ 1). The position of the patches are
also drawn uniformly at random. Each subwindow is attributed the class of its parent
image. The resulting training dataset containing n × nw examples, each a vector of
dimension th × tw × c, can be used to train an extra-trees classifier. At inference, the
same extraction process is applied and the final prediction for the image is determined
by a majority vote on the predicted classes for its subwindows. Regarding parameters,
the more windows and the more trees in the forest, the better. In addition to the tree
complexity hyperparameters, the image colorspace, smin and smax should be tuned as
well to optimize generalization.

This variant of the algorithm is called extremely randomized trees as direct-learner
(ET-DIC) but another variant exists where the forest is used as a feature-learner (ET-
FL). The idea of ET-FL is to train a limited number of trees with the subwindows
dataset similarly to the ET-DIC approach. But rather than using the forest as a direct
classifier, it is used to create a new representation for the images. This representation
is a vector of the same dimension as the number of leaves in the forest and value νi
for leaf i corresponds to the frequency of subwindows of the image reaching the leaf
when propagated into the forest. This representation can then be used to train another
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classifier like SVM. At inference, the representation for the new samples is extracted
from the forest which are then classified with the second classifier. In general, ET-FL
is superior to ET-DIC in terms of performance.

2.6 Deep learning

As introduced in Section 2.2.4, deep learning is a broad research field that has grown
rapidly since the breakthrough of AlexNet in 2012. It encompasses many different
research topics covering all areas of machine learning. In this section, we dive further
into deep learning concepts and methods relevant to this thesis. We introduce the
basic components of modern neural network architectures in Section 2.6.1. Section
2.6.2 discusses how neural networks are learned and optimized in practice. Section
2.6.3 presents few modern neural network architectures. Finally, in Sections 2.6.4, 2.6.5
and 2.6.6, we respectively discuss deep transfer learning, multi-task learning and self-
training and present works and methods related to ours.

2.6.1 Components of modern neural networks

A feedforward neural network can be seen as a parametrized function approximator
h which combines several intermediate functions h(l)(·; θ(l)) (l = 1, ..., L), also called
layers, through composition: h(x; θ) = (h(L) ◦ h(L−1) ◦ ... ◦ h(1))(x). θ is the set contain-
ing all the learnable parameters of the neural network h and θ(l) are the parameters
of the function h(l) (or layer l). The feedforward nature of the network specifies that
information only flows one-way, from the input x to the output y. In other words,
there is no feedback loop.

Unlike decision trees, for instance, which learn the tree structure automatically,
the architecture of a neural network is built manually (most of the time) and consists
in choosing and combining the appropriate functions h(l) for the task at hand. Al-
though it introduces some complexity when it comes to finding the best architecture
for a problem, this modularity actually offers an unprecedented way of approaching
model design as an engineering problem and implementing inductive bias. Moreover,
as long as the chosen functions are differentiable, the final network can be trained us-
ing the backpropagation algorithm (see Section 2.6.2) independently of the architectural
choices.

The idea behind one of the first machine learning algorithms ever published, the
perceptron [168], is still at the core of most deep learning architectures today. Loosely
modeling the working of brain neurons, the perceptron can be represented as:

f (x; θθθ) = σ

(
θ0 +

m

∑
i=0

θixi

)
(2.32)

where σ(·) : X → R is a non-linear differentiable function called the activation func-
tion, θθθ is the vector of learnable parameters of which θ0 and θi (∀i) are respectively
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bias and weights. An eligible function for σ(x) should have at least two modes tran-
sitioning around x = 0. In the past decades, typical σ functions were the hyperbolic
tangent, the sigmoid or the step function. Nowadays, the most common is the rectified
linear unit (ReLU) function:

σ(x) = ReLU(x) =

{
0, if x < 0
x, else

(2.33)

which is particularly efficient to compute and has some properties that interact favor-
ably with the training algorithm making neural networks easier to train.

The perceptron, or neuron, is simply a linear model and is therefore not complex
enough for many types of tasks. However, perceptrons can be combined together into
a perceptron layer: a parallel combination of f perceptrons ( f is the width of the layer)
each with their own set of weights and biases and all taking the same vector as input.
A perceptron layer therefore outputs a vector z ∈ R f .

In the spirit of learning a hierarchy, perceptron layers can be connected one after
another to form a multi-layer perceptron (MLP) (see Figure 2.6). It can be shown that
sufficiently complex MLPs are universal function approximators (i.e. they can learn
any function) [78] which is an interesting property. However, realistically dimen-
sioned MLPs have the drawback of being very complex models easily reaching mil-
lions or even billions of learnable parameters. This makes them difficult to optimize
and prone to overfitting. Regularization techniques exist to reduce model complex-
ity such as weight decay (i.e. small absolute weights values are preferred over large
ones) or dropout [190] (i.e. during training, some neurons are disabled at random) but
unfortunately are often not enough. Therefore, whereas MLPs still have their use in
some applications and or as part of larger and more diverse architectures, they are
rarely used by themselves nowadays.

2.6.1.1 Convolutional neural networks

As introduced in Section 2.2.4, convolutional neural networks (CNN) are the origin of the
“deep learning revolution”. Despite the recently-revived interest, CNNs have been re-
searched since the late 1980s [115]. A CNN is a network containing at least one convo-
lutional layer. Nowadays, such layers are a core component of all networks processing
structured data (time series, images, video, etc.). For instance, in image classification,
typical architectures (see Figure 2.7) stack several convolutional and pooling layers
followed by a fully-connected network (i.e. a MLP). The convolutional layer is intro-
duced in this section and the pooling layer in Section 2.6.1.2.

Let us suppose a naive implementation of an image classifier with a MLP where
each neuron in the first layer is connected to each input pixel. This model is extremely
complex and prone to overfitting, as it would realistically contain billions of weights
for a regular image. Natural images and related machine learning tasks have interest-
ing properties that can be used to improve this naive model.
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FIGURE 2.7: A convolutional neural network (source: [138]).

A first property is that pixel correlations are local, meaning that pixels far from each
other in the image are less likely to be correlated than close pixels. It implies that
connecting individual neurons to all input pixels is excessive and one would rather
want to connect them to patches of close pixels. A second property is that an image
can be considered a stationary signal (i.e. pixel statistics are similar at different locations
of the image). Therefore, it is relevant to use the same set of weights for all the locally-
connected neurons of a layer. These architectural choices are examples of inductive
bias and motivate the convolutional layer. Although, we have discussed the case of
images, convolutional layers can also be generalized for 1D (e.g. time series) or 3D
(e.g. 3D image volume) when the locality and stationarity assumptions hold.

Formal definition. A two-dimensional convolutional layer h can be seen as a func-
tion generating an arbitrary number fout of feature maps z(out) ∈ Rrout×cout× fout from an
input z(in) ∈ Rrin×cin× fin . Feature map k ∈ {1, 2, ..., fout} is the result of convoluting a
learnable weight tensor θθθk ∈ Rr f×c f× fin called kernel or filter over the input z(in):

aijk = θk;0 +

r f

∑
r=1

c f

∑
c=1

fin

∑
f=1

θk;r,c, f × z(in)i+r,j+c, f (2.34)

where a ∈ Rrout×cout× fout are the intermediate activation maps, (i, j) are the coordinates
of a vector of z(in), θk;0 is the bias and θk;r,c, f is the weight at coordinates (r, c, f ) of
tensor θθθk. Similarly as for the perceptron, this linear operation is then followed by a
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non-linearity:
z(out) = h

(
z(in)

)
= σ (a) (2.35)

where σ is applied to each component of a individually.

Hyperparameters. Convolutional layers have many hyperparameters including the
number of feature maps fout and filter dimensions r f and c f (typically r f × c f = 3× 3
or 5× 5) which together directly control the number of learnable parameters of the
layer (and therefore its complexity). In addition to those, one usually introduces a
stride s which consists in evaluating the kernel every s pixels (instead of every pixel)
and therefore divides by s the size of the feature map for each dimension to which it
is applied. It also reduces the amount of computations involved with the layer. The
padding defines how convolution behaves near the edges of the image where all the
considered pixels might not exist. Typical padding options are considering missing
pixels to have value 0, mirroring the image at the edge, etc. Padding and stride are
illustrated in Figure 2.8.

Transposed convolution layer. This type of layer can be seen as the opposite opera-
tion of convolution. It is commonly used to upsample a signal with a learnable filter.
Its hyperparameters are similar to those of regular convolutional layers and include
kernel size r f × c f , stride s and padding. For instance, supposing a transposed con-
volution with no padding and a kernel size equal to the stride (K = r f = c f = s = 2,
i.e. no overlap between transposed convolution window), the activation map is given



36 Chapter 2. Machine learning

by:

aijk = θk;0 +
fin

∑
f=1

z(in)⌊ i
2⌋,
⌊

j
2

⌋
, f

θk;i mod 2,j mod 2, f (2.36)

where z(in) ∈ Rrin×cin× fin are the input feature maps and θk;0 ∈ R and θθθk ∈ Rr f×c f× fin

are the learnable bias and weights. The output feature maps z(out) ∈ Rrout×cout× fout are
computed similarly as in Equation 2.35 with rout = 2× rin and cout = 2× cin.

Properties of convolution. In addition to exploiting locality and stationarity, CNNs
have other interesting properties which contribute to their efficiency for processing
structured data. They have equivariance to translation which means that translating the
convolutional layer input along some of the dimensions only translates the output
along the same dimensions. For tasks like image classification, object location is often
irrelevant for inferring the class. Therefore, the network does not have to learn this
invariance which makes training easier. It has also been shown that, for image clas-
sification, the learned kernels are similar to classical computer vision filters capturing
edges or color patterns in early layers and, as one ascends the network, kernels show
compositionability, invariance and class discrimination [233] confirming the ability of
such a network to learn and use the inherent hierarchical structure of the data. Stack-
ing convolutional layers also brings the benefit of increasing the receptive field of late
layers. The receptive field of an activation a(l)ijk in a feature map k at layer l is the set
of pixels of the input that influence this activation. The larger the receptive field, the
more context is considered by the activation.

There is an interesting parallel to draw between the random subwindows tree-
based method presented in Section 2.5.4 and convolutional neural networks. Indeed,
whereas the random subwindow algorithm randomly selects windows of varying
scales in an input image, a convolutional layer actually processes all windows ex-
haustively at a given scale. In the case of a convolution layer, the window is obviously
smaller (i.e. few pixels wide) but because convolutional layers are stacked, the actual
window processed for an activation of the last layer (i.e. the receptive field) is larger
and comparable to the size of window of the random subwindows algorithm. Obvi-
ously, both methods differ by how they exploit these windows and deep networks are
able to learn more expressive models from them because of the hierarchical structure
and learning.

2.6.1.2 Pooling layer

Pooling layers are another common components of CNNs. Their role is to reduce the
dimensionality of feature maps by aggregating close activations. In a way, a pooling
layer can be seen as a special convolutional layer with stride. However, unlike the con-
volutional layer, the kernel is not learned but rather computes a (possibly non-linear)
statistic of its input. The depth of the feature maps before and after pooling does not
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change (i.e. fin = fout). Pooling share some hyperparameters with convolution in-
cluding stride and padding. Regarding the aggregation function, the most common
choices are max pooling or average pooling. The former will output the largest activation
among the one covered by the kernel:

aijk = max
{

xi+r,j+c,k | r = 1, ..., r f ; c = 1, ..., c f
}

(2.37)

The latter will average the activations covered by the kernel:

aijk =
1

r f × c f

r f

∑
r=1

c f

∑
c=1

xi+r,j+c,k (2.38)

Pooling, similarly to convolution, brings equivariance to translation and increase
the receptive field of deeper layers. The reduction of dimensionality also reduces the
computational cost of the network as deeper layers have smaller feature maps to pro-
cess. There exist other types of pooling layers which are described in [62].

2.6.2 Neural network optimization

Remains the question of how to find the best parameters for the neural network h(·; θ)
using a training set. Obviously, these weights should be tuned so that the final model
minimizes the expected risk (i.e. the generalization error) which is not directly possible
as explained in Section 2.3.1. Following the ERM principle, h(·; θ) can be optimized
by minimizing its error on the training set measured by a loss L. In most cases, it is
not possible to find the solution analytically and, therefore, one resorts to numerical
optimization and variants of gradient descent algorithms.

Starting from initial model parameters θ0
2, gradient descent is an algorithm that

iteratively builds a sequence of parameters θi such that the loss should ideally decrease
when i increases. Every iteration, the parameters are updated by applying them a
correction in opposite direction of the gradients of L in the parameters space:

θi = θi−1 − γ∇L(h(·; θi)) (2.39)

where γ is the learning rate, an hyperparameter for tuning the amplitude of the pa-
rameters update.

Gradient descent does not guarantee convergence to a global minimum in general
as the optimization can either reach a local minimum or diverge. The choices of θ0 and
γ are important to avoid divergence. Regarding the local minima issue, the very high-
dimensional nature of neural networks makes it unlikely to have no dimension along
which the model can improve at a given iteration. Moreover, finding parameters that
achieve the global minimum of the training loss is generally unwanted as it might lead

2Starting from this section, the notation θ will refer to the set of parameters of a neural network.
Depending on the context, θi will refer to either a part i of this neural network or the state of these
parameters at a time step i.
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to overfitting. Nevertheless, this last remark can be questioned by the recent research
on over-parametrization discussed in Section 2.3.2.1.

At every iteration, the original gradient descent algorithm computes gradients
over the whole training set which is particularly inefficient when n ≫. A way of
improving this consists in using stochastic gradient descent (SGD) where the gradients
are approximated using a subset B of training samples called a batch instead of the
whole set. This approach has been shown to be particularly efficient for both general-
ization of the model and computational cost of training [25]. When 1 < |B| < n, SGD
becomes mini-batch gradient descent which is the most used optimization strategy for
training neural networks nowadays. The batch size is often chosen based on practi-
cal considerations like the amount of memory available on the hardware running the
learning algorithm.

Several adjustements to the gradient descent formulation of Equation 2.39 have
shown to be effective for convergence and stability of the optimization. In the thesis,
whenever we optimize a neural network by gradient descent, we use the Adam opti-
mizer [100] approach which normalizes the gradients using moving estimates of their
mean and uncentered variance. This method is efficient and does not require much
tuning of the hyperparameters yet makes training more robust.

2.6.2.1 Backward propagation

Gradient descent, as its name suggests, heavily relies on gradient of parameters for
updating the model. The success of deep learning can be partly attributed to an
efficient algorithm for computing these gradients called backward propagation [174]
(a.k.a. backpropagation). The algorithm is based on the chain rule which states that
the derivative of a composition of functions y(x) = (h(L) ◦ h(L−1) ◦ ... ◦ h(1))(x) with
respect to its input can be broken down into a product of derivatives. Given yi =

(h(i) ◦ h(i−1) ◦ ... ◦ h(1))(x), the composition of the ith first functions (i = 1, ..., L), the
chain rule states that:

∇h =
∂h(x)

∂x
=

∂yL

∂x
=

∂yL

∂yL−1
× ...× ∂y2

∂y1
× ∂y1

∂x
(2.40)

This applies directly to feedforward neural networks which are compositions of
functions and implies that computing the parameters gradients can be broken down
into computing local gradients at every layer. The backward propagation algorithm
starts from the loss and iteratively evaluates local gradients going backward in the
network until all parameters have been reached. These local gradients can then be
combined using the chain rule and the resulting gradients can be used to update the
parameters as dictated by gradient descent. This obviously requires that all functions
h(l) are differentiable as introduced in Section 2.6.1.

Relying on gradients of a long chain of functions for the optimization can be trou-
blesome at times. Indeed, when a neural network is not build carefully, vanishing or ex-
ploding gradients can appear. Some activation functions such as the hyperbolic tangent
or the sigmoid have saturating modes as they converge to constant values. As these
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fonctions converge towards a constant, their derivatives become smaller and smaller
and converge to zero. Because of the multiplicative nature of the chain rule, one gra-
dient in the chain is enough to cancel all gradients upstream which happens when the
activations start working in their saturating regime. There exist best practices to re-
duce the likelihood of vanishing gradients: weights must be carefully initialized, it is
better to avoid activation functions with saturating modes (ReLU is a good candidate)
and some architectural tricks can help (see Sections 2.6.2.2 and 2.6.3). In opposition,
exploding gradients cause divergence because gradients are too large. Again architec-
tural tricks, careful weigths and learning rate initilization makes this issue less likely
to occur.

Nowadays, all deep learning frameworks implement backward propagation and
also feature automatic differentiation. Automatic differentiation means that every ba-
sic mathematical function present in the library is associated with its analytical deriva-
tive. Therefore, during backpropagation, the algorithm can compute the gradients au-
tomatically and exactly based on this information. The combination of these two fea-
tures makes training a neural network particularly easy as everything is automated.

2.6.2.2 Batch normalization

The batch normalization (BN) [83] layer is part of the family of normalization layers.
This layer acts as a regularizer and is usually placed before activations in neural net-
works. Given a signal x =

(
x1, x2, ..., x f

)
∈ R f (e.g. the output of a convolutional

layer), the BN layer maintains an estimate of the mean µi and variance σi (i = 1, ..., f )
of the preceding layer output computed over the batch. These estimates are used to
normalize the inputs into an intermediate signal x̂. Obviously, whether this normal-
ization is actually beneficial for the network is task-, layer- and feature-dependent
and there are probably scenarii where normalizing would hurt performance. There-
fore, the signal x̂ is then followed by a learnable linear layer allowing the network to
learn to revert this normalization if necessary:

BN(x) =

α1

 x1 − µ1√
σ2

1 + ϵ

+ β1 ... α f

 x f − µ f√
σ2

f + ϵ

+ β f

 (2.41)

where the αi and βi are learnable parameters. During training, the input statistics µi
and σi are computed on-the-fly using moving averages. At inference, the statistics are
frozen as well as the learnable parameters αi and βi.

Batch normalization greatly helps network optimization by maintaining interme-
diate activations within acceptable ranges of values and therefore reducing the risk
of vanishing or exploding gradients, narrowing the parameter search and allowing
higher learning rates.

Unfortunately, the use of batch statistics can also be an issue. When there is a
sudden change in the model input distribution, the batch statistics are likely to change
quickly but the linear layer, restricted by the learning rate, will probably not be able
to adapt as quickly. This can cause instabilities while the network adapts its batch
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FIGURE 2.9: VGG16 and VGG19 architectures (source: [47]).

normalization layers for the new distribution. This situation can occur for instance
with transfer learning where source and target tasks can have drastically different
input distributions.

2.6.3 Modern network architectures

This section presents different architectures used in our contributions.

Simple layer-stacking architecture After the success of AlexNet, researchers inves-
tigated the effect of model depth on classification performance. An architecture in
particular caught the attention by ending up a runner up for a later edition of ILSVRC
in 2014. This architecture is named VGG [183] after the team who participated to the
challenge. It has two implementations that we use in this thesis: VGG16 and VGG19.
The number is the count of layers with trainable weights in the architecture. These
architectures are pretty simple (see Figure 2.9) as they only stack blocks of few con-
volutional layers with ReLU activation followed by pooling. The last convolutional
layer is followed by a 3-layers MLP.

Residual architecture Although improving over AlexNet, very deep networks like
VGGs are subject to training difficulties: beyond a certain model depth, accuracies
sometimes start to decrease. This can be attributed to the fact that, for a given task,
adding layers beyond a certain depth is not necessary. Moreover, it can be difficult for
gradients to flow back given the depth of the architecture (i.e. vanishing gradients).
In order to address those two issues, ResNet [77] introduces the residual mapping, or
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FIGURE 2.10: ResNet34, same design as ResNet50 but less layers. Residual connections are
placed every two convolutional layers (source: [77]).

skip-connection. Given a layer h(l)(x), the residual mapping r(l)(x) would be:

r(l)(x) = x + h(l)(x). (2.42)

This residual mapping makes it easier for the optimizer to simply ignore the layer
as it just has to tune all the weights in h(l)(x) to 0 in which case r(l)(x) = x. More-
over, gradients are still able to flow freely through the skip connection. This increased
trainability has been empirically confirmed as very deep residual network (up to 150
layers) have won ILSVRC in 2015 and 2016 and have shown impressive performance
in many other contexts. Another advantage of residual networks is that, even though
they are deeper than their VGG counterparts, they need much less parameters to reach
better performance3 making ResNets more lightweight. Nowadays, residual connec-
tions are a common building block in deep architectures. In this thesis, we use one
of the first iterations of ResNets, namely ResNet50 (see Figure 2.10 for ResNet34, a
similar architecture).

Inception architecture The winning method of ILSVRC2014 was based on an ar-
chitecture called GoogLeNet [197] (a.k.a. InceptionV1). This architecture is based on
inception modules. An inception module is a composition of convolutional layers built
to maintain a certain level of representativeness while reducing the number of train-
ing parameters compared to a block of plain convolutional layers. An example of a
trick used to reduce the number of parameters is to use two consecutive 3× 3 instead
of one 5× 5 convolutional layers. In this thesis, we use InceptionV3 [198], the third
iteration of the architecture, which essentially scales it up by using factorized convo-
lutions and regularization. We also use InceptionResNetV2, a version of the Inception
architecture using residual connections [196].

Dense architecture The densely connected convolutional networks [81] push further
the idea of residual connection. Let us suppose a group g of L consecutive convolu-
tional layers h(l) (l = 1, ..., L) taking x as input. In this group, each layer h(l) receives
as input the outputs of all preceding layers h(i) (i = 1, ..., l − 1) and the input signal

3VGG16 and 19 have more than 140M parameters whereas ResNet50 has 25M and the largest
ResNet152 has 66M parameters.
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FIGURE 2.11: A densely connected network (source: [81]).

x. This group g is called a dense block and is the basis for the densely connected net-
works. Such networks typically stack several dense blocks connected together with
one convolution and one pooling layers (see Figure 2.11).

A segmentation architecture, UNet For tackling image segmentation tasks, one gen-
erally uses fully-convolutional networks (FCN) which is a kind of network where (al-
most) all layers are convolutional. One of the most popular architectures for segmen-
tation is a U-shaped network called U-Net [167]. This architecture is composed of
a contracting and an expanding paths (hence the “U”, see Figure 2.12). Similarly as
for classification networks, the contracting path is composed of convolutional and
pooling layers that progressively encodes the input images into high-level context
features. The expanding path combines decoded high-level features with low-level
features from the contracting path to eventually generate a segmentation map. The
decoding of low-level features is learned using transposed convolutions. In the origi-
nal U-Net implementation, padding is disabled and kernel size is set to be equal to the
stride (same setup as presented in Section 2.6.1.1). In order to combine decoded high
level features and low-level features, U-Net uses skip connections from the contracting
to the expanding paths.

2.6.4 Deep transfer learning

As presented in Section 2.2.5, transfer learning regroups several families of methods
which have been and continue to be explored through the prism of deep learning
[201]. In this thesis, we focus on supervised model-based (or network-based) transfer
learning applied to image classification. With this approach, knowledge is encoded
through the parameters of a model. This model is first trained on a source task, usually
a large image classification dataset, then transferred to the target task.

There are two approaches for transferring a deep neural network to a target task.
Let us consider three networks hs, ho and hn respectively parametrized by θs, θo and
θn. In the remainder of this section, we will designate a network interchangeably by
its set of parameters θi or its function hi(·; θi). The network θs is shared between the
source and target tasks and θo and θn are the task-specific networks. Both approaches
first require the network h = ho ◦ hs to be pre-trained on the source task. At the end of
pre-training, θs encodes the knowledge to be transferred.

The first transfer approach is feature extraction (see Figure 2.13) and simply consists
in generating a new representation for samples of the target task using θs as an en-
coder. For each sample xi of the target task, this encoder generates a feature vector
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FIGURE 2.12: U-Net architecture (source: [167]).
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FIGURE 2.13: Supervised transfer learning by feature extraction. The shared network is
trained by supervised learning on the source task. Then, the shared part θs is extracted and
used as an encoder for images of the target task. A third-party classifier cl f can be trained

and used to classify the encoded target data.
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FIGURE 2.14: Supervised transfer learning by fine-tuning. The shared network is trained by
supervised learning on the source task. Then, the shared part θs is extracted and attached to

θn. The network hn ◦ hs is trained by gradient descent on the target task.

zi = hs(xi; θs) ∈ R f where f is the number of features. The encoder is said to be
“frozen” as it is not updated after transfer. The generated features can be used to train
a third-party classifier on the target task which can be as simple as a linear model. A
common choice of classifier is a linear SVM.

The second transfer approach is fine-tuning (see Figure 2.14) where the task-specific
part of the network θo is replaced by a new classification network θn and the resulting
network h = hc ◦ hs is further trained by gradient descent on the target task. Sub-
jecting the whole network to gradient descent will change the features learned on the
source task and can cause catastrophic interference. Forgetting what the model has
previously learned might not be an issue if this knowledge is not useful and prevents
the model to reach the best possible performance on the target task. However, this
phenomenon can also cause features that are good for both the source and target tasks
to be forgotten which is undesirable. Therefore, a way of alleviating the issue is to use
a small learning rate (compared to the initial training learning rate). Another way of
preventing this issue consists in freezing a part of θs, usually the first layers.

The feature extraction approach only emerged during the last decade with works
on the Overfeat [179, 162] and Decaf [49] convolutional architectures. The authors
trained their AlexNet-based networks in a supervised manner on the large ImageNet
source dataset composed of 1.2 millions natural images and 1000 distinct classes. They
both showed that these networks were able to produce discriminative features for
tasks they were not trained on.

Building upon these results, Yosinski et al. [228] analyzed the transferability of
deep neural networks using both approaches in more details. Their most prominent
conclusion is that features in a neural network become less transferable as one moves
deeper in the network indicating that the network features shift from generic to spe-
cific along the network. This result is consistent with Zeiler and Fergus [233] as early
layers typically learn classical computer vision filters. This motivates freezing only the
first layers of the network to avoid catastrophic interference as they are more generic
and therefore should not require much tuning. They also studied how task similarity
impacted transfer performance and found that similar tasks indeed benefited better
from transfer than dissimilar ones. This was confirmed in Mensink et al. [137] who



2.6. Deep learning 45

showed that for a variety of tasks, there exists a source task that outperforms Ima-
geNet, especially when this task incorporates in some ways the target domain. More
recently, Kornblith, Shlens, and Le [105] showed that there is a correlation between
model performance on the source task (in this case ImageNet) and transfer perfor-
mance on the target task.

Whereas the versatility of ImageNet initially fueled research in deep transfer learn-
ing with supervised model pre-training, several recent contributions have shown that
pre-training could be performed differently. For instance, SimCLR [39] uses con-
trastive learning to learn the model. This is a self-supervised approach which con-
sists in generating pairs of similar and dissimilar images using data augmentation
and training a network to discriminate these pairs. They have shown that the re-
sulting network has learned discriminative features that can be transferred quite ef-
ficiently to new tasks. The vision transformer (ViT) [51] is another approach based on
transformers, a recent and popular family of attention-based methods. Attention is a
mechanism of selection of information which can be implemented in different ways
in neural networks [147]. It has initially been applied with great successes on natural
language processing (NLP) problems but ViT has shown that attention-based architec-
tures were also applicable to vision. In this framework, the transfer process is very
similar to supervised pre-training as the model is first trained in a supervised manner
on a large database, then transferred to the target task. The only difference is that the
attention-based network does not use convolution and takes as input a sequence of
non-overlapping patches of the image. Other contributions focus on improving classi-
cal supervised pre-training approach. For instance, Wang et al. [216] combine transfer
learning and model compression as the fine-tuning process excludes non-informative
feature maps from the final model based on their attentive feature distillation and selec-
tion (AFDS) mechanism.

2.6.5 Multi-task learning

Multi-task learning, introduced in Section 2.2.6, has been applied with great successes
for a wide-range of application [238] such as image and video understanding [101],
natural language processing [45], face recognition [241, 37, 239, 160], information re-
trieval [125], art classification [194], etc. The success of multi-task learning is notably
due to the fact that leveraging several tasks and/or datasets alleviates the need for
large amounts of data. Moreover, training in multi-task has a regularization effect
preventing the model to overfit a particular task therefore yielding a better general-
izable model. The modularity of neural networks also allows to embed multi-task
specific components hence facilitating its application to deep learning [33, 238]. There
exist many ways how multi-task learning can be implemented within deep learning
with, for instance, architecture tricks [139, 193] and weights sharing [33].
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2.6.6 Self-training

As introduced in Section 2.2.3, self-training is a family of semi-supervised learning
methods. Self-training is an iterative process where a typical iteration consists in using
a teacher model to produce pseudo-labels for unlabeled samples from Du which are
then combined with labeled samples from Dl to train a student model.

There are several elements that characterize a self-training algorithm. An impor-
tant element is the way the student and teacher models interact during the process. A
common approach consists in using the current student as a teacher for the next train-
ing round, during which a new student is trained from scratch [226, 222]. A different
approach consists in building a teacher of which the model parameters are a moving
average of the student parameters at the end of each training round [205]. Pham et al.
[155] update both the student and teacher networks by back-propagation during the
self-training round.

Another characteristic element is how the algorithm exploits the pseudo-labels.
Some techniques use pseudo-labels uncertainty to select which samples should be in-
cluded for the next training rounds by excluding high entropy samples for instance
[69, 116]. Another way of exploiting the pseudo-labels in the training signal is to ex-
ploit consistency. Several self-training approaches ensure consistency between the pre-
dictions of the teacher and of a noisy student [222, 242, 186, 205]. The student is said to
be noisy because of the stochastic nature of the data augmentation and network train-
ing (e.g. caused by dropout, stochastic depth). Laine and Aila [112] propose a variation
of this by enforcing consistency between the current model and the pseudo-labels gen-
erated and aggregated over the past training rounds (so-called temporal ensemble).

2.7 Wrapping up

In the previous sections, we gave an overview of different topics. We can now posi-
tion our work in this context. In Chapters 4 and 5, both contributions explore heteroge-
neous model-based transfer learning by transferring deep learning classification mod-
els. We use several target tasks to study how transfer learning performs in the context
of digital pathology (more on this in Chapter 3). The first contribution (see Chapter
4) studies transfer from ImageNet. Motivated by the fact that transfer works better
when the source and target tasks are related, the second contribution (see Chapter 5)
uses homogeneous feature-based multi-task learning as a way to pre-train a model for
transfer on digital pathology data directly. In Chapter 6, we move to a different type of
task: image segmentation. We investigate a semi-supervised learning approach lever-
aging self-training to train U-Net segmentation model from sparsely-labeled digital
pathology datasets. The model is used to complete the unlabeled area which are then
included in the training set.

Before diving into these contributions, we review in the next chapter relevant back-
ground related to our application domain, digital pathology. This chapter also extends



2.7. Wrapping up 47

our presentation of related works covering similar methods of transfer learning, multi-
task learning and self-training (see Sections 3.4.4, 3.4.5 and 3.4.6 respectively) applied
in the context of medical and pathology image analysis.





3 Chapter

Digital pathology

Overview

This chapter presents an overview of digital and computational pathology from
the perspective of a computer scientist and aims at providing basic understand-
ing of what makes computational pathology a challenging but promising topic.
Section 3.2 presents a typical histological glass slide preparation procedure, how
this glass slide is transformed into an image and what could go wrong during
the process. Section 3.3 discusses briefly how slides are used and analyzed by
practioners and provides three use cases where computational pathology could
greatly help pathologists in their day-to-day work. Finally, in Section 3.4, we
present some of the challenges specific to the application of machine learning to
computational pathology including data leakage and data scarcity and how to
tackle them. This last section also presents the related works of our contribu-
tions.

3.1 What is digital pathology?

Nowadays, medicine and healthcare rely heavily on analysis of body samples to study
and diagnose diseases. The branch of medicine focusing on this analysis is called
pathology which includes histology-based pathology and cytology-based pathology
(a.k.a. histopathology and cytopathology respectively). Both of these sub-branches
involve the study of microscope glass slides containing samples (see Figure 3.1). His-
tology samples are tissue sections cut from a bodily specimen. Cytology is concerned
with samples of free cells or tissue fragments.

The trend of digitalization affecting our societies also impacts pathology as, using
dedicated scanners, a glass slide can now be digitized into large image file called a
whole-slide image (WSI). These files associated with subject metadata are stored in com-
puter systems commonly called picture archiving and communication system (PACS)
or laboratory information systems (LIS). In this context, digital pathology (DP) can be
defined as “the acquisition, management, sharing and interpretation of pathology informa-
tion - including slides and data - in a digital environment” [50]. Working with WSI in-
stead of physical slides has several advantages and drawbacks. Aside from easier
sharing and storing of slides, digitization also opens the way for automated analysis
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FIGURE 3.1: Left: microscope slides with tissue samples (source: [44]). Right: a whole-slide
image of dimensions 30720 x 25600 pixels.

sofware to automatically extract relevant information, typically with the help of arti-
ficial intelligence and machine learning. The branch of digital pathology interested in
such analysis is called computational pathology (CPATH) and holds great promises for
the future. Indeed, computational pathology techniques have the potential to relieve
pathologists from easy but time-consuming tasks allowing them to focus on challeng-
ing cases and research therefore reducing healthcare cost and improving diagnosis
quality. On a larger scale, they hold promises for increased coverage and quality of
healthcare around the world and especially in low incomes countries where the num-
ber of pathologists per inhabitant is typically insufficient. According to the WHO
cancer report [220], the ratio of pathologists per inhabitant was approximately 1 per
15000 in high income countries in 2020 but dramatically drops to 1 per million or less
in many low income countries. A throrough list of advantages and drawbacks of dig-
ital pathology can be found in Table 1 of [84].

Interestingly, although digitization technologies are quite mature, adoption of dig-
ital pathology in healthcare facilities is not simple. Many still heavily rely on glass
slides for day-to-day operations. Indeed, the transformation requires to modernize
the whole hardware (scanners, workstation) and software (slide viewers, information
system) infrastructures and to re-think entirely the processes of the facility [191, 53,
207]. This obviously requires significant investments both in time and money and
careful planning to carry it out successfully which is not always compatible with the
workload of pathology services or research laboratories. Other difficulties might arise,
slowing down the transformation, such as reluctance to change and lack of confidence
in modern tools for slide visualization and analysis.

As far as automated analysis is concerned, it remains quite a challenge. Whole-
slide images typically contain several billions of pixels at full resolution which implies
longer processing times and memory issues compared to classical images. Moreover,
for most tasks, the image content is complex and traditional computer vision methods
(e.g. thresholding) would often fail to distinguish structures of interest. This complex-
ity is increased by the presence of artifacts [204] appearing during the conversion pro-
cess of a bodily specimen to an image. An artifact is a visual or physical alteration of
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a sample that can hamper its analysis, automated or not. Artifacts introduce a source
of variability that algorithms must learn to deal with. At worst, they can prevent any
meaningful analysis by hiding, destroying or changing the appearance of the struc-
tures of interest (more on artifacts in Section 3.2). The ability of learning techniques
to train models that capture complex relationships in data makes machine learning
an ideal candidate to tackle computational pathology tasks. However, data scarcity is
a prevalent issue in the field as quality data, especially annotated, can be difficult to
obtain for various reasons: privacy concerns, time-consuming and expensive nature
of the annotation process, etc.

Overall, digital pathology holds great promises but presents significant and inter-
esting challenges on several fronts. This thesis focuses on the ML-based automated
analysis aspects of computational pathology and studies how to tackle data scarcity
in particular.

3.2 A journey from the body to the computer

Turning a bodily specimen into whole-slide images is a long and complex multi-step
process typically involving the work of several highly-specialized technicians and ma-
chines. Some steps can nowadays be automated but the chain remains mostly manual.
In this section, we describe the different steps of this procedure which is summarized
in Figure 3.2. An alternate presentation of the process can be found in [134] (including
illustrations). Sample preparation can differ more or less dependending on the na-
ture of the sample (e.g. histology, cytology, hematology) or target imaging technique
(e.g. brightfield, fluoresence, multispectral). For the sake of brevity, our description
focuses on histology with a tissue section prepared for brightfield microscopy and
scanning, brightfield being one of the most common modalities used in histo- and cy-
topathology. We will also present a few technical details related to WSI files structure
and visualization.

Throughout the section, we will discuss some of the possible artifacts resulting
from the transformation procedure. Our presentation of artifacts will not be exhaus-
tive and few visual examples can be found in Figure 3.3. A more thorough list of
pre-scan artifacts with illustrations can be found in [204].

3.2.1 Specimens collection, fixation, cutting and dehydration

Whether it is for research or diagnosis, the slide preparation process starts with a spec-
imen, a piece of human or animal body for which a question must be answered. The
specimen can be as large as a whole organ but can also be as small as a drop of bod-
ily material commonly referred to as a biopsy. Before going through the preparation
process, a specimen must be fixated. The goal of fixation is to put a stop to the natural
decay of the specimen and increase its structural stability [166]. This can be achieved,
for instance, by immersing the specimen in a formaldehyde bath (i.e. the fixative solu-
tion) for period of time depending on its size (i.e. few hours to a whole day).
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FIGURE 3.2: Summary of the transformation of a specimen into a whole-slide image.
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When the specimen has been fixated, it is then placed into a standardized container
called a cassette (see Figure 3.4a). If it is too large for the cassette (e.g. an organ), one or
more volumes of interest are cut from the specimen. Depending on the later examina-
tion, the orientation of the cut can be crucial to exhibit relevant tissue structures of the
specimen. In the remainder, we will call a sample the content of this cassette.

For a proper analysis, the tissue morphology of the sample must be preserved.
This is most commonly achieved by infiltrating the tissue with paraffin wax. Infil-
tration however does not work on a raw fixated tissue because paraffin is hydropho-
bic. Therefore, one must first perform dehydration, that is, replacing water naturally
present in the sample with a product miscible with paraffin. This is done by first
immersing the sample into a succession of alcoholic solution baths. Although this
process achieves dehydration, alcohol does not mix with paraffin neither. Therefore,
the sample is then immersed into one or more xylene-based solutions baths, xylene
being miscible with both alcohol and paraffin. The sample, infiltrated with xylene, is
finally immersed in a paraffin bath under vacuum. The dehydration process takes few
hours and is often automated using dedicated machines.

The earliest source of artifacts is the specimen extraction process itself. The spec-
imen can indeed be damaged by the use of certain tools (e.g. burned by an electrical
scalpel) or treatment at the extraction site. Unlike these, the following artifacts are
caused by the early stages of the slide preparation process. Bad fixation can lead to
decaying tissue (i.e. autolysis, see Figure 3.3a) and structural degradation (e.g. tissue
shrinkage, see Figure 3.3b). Improper cutting can also cause tissue damage like tear-
ing and squeezing. Improper dehydration can leave some parts of the sample with
remaining water, alcohol or xylene. Tissues can also be exposed to the different solu-
tions for an excessive duration. These processing errors can for instance cause tear-
ing, shrinkage, interference with the staining process (see Section 3.2.3) and affect the
structural properties of the tissue (e.g. tissue becomes brittle).

3.2.2 Embedding, microtomy and glass-slide application

At this point, the sample in the cassette has been infiltrated with paraffin. The next
step consists in embedding the infiltrated sample in a block of paraffin to allow easier
cutting. The sample is placed in a small container which will serve as a mold for cast-
ing the block of paraffin. The cassette is then directly placed on top of the container
so that, when the block solidifies, it is attached to the back of the cassette (see Figure
3.4b). When it has indeed solidified, the sample can now be cut into thin slices to be
applied on the glass slides. Cutting is performed with a dedicated tool called a mi-
crotome (see Figure 3.5). Operated by a technician, the microtome allows slices to be
cut to an extremely small and precise thickness of around 3 or 4 µm. The slices are
then floated onto a water bath which helps mounting them on glass slides. Although
there exist equipment that automate the embedding and microtomy steps, to the best
of our knowledge, they are not widespread and these steps are still mostly performed
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FIGURE 3.3: Autolysis artifacts: 3.3a (poor cellular differentiation), 3.3b (tissue separation).
Microtomy artifacts: 3.3c (nick or blemish in the blade), 3.3d (calcification pushed through
the tissue by the blade). Folding artifact: 3.3e. Staining artifact: 3.3f. Scanning artifacts: 3.3g

(stitching issue), 3.3h (scanner failed to capture part of the tissue)
(sources: 3.3a, 3.3b [204]; others from Cytomine).
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(A) Cassette with fixated samples (source: [192]) (B) Cassette with paraffin-embedded samples
(source: [22])

FIGURE 3.4: Tissue cassettes.

by technicians. Even if operated manually, modern microtomes are equipped with au-
tomation and ease-of-use features to improve ergonomy and convenience, hopefully
improving consistency (i.e. slice thickness, etc.).

These steps should be performed carefully not to introduce artifacts. For instance,
a warm and soft paraffin block, a dull microtome blade (see Figure 3.3c) or a calcifi-
cation in the tissue can cause compression artifacts (i.e. tissue displacement causing
material accumulation). A calcification is solid calcium deposit present in the tissue
that the blade cannot cut through. This deposit is therefore pushed through the tissue,
compressing underlying tissues (see Figure 3.3d). Another possible source of artifact
is contamination of the water bath with previous samples, hair or dust which can in
turn contaminate the floating slices.

3.2.3 Staining

Mounted tissue slices are almost completely transparent which would prevent any
meaningful analysis. They must therefore be stained to highlight structures of inter-
est (see Figure 3.6). Similarly as for dehydration, this process consists in immersing
the slide into a succession of stainning solutions. The nature of these solutions will
depend on the content that should be highlighted for the future analysis. The most
common and standard staining in histology is called hematoxylin & eosin (H&E). Hema-
toxylin stains nucleic acids in a deep blue-purple color (typically cell nuclei) and eosin
non-specifically stains proteins in a pink color (typically extracellular matrix and cy-
toplasm). The H&E stain, although most common, is not the only one available. There
exist many other staining techniques such as immunohistochemistry (IHC) which ex-
ploits the binding nature of some antibodies with specific proteins. Markers can then
be used to highlight the antibodies, hence the proteins of interest they have bound
with. Because the IHC staining can be very selective, a counterstain (e.g. hematoxylin)
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FIGURE 3.5: A microtome.

is often applied to highlight the rest of the tissue. Counterstain is particularly impor-
tant when different slices of a tissue stained with different techniques must be com-
pared together because it helps matching the slices spatially. An example of a tissue
stained with H&E and IHC is given in Figure 3.7. When the sample has been stained
and cleaned from remaining excess of staining solutions, one must apply a cover slip
on the sample in order to ensure that sample lies in one single plane as the focal plane
of microscopes and scanners is usually quite narrow. The cover slip also protects the
sample from external contamination and degradation.

The choice of a staining and its clean application are crucial for an efficient analy-
sis. The staining baths can become contaminated with samples, by-products resulting
from chemical reactions (e.g. precipitation or crystallization of chemical components
resulting in the presence of pigments in the sample) or external objects (e.g. hair, dust).
The baths tend to degrade over time as moving slides from one bath to another trans-
fer some staining solutions as well. The degradation of the staining solutions can
cause variation in staining intensities between earlier and later samples. The bath du-
ration is important for proper staining and bathing samples for less or more time than
recommended can respectively cause under- or over-staining (see Figure 3.3f). More-
over, insufficient cleaning after staining can leave spots of stain on the slide. Improper
application of the cover slip can for instance cause the presence of air bubbles.

Nowadays, the staining process can be automated with automated slide stainers.
These systems move the slide automatically from a bath to the next ensuring stable
dipping durations for each stain.
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FIGURE 3.6: Left: an unstained tissue section mounted on a glass slide. Middle: H&E-stained
section coming from the same tissue. Right: the source tissue embedded in a paraffin block

(source: [1]).

FIGURE 3.7: Two slices of the same tissue stained with H&E (left) and IHC (right) (source:
[123]).
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(A) ×1.25, 7.24 µm/pixel (B) ×40, 0.226 µm/pixel

FIGURE 3.8: Two images (approximately 200× 200) extracted from the same WSI at different
magnification and resolution (reported in subcaptions). They are both centered on the same

cell.

3.2.4 Scanning

A glass slide coming out of the staining process described in Section 3.2.3 is ready to be
analyzed with an optical microscope but can also be digitized by a slide scanner into a
WSI. In this section, we will briefly describe few key elements related to slide scanning.
A more thorough technical presentation and discussion of scanning technologies can
be found in [150].

Scanners are equipped with high-precision lenses and sensors allowing them to
generate very high-resolution images required for a proper analysis. Magnification
and resolution are two popular metrics used to describe the visual quality of the result-
ing image. Magnification advertised by scanner vendors refers to the maximum size
of the objects in the scanned image with typical values being ×20 or ×40 (i.e. objects
appear 20 or 40 times larger than they actually are). Resolution determines the extent
to which smaller objects can be resolved. Resolution is reported for a given magni-
fication level and often lies around 0.25 µm/pixel at ×40 for modern scanners but
higher magnification and resolution are possible. These magnifications are standard
and, coupled with an adequate resolution, are usually sufficient for routine analysis
of H&E or IHC slides [232].

Given the need for high magnification and resolution, it is not possible to capture
the whole slide in a single shot with currently available sensors. Therefore, scanners
typically capture a sample step by step either tile by tile or in an in-line fashion and
then assemble together the different parts using a stitching algorithm. Obviously, as a
slide is scanned in several shots, the scanner must ensure that focus is correct for all
the shots in order to avoid blur. Common focus strategies are for instance re-focusing
every tile, or every nth tile. When it comes to the focus strategy, there is usually a
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trade-off between scanning time and focus precision: focusing every tile allows for
ideal focus but takes time, whereas focusing every nth is faster but incurs a risk of
incorrect focus and blur between the re-focusing steps. Modern scanners implement
efficient strategies to reduce the scanning time per slide which nowadays ranges from
30 seconds to several minutes (at ×20 or ×40 magnification). These strategies include
improved focus strategies and automatic tissue detection allowing to skip the empty
parts of the slide during scanning. Most scanners also allow to load batches of few
hundreds of slides at once therefore reducing the time spent by the operator interact-
ing with the machine.

For histology, it is usually sufficient for scanners to scan one focal plane of the slide
(i.e. that of the tissue slice). For cytology, however, it is not always enough. Indeed,
the slide preparation process for a cytology sample differs and the material is not
always aligned within a single focal plane. With an optical microscope, it is possible
to navigate continuously over the focal planes by adjusting the lenses positions. When
it comes to scanning such samples, one has to resort to a technique called "z-stacking".
It consists in capturing the material at different depths along the z-axis. This process
can be significantly longer than single focal plane scanning, as it multiplies this time
by the number of slices of the stack. The result is a finite number of images which can
be viewed in different ways (e.g. one by one, grid view, as a video sequence, etc.) but
does not offer the simplicity or continuous exploration provided by optical microscope
for this task.

Scanning can also introduce artifacts including stitching problems (i.e. misalign-
ment between scanned tiles or lines, see Figure 3.3g), blur due to incorrect focus, tis-
sue detection failure causing parts of the slide to be missing from the WSI (see Figure
3.3h). The scanner should obviously remain as clean as possible to avoid external
components to pollute the image (e.g. dust, glass shards, hair, etc.).

3.2.5 File formats and compression

For each glass slide, a scanner generates one or more files to store the image data
but also any metadata related to the case (information or identifiers of laboratory, pa-
tient, specimen, staining, etc.). How the data is organized in such a file is specified
by a file format of which there exist many. Some file formats are closed and propri-
etary (e.g. scanner- or vendor-specific file formats) but others have open specifications
(e.g. DICOM, OME-TIFF). The most involved formats usually combine a descriptive
part to store case-related metadata using, for instance, the XML language (e.g. in OME-
TIFF) and a subfile format for the image itself (e.g. TIFF).

Regarding the internal structure of the latter, the image is usually splitted into a set
of tiles (e.g. 1024 × 1024) rather than being stored as a single image array. The file con-
tains metadata to provide efficient access to these tiles. This organization makes sense
because, in practice, one rarely has to load the whole image in memory at full resolu-
tion at once which, given the size of a raw image (e.g. Figure 3.9), would be impossible
on most computers anyway. It is however a common use case for a practitioner to look
at an entire slide (or a large region of interest) at a lower magnification and resolution.
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FIGURE 3.9: Pyramidal view of a whole-slide image (source: [133]).

Downsizing, downsampling and aggregating tiles to obtain a low resolution view of
a slide (or a region of interest) is an expensive operation and cannot realistically be
performed on-the-fly without significantly increasing loading times. Therefore, a typ-
ical image files also stores versions of the image at different zoom levels. The ith zoom
level (i ∈N0) is a version of the image which has been downsized by a factor 2i (or 3i,
4i depending on the image format). The number of zoom levels varies depending on
the size of the image at full resolution and is such that the image at the lowest zoom
level (i.e. largest i) has a reasonably low size (e.g. when it fits in a single tile). Similarly
as for zoom level 0, other zoom levels are stored as set of tiles. Such a file is called
pyramidal because of this structure (see Figure 3.9).

A whole-slide image file is not a lightweight one. For example, a raw 105× 105 RGB
image (3 bytes per pixels) contains 30 gigabytes of information. This is massive and
not scalable if one has to consider the multitude of slides to be scanned and stored by
an hospital for instance. Therefore, compression algorithms are very frequently used
to reduce the size of image files. Popular choices are JPEG (lossy compression) and
JPEG2000 (lossless compression). Compared to its lossless counterpart, lossy com-
pression allows for better compression rate and disk usage reduction. However, the
loss of information results in visual alterations that become more and more severe as
the compression rate increases. Therefore, lossy compression should be used carefully
to avoid destroying image features relevant to the analysis.

3.2.6 Visualization and hardware considerations

An image file is not worth much if it cannot be viewed. Nowadays, there exist many
open or proprietary software and tools for visualizing WSI. Some are desktop appli-
cations designed to run on personal computers and workstations (e.g. QuPath [15],
ASAP [46]) and some others are directly provided by scanner vendors to run on ded-
icated hardware alongside the scanner. Some others are web-based (e.g. Cytomine
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[132], OMERO [3]) for which the viewer can be accessed through a web browser and
content is served over the HTTP protocol. The most popular tools are not limited to a
viewer but usually include many more features. For instance, Cytomine includes im-
age annotation tools, integration of computer vision and machine learning algorithms,
authentication, project-based content organization, an API to interact with data pro-
grammatically, etc.

Whereas it is included by-design in web-based tools, remote slide viewing is also
possible with some desktop applications. This feature is particularly important in a
laboratory environment. Without it, the system would need to download an entire
WSI file before being able to display. This would add a significant latency in the slide
reviewing process. Remote slide viewing allows for a seamless and more efficient
interaction between the practitioner and the viewing system.

Beyond software, hardware considerations are important for efficient viewing, es-
pecially when implemented at the scale of a laboratory or pathology service [207].
Personnal workstations should be equipped with a quality screen able to render im-
age without loss of quality (color and resolution) [165]. They also must be equipped
with adequate computing resources (memory and CPU/GPU) in particular if analy-
sis algorithms are supposed to be executed on them. The network should be robust
enough to support the exchange of information (i.e. download and upload of large
files and data). Servers should have enough disk space to store the digitized slides
and data and implement mechanisms in order to minimize the risk of data corruption
or loss.

3.2.7 Discussion

As presented in the previous sections, the preparation process has a significant impact
on the final quality of a slide. Every step in the process introduces variability and has
a chance of creating artifacts that can be both harmful to the analysis. Fortunately, au-
tomation reduces significantly the variability and makes the risk of artifacts acceptably
low, although not absent. The dehydration, paraffin embedding and staining steps can
all be automated with dedicated machines nowadays but microtomy remains mostly
manual due to the high-precision requirements of the process. For scanned slide, there
exist automated quality control tools such as HistoQC [87] or PathProfiler [73] to ver-
ify that a WSI has a sufficient quality to be considered for analysis.

The preparation process also impacts significantly the diagnosis time as overall,
from fixation to scanning, it can take from 12 to 24 hours (sometimes more) to obtain
a slide depending on the nature and state of the original specimen. There exist faster
processes such as cryosectioning (i.e. the sample is frozen then sectioned) for intra-
operative consultation during which a surgeon requests an analysis to decide how to
proceed with a surgical operation. Such process can provide an answer within the
hour but the resulting slides are usually of lesser quality than traditionally prepared
histological slides.
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3.3 Whole-slide analysis

When a slide has finally been prepared, a pathologist, a biologist or a technician can
take over and start the analysis, whether on a computer screen or through the lenses of
an optical microscope. There exist many active research domains which rely on slide
analysis. Similarly, there exist many pathologies that can be discovered from the same
source. For the sake of simplicity, the remainder of the section will focus on oncology
and cancer diagnosis. In this field, one of the most frequent conditions that has to
be evaluated is malignancy of tumors. The indicators of malignancy can vary greatly
from a disease to another and even from one type of cancer to another. The approach
of the slide by the pathologist and the analysis can therefore vary accordingly.

Two important tools for diagnosis and prognosis of cancer are grading and stag-
ing systems. A grading system is a set of mostly objective criteria for evaluating how
abnormal cancer cells and tissues are compared to their healthy counterparts. Simi-
larly, a staging system defines a set of criteria for quantifying the dimensions of the
primary tumor and determining how far the cancer has spread in the patient’s body.
These criteria can be quantitative (e.g. cell counts, tumor area dimensions) or qualita-
tive (e.g. cell or tissue morphology, presence of metastases) and consider macroscopic
or microscopic elements. Beyond grading and staging, slide analysis can also pro-
vide direct information for establishing a proper treatment. For instance, localizing a
malignant tumor in its support tissue can be important for guiding a future surgical
operation.

All the types of tasks involved in slide analysis are not equal. They have varying
degrees of complexity and tediousness. Some tasks are rather simple but take a sig-
nificant amount of time (e.g. counting mitosis, see Section 3.3.1), others require strong
focus for an extended period of time which increases the risk of error (e.g. thyroid
nodule malignancy, see Section 3.3.3). Moreover, some diagnoses require to screen
more than just one slide, in which case the volume of information to review can be
significant.

When a task has to be performed frequently and is tedious, error-prone or involves
reviewing a large amount of data, there is a great potential for computational pathol-
ogy methods to improve analysis quality and speed. These methods can either pro-
vide quantitative or qualitative information that directly contributes to the diagnosis
or simply assists the practitioner during the reviewing process.

Beyond automating existing tasks, computational pathology could also give rise
to new approaches and standards for diagnosis. For instance, computational methods
could be used to extract new descriptive features such as exhaustive statistics about
cell types and structure in a sample or new cell morphology descriptors. This infor-
mation could be used alongside non-imaging data and correlated to patient outcome
[2].

In the longer term, new computational methods coupled with new imaging tech-
niques could make obsolete the slide preparation process as it is performed now as
well as the current diagnosis systems based on histology and cytology. Indeed, in
the future, entire specimen could be scanned directly to produce 3D volumes with
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slide-free microscopy techniques [70, 126]. These image volumes could be analyzed
directly by computational methods to provide fast and hopefully reliable indicators
for pathologists to diagnose cases in a shorter time frame than ever before. However,
it will take a significant amount of time before such technology is sufficiently devel-
oped, validated and becomes reliable enough to be used in clinical practice on a daily
basis.

In the following sections, we provide some examples on diagnosis tasks that would
greatly benefit from automation with computational methods. For each of them, we
also provide examples of contributions of the computational pathology community to
the automation of these tasks. The datasets presented in these sections were used in
the contributions of the thesis.

3.3.1 Mitotic count

Mitosis is one of the phases of the cell cycle during which the chromosomes (repli-
cated in a previous phase) are separated into two new nuclei. Tumor often exhibit a
larger mitosis rate compared to healthy tissues. Many grading systems therefore use a
measure of the mitosis rate as an indicator of cancer severity. For instance, the Bloom-
Richardson system [171] for histologic grading of breast cancer includes mitotic count
as one of its three indicators. In particular, mitosis must be counted in 10 fields of
view. The final grade is determined based on a point system. Each indicator provides
1 (least severe) to 3 (most severe) point(s) which are added together (3-5 pts = grade I,
6-7 pts = grade II and 8-9 pts = grade III). For the mitosis indicator, 1 point is given if
the mitotic count is 5 or less, 2 points if it is between 6 and 10 and 3 points if it is 11 or
more1.

Counting mitosis is cumbersome. It is no surprise that computational pathology
methods have been investigated to automate the task. For example, in 2014 was orga-
nized the MITOS-ATYPIA-14 challenge [170] where participants had to come up with
the best machine learning model to count the number of mitosis in different fields of
view (see Figure 3.10). In addition to the mitotic count, they had to predict a global
nuclear atypia score for each field of view, nuclear atypia being another indicator of
the Bloom-Richardson system.

3.3.2 Breast cancer staging and sentinel lymph nodes

Axillary lymph nodes are structures of the immune system located near the armpit.
They drain a large proportion of the lymph coming out of the breast. They contain
lymphocytes and constitute a barrier that eliminates bacteria, viruses and other for-
eign particules (including metastases) from the lymph. Because they are the first recip-
ient of metastases originating from breast tumors, these lymph nodes are an important
element to consider when staging breast cancer. In particular, in the context of TNM,
a standard internationally accepted cancer staging system, the pN-stage [163] quan-
tifies cancer spread through the presence of metastases in regional lymph nodes. Its

1The recommended numbers might change based on the microscope used for the analysis.
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FIGURE 3.10: Left: a training image provided for the MITOS-ATYPIA-14 challenge viewed
from the Cytomine viewer. Red dots are mitosis present in this image. Right: A close up

view of four mitosis (in the green square from the left image).

histological evaluation requires to screen one section of up to 10 axillary lymph nodes
and several sections of the “sentinel” lymph node which is the most likely to contain
metastases [218]. Sometimes, additional slides counter-stained with IHC must be ana-
lyzed to confirm the diagnosis. The staging system requires to evaluate the number of
nodes contaminated with metastases and the dimensions of these metastases (i.e. their
size and the number of cells they contain).

Evaluation of the pN-stage has many characteristics that qualifies it to be a good
candidate for automation: it is time-consuming, tedious and error-prone. The compu-
tational pathology community has therefore considered this problem notably through
the Camelyon16 and Camelyon17 challenges [123]. For the first iteration of the chal-
lenge, the participants had to predict a slide-level pN-stage. For the second iteration,
the organizers moved to a patient-level prediction. The participants were provided
with 899 training and 500 testing WSIs which were collected in 5 different hospitals
and medical centers from the Netherlands. All training slides were also coming with
a slide level pN-stage label. Moreover, 209 of those WSIs contained detailed hand-
drawn contours for all metastases (see Figure 3.11). The top-performing solutions
typically used a combination of techniques and algorithms including traditional com-
puter vision pre- and post-processing methods, deep learning to segment the metas-
tases and rule-based or random forests methods to predict the final stage.

This challenge was a success as many teams participated despite the complexity
of handling such a massive dataset (3 terabytes of slide data). The top-performing
algorithms were quite successful at predicting the pN-stage. However, as stated by the
organizers, the task was not adequatly solved and there was room for improvement
[14] as a combination of the best algorithms still misclassified the pN-stage for 23
patients out of 100.
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FIGURE 3.11: A WSI from the Camelyon16 challenge training set viewed from the Cytomine
viewer. Top: the whole-slide image with metastases highlighted in red. Bottom: A close-up

view of a metastase with (right) and without (left) annotation mask.
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FIGURE 3.12: Example of cells with an intranuclear inclusion from thyroid nodule FNAB
smears.

3.3.3 Thyroid nodule malignancy

A thyroid nodule is a small lump that can form within the thyroid gland. Most nod-
ules are benign but up to 5% of them are malignant [227]. Malignancy diagnosis is
based on a wide variety of information including patient history (past exposure to
radiation, family history of thyroid cancer, etc.) and different technical examinations
(e.g. echography or radiography). A crucial step in the process is the fine-needle as-
piration biopsy (FNAB) during which cell material is extracted from the nodule. The
resulting cytology sample is smeared on a glass slide (this slide preparation process
is different from the one described in Section 3.2), stained and examined under a mi-
croscope. Cytology analysis is an integral part of the Bethesda diagnosis system [32]
which grades a nodule into six categories going from nondiagnostic (TBS I) and be-
nign (TBS II) to malignant (TBS VI). One of the elements that define the TBS category
is the presence of cells with intranuclear inclusions (see Figure 3.12) which are highly
suggestive of malignancy [7]. Relatively to the size of a slide, these cells are tiny and
the problem of finding them comes down to searching a needle in a haystack (see
Figure 3.13). However, these cells are not the only indicators of thyroid cancer and
considering this is only a part of what must be investigated in a thyroid nodule smear,
it would greatly benefit from the use of computational methods. An algorithm could
either directly help pathologists in finding the cells or provide a more comprehensive
diagnosis system that would make the search of such cells irrelevant.

Although the earliest application of artificial intelligence to nodule malignancy as-
sessment dates back to the 1990s [92], the topic is still quite overlooked and currently
available algorithms are mostly benign vs. malignant classifiers [96] which are too sim-
plistic to be used in clinical settings. One recent contribution, however, considered the
problem of predicting directly one of the categories of the Bethesda diagnosis system
[52]. This approach is more realistic and in-line with the pathologists’ diagnosis pro-
cess but still requires further examination to assess its wider applicability.

3.4 Computational pathology and machine learning

Digital pathology has opened the way for the application of machine learning to au-
tomate analysis and diagnosis. Albeit promising, the application of machine learning
remains challenging for various reasons. In this section, we discuss some of these
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FIGURE 3.13: Views of an intracellular inclusion at different zoom levels. In the top left
corner of each image are the absolute and relative magnifications.
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challenges then present some techniques that can be used, if not to overcome them, at
least to alleviate them.

3.4.1 Data leakage

In Section 2.3.3, we introduced the notion of data leakage that occurs when samples in
different splits of a dataset are not independent from each other. Data leakage usually
results in poor evaluation of the generalization performance, leading to a poor choice
of hyperparameters. Obviously, this should be avoided at all cost especially when
the prediction of this model impacts the patient diagnosis and treatment. It is worth
noting that data leakage is considered an important obstacle for the application of
machine learning in biology and medicine in general, not only in digital pathology
[40].

In digital pathology, data leakage can occur in many, sometimes subtle, ways.
Therefore, learning pipelines should be built carefully. One important potential source
of data leakage is due to the fact that a whole-slide image does not only convey infor-
mation about the tissue it contains but also about the slide preparation process (see
Section 3.2). For instance, staining solutions decay over time. Therefore, the stain-
ing intensity can reflect whether the sample has been dipped in a recently-changed
or an heavily-used staining bath. When staining is performed manually, the intensity
might also reflect the identity of the technician who performed the staining operation.
Indeed, some technicians might dip slides for a little longer than others resulting in
a stronger intensity. When a dataset is built by different laboratories, the origin of a
slide is traceable due to differences in the slide preparation processes between sites.

These slide idiosyncracies are harmless as long as they are not correlated with the
learning problem target. Whereas it might seem unlikely to happen, some simple
though unfortunate choices can lead to correlation. For instance, supposing a prob-
lem of malignancy assessment, if one laboratory provides all the healthy samples and
another all the malignant samples, there is significant risk that the learning algorithm
would exploit the differences resulting from the preparation processes. This would
obviously lead to poor generalization when the model will be applied to slides com-
ing from another laboratory for instance.

The slide preparation process is not the only culprit for data leakage. Another pos-
sible source occurs at the patient level. Bussola et al. [31] have empirically studied
patient-wise and random dataset splitting strategies. They have shown that overfit-
ting and data leakage indeed occur when splitting samples randomly.

In general, it is difficult to completely prevent data leakage as one does not al-
ways have control over the whole WSI generation process. However, good practices
surely help reducing the problem to an acceptable minimum. A detailed list of guide-
lines and good practices to reduce the risk of data leakage can be found in [129]. This
includes collecting data as representative as possible of the different variations that
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could naturally occur during the generation process. For model evaluation and se-
lection, splitting the dataset into subsets should be performed considering the char-
acteristics of the samples that could correlate with the target (i.e. patient, laboratory,
technician, staining, equipement, time of the day/week, etc.).

3.4.2 About annotations

Annotations are important to train machine learning models in a supervised manner.
They provide information to the algorithm that can adapt the model to fit more ac-
curately the target data. An annotation typically links two elements: an annotation
construct and a semantic information.

An annotation construct concerns the format of the annotation. For instance, in
classification, the annotation is a label usually encoded as an integer. For object de-
tection, a common construct is the bounding box framing an object of interest. In
image segmentation, the construct is often a hand-drawn polygon covering all pixels
belonging to a structure of interest. The semantic information links an annotation to
the semantic of the tackled problem and is necessary to differentiate one annotation
from another. For instance, in the case of tissue segmentation, the semantic informa-
tion would be the type of tissue delineated by the hand-drawn polygon (e.g. adipose
or conjonctive tissue, tumor, metastase).

When it comes to annotating a WSIs dataset, the level of annotation must also be
considered. Indeed, annotation can be performed at slide, region or cellular level. The
combination of annotation construct, semantic information and level are an impor-
tant choice in an annotation project and must be chosen carefully to match the target
application and fit the allotted budget [215]. Indeed, some constructs are more time
consuming and therefore expensive to obtain than others (e.g. hand-drawn polygons
at the cellular level). The cost of annotation is a challenge for computational pathology
and is one of the causes of data scarcity which is discussed in the next section.

3.4.3 Data scarcity

As introduced in Section 2.2.1, data scarcity refers to a context where data is lack-
ing which usually hampers the performance of machine learning methods, especially
deep learning. Data scarcity is often cited as one of the major challenges in compu-
tational pathology [208, 124, 164, 102]. A misconception would be to consider that
data simply do not exist in a sufficient quantity. Indeed, hospitals and research in-
stitutes have accumulated a significant amount of data in different formats over the
years (imaging, text, etc.). What makes computational pathology but also the whole
field of medical and biological image analysis a data scarce domain is a combination
of factors preventing these data to be usable for machine learning in a straightforward
way.

Many successes in the application of machine and deep learning to natural im-
ages problems were made possible by the availability of numerous large and exhaus-
tively annotated datasets. For instance, the ImageNet classification dataset features



70 Chapter 3. Digital pathology

Challenge # WSI # ROI ROI size Crowd AI-assist. Task # targ.

[211] TIGER
tils 82 / / yes yes REG r ∈ [1, 100]
rois 195 2032 < 1.5k × 1.5k no no SEG 7
bulk 93 / / no no SEG 2

[64] CoNiC / 4981 256 × 256 no yes SEG, CLF 6
[10] MIDOG 2021 50 200 < 5k × 5k no yes DET, CNT 2

[224] BCNB 1058 / / no no CLF 16(1)

[75] WSSS4LUAD 87 10k < 300 × 300 no no CLF 2
[5] BCSS / 151 < 7k × 10k no no SEG 7
[4] NuCLS / 3944 < 300 × 300 yes yes SEG, DET 12
[90] PAIP 2021 150 / / no no SEG(2) 4

TABLE 3.1: List of challenges published in 2021 with the “histology” modality on the Grand
Challenge website. The “Crowd” and “AI-assist.” columns relate to the annotation process
and how it was performed. The former indicates whether or not non-pathologists were
involved in the process (i.e. yes for crowdsourcing). The latter indicates whether or not the
annotation process involved some kind of AI assistance. The “# targ.” indicates the number
of target categories/classes of the underlying machine learning problem. REG, CLF, SEG,
CNT and DET respectively stand for regression, classification, segmentation, counting and
detection. (1) The BCNB challenge proposes 6 different classification tasks each with up to
4 classes (for a total of 16 classes). (2) The expected output is not a classical segmentation

mask but rather the boundary of the structure of interest.

1000 fine-grained classes for 1.2 million images (see Figure 3.14) and has been a key
element in deep learning innovations since AlexNet. Another example is Common
Objects in COntext (COCO) by Microsoft [121], a large-scale dataset for segmentation,
detection and captioning (i.e. assigning a descriptive sentence to an image). It con-
tains more than 200k images annotated with fine segmentation masks over objects
from 91 distinct categories (i.e. humans, furniture, animals, etc.). It counts more than
800k unique annotated instances of these categories. Initially published by Google in
2016, the most recent iteration of Open Images Dataset [110] contains approximately
9.2 million images each annotated with one or more labels from 19.8k concepts for a
total of 30 million image-level labels. JFT-3B is an unpublished dataset from Google
introduced in [234] that contains 3 billion images with noisy labels from a hierarchy of
30k items.

Those were only few examples of the plethora of datasets available in the natural
image domain. In computational pathology, the growing interest for ML-based so-
lutions has encouraged researchers and practitioners to increasingly share their data
and annotations. Although the data scarcity situation is slowly improving, dataset
size, versatility and variety are still subpar compared to the natural image domain.

3.4.3.1 A mini-review of Grand Challenge pathology datasets from 2021

In order to illustrate this point, we performed a search on the Grand Challenge website
[68], a popular platform which runs machine learning challenges related to biomedical
images, each challenge coming with an open-access dataset. We searched for histology
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FIGURE 3.14: Samples from ImageNet (source: [93]).
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(A) TIGER (B) CoNiC (Lizard dataset) (C) MIDOG 2021

(D) BCNB (E) WSSS4LUAD (F) BCSS

(G) NuCLS (H) PAIP 2021

FIGURE 3.15: Samples from the Grand Challenge datasets of our mini-review.
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challenges published in 2021 and found 8 results (see Table 3.1 for a brief description
of relevant aspects and Figure 3.15 for selected samples of these datasets).

A first observation is that, whether the dataset is a set of WSI or region of interests
(ROI), the number of provided images is several orders of magnitude below the num-
ber of images available in natural image datasets. It can be argued that the dimensions
of WSI and ROI images in digital pathology datasets is significantly larger that natu-
ral images (e.g. average image size in ImageNet is 469 × 387 pixels, the largest of the
151 ROI of BCSS reaches approximately 7k × 10k pixels), however this must be put
in perspective in relation to the prediction task. For instance, hundreds of WSIs rep-
resent a very large amount of raw data (e.g. few terabytes) but, when the target task is
whole-slide classification, this only amounts to a hundred of annotated samples which
is significantly fewer compared to ImageNet or others and can be considered a rather
small sample size from a ML perspective.

Beyond the size of datasets, it is interesting to note that most prediction tasks in
digital pathology only feature few classes (at most 12 in our Grand Challenge sample).
It is common to encounter tasks presented as binary (e.g. malignant vs. benign) even
though it is often a simplification of the underlying biological or medical problem.
Datasets with a large variety of classes have shown to be effective for learning efficient
models on natural images. Therefore, on this matter, computational pathology is still
lagging behind significantly.

It is also interesting to consider how these datasets were built. Among them, four
datasets use internal data acquired and annotated specifically for the challenge (PAIP
2021, MIDOG 2021, BCNB, BCSS), two of them mix both internal and external data
(TIGER, WSSS4LUAD) and the last two use exclusively data from external sources
(CoNiC, NuCLS). Regarding the use of external data, it either means that external WSI
were imported and annotated for the challenge or that data from other datasets were
combined together. For instance, the CoNiC challenge is based on the Lizard dataset
[66] which combines data from the The Cancer Genome Atlas (TCGA) [219], PanNuke
[58], CRAG [67], CoNSeP [65], GlaS [184] and DigestPath [118]. The TCGA is an open
platform gathering various data related to cancer genomic including a little more than
30k whole-slide images, making it one of the largest open databases of WSI to date.
It is no surprise that, over the years, many datasets have been built using the TCGA
as one of their sources. This also includes WSSS4LUAD, TIGER and NuCLS from our
Grand Challenge sample. Interestingly, one of the components of Lizard, PanNuke has
also been built from The Cancer Genome Atlas (TCGA) and three external datasets of
which two were built on top of the same platform (MoNuSeg [109] and CMP17 [214]).
Although it raises the question of the risk of data leakage, assembling existing datasets
to form a larger one certainly helps fighting data scarcity.

3.4.3.2 Causes

The mini-review performed in the previous section was not aimed at being a thorough
evaluation of DP datasets characteristics. It rather serves as a way to highlight differ-
ent consequences of data scarcity in the field: small dataset size, lack of variety and
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versatility, etc. The scarcity in digital pathology is caused by a combination of factors.
One of the main causes of scarcity is the cost of the annotation process. Pathol-

ogy is not a simple subject and slide evaluation requires years of training and experi-
ence. Whereas classifying pictures into object categories can be done by mostly any-
one, creating a ground truth digital pathology dataset requires trained pathologists
for whom time is a precious and expensive resource. Therefore, annotation cost in
digital pathology is significantly higher compared to the natural image domain. This
is aggravated by the fact that disagreement between pathologists is not uncommon
and quality ground truth usually requires confronting and aggregating annotations
by several experts.

Privacy and ethical concerns also play a role. Indeed, medical data is sensitive and
cannot be shared without patient consent, rightfully so, preventing data to be made
available for machine learning. Privacy might incur additional costs as it might be
necessary to keep track where data records have been used, for instance, in the context
of the European General Data Protection Regulation (GDPR). Indeed, in case a patient
revokes his data sharing agreement, under the right-to-be-forgotten, models might
have to be re-trained [82]. Overall, it can discourage researchers and practitioners to
make their data available.

The use of data-hungry deep learning algorithms does not help and is aggravated
by the need for a dataset to contain enough samples to account for the variability
incurred by the slides content and preparation process.

3.4.3.3 How to work around data scarcity ?

The causes of data scarcity are numerous and it remains a challenge for computational
pathology but the situation is evolving positively.

Nowadays, there exist annotation strategies which allow to cut the cost per anno-
tation and therefore produce larger datasets given the same budget. These strategies
include crowdsourcing through citizen science [154] or the intervention of medical
students (e.g. NuCLS dataset). These approaches obviously require either supervision
by pathologists or more annotations per image to average out the inaccuracies (or
even both) but these are in general less expensive than direct annotation by trained
pathologists. It is also possible to indirectly reduce the annotation cost by reducing
the time spent per annotation. One way of achieving that is to use the AI to assist
experts and accelerate the annotation process (see NuCLS, CoNiC, MIDOG 2021 from
our Grand Challenge sample) [34]. A weak but fast algorithm could for instance sug-
gest cell boundaries. The annotator could then correct the boundaries if necessary
which is less time-consuming than drawing them from scratch. The use of dedicated
and intuitive user interface with efficient drawing tools can also help in that regard.

If annotating new data is not an option, it is also possible to combat data scarcity
by the use of existing external data and proper computational methods [210]. There
exist several open resources for digital pathology [128] providing access to slides and
annotations. We have already introduced TCGA which provides access to a spectac-
ular amount of 30k WSI. The Camelyon dataset introduced in Section 3.3.2 contains
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1399 WSI of which 209 were annotated at full resolution with detailed hand-drawn
contours of all metastases. This is one of the largest most-precisely annotated datasets
in the field to date. The Lizard dataset (subject of the CoNiC challenge) contains al-
most 500k segmented nuclei all labeled into one of 6 classes. Some promising projects
are also ongoing such as Bigpicture [145] of which the goals are to “create the first Euro-
pean, ethically compliant, and quality-controlled whole slide imaging platform, in which both
large-scale data and AI algorithms will exist”. This project aims at having the same im-
pact on computational pathology as ImageNet had on the natural image domain by
constructing a database of millions of digital slides.

Sometimes the lack of data is such that the dataset is not representative enough
of the different variations that could occur in a realistic context. The impact of this
issue can be alleviated during the training process directly with an ad-hoc data aug-
mentation procedure that would automatically generate the kind of variations that
can be expected (e.g. staining intensity, deformation, etc.). Data normalization during
pre-processing such as stain normalization can also help in that regard [91, 175, 240].

Regarding the computational methods, there exist machine and deep learning al-
gorithms which can make use of external or sparse data. We explore some of them in
the thesis and present related works in the following sections.

3.4.4 Transfer learning

Transfer learning (see Sections 2.2.5 and 2.6.4) is one of the most popular techniques
for tackling data scarcity. In this section, we explore how deep transfer learning was
applied to biomedical images. Some of the first applications were reported in [16,
43, 63] for pulmonary nodule detection in chest x-rays and CT-scans using Decaf and
OverFeat (feature extractors based on ImageNet and AlexNet) as feature extractors.
While those works have revealed the potential of deep transfer learning in that field,
the performances were not significantly better than those of previous methods. Ravis-
hankar et al. [161] compared the performance of a pre-trained AlexNet-based CaffeNet
[88] to well-established computer vision like histogram of oriented gradient (HoG) [135]
and found the former to outperform the latter.

Later, as new ImageNet architectures emerged, their transfer potential from Ima-
geNet was also evaluated on various biomedical imaging tasks. Antony et al. [6] eval-
uated the use of fine-tuning and feature extraction of different architectures including
VGG16 for quantifying knee osteoarthritis severity on radiography images. Kieffer
et al. [98] compared training from scratch to both feature extraction and fine-tuning
for classification and retrieval of pathology images using InceptionV3 and VGG16.
Shin et al. [182] studied the interest of transfer of different architectures including
GoogLeNet and AlexNet for thoracoabdominal lymph node detection and interstitial
lung disease classification. Some of these works and others [156, 199] have shown that
transfer learning usually yielded better performance than training neural networks
from scratch.

As introduced earlier, some works have shown that transfer learning is likely to
provide better performance when the source and target tasks are close [228] or if the
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source task includes the target domain [137]. This implies that pre-training models on
pathology data directly is a sound approach although it requires a significant amount
of source data to make a proper source task. This was confirmed in several contribu-
tions.

For instance, Khan et al. [97] pre-train an InceptionV3 network on a custom dataset
generated from Camelyon16 and then transfer the resulting model to a prostate cancer
classification task. They show that their pre-trained model outperforms both training
from scratch and using an ImageNet pre-trained model. Medela et al. [136] also use
transfer learning between two pathology tasks but rather than following a classical
supervised pre-training approach, they adopt a self-supervised algorithm by training
a siamese network to distinguish between different parts of colorectal tissues. The
network is then transferred as a feature extractor on the target task (tumor classifica-
tion). Shang et al. [180] use several datasets (including some unrelated to their target
task such as Dogs vs. cats) and compare ImageNet and domain-specific pre-training
in order to tackle colonoscopy image classification. They also show that pre-training
on domain-specific data yield superior performance compared to using ImageNet.
Kraus et al. [106] train a custom deep neural architecture, DeepLoc, for classifying
protein subcellular localization in budding yeast. Then, they assess the transferabil-
ity of their pre-trained DeepLoc by fine-tuning it on different image sets, including
unseen classes, and show that the pre-training is indeed beneficial.

3.4.5 Multi-task learning

Multi-task learning (see Section 2.2.6 and 2.6.5) has been applied to medical imaging.
Samala et al. [177] jointly train a classifier on three mammography image datasets
(digitized screen-film and digital mammograms) and compare it to single-task train-
ing and transfer learning. They show that a multi-task trained network generalizes
better than a single-task one. Zhang et al. [237] use transfer and multi-task learning to
derive image features from Drosophila gene expression. MTL has also been applied
more specifically to computational pathology. Pan et al. [148] apply MTL for breast
cancer classification by using a classification loss and a verification loss. The role of
the latter is to ensure that features produced by the network differ for images of differ-
ent classes. Arvaniti and Claassen [9] use both weak and strong supervision at once
to classify prostate cancer. Shang et al. [180] evaluate multi-task learning which is
the best performing approach on their target task. However, they suggest that more
experiments would have to be carried out to assess whether their conclusions are gen-
eralizable.

3.4.6 Self-training and weakly supervised learning

We have introduced self-training in Sections 2.2.3 and 2.6.6. It is not surprising that
self-training has also been applied to medical image tasks to combat data scarcity [200,
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153] and to computational pathology in particular. Most works in this domain cur-
rently treat with image classification [152, 195, 104, 85, 181] but detection and segmen-
tation have also been explored. Li et al. [119] combine weakly-supervised learning
and self-training to predict per-pixel Gleason score across entire WSIs. Li et al. [118]
build a signet ring cell detector using self-training. To mitigate the impact of erroneous
pseudo-label, their approach features a cooperative training step where two models
are trained on the pseudo-labels generated by one another during the previous round.
Self-training has also been applied to segmentation for other image modalities. To
segment cardiac MR images, Bai et al. [12] propose a self-training approach to train a
segmentation architecture. In particular, the teacher and student are the same model
and the student is not reset between training rounds. Additionally, they apply a condi-
tional random field (CRF) to refine the model predictions on the unlabeled images. Fan
et al. [54] focus on lung infection segmentation in the context of the COVID-19 pan-
demic. Their approach features a self-training protocol where at every training round,
they pseudo-label K new unlabeled images which will be added to the learning set for
the next round.

Semi-supervised literature also concerns the use of imperfect data which relates
more to weakly-supervised learning. This approach has also been explored for biomed-
ical tasks. Wolny et al. [221] learn from sparse instance segmentation masks using
their sparse single object loss which combines an instance-based loss and an embed-
ding consistency loss. They also evaluate their method on two microscopy images
datasets. Bokhorst et al. [23] segment tissues from colorectal cancer patients into
13 classes representing different types of tissues. Their dataset is composed of both
exhaustively- and sparsely-labeled images. During training, they apply a weight map
to tune and balance the contribution of individual pixels to the loss. The masks ig-
nore unannotated pixels. On the GlaS dataset [184], Foucart, Debeir, and Decaestecker
[56] study how performance of different segmentation methods including semi- and
weakly-supervised techniques are impacted by dataset imperfections (e.g. deforma-
tion, missing annotations, etc.). They show that fully supervised approaches are able
to cope with noise up to a certain level but quickly degrade after that and that semi-
supervised methods are able to partially recover from these degradations.

3.5 Wrapping up

This chapter introduced the domains of digital and computational pathology and gave
an overview of different challenges encountered in these fields: high variability in the
slide preparation and scanning processes, lack of annotated data, high data volumes,
etc. These challenges for sure have slowed down the advances in automated image
analysis techniques but the situation is evolving quickly as many initiatives are un-
der way to change that. Given the high practical relevance of automated tools in the
domain, one can only expect that the interest in computational pathology will con-
tinue to grow and envision a future where new image acquisition and analysis tech-
niques will not only revolutionize image analysis itself but also the pathology and
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diagnosis workflow as a whole. In this thesis, we explore transfer, multi-task and
semi-supervised learning in order to tackle computational pathology problems and
attempt to work around data scarcity.



Part II

Transfer learning





4 Chapter

Transfer learning from ImageNet

Overview

In this chapter, we investigate deep heterogeneous model-based transfer
learning as a way to overcome object recognition challenges encountered in the
field of digital pathology. Through several experiments, we explore various
uses of pre-trained neural network architectures and different combination
schemes with random forests for feature selection. Our experiments on eight
classification datasets show that densely connected and residual networks
consistently yield best performances across strategies. It also appears that
network fine-tuning and using inner layers features are the best performing
strategies, with the former yielding slightly superior results.

References: this chapter is an adapted version of the following article
Romain Mormont, Pierre Geurts, and Raphaël Marée. “Comparison of deep
transfer learning strategies for digital pathology”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 2262–
2271

Supplementary materials can be found in Appendix A.

4.1 Introduction

Data scarcity in computational pathology is a recurrent problem which can be tack-
led in several ways, one of them being transfer learning (see Section 3.4.3). In this
chapter, we explore how convolutional neural networks pre-trained on ImageNet [48]
(source task) can be transferred to computational pathology target tasks as these ar-
chitectures have shown interesting transfer properties [49, 228, 179]. At the time of
writing the article this chapter is based on (early 2018), the feature extraction and fine-
tuning transfer approaches had not been compared thoroughly yet in computational
pathology and there was no consensus about whether one was better than the other
(see related works in Sections 2.6.4 and 3.4.4). Moreover, most works involving trans-
fer learning in medical imaging used old architectures such as AlexNet [182, 18, 6, 161,
199, 108, 99], GoogLeNet [182, 18] or VGG [98, 18, 6, 231, 79, 108]. To the best of our
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Dataset Domain Classes
Images

Train Validation Test Total
CellInclusion (C) Cyto 2 1644 173 1821 3638

ProliferativePattern (P) Cyto 2 1179 167 511 1857
Glomeruli (G) Histo 2 12157 2448 14608 29213
Necrosis (N) Histo 2 695 96 91 882

Breast (B) Histo 2 14055 4206 4771 23032
MouseLba (M) Cyto 8 1722 716 1846 4284

Lung (L) Histo 10 4881 562 888 6331
HumanLba (H) Cyto 9 4051 346 1023 5420

TABLE 4.1: Sizes and splits of the datasets. The “Glomeruli” dataset was first used in [130].

knowledge, only one article used residual networks for transfer learning at that time
[231] and none were using dense networks.

Therefore, we study thoroughly and compare several strategies that involve fea-
ture extraction and fine-tuning. We carry out several experiments over eight object
classification histology and cytology datasets. Different combinations of state-of-the-
art networks and feature selection techniques using random forests are proposed in
order to answer questions of high pratical relevance: which network provides best-
performing features? How should those features be extracted and then exploited to
get the best performance? Is fine-tuning better than using features from off-the-shelf
networks? More generally, our empirical study also contributes to confirm the interest
of deep transfer learning for tackling the recurrent data scarcity problem in computa-
tional pathology.

This chapter is organized as follows. We first introduce the eight datasets we have
used in Section 4.2. We present how we implement feature extraction and fine-tuning
in Section 4.3. Our experiments and results are presented and discussed in Section 4.4.
We finally conclude in Section 4.5.

4.2 Datasets

Our experimental study uses datasets collected over the years by biomedical researchers
and pathologists using the Cytomine [132] web application. Using this platform, eight
image classification datasets were collected which are summarized in Table 4.1. These
contain tissues and cells from human or animal organs (thyroid, kidney, breast, lung,
etc.).

For all datasets except Breast, each sample image is the crop of an annotated object
extracted from a whole-slide image, a crop being a rectangle image containing exactly
the object. The Breast dataset is composed of patches for which the label encodes the
type of tissue in which the central pixel is located. Selected image samples for each
dataset are shown in Figure 4.1.
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(A) Necrosis (B) ProliferativePat-
tern

(C) CellInclusion (D) Breast

(E) Glomeruli (F) MouseLba (G) HumanLba (H) Lung

FIGURE 4.1: Overview of our eight classification datasets (the display size does not reflect
actual image size). For binary classification datasets, negative and positive samples were

respectively placed at the top and bottom of the figures.
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FIGURE 4.2: Feature extraction from pre-trained convolutional neural networks

4.3 Methods

In this section, we introduce the architectures we have used in Section 4.3.1, we de-
scribe how we have implemented feature extraction in Section 4.3.2 and fine-tuning in
Section 4.3.3. We also provide details about the training procedure of the final classifier
in Section 4.3.4 and the inference procedure in Section 4.3.5. As discussed in Section
2.6.4, the interest of feature extraction is that it is not as computationally demanding
as fine-tuning but, because the transferred model has not been retrained on the target,
the features might not be specific enough. Fine-tuning is much more computationally
demanding as it implies retraining a usually large model (i.e. tens of millions of pa-
rameters or more) but make the features more specific and therefore more relevant to
the target which usually has a positive effect on performance.

4.3.1 Deep networks

We follow the feature extraction and classification process presented in Figure 4.2,
which starts from a deep convolutional neural network θs pre-trained on a source task
Ds. In particular, we use ImageNet as the source dataset Ds and, for each network,
the pre-trained weights were retrieved from Keras [41]. For the network θs, we evalu-
ate several architectures that have been state-of-the-art on the ImageNet classification
dataset [48] or that present interesting trade-off between computational requirements
and performances: VGG16, VGG19 [183], InceptionV3 [198], ResNet50 [77], Incep-
tionResNetV2 [196], DenseNet201 [81], and MobileNet [80]. In the sequel, those net-
works will be respectively referred to as VGG16, VGG19, IncV3, ResNet, IncResV2,
DenseNet, and Mobile. These networks can be used as feature extractors or fine-tuned,
as explained in the following sections.

4.3.2 Feature extraction

Images are first resized to match the input dimension of the network. Respectively
denoting by rI × cI × b the height, width, and number of channels of the input image I,
we extract a square patch p of (maximum) height and width min (rI , cI) in the center of
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the image, which is then resized to the network input size rp × cp × b. This extraction
process is parameter-free and preserves the aspect ratio of the image, since all pre-
trained networks takes square images as inputs (i.e. rp = cp).

The resized patch is then forwarded through θs (loaded with pre-trained weights).
Given this input, the output a of an arbitrary layer l (i.e. a set of feature maps) of di-
mensions ra × ca × d is extracted where d is the number of feature maps and ra and ca
are respectively their height and width. Because this tensor can be high-dimensional,
one usually applies a dimensionality reduction procedure (e.g. global average pooling,
principal component analysis, etc.) to reduce it to f features, yielding a feature vector
z ∈ R f . Here, we limit our analysis to global average pooling (i.e. feature maps aver-
aging), which, unlike principal component analysis for example, has the advantage of
being parameter-free.

4.3.3 Fine-tuned feature extraction

For our experiments on network fine-tuning, we replace the final fully connected (FC)
layer by a fully-connected layer with as many neurons as there are classes in the cur-
rent dataset. This newly-appended layer being randomly initialized, it is not corre-
lated at all with the transferred network θs yet. In general, it is a good idea to freeze θs
and to train this new layer for a few epochs to correlate them. In our case, we perform
this “warm-up” phase for 5 epochs with a learning rate of 10−2. Then, we train the
whole network for 45 epochs with a learning rate of 10−5. We use the Adam optimizer
[100] with parameters β1 and β2 respectively set to their recommended values 0.99
and 0.999 and no weight decay. We use the categorical cross-entropy as a loss func-
tion. Fine-tuning is performed using the training set exclusively. Optionally, we use
data augmentation to virtually increase the size of the training set. First, a maximum
square crop is taken at a random position in the input image. Then, random flips and
rotations are applied to the resized patches before they are forwarded through the net-
work. The model is evaluated on the validation set and then saved at the end of each
epoch. When the fine-tuning is over, we select among the saved models the one that
performed the best on the validation set.

4.3.4 Final classifier learning

When the features have been extracted for all images of a dataset (either using off-
the-shelf or fine-tuned networks), they can be used for training the classifier hc. We
use either linear SVM [24] (with a one-vs-rest scheme for multi-class problems), ex-
tremely randomized trees (ET) [61], or a fully connected single layer perceptron, all as
implemented in scikit-learn [151]. SVM is the most popular classification method
when it comes to classifying extracted features. ET are incorporated mainly for their
ability to compute feature importance scores. FC is a natural choice to mimic how
the pre-trained network exploits the features. Hyperparameters of all methods were
tuned by slide-wise (or patient-wise) n-fold cross-validation on the merged training
and validation sets. Namely, they are the penalty C for SVM, the maximum number
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of features for ET, and the learning rate and number of iterations for the single layer
perceptron. Selected values for tuning are given in Appendix Section A.1.

4.3.5 Prediction

For prediction, the process is similar: patches are extracted from target images, for-
warded through θs, reduced by global average pooling and classified with the learned
classifier hc. As for the fine-tuning, we make additional experiments using directly the
fine-tuned network for classifying the images (see Section 4.3.3 for parameters).

4.4 Experiments

In this section, we propose and thoroughly compare different strategies for extract-
ing and using features from the deep networks introduced previously. We follow a
rigourous evaluation protocol described in Section 4.4.1. Strategies are presented and
evaluated one after the other in Sections 4.4.2 to 4.4.7, then an overall comparison of
strategies is discussed in Section 4.4.8.

4.4.1 Performance metrics and baseline

For performance evaluation, each dataset (presented in Section 4.2) is randomly split-
ted into training, validation and test sets. Following the guidelines in [129], image
patches from the same slide (or patient when this information was available) are all
put in the same set to avoid any data leakage (see Section 3.4.1).

To evaluate the different transfer strategies, we use two different metrics: the area
under the receiving operating curve (ROC AUC) for binary classification problems
and the classification accuracy for the multi-class problems. For the sake of readibility,
a summary of the scores for all experiments and datasets is given in Table 4.3 whereas
the detailed scores are only given in Appendix Section A.5. In all figures, we plot
instead for each method its rank among all methods compared in the same graph
averaged over all eight datasets. To associate high rank with best results, we compute
the rank when methods are sorted in reverse order of performance (AUC or accuracy).
For example, since ten methods are compared in Figure 4.3, the maximum average
rank is 22, corresponding to a method being the best one on all eight datasets, and the
minimum average rank is 1, corresponding to a method always worse than all others.

As a baseline for comparison, we use the ET-FL variant of the tree-based ran-
dom subwindows classification algorithm presented in Section 2.5.4 because it is fast,
generic and requires only a slight tuning of the hyperparameters which are either set
to their default value or tuned by cross-validation (see in Appendix Section A.1 for
default values and ranges).
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FIGURE 4.3: Average ranks of the methods for the “Last layer features" experiment. Colors
encode the choice of classifier for hc (orange for SVM, green for ET and red for FC).

N Last layer Merged layers
# feat. # feat. # cut

Mobile 1024 / /
DenseNet 1920 7744 9
IncResV2 1536 17088 12
ResNet 2048 15168 17
IncV3 2048 / /

VGG19 512 / /
VGG16 512 / /
Total 9600 / /

TABLE 4.2: Number of features extracted for the “Last layer” experiment. Total number of
features for the “Merging features across networks". Number of features and cut points for the

“Mering layers features” experiment.

4.4.2 Last layer features

Our first strategy follows the common approach where features are extracted at the
last layer of a pre-trained network. In our case, we take the features from the last
feature maps before the first fully connected layer (the numbers of extracted features
per network are given in Table 4.2). For each dataset and network, we then tune and
train the three types of classifiers hc (ET, SVM, and FC) with the extracted features, on
the union of the training and validation sets, and then we evaluate them on the test
set. The resulting average ranks for all classifiers and all datasets are given in Figure
4.3.

We observe that SVM and single layer perceptron are more efficient at classify-
ing from deep features than extremely randomized trees, with a slight advantage to
SVM. Mobile, DenseNet, IncResV2 and ResNet yield best performances when com-
bined with SVM or single layer perceptron, while for extremely randomized trees,
only DenseNet and ResNet are leading the way. Last layer features from VGG16,
VGG19 and IncV3 allow most of the time to beat the baseline but they are clearly not
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FIGURE 4.4: Average ranks for last layers’ features classified with ET before (orange) and
after (green) selection with recursive feature elimination.

competitive with features from the other networks whatever the classifier. Overall,
the best performance is obtained by combining ResNet features with SVM.

4.4.3 Last layer feature subset selection

Our second strategy aims at checking whether all features extracted from the last layer
of the network are important for the final classification or if a small subset of them
would be sufficient to obtain optimal performance. To answer this question, we use
cross-validated recursive feature elimination (RFE) [72] using importance scores derived
from extremely randomized trees to rank the features (where the importance of a given
feature is computed by adding up the weighted impurity decreases for all tree nodes
where the feature is used, averaged over all trees). This method outputs a sequence
{(St, st)|t = 1, . . . , T} (built in reverse), where St are nested feature subsets of increas-
ing sizes (with |S1| = 1 and |ST| = k) and st is the cross-validation performance of an
ET model trained on St. From this sequence, we compute for each dataset:

kmin = min
{t=1,...,T:st≥max

t′
(st′−la)}

|St|,

where la is a small performance tolerance (set to 0.005 in our experiment). kmin is thus
the minimum number of features needed to reach a performance not smaller than the
optimal one by more than la.

On average across datasets and networks, this method selected 7.5 % of the features
(detailed numbers are given in Appendix Tables A.6 and A.7). The models re-trained
using the selected features yielded comparable performance when using ET as classi-
fier (see Figure 4.4). Feature selection even improved ET performance on the IncV3,
VGG19, and VGG16 networks. Using SVM on the selected features however leads to a
performance drop compared to SVM with all features (see Appendix Table A.10). We
believe that this difference is due to the fact that the selection is optimized for ET and
it is thus likely to remove features that are useful for linear SVM and not for ET, which
are non-linear approximators.
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Datasets
Strategy C P G N B M L H
Baseline (ET-FL) 0.9250 0.8268 0.9551 0.9805 0.9345 0.7568 0.8547 0.6960
Last layer 0.9822 0.8893 0.9938 0.9982 0.9603 0.7996 0.9133 0.7820
Feat. select. 0.9676 0.8861 0.9843 0.9994 0.9597 0.7438 0.8941 0.7703
Merg. networks 0.9897 0.8984 0.9948 0.9864 0.9549 0.8169 0.9155 0.7928
Merg. layers 0.9808 0.8906 0.9944 0.9964 0.9639 0.7941 0.9268 0.7977
Inner ResNet 0.9748 0.8959 0.9949 0.9964 0.9664 0.8131 0.9291 0.8113
Inner DenseNet 0.9862 0.8984 0.9962 0.9917 0.9699 0.8012 0.9268 0.7967
Inner IncResV2 0.9873 0.8948 0.9962 0.9982 0.9720 0.8137 0.9234 0.7713
Fine-tuning 0.9926 0.8797 0.9977 0.9970 0.9873 0.8727 0.9405 0.8641
Metric Roc AUC Accuracy (multi-class)

TABLE 4.3: Best score for each strategy and each dataset. The best and second best scores
are respectively highlighted in green and orange.

These experiments show that, among the available features from the last layer,
most of them are uninformative or redundant and therefore only few of them are ac-
tually needed for the prediction when using ET as classifier. This conclusion can also
be drawn by observing the recursive feature elimination cross-validation curves (see
Appendix Figures A.1 and A.2). For all datasets and networks, the accuracy converges
very abruptly to a plateau when the number of selected features increases, which in-
dicates that removing features from the learning set does not impact negatively the
predictive power of the models.

It is interesting to note that the selected features are not the same across datasets.
For instance with DenseNet, for a feature to appear in the subset of best features (de-
termined with the importances obtained during the “Last layer features" experiment)
for all datasets, we need to consider a subset of size 1477 (i.e. 77% of the features). We
observe similar results for the other networks (see Appendix Table A.2). On the other
hand, there can be a significant overlap between features selected by RFE for specific
pairs of datasets (see Appendix Tables A.8 and A.9). These results suggest that the
best features are task-dependent and that there would be no interest in restricting a
priori the subset of transferred features, even when focusing on the domain of com-
putational pathology.

These conclusions hold when using ET as a classifier. The fact that we observe
a drop of performance when using the best features subset with SVM suggests that,
although there might exist a different optimal subset for other classifiers, we cannot
prove it with our experiments. To achieve that, additional experiments would need
to be carried out by applying RFE (or a similar feature selection technique) to those
classifiers.

4.4.4 Merging features across networks

The third strategy consists in merging features from the last layer of all the studied
networks. Aggregating all features results in a feature vector of size 9600. We observe
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FIGURE 4.5: Average ranks for all the evaluated methods.
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FIGURE 4.6: Average relative importances (across datasets) brought by each studied net-
work when all their last layer features are aggregated. The black bars quantify the propor-
tion of features of each network. The colors indicate the information brought by features
of decreasing importances: blue and red features are respectively the most informative and
least informative ones. Blue, orange, green and red bars regroup importances of features that
respectively and cumulatively bring 10%, 25%, 50% and 100% of the information for predict-
ing the outcome. For example, the DenseNet bar reaches approximately 26%, meaning that
DenseNet features brings about 26% of the total information for predicting the outcome.
Moreover, the orange and blue segments for DenseNet together reach approximately 10%,
meaning that, when selecting the subset of most informative features bringing 25% of the
total information (orange + blue), those of DenseNet bring 10% of information (or 40% of

the information of the subset).
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FIGURE 4.7: Average ranks for models learned on merged layers of networks compared to
the baseline.

in Table 4.3 and Figure 4.5 that despite the fact that features from all networks are
combined, this strategy gives performance results similar to but not better than using
the best single network, both with ET and SVM.

Using forest importance ranking procedure described previously, we further ana-
lyze the information brought by the last layer of each network (feature importances
averaged across datasets are given in Figure 4.6). We observe that the features of
DenseNet bring about 26% of information on average while they only account for
20% of all the features. Moreover, the proportion of information brought by the most
informative features of DenseNet is higher than for any other network. Following
DenseNet, the next most informative networks are IncResV2, ResNet, IncV3 and fi-
nally the Mobile, VGG16 and VGG19 networks. Surprisingly, the importances brought
by the VGG networks relatively to the number of features is non-negligible and higher
than the one of ResNet and IncV3. This may indicate that features of those networks
are redundant with features of DenseNet and IncResV2 while features of VGG16 and
VGG19 are not.

4.4.5 Merging features across layers

This strategy aims at merging features across layers (at several depths) for a given
network. Given the results in Section 4.4.2, we limit our analysis to the IncResV2,
ResNet and DenseNet networks. Those three networks have complex structures and
many layers which yield plenty of possible cut points for feature extraction. To reduce
the number of possibilities, we limit the extraction to bottlenecks of the networks, a
bottleneck being a point were several paths are merged into a single one. For ResNet,
we have selected the ReLU activations of the merging layer after each residual block.
For IncResV2, considering all bottlenecks (following an inception-resnet or a reduction
block) yields approximately fifty possible cut points, that is more than 100k features.
We have decided to subsample those cut points to obtain a number of features closer
to those of other networks while covering the network as uniformly as possible along
its depth. As far as DenseNet is concerned, we extract features only at the end of dense
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blocks and after pooling blocks. Indeed, extracting features inside dense blocks would
have resulted in duplicated features because of the dense connections.

In Table 4.2 are given the information about the generated features vectors for
the “Last layer", “Merging features across networks" and “Merging layers features" exper-
iments. Information about the dimensions of the extracted features from inside the
networks (before global average pooling) for ResNet, IncResV2 and DenseNet are re-
spectively given in Appendix Tables A.3, A.4 and A.5. The layer names given in those
tables are the ones given by the Keras package [41].

The average ranks for each layer of all studied networks are given in Figure 4.7.
One first observation is that there is no significant difference between SVM and ET in
terms of performance, unlike when we use the last layer only. Surprisingly, DenseNet
is not performing well with respect to the other network while it was competitive
with using the last layer only. Merging the layers actually leads to a drop of perfor-
mance with respect to using only the last layer for DenseNet, while it leads to a small
improvement for the other two networks (see Section 4.4.8).

As in the previous section, we use feature importances to identify most informative
features. Detailed importances plots for each network are given in Figure 4.8. These
plots clearly show that the most informative features are spread over all layers. We
also observe that the relative importance of features in the early layers is higher than
the ones in deeper layers. One possible reason is that last layers actually have more
features than earlier ones and as shown in Section 4.4.3, most of those features are
either irrelevant or redundant. Therefore, the extremely randomized trees actually
discard most of them them during training.

Merging features from several layers results in large feature vectors for describing
the images. Those large vectors make this method less attractive as it results in longer
classifier training time. This is especially true for extremely randomized trees. Unlike
in the previous strategy however, feature extraction does not increase computation
requirements as only one forward pass through the network is needed to extract all
the features.

4.4.6 Inner layers features

For this strategy, we assess features extracted from each layer separately. The moti-
vation is to determine if there is a layer that, taken alone, yields better performance
than the others, and in particular, the last one. We use the same cut points as for the
previous experiment (see Section 4.4.5), we learn as many SVM classifiers as there are
layers, each using the features of a single layer.

Average ranks for each inner layer and each network are given in Figure 4.9. In all
cases, the last layer features are always outperformed by features taken from an inner
layer of the network. The optimal layer is however always located rather at the end
of the network, while the first layers are clearly never competitive. Unfortunately, we
have not found that a specific layer was better for all datasets, so in practice the choice
of the layer should be determined by internal cross-validation as we did. Interestingly,
the baseline either outperforms the early layers of the networks or yield comparable
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(A) DenseNet

(B) IncResV2

(C) ResNet

FIGURE 4.8: Average relative importances (across datasets) brought by each extracted layer
of a network. See Figure 4.6 for explanation.
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FIGURE 4.9: Average ranks for the baseline and the models trained using features from
layers inside the networks. For each network, the layers are sorted by decreasing depth

(from top to bottom).
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FIGURE 4.10: Average ranks for fine-tuned networks compared to the baseline. Evalua-
tion was done either by using SVM (orange) or extremely randomized trees (green) on the
fine-tuned features or by predicting the outcome using the fine-tuned fully connected layer

directly (red).

results which tends to indicate that the features provided by ET-FL are somewhat
generic, i.e. they could be assimilated to features that you would for instance find in
the early layers of a classification CNN (see Section 2.6.4).

4.4.7 Fine-tuned features

All previous experiments explored strategies using features extracted from off-the-
shelf networks. In this last strategy, we investigate fine-tuning as described in Section
4.3.3. We focus on the same three networks as in the previous sections (ResNet, In-
cResV2 and DenseNet).

The average ranks for the different fine-tuning methods are given in Figure 4.10.
With the three networks, best performances are obtained by making predictions di-
rectly from the fine-tuned fully connected layer. SVM and ET trained on the fea-
tures extracted from the fine-tuned networks are clearly inferior, in particular with In-
cResV2. Note that, for the other two, last layer features extracted from the fine-tuned
network are nevertheless better than last layer features from the original network,
when used as inputs to SVM (see Figure 4.5). Fine-tuning is thus globally improving
the quality of the features for these two networks. Overall, the best performance is
obtained with fine-tuned DenseNet.

4.4.8 Discussion

To allow comparison of all strategies, the best scores per strategy and dataset are sum-
marized in Table 4.3 and the average ranks of all methods evaluated in the previous
experiments are given in Figure 4.5.
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Concerning the networks, ResNet and DenseNet often yield the best performing
models whatever the way they are exploited. They are followed by the IncResV2, Mo-
bile, and IncV3 networks. Performances obtained with the VGG networks are below
those of the others.

Regarding the methods, fine-tuning (and predicting with the network) usually out-
performs all other methods whatever the network. Especially, this strategy yields sig-
nificant improvements for the multi-class datasets. For binary datasets, the improve-
ment is often not as impressive, but on three of these datasets, the performances of all
methods are already very high (greater than 0.9).

Moreover, for each dataset, there is at least one inner layer that yields the best or
second best scores and this best layer is never the last one. This is confirmed by the
rank plot (see Figure 4.9) that shows that the ranks of the models learned on last layer
features are below those using inner layer features. This might be explained by the
fact that last layer features are too specific to the source task (i.e. natural images).

Merging features across networks and layers yield results similar to using last layer
features but they are outperformed by the best inner layers and also by fine-tuning.
The inferior performances of these methods could be attributed to the fact that impor-
tant features are lost among many redundant and/or uninformative ones and they
are thus suffering from overfitting. One way to improve these methods could be to
perform feature selection. However, given that these methods are already more com-
putationally demanding, they are definitely less interesting than fine-tuning and se-
lecting the best inner layer. In particular, merging features across networks requires
a forward-pass through all the selected networks. Although only one pass is needed
when merging the layers, it still yields a large feature vector which makes further
training and tuning slower, especially for ET.

Throughout the experiments, we have also gained more insights about the ex-
tracted features. By performing feature selection, we have discovered that very few
features are actually useful for learning efficient ET classifiers on our datasets and the
best features are task-dependent. This conclusion might extend to other classifiers as
well but it would require additional experiments to prove it.

4.5 Conclusion

We have empirically investigated various deep transfer learning strategies for recog-
nition in computational pathology. We have observed that residual and densely con-
nected networks often yielded best performances across the various experiments and
datasets. We have also observed that fine-tuning outperformed features from the last
layer of off-the-shelf networks. It also appeared that using one network’s inner layer
features yielded performances slightly superior to using those of the last layer and
inferior to fine-tuning but with the advantage of not having to re-train the network.

Retrospectively, we believe it would have been interesting to include models trained
from scratch in our comparison. They were excluded to reduce the cost of the experi-
ments and because several studies already showed that pretraining on ImageNet was
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beneficial [182, 199]. Note also that such comparison will be carried out in the next
chapter.



5
Chapter

Multi-task pre-training from
pathology data

Overview

In this chapter, we investigate multi-task learning as a way of pre-training
models for classification tasks in digital pathology. It is motivated by the
fact that many small and medium-size datasets have been released by the
community over the years whereas there is no large scale dataset similar to Im-
ageNet in the domain. We first assemble and transform many digital pathology
datasets into a pool of 22 classification tasks and almost 900k images. Then, we
propose a simple architecture and training scheme for creating a transferable
model and a robust evaluation and selection protocol in order to evaluate our
method. Depending on the target task, we show that our models used as feature
extractors either improve significantly over ImageNet pre-trained models or
provide comparable performance. Fine-tuning improves performance over
feature extraction and is able to recover the lack of specificity of ImageNet
features, as both pre-training sources yield comparable performance.

References: this chapter is an adapted version of the following article
Romain Mormont, Pierre Geurts, and Raphaël Marée. “Multi-task pre-training
of deep neural networks for digital pathology”. In: IEEE journal of biomedical
and health informatics 25.2 (2020), pp. 412–421

Supplementary materials for this chapter can be found in Appendix B.

5.1 Introduction

In Chapter 4, we have investigated transfer learning using ImageNet [48] as a source
task and hightlighted different best practices for transferring a pre-trained model to
object recognition and classification tasks in computational pathology. Although trans-
fer from ImageNet is a valid option, it has also been shown that transfer learning
works best when the target task is similar to the source task [228, 137]. Whereas task
similarity is hard to define formally, it is clear that the natural image domain (i.e. the
ImageNet task) is very dissimilar to digital pathology tasks. Therefore, this question
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arises: could we get even better performance from transfer learning by using a dig-
ital pathology pre-trained model instead of an ImageNet one? Some works [97, 136,
106, 180] have advanced that domain-specific pre-training is indeed beneficial but to
the best of our knowledge, at the time of writing the article this chapter is based on
(early 2020), there was no in-depth study that attempted to answer this question in
computational pathology.

A major obstacle preventing this question to be answered is the lack of a large and
versatile dataset like ImageNet in digital pathology. However, the digital pathology
community has made available many small and medium size datasets through chal-
lenges and publications over the years. Given its capability to learn from several tasks
simultaneously, multi-task learning is a great candidate to answer our research ques-
tion and, in this chapter, we investigate multi-task learning as a way of pre-training
neural networks for computational pathology. Therefore, this work lies at the cross-
road of multi-task and transfer learning and differs from typical contributions in those
fields mostly on the objective. Indeed, we do not use multi-task learning nor transfer
learning for solving a specific task but rather to pre-train a versatile network to be
transferred to new tasks.

Our main contributions are as follows. (1) We have collected, assembled and trans-
formed heterogeneous digital pathology datasets into a large versatile pool of classifi-
cation datasets featuring 22 tasks, 81 classes and almost 900k images (see Section 5.2).
(2) We have developed a multi-task architecture and a corresponding training scheme
for creating a transferable model from these 22 tasks (see Sections 5.3.1 to 5.3.3). (3) We
have developed a robust validation protocol based on a leave-one-task-out scheme for
evaluating the transfer performance of our models compared to other approaches (see
Sections 5.3.4 to 5.3.6). (4) We have evaluated the performance of the resulting multi-
task pre-trained models compared to ImageNet ones, both when pre-trained models
are used as direct feature extractors and when they are fine-tuned for each target task.
We have also compared our approach to a model trained from scratch without any
transfer, as well as to a multi-task learning model trained including the target dataset
(see Section 5.4). (5) Our implementation and multi-task pre-trained models are avail-
able on GitHub1. These models are evaluated on an independent dataset, BreakHis
[188], in Section 5.4.3. Related works can be found in Sections 2.6.4, 3.4.4, and 3.4.5.

5.2 Data

In order to build our pool of tasks, we have collected publicly available datasets (see
Table 5.1) from as many sources as possible. We have also leveraged the Cytomine
[132] platform to collect additional datasets annotated by our collaborators (see Ap-
pendix D). Some publicly available datasets are missing from our pool because either
they could not be converted into a relevant classification problem (e.g. KimiaPath24
[11], Janowczyk tutorials 3 & 4 [86]) or we could not actually obtain them from the
authors (e.g. dead link on download page or datasets not released yet [58]). Most

1https://github.com/waliens/multitask-dipath
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Ref. Name Type Task Organ & pathology Stains Images Classes
[170] MITOS-ATYPIA 14 DET Detection of mitosis and grading nuclear atypia breast cancer H&E 64873 3
[185] Warwick CRC DET Detection and classification of nuclei colorectal cancer H&E 2500 2
[86] Janowczyk1 SEG Cell nuclei segmentation breast cancer H&E 31725 2
[86] Janowczyk2 SEG Identification of epithelium and stroma breast cancer H&E 3402 2
[86] Janowczyk5 DET Detection of mitosis breast cancer H&E 24870 2
[86] Janowczyk6 CLF Patch classification for WSI segmentation breast, invasive ductal carci. H&E 277524 2
[86] Janowczyk7 CLF Identification of lymphoma subtypes breast, lymphoma H&E 2244 3

[122] Stroma LBP CLF Identification of epithelium and stroma colorectal cancer IHC 2313 2
[213] TUPAC2016 Mitosis DET Detection of mitosis breast cancer H&E 77853 2

[8] BACH18 Micro CLF Predominant cancer type classification breast cancer H&E 4800 4
[19] Camelyon16 SEG Detection of lymph nodes metastases breast cancer H&E 2922216 2
[94] UMCM Colorectal CLF Tissue type classification colorectal cancer H&E 5000 8

[142] Necrosis CLF Necrosed vs healthy tissue breast cancer IHC 882 2
[142] ProliferativePattern CLF Prolif. vs non-prolif. classification thyroid cancer Diff-Quik 1857 2
[142] CellInclusion CLF Cell inclusion vs healthy cell classification thyroid cancer Diff-Quik 3637 2
[142] MouseLba DET Cell classification in bronchoalveolar lavage lung cancer MGG 4284 8
[142] HumanLba DET Cell classification in bronchoalveolar lavage lung cancer MGG 5420 9
[142] Lung CLF Tissue subtype classification lung H&E 6331 10
[142] Breast1 CLF Segmentation of cancer tissue breast cancer H&E 23032 2
[142] Breast2 CLF Segmentation of cancer tissue breast cancer H&E 17523 2
[130] Glomeruli CLF Glomeruli recognition kidney M3C 29213 2
[89] Bone marrow CLF Cell type classification bone marrow H&E 1291 9

Total 882800 81

TABLE 5.1: Datasets that were used for multi-task pre-training. CLF, DET and SEG respec-
tively stand for classification, detection and segmentation. H&E, IHC and M3C respectively
stand for hematoxylin and eosin, immunohistochemistry and Masson’s trichrome. Images and
Classes columns give the number of images and classes of the final (possibly transformed)

task for this dataset.

datasets in our pool are H&E stained images of human breast cancer but some other
organs, pathology and stains are represented, as well as cytology samples, and animal
tissues. Also missing in the pool is the BreakHis dataset which was kept aside during
the development of our multi-task training protocol for final model evaluation and
comparison to other transfer approaches published using the dataset.

For the collected datasets to be used in a multi-task classification setting, some
dataset-specific pre-processing procedures had to be executed on most of them. Ap-
plying those procedures, we have built a pool of 22 classification tasks which contains
both binary and multi-class classification problems. The different pre-processing are
detailed in Appendix Section B.1. Whereas we have tried to avoid intra-dataset class
imbalance, there is major inter-dataset imbalance regarding the number of images:
the smallest dataset contains 882 images whereas the largest one contains almost 300k.
However, we believe it is not an issue and can be made of minor significance by adopt-
ing an ad-hoc multi-task training protocol (see Section 5.3.2). Selected samples of the
final tasks are provided in Figure 5.1.

5.3 Methods

In the following section, we present the training and evaluation protocols and the
experiments we have carried out. Those experiments have two main objectives. The
first is to evaluate how performance of multi-task and ImageNet pre-trained networks
compare when transferred to a target task. The second is to better understand how
various training hyperparameters and choices impact the transfer of a multi-task pre-
trained network. The multi-task architecture and training are described in 5.3.1 and
5.3.2. We present the different transfer techniques we have used in Section 5.3.3. We
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FIGURE 5.1: Overview of our final classification tasks (the display size does not reflect actual
image size). In this figure, we provide only one set of selected samples for Breast1 and
Breast2 as their corresponding tasks are similar and they originate both from the same set of

WSIs.
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FIGURE 5.2: Multi-task architecture. L is the multi-task loss (see Section 5.3.2) and S is a
softmax layer. x(i)j and z(i)j designate respectively the jth sample of the batch x and its cor-
responding features produced by θs. This sample belongs to task ti. Features produced for
samples of a given task ti are routed to this task head θi. In this example, there is no sample
for task 3 in the batch x. Therefore, the corresponding head θ3 is inactive (i.e. produces no

output, no parameters update, no gradient computed) for this iteration.

have developed a model evaluation and selection protocol which is described in Sec-
tions 5.3.4 and 5.3.5 whereas the various parameters we have chosen and/or evaluated
as well as the experiments we have carried out are presented in Section 5.3.6.

Regarding notations, we consider a multi-task setting with a pool P of T classifica-
tion tasks. Each task Di has ni training samples and its classification problem features
Ci classes. B represents the set containing all samples from a batch and the batch size
is denoted by B = |B|. Bi ⊆ B is a set that contains all the samples from task Di in
batch B.

5.3.1 Multi-task architecture

The structure of our multi-task neural network is similar to those of Shang et al. [180]
and Strezoski, Noord, and Worring [193] and is guided by the objective of pre-training
a network for transfer. Therefore, we have adopted the architecture presented in Fig-
ure 5.2. The to-be transferred network is shared for all tasks and denoted by θs. We
attach a head θi to θs for each task Di in the pool P . The head θi is simply a fully con-
nected layer of dimensions fs × Ci where fs is the number of features produced by θs.
Using such a simple layer has the benefit of making the learning capacity of the heads
much lower compared to the shared network (in our experiments |θs| ≫ |θi|, ∀i), hence
forcing θs to learn relevant features for all tasks. In each head, a softmax is attached
after the fully connected layer for producing per-task predictions. When forwarding
samples in the multi-task network, samples of a given taskDi are only routed through
the head θi, which outputs predictions for those samples.

5.3.2 Multi-task training

Classical training choices have to be adapted for the multi-task setting. Regarding
batch sampling, we have decided to interleave tasks at the sample level, meaning
that a single batch can contain samples from different tasks. Indeed, we believe that
if batches containing samples from only a single task were alternated, the network
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would not see a particular task for T− 1 iterations, with T the number of tasks, which
could make the training harder when T is large.

Given the imbalance in terms of number of images per task, a batch sampling pro-
cedure had to be carefully established. Indeed, a simple random sampling across all
images would prevent the tasks with fewer images from being seen during training.
To overcome this issue, we selected each image in a batch by first randomly sampling
a task and then sampling an image from this task, thus giving equal weights to all
tasks.

Regarding the training loss, we averaged the categorical cross-entropy over all
batch samples taking into account their respective tasks. More precisely, the multi-
task loss L is computed from a batch as:

L =
1
B

T

∑
i=1

ℓ(i) with ℓ(i) = −
|Bi|
∑
j=1

Ci

∑
k=1

y(i)j,k log ŷ(i)j,k (5.1)

where ℓ(i) is the loss for the batch samples from task Di and y(i)j,k and ŷ(i)j,k are respec-

tively the ground truth and model prediction for the jth batch element and the kth class
of task i.

When developing a multi-task algorithm, a crucial question is what should be
shared between tasks. By reducing the capacity of the heads of our architecture, we
wanted to enforce the training algorithm to find generic features in θs that work well
for all tasks. It might be interesting however to provide a way to slightly relax this
implicit constraint, with a hyperparameter. To this end, during training, whereas we
train the network with a learning rate γ, we choose to train the heads with a poten-
tially different learning rate given by γh = γ× τγ where τγ ∈ R≥0 is a multiplicative
factor applied to the global learning rate. This new hyperparameter provides a way of
tuning the specificity/genericity of the learned shared features. Indeed, τγ > 1 makes
the heads learning rate larger and gives therefore more flexibility for the heads to
adapt, hence relieving the shared network from learning task-specific features. Taking
τγ = 1 results in using the same learning rate for the whole network.

As previously mentioned, each head θi is randomly initialized, whereas we initial-
ize θs with ImageNet pre-trained weights as it has been shown that doing so acceler-
ates convergence in a single-task setting [142]. However, it means that trained features
of θs are followed directly by the random layers of the heads. This is known to hurt
performance in a single-task transfer setting as reported in Yosinski et al. [228] and
is aggravated in a multi-task setting. Indeed, during the first training iterations, the
heads gradients will be relatively large and will work to turn each head weights from
random to relevant with respect to its task. However, the resulting back-propagated
gradients in the last layer of θs will be an average of the potentially contradictory
signals coming from all the heads. In order to attenuate or eliminate this problem,
a simple idea consists in making each head weights relevant to its task before train-
ing the whole network by running a warm up phase during which θs is frozen (i.e. no
weights update, no batch normalization update) and only the heads θi are trained with
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a learning rate γw.
While preparing our experiments, we have noticed two issues: one with batch

normalization (see Section 2.6.2.2) and one with the heads gradients. The former is a
consequence of the transfer learning settings whereas the second is a consequence of
the task-based routing of samples in the heads. Both are discussed below.

5.3.2.1 Issue with batch normalization

It has been shown that a network equipped with batch normalization can exhibit is-
sues when it is used across different domains [120, 35]. A similar issue occurs when
transferring such network to one or several target tasks of which the input distribu-
tions differs greatly from the source task. Indeed, the first iteration will propagate
through the network samples from an unseen and likely different distribution which
will trigger a massive change of batch normalization module statistics (µB and σB).
However, the batch normalization trainable parameters (β and γ) will themselves be
updated much more slowly (especially when the training learning rate is small) pre-
venting them to adapt properly to the shift in distribution and statistics.

In our case, early experiments have shown that it had an undesirable negative ef-
fect on training basically destroying the purpose of transfer, as the training curves
exhibited a similar behavior to training from scratch. This problem was aggravated in
multi-task learning when several tasks, with different input distributions, were used.
We have applied a simple procedure to attenuate this effect. Our idea consists in up-
dating parameters β and γ of each batch normalization module before starting train-
ing such that the output of the module is preserved when the shift in distribution
occurs. Given a source task Ds and a target task Dt, few batches of the target task are
forwarded into the network to estimate the new statistics µBt and σBt of each batch
normalization module input. Based on the obtained statistics, the new parameters βs
and γs for a module are given by (see below for the derivation of these formulas):

γt = γs
σ
(ϵ)
Bt

σ
(ϵ)
Bs

(5.2)

βt = βs + γs
(µBt − µBs)

σ
(ϵ)
Bs

(5.3)

where µBs , σ
(ϵ)
Bs

, βs and γs are the original source task’s statistics and parameters. The

expression σ
(ϵ)
Bx

denotes an altered version of standard deviation presented in the orig-

inal paper which is given by
√

σ2
Bx

+ ϵ with a ϵ constant added for numerical stability.
In our multi-task setting, we have used batches containing samples from all tasks dur-
ing the new statistics estimation in order to mimic the actual inputs distributions at
training time.
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Deriving the formulas A batch normalization module being a composition of linear
functions, it is therefore linear and can be re-expressed as:

yk = BNk(x) = mkx + pk (5.4)

where yk and x respectively denote the output of the batch normalization module for
task k (i.e. using task k statistics and parameters) and the input of the batch normal-
ization module. Using the definition of the module, Equation 5.4 can be rewritten
as:

yk =
γk

σ
(ϵ)
Bk︸︷︷︸
mk

x + βk − γk
µBk

σ
(ϵ)
Bk︸ ︷︷ ︸

pk

. (5.5)

The formula in Equations 5.2 and 5.3 are obtained by ensuring yt = ys for any x, or
similarly solving the following system:{

ms = mt

ps = pt
(5.6)

5.3.2.2 Issue with heads gradients

Because samples are routed through their respective task head in our architecture,
all parts of the network do not see the same number of samples from a batch which
causes the gradients to be underestimated in the network heads. This can be shown
by developing the derivative of our loss with respect to one of the logits of a head. Let
r(i)k be the class k logit of task ti. The derivatives of the loss L (see Equation 5.1) with

respect to r(i)k is given by:

∂L
∂r(i)k

= − 1
B

|Bti |
∑
j=1

∂ℓ
(i)
j

∂r(i)k

, (5.7)

where ℓ
(i)
j is the loss term for the jth sample of task ti in the batch sample. Equation

5.7 shows that the gradients are divided by the batch size although they are estimated
using |Bti | samples (i.e. the number of samples from task ti in the batch). This applies
also to the gradients used for updating the parameters θi of the head. Given a task ti,
this magnitude reduction has the same effect as dividing the learning rate for head θi
by a variable factor that depends on the number of samples of task ti that are present
in the batch. If tasks are sampled uniformly to create a batch, one can expect this factor
to be equal to the number of tasks T on average. In order to avoid this phenomenon,
we applied a simple trick that consists in re-scaling the gradients of each head θi by
multiplying them by ϕti :

ϕti =
B
|Bti |

. (5.8)
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5.3.3 Transferring a multi-task pre-trained network

We study both deep transfer learning approaches, namely feature extraction and fine-
tuning. In both cases, θs is pre-trained on some source task(s), either ImageNet or
several tasks simultaneously in the MTL setting. For feature extraction, we exclusively
use the pre-trained network θs to extract features for all images of the target task. The
extracted features can then be used to learn a third-party classifier, a common choice
being a linear SVM. For fine-tuning, we further train the shared network θs on the
target task by attaching to it a fully connected layer and a softmax. The resulting
network is trained using for instance stochastic gradient descent

Both approaches have their own complementary advantages and drawbacks. As
mentioned above, feature extraction uses a linear model which is very fast to train
and makes it robust to overfitting when working with small target datasets. However,
using fixed pre-trained features makes it possible that the features are not entirely
suited for the target task (e.g. ImageNet vs. digital pathology), yielding suboptimal
performance. Fine-tuning does not suffer from this drawback as the whole network
(or a part of it) is retrained on the target task. When using large capacity networks
(e.g. ResNet or DenseNet), it allows the network to capture and learn task-specific
features. This is however an issue when the target dataset is small because the large
capacity of the network can lead to overfitting.

5.3.4 Evaluating transferability for hyperparameter tuning

Given a set of tasks available to pre-train a MTL model for future transfer, either by
feature extraction or fine-tuning, a question left is how to tune the hyperparameters
to train this model. Since we want to optimize the transferability of the model, rather
than for example its average performance on the training tasks, we have to design a
specific evaluation protocol and a specific metric to assess this transferability for each
hyperparameter combination.

For this purpose, we have developed a leave-one-task-out (LOTO) cross-validation
scheme, inspired from leave-one-out cross-validation. It consists in removing a set
T ⊂ P of one or more tasks from the training pool P , training a multi-task model on
P \ T and then evaluating how the learned models transfer to the tasks of T . This
operation can then be repeated for different T to increase the stability of the analysis.
In our case, we have picked T to contain only one task when possible. However, it is
important that tasks that are closely related are left out together during LOTO cross-
validation to avoid data leakage (see Section 3.4.1). In our case, there are two pairs
of datasets that are subject to this exception. The first is CellInclusion and Prolifera-
tivePattern which are different classification tasks coming from the same WSIs. The
second is Breast1 and Breast2 which are the same classification tasks generated with
different rules from the same expert annotations. Therefore, applying LOTO exhaus-
tively in our settings leads to 20 possible left out sets T .

The optimal hyperparameter combination might arguably depend on whether the
MTL model will be used for feature extraction or fine-tuning. We have however solely
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FIGURE 5.3: The transfer performance evaluation with LOTO cross-validation.

used feature extraction performance as a proxy to evaluate transferability, mainly be-
cause we wanted to release a single MTL model for simplicity, but also to reduce the
computational costs of our experiments. More precisely, given a left-out set T and
one of its task D ∈ T , we have evaluated transferability of a multi-task pre-trained
network trained on P \ T by using the resulting θs as a feature extractor on D. The
training set of D was used to train the features classifier (i.e. a linear SVM, see Section
5.3.6 for details) and the validation set was used to evaluate it. Transfer performance
was evaluated by the accuracy (ACC) for multi-class classification tasks and the area
under the ROC curve (ROC AUC) for binary classification tasks. To cope with the ran-
domness induced by heads initialization and mini-batch sampling, each training of a
MTL model was repeated with 5 different random seeds. Note that, at this stage, the
test set of D was kept aside for future comparison of a selected multi-task pre-trained
network and comparison to ImageNet transfer (see Section 5.3.5). This process is il-
lustrated in Figure 5.3.

All the scores resulting from the same hyperparameters combination but different
random seeds can be averaged and the resulting average performance can be used to
assess transfer performance on a given task D. We need however to aggregate these
scores over all (left-out) tasks to assess the overall transferability of a given hyperpa-
rameter combination. Averaging ACC and ROC AUC scores over tasks is in general
not a good idea as these values depends on the task difficulty and are not directly
comparable across tasks. We propose instead to aggregate rankings. More precisely,
for each task, the combination of hyperparameters leading to the best model on aver-
age was assigned rank 1 and the worst was assigned the maximum rank. Applying
this procedure to all our sets T produces a rank matrix where rij is the rank of the ith

combination of hyperparameters evaluated on the left-out task j. The best hyperpa-
rameter combination is then defined as the one that minimizes the average rank over
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FIGURE 5.4: The final performance evaluation process for comparison of multi-task pre-
training to other transfer approaches. r(k)i is the average rank for the hyperparameters com-
bination Θi on task Dj computed ignoring task Dk (or, alternatively, by ignoring the rank rik
in Equation 5.9). For feature extraction, the training and validation set of Dk are used for
5-fold cross-validation. For fine-tuning, the training set is used for training the model and
the validation set is used for model selection and hyperparameters tuning (see Section 5.3.6).

all left-out tasks:

ri =
1

Tout

Tout

∑
j=1

rij (5.9)

where Tout is the number of left-out tasks.

5.3.5 Final performance evaluation

Our main objective is to compare transfer from multi-task and ImageNet pre-trained
networks. In principle, two nested LOTO cross-validation loops should be adopted
to carry out such comparison: for each left-out task in the external LOTO CV loop,
an additional internal LOTO CV loop should be run to find the optimal hyperpa-
rameter combination for training the MTL model to be transferred to the (external)
left-out task. Using two nested loops would be however too expensive computation-
ally2. We have instead adopted the following simplified scheme. A single LOTO
cross-validation is run as described in the previous section. Given a left-out task Dk,
we select the hyperparameter combination that minimizes the average rank but now
excluding taskDk from the average computation (i.e. excluding rik from the calculation
of ri in Equation 5.9). All the models trained using this hyperparameters combination
(i.e. one per seed) are transferred to the target task Dk using both transfer protocols
(i.e. feature extraction or fine-tuning). The test set of Dk is used solely to evaluate the
resulting transfer performance whereas the training and validation sets can be used
by the transfer protocol, feature extraction or fine-tuning, for training and hyperpa-
rameter tuning (see Section 5.3.6). This process is described in Figure 5.4.

Unlike with a true double LOTO CV loop, the training and validation sets of the
left-out task Dk are used, in our simplified scheme, to train the MTL models that are

2The simplified scheme we present hereafter has already yielded approximately 20k GPU hours of
computation. This computation time would have been multiplied by 10 using two nested LOTO CV
loops, which was impossible for us to carry out given our available computing resources.
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Parameters Values Count
Learning rate (LR) γ {10−3, 10−4, 10−5, 10−6} 4

LR multiplier τγ {1, 5, 10} 3
Shared network θs {ResNet50, DenseNet121} 2

Warm up w {true, f alse} 2
Number of combinations |H| 48

with random seeds 240

TABLE 5.2: The multi-task training parameters evaluated using the cross-validation proce-
dure. Using the LOTO scheme, 240 trained models should be transferred to each left out

dataset. H is the set of all hyperparameters combinations.

Task
Train

Full name Metric
size

BoMa 652 BoneMarrow

A
cc

ur
ac

y

MoLb 2438 MouseLba
HuLba 4397 HumanLba
Lung 5443 Lung
Nec 791 Necrosis

R
O

C
A

U
CPrPa 1346 ProliferativePattern

CeIn 1816 CellInclusion
Glom 14605 Glomeruli
Br2 14953 Breast1
Br1 18261 Breast2

TABLE 5.3: Evaluation tasks, their evaluation metric, training set size and full name.

transferred to the other tasks for computing the rankings of the hyperparameters com-
binations for these tasks. However, this is not expected to introduce any bias since the
data from task Dk is neither used to decide on the optimal hyperparameter setting of
the MTL model transferred to Dk itself (since rik is excluded from the computation of
ri), nor to train this MTL model.

5.3.6 Hyperparameters settings and experiments

The hyperparameters we have studied and their evaluated values are listed in Ta-
ble 5.2. Parameters values and training choices were established based on early ex-
periments which evaluated multi-task training stability and convergence. Regarding
the selected range of learning rates, values higher than 10−3 resulted in very unsta-
ble or diverging trainings whereas values lower than 10−6 prevented convergence.
As shared network θs, we have used two popular architectures ResNet50 [77] and
DenseNet121 [81]. We have removed the fully connected layer of those networks and
replaced it by a global average pooling. Moreover, we have loaded the networks with
ImageNet pre-trained weights from PyTorch [149].
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The multi-task network was trained for 50k iterations using batches of size 64 and
SGD as optimizer using momentum set to its default value (i.e. 0.9), learning rate γ
and heads learning rate multiplier τγ. Either the whole network was trained directly,
or the heads were first warmed up for 5k iterations with learning rate γw = 10−3

before the whole network was trained for 45k iterations.
Classical data augmentation and normalization have been applied to the input im-

ages. We have used ImageNet statistics for normalizing the images as early experi-
ments have shown no significant improvement by normalizing with per-task statistics
(i.e. mean and variance). As data augmentation, we have applied simple random ver-
tical and horizontal flips as well as extraction of a random square crop (if the image is
not square already).

When feature extraction was applied either during the evaluation or selection,
we have used linear SVM [55] as feature classifier. Whenever a SVM classifier was
trained, we have tuned the C regularization parameter among the following values{

10−10, 10−9, ..., 10−1, 1
}

by 5-fold cross-validation. The tasks were splitted into folds
based on the most relevant information available for the task (patient, slide or image).

Regarding fine-tuning, we have trained the network for 100 epochs on the training
set of the target task and have tuned the learning rate among {10−3, 10−4, 10−5, 10−6}
and have selected the best epoch on the validation set. When transferring from our
multi-task pre-trained models, we have performed the selection of the best multi-task
models as explained in Section 5.3.4. Then, for each model trained with the best hy-
perparameters (i.e. one per seed), we have trained one model per fine-tuning hyper-
parameters combination. For ImageNet, the approach was slightly different as we
had only one model to start from. In this case, we have used 5 different seeds for
fine-tuning.

At this point, it is important to note that LOTO cross validation is quite demanding
in terms of computing resources as, for all T , all the combinations of hyperparame-
ters and random seeds have to be evaluated. As indicated in Table 5.2, 240 models
would have to be trained per set T of excluded tasks which, given 22 tasks, yields
4800 multi-task trainings. Due to limited availability of computing resources, we had
to reduce this number and have done so by reducing the number of left out tasks
used in our analysis. In particular, we have kept 10 tasks in 8 sets: {Breast1, Breast2},
{CellInclusion, ProliferativePattern}, {MouseLba}, {HumanLba}, {Necrosis}, {Lung},
{Glomeruli} and {BoneMarrow} (see Table 5.3). All other tasks were always incorpo-
rated however to train each multi-task model.

For the sake of completeness, we have also compared the transfer learning ap-
proaches with training from scratch and joint training. The former consists in training
a network initialized with random weights. The latter consists in training a network
in multi-task using the whole pool of tasks (including the target tasks).

For training from scratch, we have used the same settings as for the fine-tuning
experiment except for the network weights initialization (using initialization strategy
as defined in PyTorch): same evaluated learning rates, number of training epochs
and same networks. Regarding joint training, we have used the same architecture
and training algorithm as for our multi-task pre-training. For the evaluation tasks
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(A) DenseNet121

(B) ResNet50

FIGURE 5.5: Absolute score difference between multi-task versus ImageNet pre-training
using feature extraction as transfer protocol on our ten evaluation tasks. Positive differ-
ence indicates that multi-task pre-training yield superior performance. Tasks are sorted by
evaluation metric and increasing dataset size. The variability of the multi-task transfer is

measured using ±2 standard deviations given by the error bars.

listed above, only their training set is used for the multi-task training, while their
validation and test sets were respectively used for optimizing the hyperparameters
and evaluating the selected model. The data for the other training tasks were kept the
same as for multi-task pre-training.

5.4 Results and discussion

We report how our methods compare to transfer from ImageNet, training from scratch
and joint training in Section 5.4.1. Then, we study the effect on transfer of the various
evaluated multi-task training hyperparameters in Section 5.4.2. Finally, we discuss
our results and future works in Section 5.4.4.
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(A) DenseNet121

(B) ResNet50

FIGURE 5.6: Absolute score difference between multi-task versus ImageNet pre-training
using fine-tuning as transfer protocol on our ten evaluation tasks. See Figure 5.5 for details.
Error bars are computed using ±2 the largest standard deviation among the ones resulting

from ImageNet and multi-task fine-tuning.

5.4.1 Transfer performance

As explained in Section 5.3.4, we have used both feature extraction and fine-tuning
to evaluate transfer performance. We could not repeat our experiments with several
datasets splits given the computational cost, which would have allowed us to perform
formal statistical tests for method comparison. To ease the discussions below, we will
nevertheless call significant any difference between two average errors that exceed, in
absolute value, twice the maximum of their standard deviations. If the scores were
Gaussian distributed, this would ensure that each average score is outside a 95%-
confidence interval around the other score.

Absolute score differences between feature extraction from ImageNet and multi-
task pre-trained networks can be found in Figures 5.5a and 5.5b for DenseNet121
and ResNet50 respectively. Our DenseNet121 features yield superior scores for nine
datasets out of ten (all but Necrose) of which superiority is significant for all but two
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FIGURE 5.7: Performance comparison of different approaches using DenseNet121: training
from scratch (rand), feature extraction (tr-fe) and fine-tuning (tr-ft) using our multi-task pre-
trained networks and joint training (joint). Each bar is the average performance and its error
bar gives±2 standard deviation of a given method over five runs. For exact scores, see Table

5.4.

Target Train Scratch Feature extraction Fine tuning Joint trainingtask size ImageNet Multi-task ImageNet Multi-task

A
cc

ur
ac

y BoMa 652 70.49± 1.47 71.52 75.05± 0.70 85.32± 1.84 85.16± 1.01 92.62± 1.66
MoLb 2438 43.04± 8.56 75.68 77.63± 3.27 89.39± 0.98 89.41± 0.87 86.17± 0.26
HuLba 4397 79.65± 4.75 78.01 79.73± 2.27 90.56± 2.01 90.48± 0.64 88.67± 1.01
Lung 5443 86.01± 0.47 90.54 91.40± 0.32 92.77± 0.44 92.41± 0.29 89.86± 0.39

R
O

C
A

U
C

Nec 791 96.71± 0.38 99.82 99.61± 0.20 99.14± 0.43 98.75± 0.65 99.76± 0.07
PrPa 1346 84.26± 0.36 88.22 88.77± 0.21 87.51± 0.92 87.27± 0.49 92.42± 0.69
CeIn 1816 88.54± 0.73 96.97 98.05± 0.13 99.60± 0.10 99.67± 0.05 98.51± 0.30
Glom 14605 98.43± 0.22 99.20 99.40± 0.02 99.70± 0.08 99.75± 0.04 99.50± 0.04
Br2 14953 92.00± 0.28 93.17 94.40± 0.18 95.24± 0.59 96.00± 0.64 98.15± 0.12
Br1 18261 96.48± 0.35 95.66 96.42± 0.17 98.12± 0.50 98.62± 0.19 97.54± 0.27

TABLE 5.4: Performance of different evaluated approaches on DenseNet121. All reported
scores are percentages. We compare training from scratch with feature extraction and fine-
tuning from our multi-task pre-trained and the ImageNet models. We also provide results
of the joint training experiment. Average performance and (±1) standard deviation are pro-
vided for all methods except for feature extraction from ImageNet as this procedure is de-

terministic.

(HumanLba and MouseLba). The score difference is in favor of ImageNet features on
Necrose although it is not significant. ResNet50 features yield superior results for six
out of ten datasets (all but CellInclusion, Glomeruli, ProliferativePattern and Lung) of
which superiority is significant for all but two datasets (Necrose and Breast1). Out of
the four datasets where ImageNet features yield superior scores, the difference is sig-
nificant for only one of them (CellInclusion). It is interesting to note that the largest
difference of scores in favor of ImageNet is only 0.21% (ROC AUC) on Necrose for
DenseNet121 whereas the difference in favor of our features is at most 3.52% (ACC)
on BoneMarrow. Similary with ResNet50, the largest differences are 0.91% (ROC AUC)
on CellInclusion and 6.48% (ACC) on BoneMarrow respectively in favor of ImageNet
features and ours. Therefore, it appears that the loss of performance when our features
underperform compared to ImageNet is lower than the expected gain of performance
when our features are better. This indicates that the performance gain or loss you
would obtain with multi-task features are dataset dependent and is hard to predict
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Target Train Scratch Feature extraction Fine tuning Joint trainingtask size ImageNet Multi-task ImageNet Multi-task
A

cc
ur

ac
y BoMa 652 65.88± 1.16 71.52 78.00± 0.61 83.57± 2.14 85.04± 0.37 92.46± 1.23

MoLb 2438 48.47± 4.19 73.08 79.31± 1.07 88.20± 1.52 88.36± 1.27 88.24± 0.54
HuLba 4397 71.85± 8.33 77.81 82.97± 0.84 90.64± 1.49 89.95± 0.61 88.96± 0.85
Lung 5443 84.75± 0.76 91.67 91.15± 0.41 92.73± 0.33 92.61± 1.05 90.89± 0.35

R
O

C
A

U
C

Nec 791 97.21± 0.76 99.17 99.21± 0.38 99.21± 0.34 99.08± 0.43 99.81± 0.10
PrPa 1346 83.00± 1.83 90.00 89.47± 0.27 87.80± 1.23 88.60± 0.72 93.92± 0.60
CeIn 1816 84.44± 0.78 97.91 97.00± 0.16 99.59± 0.11 99.65± 0.12 98.69± 0.20
Glom 14605 98.24± 0.08 99.41 99.36± 0.02 99.79± 0.03 99.78± 0.07 99.48± 0.09
Br2 14953 92.48± 0.90 93.57 94.75± 0.13 94.26± 1.06 95.67± 1.03 98.29± 0.09
Br1 18261 95.84± 0.48 96.49 96.68± 0.24 97.64± 0.48 97.85± 0.32 96.96± 0.19

TABLE 5.5: performance of different evaluated approaches on ResNet50. See Table 5.4 for
explanation.

a priori, although the loss of performance is usually small compared to the possible
improvement. Another interesting observation is the stability of transfer performance
as only four evaluations (out of 20) exhibit standard deviations larger than 0.5% (ROC
AUC or ACC).

Regarding fine-tuning, our features outperform ImageNet ones for five and six
datasets with DenseNet121 and ResNet50 respectively (see Figures 5.6a and 5.6b).
However, none of the differences are significant whether or not the advantage is in
favor of our approach.

As a summary, feature extraction transfer approach seems to benefit from multi-
task pre-training as 15 evaluations (out of 20) are in favor of our approach of which 11
are significant. Only two evaluations are significantly in favor of ImageNet features.
However, fine-tuning from our features yield comparable performance with ImageNet
features initialization as no score difference is significant (11 evaluations are in favor
of our approach).

As an additional experiment, we compare transfer by feature extraction and fine-
tuning with a similar model trained from scratch and the joint MTL approach de-
scribed in Section 5.3.6 (see Figure 5.7 and Tables 5.4 and 5.5). These experiments
show that fine-tuning improves over feature extraction significantly on most datasets
which confirms our conclusions from Chapter 4. Moreover, they show that training
from scratch is subpar compared to the transfer approaches, feature extraction in-
cluded. This last observation confirms previously published results [156, 199, 182].
It appears that joint training significantly improves the performance on small datasets
(BoneMarrow and ProliferativePattern) over all other approaches. For larger datasets,
performance seem to lie between fine-tuning and feature extraction, or to be on par
with fine-tuning on the datasets where the task is almost solved (ROC AUC or ACC
close to 1).

5.4.2 Study of multi-task training hyperparameters

Our experiments have shown that the hyperparameter impacting transfer performance
the most was the multi-task training learning rate. Figure 5.8 shows the distributions
of scores per learning rate using DenseNet121 and HumanLba dataset. We have picked
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FIGURE 5.8: Distributions of scores per learning rate on DenseNet121 with HumanLba
dataset. Each boxplot results from the aggregation of the transfer scores of all models us-

ing the same learning rate value on the given network and dataset.

this plot specifically because it exhibits the most frequent pattern regarding the effect
of the learning rate. Similar plots for other datasets as well as ResNet50 can be found
in Appendix Figure B.4. We have observed that the highest learning rate 10−3 yielded
highly variable performance which were most of the time inferior compared to lower
learning rates. It indicates that this specific value is too high to cope with the multi-
task setting as it prevents the models from making use of the tasks information effi-
ciently. This is likely due to training instabilities (convergence issues, noisy training
loss) and overfitting. It appears that the lowest learning rate 10−6, although yield-
ing more stable performance, generally underperforms higher learning rates 10−5 and
10−4. For both networks and most datasets, the latter learning rate 10−4 is the best
performing on average.

The impact of the two other hyperparameters τγ and w seems to be minor for
most datasets as variation stays within two standard deviations. Moreover, there is
no pattern emerging from our experiments regarding those hyperparameters in gen-
eral. Two exceptions to this observation are the HumanLba and MouseLba datasets
which exhibit significant performance variations on both networks. The variations
are shown in Figure 5.9 (similar figures can be found for other networks and datasets
in Appendix Figures B.1 and B.2). Those Figures show that HumanLba benefits from
warming up whereas MouseLba performance are hurt. This indicates that the effect
on transfer performance of warming up and multiplying heads learning rate is very
dataset dependent and no general rule can be drawn from our experiments.

5.4.3 Evaluation of released multi-task pre-trained models

With the idea of releasing the best multi-task pre-trained models to the community,
we have re-trained each network one time using the same procedure described in
Section 5.3.2 and the best hyperparameters found using the ranks. Especially, for
DenseNet121, we have picked γ = 10−4 (learning rate), τγ = 5 (learning rate heads
multiplier) and warm up. For ResNet50, we have picked γ = 10−3, τγ = 1 and warm
up. We have used all the data available for re-training (i.e. the training, validation and
test sets of our 22 tasks).
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(A) HumanLba

(B) MouseLba

FIGURE 5.9: Transfer performance for combinations of the hyperparameters γτ (learning
rate heads multiplier, lrhm) and w (warm up) on two different datasets with learning rate

γ = 10−4 on DenseNet121. Error bars report twice the standard deviation.

In order to evaluate the to-be released models, we kept the BreakHis dataset [188]
out of our pool. We have transferred the two resulting models using both feature
extraction and fine-tuning as presented in the article. The transfer was repeated on
the five original per-patient folds of BreakHis and performance was averaged over
those folds. The resulting transfer scores are given in Table 5.6. We have not compared
our approach to the full BreakHis benchmark but only to similar methods of transfer
learning of which we have found two [189, 187] that perform feature extraction.

Our conclusions do not change. For feature extraction, our approach either im-
proves over ImageNet transfer or provides similar performance. We have observed
that our method yields better performance on higher magnification in particular. Our
transfer learning approach is also on par with similar ones from the literature.

For fine-tuning, there does not seem to be a significant difference between our
approach and ImageNet. Surprisingly, we have also observed that fine-tuning (from
ImageNet or our models) yielded inferior performance compared to feature extraction
in some cases which could be explained by the fact that our protocol requires a val-
idation set for tuning the fine-tuning hyperparameters. To avoid reducing too much
the size of the training set, we have extracted a small validation set (approximately
10% of the whole data) which might be too small for robust selection, especially when
coupled with a reduced training set.
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Tr. Network Source 40x 100x 200x 400x

FE

DenseNet121
ImageNet 85.83± 2.58 85.38± 4.14 84.50± 1.73 84.81± 1.26
Multi-task 86.05± 2.51 84.74± 3.83 85.75± 2.64 87.22± 1.65

ResNet50
ImageNet 85.42± 3.56 84.20± 3.18 86.40± 3.45 82.64± 1.16
Multi-task 84.77± 3.76 83.95± 2.25 89.15± 4.40 86.86± 2.76

[189] (Decaf) 84.00± 6.90 83.90± 5.90 86.30± 3.50 82.10± 2.40
[187] (VGG-VD) 86.90± 5.20 85.40± 5.70 85.20± 4.40 85.70± 8.80

FT
DenseNet121

ImageNet 83.64± 5.78 85.99± 4.22 89.07± 3.45 85.38± 3.89
Multi-task 82.69± 6.22 86.32± 1.08 90.91± 3.07 85.74± 3.44

ResNet50
ImageNet 84.43± 5.48 83.13± 2.76 88.96± 3.27 84.08± 2.39
Multi-task 85.83± 4.05 84.51± 3.46 87.99± 3.34 84.10± 4.00

TABLE 5.6: Transfer performance of our best multi-task pre-trained model on the BreakHis
datasets using feature extraction (FE) and fine-tuning (FT). Average per-patient accuracies

and standard deviations are given per magnification (x40, x100, x200 and x400).

5.4.4 Discussion and future works

Features extracted from our models are in general superior to ImageNet ones which
shows that multi-task pre-training is effective at creating task-specific features. This
important observation confirms the conclusions of previous works that domain-specific
pre-training is a good idea and also validates the multi-task approach when a large
source dataset is not available.

The second important observation is that fine-tuning does not benefit from us-
ing our models as we obtain similar transfer performance whatever the source. This
indicates that fine-tuning is able to recover the lack of specificity of ImageNet fea-
tures compared to ours. It contradicts our initial hypothesis that transfer should work
better when source and target domains are similar. There might be several reasons
why we observe such phenomenon. First, Yosinski et al. [228], who concluded about
the importance of task similarity for efficient transfer, performed their experiments
on simple architectures (e.g. simple stack of convolutional layers). In our case, we
have used more recent architectures (i.e. residual and densely connected networks)
which are easier to train and might be less impacted by their initial weights. Second,
most previous works have shown that fine-tuning was beneficial in a single source
task transfer scenario exclusively. Our multi-task pre-training is able to learn specific
features but we cannot exclude that a more advanced approach could result in even
stronger features. This might change our conclusion that fine-tuning does not benefit
from MTL transfer. For instance, we have applied a minimal augmentation procedure
with random flipping and cropping. Therefore, it would be interesting to consider
other augmentation techniques to hopefully reinforce our model: color perturbation,
blurring, etc. Some contributions have highlighted training difficulties associated with
multi-task (e.g. gradients interference [230]) and transfer learning (e.g. batch normal-
ization [35]) that could be investigated in our context. On a similar note, it is likely
that, given a target task, not all tasks in the pool contribute equally to transfer per-
formance. A catastrophic interference phenomenon might even be at play and some
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tasks might have a destructive effect during the pre-training phase (i.e. if they were re-
moved, transfer performance would increase). This could be caused, for instance, by
significant differences in the input distributions of our tasks. As stated in Section 5.3.6,
we have applied the same normalization strategy for all tasks. A per-task normaliza-
tion (other than standard) might help with catastrophic forgetting with, for instance,
advanced techniques specific to pathology like stain normalization [91, 175, 240]. Sim-
ilary, incorporating a per-task training mechanism that could dynamically increase
(resp. decrease) the contribution of constructive (resp. destructive) tasks would cer-
tainly help improving the resulting features. Alternatively, instead of using all the
tasks, one could find a mechanism for selecting a subset of (the most relevant) source
tasks for a given target task. Such solution would entail however a significant addi-
tional computational cost, since a new MTL model would have to be trained for each
new target task.

There are also several interesting research directions regarding the architecture. On
the one hand, it would be interesting to study the effect of increasing the capacity of
the task-specific parts. On the other hand, we have only worked with classification
tasks so far but it is possible to incorporate directly segmentation or detection tasks
to the pre-training by appending an ad-hoc network as a head. Hopefully, enriching
the training signal with a dense prediction task such as segmentation could improve
the transferability of the resulting models. However, this approach also raises pratical
questions and issues such as model memory usage or loss aggregation.

5.5 Conclusion

We have investigated the use of multi-task learning for pre-training neural networks
in digital pathology. We have first created a pool of classification tasks from existing
sources containing almost 900k digital pathology images. Using this pool, we have
pre-trained a neural network in a multi-task setting in order to transfer the resulting
model to unseen digital pathology tasks. Using a robust evaluation protocol, we have
shown that transferring a model pre-trained in multi-task can be beneficial for the
performance on the target task. When compared to transfer from ImageNet, our pre-
training approach coupled with feature extraction yields comparable or better perfor-
mance depending on the target dataset. We have observed that fine-tuning multi-task
or ImageNet pre-trained models yields comparable performance. It suggests that fine-
tuning is able to recover from the lack of feature specificity whatever the pre-training
source. However, pre-training remains crucial, as models trained from scratch are
clearly inferior.
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Chapter

Self-training for segmentation
from sparsely-labeled data

Overview

In this chapter, we propose a self-training based approach that can exploit both
(few) exhaustively annotated images and (very) sparsely-annotated images to
improve the training of deep learning models for image segmentation tasks. The
approach is evaluated on three public and a sparsely-labeled dataset annotated
by collaborators on Cytomine, representing a diverse set of segmentation tasks
in digital pathology. The experimental results show that self-training allows
to bring significant model improvement by incorporating sparsely annotated
images and proves to be a good strategy to relieve labeling effort in the digital
pathology domain.

References: this chapter is an adapted version of the following article: Romain
Mormont, Mehdi Testouri, Raphaël Marée, and Pierre Geurts. “Relieving
pixel-wise labeling effort for pathology image segmentation with self-training”.
In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops.
Accepted for publication. 2022 .

Supplementary materials for this chapter can be found in Appendix C.

6.1 Introduction

In this chapter, we investigate a method for training a binary image segmentation
model in a context where the segmentation ground truth is sparse. More precisely,
we focus on a setup where the training set is composed of an exhaustively-labeled
subset Dl and a sparsely-labeled subset Ds. In particular, the images in Dl come with
exhaustively-labeled segmentation masks (i.e. pixels of all objects of interest have been
labeled as positive) whereas in Ds, some (unknown) pixels belonging to objects of
interest have not been labeled, hence the sparsity. This setup can occur for instance
when a dataset is first annotated with polygon annotations for classification then used
for segmentation (see Section 6.3.1). Indeed, classification does not require exhaustive
pixel-wise labeling, unlike segmentation. This setup can also describe a dataset in the
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process of being annotated: as annotations are added, some others are still missing.
A method supporting our setup could actually be used in the context of AI-assisted
interactive labeling.

Typically, image segmentation methods require that the training images come with
exhaustive pixel-wise labels. In our setup, they would allow us to only use Dl and
force us to ignore Ds. We believe that it is possible to include the sparsely-labeled
images as well, and hopefully improve the performance over using only Dl. One way
of achieving this would be to somewhat “complete” the sparse segmentation masks
and make them exhaustively-labeled. Generating pseudo-labels is precisely what self-
training approaches do and, in this chapter, we devise a self-training workflow to
exploit both our sets.

Our self-training workflow consists of two separate phases. During the “warm-up”
phase, we train a U-Net [167] model in a classical supervised manner on Dl for a few
epochs. Then, during the “self-training” phase (sketched in Figure 6.1), we repeat the
following process for an arbitrary number of epochs : pseudo labels are generated
for the unlabeled pixels from images in Ds using the currently trained model and the
pseudo-labeled images are included in the training set for the next epoch. To con-
trol the impact of model uncertainty on pseudo-labeled pixels, we furthermore study
different weighting schemes to tune their contributions to the training loss. We use
binary (“hard") pseudo-labels and propose an auto-calibration approach for generat-
ing them. Experiments are carried out on three exhaustively-labeled public datasets,
namely MoNuSeg [109], GlaS [184] and SegPC-2021 [71], on which sparsity is artifi-
cially enforced for evaluation purpose. Through these experiments, we investigate
the interest of our method and the impact of its hyperparameters in different scarcity
conditions and in comparison with different baselines. In a second stage, we apply
our method on an actual sparsely-labeled dataset for cytology diagnosis.

Our main contributions and conclusions are as follows: (1) We design a self-training
pipeline for binary segmentation to handle datasets composed on both exhaustively
and sparsely annotated images (Section 6.2). (2) We show on three public datasets that
this self-training approach is beneficial as, even in significant scarcity conditions, it
improves over using only exhaustively-labeled data (see Section 6.5.2). (3) We confirm
the interest of the approach in a real-world scenario, where a significant improvement
of performance is achieved by exploiting sparse annotations (see Section 6.5.5). (4) We
show that, at fixed annotation budget, it is not necessarily better to focus the annota-
tion effort on exhaustive labels rather than sparse labels (see Section 6.5.3).

Related self-training works can be found in Sections 2.6.6 and 3.4.6. Beyond self-
training, we would also like to point out that there exist methods, implemented in
software such as QuPath [15], Ilastik [21] or Cytomine [132] and based on traditional
computer vision or machine learning, that allow users to interactively complete a par-
tial hand-drawn annotation of a given image. Among these methods are, for instance,
Graph Cut [111] and GrabCut [169], or more recently DEXTRE [127] and NuClick
[103]. While the self-training approach explored in this chapter can certainly be ex-
ploited in an interactive mode, this question will be left as future work.
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FIGURE 6.1: Our approach illustrated. The model is first warmed-up on the exhaustively-
labeled data then further traind by self-training on the combined sparsely- and exhaustively-

labeled sets. A more formal definition is provided in Algorithm 3.

6.2 Methods

In the following section, we present our method, a self-training image segmentation
algorithm. The self-training aspects and training implementation details are discussed
separately in Sections 6.2.1 and 6.2.2 respectively.

We will denote by D = (X, Y) ⊂ X × Y a segmentation dataset, where X and
Y respectively represent a set of input images and their corresponding binary seg-
mentation masks. We will further consider a training dataset composed of two sets:
Dl = (Xl, Yl) ⊂ X × Y , the exhaustively-labeled set, and Ds = (Xs, Ys) ⊂ X × Y ,
the sparsely-labeled set. In Dl, the masks Yl are entirely determined, since the ground
truth is known for all pixels (hence the exhaustiveness). In Ds, ground truth is only
partially known: given an image x ∈ Xs, either a pixel xij belongs to a structure of in-
terest in which case the mask pixel yij = 1, or it is not labeled in which case yij = 0 and
no assumption can be made a priori about the fact that the pixel belongs to a structure
of interest or not. We will denote nl = |Dl| and ns = |Ds| the sizes of the sets. The
total number of training images for a dataset will be denoted n = nl + ns.

6.2.1 Self-training

Our self-training algorithm is described in Algorithm 3 (and depicted in Figure 6.1).
It features a warm-up phase during which the model is classically trained on the set
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Algorithm 3: Our self-training approach. The Train operation trains the
given model on the provided dataset according to the protocol explained in
Section 6.2.2. The Predict operation produces segmentation masks for a set
of input images using the model. The Combine operation combines ground
truth masks and pseudo labels from the given sets as explained in Section
6.2.1.

Data: The exhaustively- and sparsely-labeled sets Dl and Ds, a segmentation
model θ0, W and E respectively the number of warm up epochs and the
total number of epochs.

Result: A self-trained segmentation model θE.
1 // Warm up
2 for e← 1 to W do
3 θe = Train(θe−1,Dl)
4 end
5 for e←W + 1 to E do
6 // Pseudo labeling
7 Ŷs = Predict(θe−1, Xs)
8 Ypl = Combine(Ŷs, Ys)
9 Dpl =

(
Xs, Ypl

)
10 // Self-training
11 θe = Train(θe−1,Dl ∪Dpl)
12 end
13 return θE

Dl (training implementation details are given in Section 6.2.2). The number of warm-
up epochs W > 0 is fixed so that the model is able to converge on the labeled data.
The warmed-up model is used as starting point for the self-training phase. Each self-
training round e starts by pseudo-labeling Ds with the model θe−1. For an image x ∈
Xs, the pseudo-label assigned to pixel xij is given by:

y(pl)
ij =

{
1, if yij = 1
g(ŷij), otherwise

(6.1)

where ŷij is the sigmoid output of model θe−1 for pixel (i, j) given x as input and g is
a function for generating the pseudo-label from ŷij (see below). In other words, we
preserve the expert ground truth as pseudo-labels when available and use the model
predictions for unlabeled pixels (this is the Combine step from Algorithm 3). With this
strategy, entirely unlabeled images can also be included in Ds. Our algorithm uses a
single model (i.e. teacher = student) which is not reset between self-training rounds.
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6.2.1.1 Soft and hard pseudo-labels

We considered two different pseudo-labeling strategies, or two different g functions
(see Equation 6.1). Initially, we decided to simply take g to be the identity function
g(x) = x in which case the sigmoid output of the model was used as pseudo-label.
This strategy is commonly called “soft” labeling. During the next self-training round,
this soft pseudo-label will be compared to the network prediction which can be seen as
a form of consistency constraint similar to those in [112, 205, 186]. However, early ex-
periments have shown that this approach causes training instabilities. Therefore, we
investigated a second strategy where the sigmoid output is binarized using a thresh-
old Te ∈ [0, 1]:

g(x) =

{
1, if x > Te

0, otherwise
(6.2)

where e is a self-training round. We call this strategy “hard” labeling as pseudo-labels
are either 0 or 1. In addition to ensuring some sort of consistency between the pseudo-
labels and the predictions, as in the “soft” approach, this thresholding also encourages
the model to produce confident predictions (closer to 0 or 1). Because we want to
avoid Te to be an additional hyperparameter to tune, we propose an auto-calibration
strategy based on the Dice score:

DiceT(y, ŷ) =
2×∑i,j

[
1ŷij≥T × yij

]
∑i,j 1ŷij≥T + ∑i,j yij

(6.3)

where T is the threshold applied to the model output to generate a binary prediction.
The auto-calibration procedure selects Te such that the Dice score in (6.3) is maximized
for the images from an exhaustively-labeled set Da:

Te = arg max
T

∑
(x,y)∈Da

DiceT (y, h(x; θe)) . (6.4)

The ideal choice for Da would be to use an external validation set but, in extreme data
scarcity conditions, extracting such a validation set would penalize the performance
of the algorithm by removing a significant amount of training data. Therefore, in this
context, we consider using the training subset Dl as Da. This approach has the ad-
vantage of not requiring additional training data but also induces a risk of overfitting
which might hurt generalization performance. We hope that the overfitting problem
would be compensated by the improvement brought by hard pseudo-labeling. A per-
formance comparison of these two pseudo-labeling strategies is given in Section 6.5.1
and motivates the use of the second strategy.
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6.2.2 Training

In this section, we will provide more information about the Train procedure from
Algorithm 3 which trains a model θ with a dataset D. We use U-Net [167] as a seg-
mentation architecture. We set the initial number of feature maps to 8 instead of 64 in
the original article, with the rest of the network scaled accordingly. The main goal of
this reduction of model capacity is to limit overfitting given the highly scarce data con-
ditions explored in our experiments, but it would be worth exploring more complex
architectures as future work.

The number of rounds W and E and the number of training iteration per round
are chosen independently per dataset (see Appendix Section C.2). Every training it-
eration, we build a minibatch by sampling B = 8 images uniformly at random with
replacement fromDl ∪Dpl and by extracting one randomly located 512x512 patch and
its corresponding mask from each of these images. The batch size was selected based
on hardware memory constraints. We apply random data augmentation following
best practices for machine learning in general and for self-training in particular [222,
186]. We apply horizontal and vertical flips, color perturbation in the HED space [206]
(bias and coefficient factors up to 2.5%), Gaussian noise (standard deviation up to 10%)
and Gaussian blur (standard deviation up to 5%).

As a training loss, we average the per-pixel binary cross-entropy ℓ over all pixels
of the batch, as defined in:

ℓ(ŷ; y) = y log ŷ + (1− y) log(1− ŷ), (6.5)

L = − 1
B

B

∑
b=1

1
|yb|∑i

∑
j

wij,bℓ(ŷij,b; yij,b). (6.6)

We multiply the per-pixel loss by a weight wij,b for pixel (i, j) of the bth image of
the batch in order to tune the contribution of this pixel to the loss (see Section 6.2.2.1).
We use Adam [100] as an optimizer with initial learning rate γ = 0.001 and default
hyperparameters (β1 = 0.9, β2 = 0.999, no weight decay).

6.2.2.1 Weighting schemes

Different strategies are evaluated for generating the per-pixel weight wij,b in Equation
6.6. For the sake of simplicity, we will drop the batch sample identifier b in the sub-
sequent equations and denote this weight by wij. We introduced this weight term to
have the possibility to tune the contribution of pseudo-labeled pixels when computing
the loss. It is important to note that this weight only applies to pseudo-labeled pixels
and, therefore, the ground truth pixels will always be attributed a weight of wij = 1.
It is also important to note that the weight is inserted as a constant in our loss and the
weight function is not differentiated during back-propagation.

We study five different weighting strategies each producing an intermediate weight
wξ

ij where ξ is the strategy identifier. Because we want to avoid the amplitude of the
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loss and gradients to be impacted by the weighting strategy, we normalize it to ob-
tain the final weight wij = wξ

ij/wξ , where wξ is the average weight over all pixels of a
patch. Our weighting strategies are as follows:

Constant. This strategy consists in setting wcst
ij = C where C ∈ R+ is an hyperpa-

rameter. Because wij = 1 for ground truth pixels, this allows to manually balance
the relative contributions of ground truth and pseudo-labeled pixels. The special case
C = 1 assigns the same weight to ground truth and pseudo-labels and therefore cor-
responds to removing wij,b from Equation 6.6.

Balance This strategy automatically assigns a value to the C hyperparameter pre-
sented in the “constant” strategy. As a basis for this value, we use the ratio g of ground
truth pixels in Dl ∪Ds. The final weight is given by:

wbal
ij =

g
1− g

. (6.7)

This choice is motivated by the belief that our algorithm will provide more reliable
pseudo-labels in a low data scarcity regime (g↗) in which case it makes sense to tune
up the contributions of those pseudo-labels to the loss. In the opposite situation of
extreme data scarcity (g ↘), we expect the algorithm to produce less reliable pseudo-
labels.

Entropy Unlike the previous, this strategy is not concerned with balancing the con-
tributions but instead penalizes pseudo-labels for which the model was uncertain. It
considers the prediction ŷij as a probability and tune the contribution down using the
Shannon entropy. The use of entropy is motivated by its use in several self-training
methods [69, 116]. First, an intermediate weight ωij is computed as:

ωij = 1 + ŷij log2(ŷij) + (1− ŷij) log2(1− ŷij). (6.8)

Early experiments have shown that directly using ωij as a weight resulted in unstable
training. Indeed, during early self-training rounds, the model typically produces ŷij ∼
0.5 which results in ωij ∼ 0 for most pixels in a patch, leaving only foreground ground
truth pixels to be evaluated in the loss. In order to avoid this behavior, we introduce
a new hyperparameter wmin ∈ ]0, 1] which allows rescaling linearly the weights ωij to
went

ij ∈ [wmin, 1] as defined in:

went
ij = (1− wmin)ωij + wmin. (6.9)

Consistency. Self-training algorithms often enforce consistency between the teacher
and student models predictions. Inspired from this, we exploit another form of con-
sistency for this strategy. In structured output tasks like segmentation, there is a cor-
relation between predictions that are spatially close, as, for most pixels, it is unlikely
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that the true label should differ between a pixel and its neighbors (except at the edges
of objects of interest). Therefore, we use the pseudo-label consistency between a pixel
and its neighbors as a proxy to evaluate reliability of this pseudo-label:

wcty
ij = 1−

∑
η
k=−η ∑

η
l=−η(ŷij − ŷ(i+k)(j+l))

2

η2 − 1
(6.10)

where η is the size of the neighborhood and an hyperparameter of the method. We
consider a square neighborhood around the central pixel and ignore pixels outside of
the image at the image borders. We have arbitrarly chosen η = 2 as default value for
all our experiments involving the “consistency” weighting strategy. This means that
each pixel (except at the image borders) is compared to 24 neighboring pixels when
computing consistency.

Merged. This strategy assigns a high weight to pixels for which the model is both
certain and consistent (spatially). It achieves this by multiplying together the consis-
tency weight wcty

ij and the entropy raw weight ωij. Because ωij suffers from the issue
described earlier, we apply the same re-scaling operation after multiplication:

wmgd
ij = (1− wmin)

(
wcty

ij ×ωij

)
+ wmin. (6.11)

6.3 Data

In this section, we describe the datasets we use to evaluate our method. It includes
three public exhaustively-labeled segmentation datasets: MoNuSeg [109], GlaS [184]
and SegPC-2021 [71]. The datasets are described in Table 6.1 and illustrated in Fig-
ure 6.2. MoNuSeg contains images of tissues coming from different organs, patients
and hospitals where epithelial and stromal nuclei are annotated. Given the variety
of sources, the images exhibit significant variations of staining and morphology. The
density of annotations is also quite high compared to the other datasets. GlaS features
images containing both benign tissues and malignant tissues with colonic carcinomas.
The gland annotations vary greatly in shape and size. Originally, SegPC-2021 con-
tains 3 classes: background, cytoplasm and nucleus. In our experiments, we merge
the two latter classes as we focus on binary segmentation. One of the challenges of
this dataset is the presence of non-plasma cells which should be ignored by the algo-
rithm although they are very similar to plasma cells. Moreover, artefacts are present
on the images (e.g. cracked scanner glass in foreground, scale reference or magnifica-
tion written on the image).

6.3.1 Thyroid FNAB

In addition to the three public datasets, we use a dataset that actually motivated the
development of our method, a sparsely-labeled dataset for thyroid nodule malignancy
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(A) MoNuSeg (B) MoNuSeg

(C) GlaS (D) GlaS

(E) SegPC-2021 (F) SegPC-2021

FIGURE 6.2: Samples from MoNuSeg, GlaS and SegPC-2021 used in this chapter.
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Dataset Training set Test set
Images Annots Images Annots

MoNuSeg 30 17362 14 11484
GlaS 85 763 80 781

SegPC-2021 298 1643 300 900

TABLE 6.1: Summary statistics for the public datasets used in this chapter. An image is a
region of interest extracted from a whole-slide image.

assessment. Pathologists1 sparsely annotated nuclear features (see Figure 6.4) and ar-
chitectural patterns (see Figure 6.3) with polygon annotations in 85 whole-slide images
using Cytomine [132]. Each polygon was associated with a term from the ontology
given in Appendix Section C.4. The training set consists of 4742 crops, one for each
polygon annotation. The test set is a set of 45 regions of interest (2000x2000 pixels
each) with annotations highlighting structures of interest (binary annotations, back-
ground vs. nuclei features and architectural cell patterns) made by a computer science
student.

Given how the labeling process was carried out, we hypothesize that crops of
architectural patterns are less likely to contain unlabeled cells than crops of nuclear
features. Indeed, the former usually consist in large polygons delineating areas con-
taining cell aggregates. Nuclear features, unlike architectural patterns, were usually
labeled more sparsely and it is frequent to find annotations of a single cell within an
unlabeled cell aggregate. From these observations, we have decided to assign the ar-
chitectural patterns to Dl and nuclear features to Ds.

6.4 Experimental setup

In this section, we present context information for our experiments: what are our
baselines, how we have simulated sparse datasets from the public datasets and what
evaluation protocol we have applied.

6.4.1 Transforming the datasets

In order to fit the sparsely-labeled settings described in Section 6.2, we generate new
datasets from SegPC-2021, GlaS and MoNuSeg. This generation is controlled by two
parameters: nl and ρ. The former is the number of images to keep in the exhaustively-
labeled setDl. These images are chosen at random without replacement in the original
training set. The latter parameter ρ is the percentage of annotations to remove from
the images to make the remaining images sparsely-labeled.

For MoNuSeg, we remove ρ% of the instances in each image selected for the sparse
set. For SegPC-2021 and GlaS, because the number of instances per image is small
(up to two or three dozen), we remove ρ% of the instances from the complete list of

1ULB Erasme hospital, Belgium, team of Pr. Isabelle Salmon.



6.4. Experimental setup 133

(A) (B)

(C) (D)

FIGURE 6.3: Examples of architectural patterns annotations made by pathologists for Thy-
roid FNAB.

(A) (B) (C) (D)

FIGURE 6.4: Examples of nuclear features annotations made by pathologists for Thyroid
FNAB.
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instances. As a result, some sparse training images from these datasets can be com-
pletely void of ground truth. However, this is not a problem as our pseudo-labeling
process is designed to support such images.

6.4.2 Baselines

We compare our self-training approach to three baselines, all exploiting a dataset in
a fully supervised way. The first one, referred to as “upper”, consists in using the full
dataset, without removing any ground truth (i.e. |Dl| = n and |Ds| = 0). Since it has
access to all the annotations, this baseline is expected to represent an upper bound for
all other strategies.

The second baseline consists in using the sparsely-annotated set Ds as if it was
exhaustively annotated (Dtrain = Dl ∪ Ds). This strategy makes sense especially for
moderately sparse datasets. Indeed, convolutional layers (as in U-Net) are able to cope
with a bit of label noise given that gradients are averaged over feature maps to update
the model parameters. Therefore, a bit of noise in certain parts of the images can be
compensated by the feedback of ground truth labels in other locations. This baseline
will be referred to as “Dl ∪Ds”.

The third and last baseline, referred to as “Dl only”, consists in not using at all the
sparsely-annotated images during the training process (i.e. Dtrain = Dl).

Our self-training approach is of practical interest if it outperforms the two latter
baselines. Moreover, the closer to the “upper” baseline the better.

6.4.3 Evaluation

We have built an evaluation protocol in order to ensure a fair comparison between the
different strategies and the baselines. Ultimately, all approaches produce a segmenta-
tion model θ that will be the one evaluated. As an evaluation metric, we use the Dice
score introduced in Equation 6.3 which requires a threshold T to turn the probability
map produced by the model into a binary segmentation. In what follows, we will call
T the segmentation threshold. To assess the performance of a model independently of
the thresholding strategy, we will pick T so that the Dice score is maximized on the test
set. In other words, in order to determine the segmentation threshold, we apply the
optimization procedure described in Equation 6.4 where Da is the test set Dtest. The
Dice score resulting from this optimization will be referred to as “Dice∗”. It represents
the optimal performance one could get, in terms of Dice score, on the test set with a
given model. Dice∗ will be used in the next section to compare different algorithmic
variants independently of the threshold tuning strategy. Obviously, in a context of ex-
treme data scarcity, it will not be possible to tune the threshold this way because of the
lack of a sufficiently large validation or test set. We will discuss and evaluate different
ways to tune the segmentation threshold in Section 6.5.4.

Every experiment and hyperparameters combination we evaluate is run with ten
random seeds to evaluate the variability. The seed affects the dataset sparsity (nl and
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ρ), model initialization, mini-batch sampling and data augmentation. We report Dice
average and standard deviation over these random seeds.

6.5 Experiments and results

In this section, we present our experiments and results. In Section 6.5.1, we present
our analysis of hard and soft pseudo-labels. In Section 6.5.2, we present our main self-
training experiment in varying data scarcity conditions. In Section 6.5.3, we explore
whether it is better to annotate a new segmentation dataset exhaustively or sparsely.
We discuss the choice of a segmentation threshold in Section 6.5.4. Finally, we apply
our method to the Thyroid FNAB dataset in Section 6.5.5.

6.5.1 Hard vs. soft pseudo-labeling

In this section, we explore how the two choices of pseudo-label generation presented
in Section 6.2.1.1 impact the performance of self-training. In order to answer this ques-
tion, we have run our self-training approach with different hyperparameter settings
either with hard or soft pseudo-labels. We have performed 10 runs per hyperparam-
eter combination and considered 24 combinations for SegPC-2021, 20 for MoNuSeg
and 22 for GlaS (see Appendix Section C.1 for a detailed list of hyperparameters com-
binations). This experiment was carried out during the exploratory phase of the work
where we studied a significantly scarce regime with ρ = 90% for all datasets and nl
set to 2 for MoNuSeg, 30 for SegPC-2021 and 8 for GlaS (i.e. between 90% and 95% of
sparsely-labeled images with 90% of missing annotations).

The resulting performance are reported in Figure 6.5. We observe that, for all
datasets except GlaS, the range of performance obtained with soft pseudo-labels fits
within the range of performance of hard pseudo-labels. This indicates that soft pseudo-
labels yield more stable performance and are less impacted by the choice of a weight-
ing strategy and its hyperparameters, but also that when appropriately selecting the
hyperparameters, hard pseudo-labels are able to produce better performance. How-
ever, it also means that a bad choice of self-training hyperparameters when using hard
pseudo-labels would have a more significant negative impact on the performance. For
GlaS, the performance obtained using soft pseudo-labels are inferior to those of hard
pseudo-labels.

As a disclaimer, this analysis holds for the studied scarcity regime as the impact of
hard and soft pseudo-labels could change in different conditions which we have not
evaluated due to time and computational resources constraints.

6.5.2 Self-training performance at fixed nl

In order to study how our self-training approach performs under different data scarcity
conditions, we have generated several versions of our datasets by varying ρ with nl
fixed and have run the baselines and different hyperparameters combinations on the
generated datasets. As discussed in Sections 6.2.1, we have used hard pseudo-labels
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FIGURE 6.5: Comparing performance between using self-training with hard and soft
pseudo-labels.

exclusively. The detailed hyperparameter combinations used in this section are pro-
vided in Appendix Section C.2.

Results are shown for all three datasets in Figure 6.6. In general, self-training is
always able to outperform significantly the “Dl only” and “Dl ∪ Ds” baselines with a
significantly reduced amount of sparse annotations (the exact value is dataset depen-
dant, see below). Regarding the baselines, “upper” outperforms the two others. More-
over, using sparsely-labeled images as if they were exhaustively-labeled (i.e. Dl ∪Ds)
appears not to be a good idea as it is outperformed by all self-training approaches and
baselines in almost all scarcity conditions. The performance of this baseline increases
as one adds more sparse annotations however and is able to catch up with the “Dl
only” baseline in the lowest scarcity conditions validating the hypothesis presented in
Section 6.4.2.

MoNuSeg. On this dataset, we can divide the analysis by differentiating three scarcity
regimes: extreme (ρ ∈ [95%, 100%]), significant (ρ ∈ [80%, 90%]) and medium (ρ ∈
[25%, 75%]). Overall, most self-training approaches benefit from additional sparse
annotations as their score increase when ρ decreases. This statement is true for all
weighting strategies but the “constant” (C = 0.1) of which the performance plateau
near ρ = 85%, before decreasing as ρ decreases.

In the extreme regime, all self-training approaches exhibit high variance and are
outperformed by the “Dl only” baseline, or yield comparable performance. In this
situation, it appears to be better to work in a fully supervised fashion using only
images from Dl rather then using our self-training approach. Indeed, it seems that
the noise brought by the extreme annotation sparsity (or complete lack of annotation
when ρ = 100%) degrades the model significantly which cannot even make efficient
use of the exhaustively-labeled images anymore. For ρ = 95%, two self-training ap-
proaches (“constant” (C = 0.1) and “entropy”) are on average better then the baseline
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FIGURE 6.6: Performance of our baselines and self-training approaches with different hy-
perparameters combinations with a varying ρ and a fixed labeled set size nl . We only report
the weighting schemes that show representative behavior. Other weighting strategies are

evaluated and reported in Appendix Section C.3.

but variance is still high making it difficult to really conclude that they are more effi-
cient.

The situation is reversed in the significant regime where most self-training ap-
proaches (except the “consistency” weighting strategy) outperform the “Dl only” base-
line and variance decreases significantly as well. As for the “upper” baseline, it remains
more efficient than self-training. For ρ = 90%, the most efficient weighting strategy
on average is “constant” (C = 0.1) which also exhibits the smallest variance of all the
self-training approaches. We believe that such a low constant is particularly helpful
to combat the noise brought by the high sparsity as pseudo-labeled pixels contribute
way less during training. For ρ = 85% and 90%, the “constant” (C = 0.1) strategy
plateaus whereas others catch up in terms of performance and variance decrease with
the “entropy” and “merged” (plot for this strategy can be found in Appendix Figure
C.1) approaches taking up the lead.
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In the medium regime, three self-training approaches reach, and even slightly sur-
pass, the “upper” baseline: “constant” (C = 0.5), “entropy” and “merged”. This result
is interesting because it means that our self-training approach is able to reach the per-
formance of a fully supervised approach but using only ∼ 30% of the original annota-
tions (i.e. ρ = 75%, approximately 5k annotations instead of 17k) which is a significant
annotation budget saving. The approach “constant” (C = 0.1) decreases with ρ indi-
cating that such a low C prevents the model to learn efficiently from the additional
annotations (compared to the significant regime). This strategy even finished below
the Dl ∪Ds baseline at ρ = 25%.

Overall, results on MoNuSeg are quite satisfactory. Although our approach is
struggling in an extreme scarcity regime, it quickly catches up with the “upper” base-
line as one adds more annotations to Ds. In this case, the choice of weighting strategy
matters and depends on the sparsity of the dataset.

SegPC-2021. Regarding the trend, our self-training approach behaves similarly on
SegPC-2021 (see Figure 6.6b) compared to MoNuSeg: all self-training approaches
without exception seem to benefit from additional annotations in Ds. Moreover, the
Dl ∪ Ds baseline is particularly inefficient and finishes just below the “Dl only” base-
line at ρ = 25%. However, in the extreme regime, the gap between self-training and
the “Dl only” baseline is less than on MoNuSeg. The rate at which our approach im-
proves over the “Dl only” is also slower as it takes a larger ρ (around 75%) for the
performance of self-training to become significantly better than this baseline. The best-
performing weighting strategies also differ. The best strategies overall are “constant”
(with C = 0.5 or 1) and “consistency”. The “merged” and “entropy” are worse than
the others, although the latter catches up at ρ = 25%. On this dataset, only the “con-
stant“ and “entropy” strategies come close to catching up with the upper baseline but
it takes proportionally more annotations compared to MoNuSeg as it happens around
ρ = 25%.

GlaS. On this dataset, all self-training approaches benefit from additional sparse an-
notations in Ds. Compared to the “Dl only” baseline, the self-training approaches are
never worse, even in the extreme scarcity regime, and it takes a ρ between 60% and
75% for self-training to become significantly better. Self-training is not able to catch
up the “upper” baseline in this case.

6.5.3 Labeling a new dataset: sparsely or exhaustively?

The fact that self-training is able to equal or outperform the “Dl only” and “upper”
baselines suggests that it might be more interesting to consider an alternative an-
notation strategy to exhaustive labeling when annotating a new dataset. At fixed
annotation budget, it might indeed be more interesting to combine sparse labeling
and self-training rather than performing fully supervised training on an exhaustively-
labeled dataset (i.e. Dl only). To answer this question, we have conducted a set of
experiments where we compare a self-training approach (entropy weighting strategy,
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wmin = 0.1) and the baselines all run against different sparsity regimes, varying both
ρ ∈ {90%, 50%, 25%} and nl (values are dataset specific). The results of these experi-
ments are given in Figure 6.7 where the values of nl we have used are also specified.
In these plots, the performance of all methods are reported over a common metric, the
percentage of annotations used, which can be equated with the annotation budget for
creating the dataset.

Our experiments show very dataset-dependent results. On MoNuSeg, we observe
that self-training outperforms supervised training for all tested budgets. This indi-
cates that it would have been more interesting to sparsely annotate this dataset. How-
ever, this conclusion does not hold for the other datasets as, within the same annota-
tion budget, using “Dl only” outperforms self-training.

This experiment also allows to compare which labeling scheme is better for self-
training: for a given annotation budget, is it better to favor a larger set Dl or to add
more sparse annotations in Ds? For MoNuSeg and SegPC-2021, it appears that, for
a similar annotation budget, self-training performance are comparable whatever the
values of nl and ρ. Therefore, for those datasets, it does not really matter if the anno-
tation budget is spent for exhaustive or sparse labeling. For GlaS, however, there is
a performance loss when switching from a lower ρ value to a higher (e.g. going from
(ρ, nl) = (90%, 40) to (50%, 8) in Figure 6.7c). It indicates that, it is more interesting to
label images exhaustively rather than sparsely for this dataset.

At this point, the experiments in this section do not allow us to provide definitive
guidelines on how to focus annotation efforts to achieve optimal performance on a
new dataset, but at least, they show that it can be beneficial to sparsely annotate more
images than to exhaustively annotate fewer images.

6.5.4 Tuning the segmentation threshold

In previous experiments, we have compared algorithms in terms of Dice∗ scores, i.e,
assuming that the segmentation threshold T∗ has been optimally tuned on the test
set. As discussed earlier, this tuning strategy is not realistic in a scarce data regime,
because of the lack of a large validation set. In this section, we will assess the im-
pact of two more realistic strategies to tune the segmentation threshold. The first one
simply exploits the auto-calibration procedure used during self-training to determine
the hard pseudo-labels, i.e., the segmentation threshold is tuned on the fully labeled
training set Dl. We will denote this threshold as TE (as it corresponds to Te as defined
in Equation 6.4 at the last epoch E). This is likely to produce a biased threshold as the
model has been specifically trained to produce good performance on Dl. The second
strategy we propose consists is tuning the segmentation threshold on only a few im-
ages from the test set. If the model has to be used to interactively assist the labeling
of new images by a human user, it seems indeed realistic to require this user to cal-
ibrate the threshold by visual inspection of a couple of images. We will mimic this
process by tuning the segmentation threshold on two images picked randomly from



140 Chapter 6. Self-training for segmentation from sparsely-labeled data

0 20 40 60 80 100
Annotations (% of total)

0.72

0.74

0.76

0.78

0.80

0.82

D
ic

e∗

2

5

10
15

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(A) MoNuSeg, nl = {2, 5, 10, 15}

0 20 40 60 80 100
Annotations (% of total)

0.65

0.70

0.75

0.80

D
ic

e∗

30

50

100 150

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(B) SegPC-2021, nl = {30, 50, 100, 150}

0 20 40 60 80 100
Annotations (% of total)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

D
ic

e∗

8

16
32

40

ρ = 90%

ρ = 50%

ρ = 25%

self-training

Dl only

upper

(C) GlaS, nl = {8, 16, 32, 40}

FIGURE 6.7: Self-training vs. the baselines for varying ρ and nl . A point corresponds to 10
runs of a given approach (see line color) and some sparsity parameters, ρ (see line style)
and nl (see subcaptions, increasing from left to right on a constant ρ curve, see “Dl only” for
example). A new dataset is generated for each run, with the corresponding nl and ρ values.
The x value of a point corresponds to the average percentage of annotations used by the 10

datasets, or, alternatively, to the annotation budget dedicated for labeling the dataset.

the test set. The threshold obtained this way will be denoted TI below (for “Interac-
tive”). This experiment is carried out on the same datasets as in Section 6.5.2 (same ρ
and nl values).

These two strategies are compared against the Dice∗ score with the models pro-
duced by the experiments in Section 6.5.2. Representative plots for each dataset can
be found in Figure 6.8. As previously, results are averaged over 10 runs, with the two
images used to obtained TI randomized in each run.

As expected, it appears that tuning the threshold T on the training set (i.e. using
TE) results in overfitting as we observe a performance drop compared to using T∗

(tuned on Dtest). However, overfitting does not seem major for MoNuSeg and GlaS
(in general, at most 4% Dice score difference compared to using T∗ but often less) as
opposed to SegPC-2021 where the Dice score difference in favor of T∗ can reach more
than 10% for some ρ values and does not go below 4%. Using TI mostly reduces the
performance gap with respect to T∗ compared to using TE. This is true for all datasets
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FIGURE 6.8: Performance resulting from using different threshold tuning techniques on our
three datasets with two self-training approaches: “entropy” and “constant” (C = 0.5). The

segmentation threshold for the “upper” and “Dl only” baselines is T∗.
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Method Dice∗

Self-training 89.05± 0.85
Dl only 80.30± 5.39
Dl ∪Ds 83.62± 3.52

TABLE 6.2: Experiment on the Thyroid FNAB dataset. The self-training approach uses the
“entropy” weighting strategy and wmin = 0.1.

and evaluated self-training approaches except for GlaS and “constant” (C = 0.5) where
using TE is better. The inversion of performance between TE and TI in this case occurs
likely because overfitting is more significant with TI than TE as the number of images
used for tuning TI is limited compared to TE (2 test images over 8 images from Dl).

As a conclusion, depending on the dataset, one could already obtain good perfor-
mance with TE meaning that no test data is needed at all to tune the threshold. This
is interesting for applications of our algorithm to interactive annotation for instance.
Otherwise, using TI is a strong alternative that requires only few test images. In prac-
tice, it is however not possible to determine the best approach a priori without a test
set.

6.5.5 Experiments on Thyroid FNAB

The Thyroid FNAB dataset introduced in Section 6.3.1 offers a great opportunity to test
our method on a real case of sparsely-labeled data. It is interesting to note that this
dataset is larger than the three public datasets used in this study (almost 5k images in
total).

Based on the results of Section 6.5.2, we have chosen to use the “entropy” weight-
ing strategy with wmin = 0.1 for our self-training approach, as it provides consistently
good results across datasets. We compare this approach with two of our three base-
lines: “Dl only” and “Dl ∪ Ds”. The “upper” baseline obviously cannot be evaluated
because we do not have access to the complete ground truth. The resulting perfor-
mances are given in Table 6.2.

We observe that our self-training approach significantly outperforms the two base-
lines and remains quite stable as its standard deviation is below 1%. This confirms the
interest of self-training when working with a sparse dataset.

6.6 Conclusion and future works

In this chapter, we have introduced a method based on self-training for training a
deep binary segmentation model with sparsely-labeled data. Using four datasets,
we have shown that the method could indeed make use of sparse annotations to im-
prove model performance over using only exhaustively-labeled data. For one of our
datasets, our self-training approach using only 30% of the original training annota-
tions is even able to reach performance comparable to using all of them in a supervised
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way. We have also shown that it can be beneficial to label a new dataset sparsely in-
stead of exhaustively and confirmed the interest of our method on an actual sparsely-
labeled dataset where self-training improved performance by a 5% margin compared
to the baselines.

In the future, we want to further study the impact of various training choices
and hyperparameters (model complexity, weighting strategies, soft pseudo-labeling,
etc.) that we could not explore due to time and computing resources constraints. We
also want to further study how the type of dataset (variability in images, density of
ground truth, large or small annotations, etc.) impacts the performance margins of
self-training. Moreover, we have removed annotation randomly from the datasets. In
practice, it is unlikely that the existing annotations are really randomly chosen and it
would be interesting to study the effect of the labeling process. To reinforce the gener-
ality of our conclusions, it would be interesting to include more segmentation datasets
in a future study.

Currently, the method only supports binary segmentation but it is possibile to ex-
tend it to multiclass segmentation. This extension would start by changing the sig-
moid output layer of UNet by a softmax function which implies that a label (and by
extension a pseudo-label) is not a probability anymore but rather a probability distri-
bution. Many aspects of our approach can be trivially adapted to this change (cross-
entropy loss, soft labeling, entropy weighting strategy, etc.). There are two elements
in particular that require a little more thoughts. The first is hard pseudo-labeling as
thresholding is not relevant anymore and one could, for instance, take the most prob-
able class. This criterion would however ignore the possible uncertainty of the model
when entropy is high. A smarter strategy might be useful in this case (if the “entropy’
’weighting strategy is not enough). The second is the consistency weighting strategy
as a new function to compare probability distributions must be chosen.

It has been shown for other applications that self-training is also useful when data
is plentiful (e.g. [244]). So it would be interesting to study more extensively how our
approach would perform in lower data scarcity condiditions (e.g. larger n and nl).





7 Chapter

Conclusion and future works

7.1 Wrapping up

In this thesis, we investigated how image classification and segmentation machine
learning techniques could be applied in the context of digital pathology. In particular,
we studied how different methods could be used to alleviate the consequences of data
scarcity, a prevalent issue in the domain. Causes and consequences of data scarcity
are numerous and are discussed Chapter 3. Some of the consequences include small
dataset size, lack of variety and oversimplification of the learning tasks, etc. These can
have a significant negative impact on the efficiency of machine and especially deep
learning methods which are known to be particularly data-hungry.

In Part II, we first investigated transfer learning. In Chapter 4, we compared dif-
ferent ways seven popular deep learning architectures pre-trained on ImageNet could
be transferred to pathology classification tasks. We studied both feature extraction
and fine-tuning. Regarding feature extraction, we considered features not only from
the last layer of the networks but also from inner layers. Moreover, we devised an
experiment to evaluate the redundancy of these features using recursive feature elimi-
nation. We showed that, although source (i.e. natural images) and target (i.e. pathology
images) domains are quite dissimilar, both feature extraction and fine-tuning from Im-
ageNet were effective transfer techniques as they were able to improve significantly
over our baseline. Moreover, fine-tuning proved to be more efficient than feature ex-
traction. Among the architectures we have tested, ResNet50 and DenseNet121 often
yielded the best performance.

Moving on to Chapter 5, guided by the fact that transfer learning is known to per-
form better when source and target tasks are close, we searched for a way to create a
transferrable model pre-trained on pathology data. However, because of data scarcity,
it was (and still is to this date) not possible to find a sufficently large and versatile
pathology dataset to pre-train a deep learning model. Therefore, we decided to ex-
ploit the fact that many small and medium pathology datasets had been released over
the years and decided to pre-train our model in a multi-task fashion using as many
of these datasets as possible. We collected 22 classification tasks featuring 81 classes
and almost 900k images and designed a multi-task pre-training protocol to exploit
them. We showed that our models used as feature extractors either outperformed
or provided comparable performance compared to models pre-trained on ImageNet.
We also observed that fine-tuning multi-task or ImageNet pre-trained models yielded
comparable performance, indicating that fine-tuning was able to recover the lack of
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specificity of ImageNet features. We also confirmed the conclusions from Chapter 4
as we showed that fine-tuning outperformed feature extraction. Moreover, we also
confirmed the consensus that transfer was more efficient than training from scratch.

In Part III and Chapter 6, we focused on semi-supervised learning and self-training
in particular. We proposed a self-training algorithm for image segmentation able to
make use of both exhaustively and sparsely-labeled data. Every training epoch, our
approach generates pseudo-labels for unlabeled pixels in the training set using the cur-
rently trained model and combines them with the sparse ground truth. The model can
then be trained on the combination of the pseudo-labeled and exhaustively-labeled
set. Using three exhaustively-labeled datasets that we artificially made sparse, we
showed that our self-training approach was able to improve performance over a fully
supervised approach learning from the exhaustively-labeled data only. For one of our
datasets, self-training was even able to reach performance of a model trained on a
completely annotated dataset with only ∼ 30% of the training annotations. We con-
firmed our findings on a sparsely-labeled dataset annotated by collaborators using
Cytomine. On this dataset, we showed that self-training improved performance by a
5% margin compared to our baselines. We finally showed that when annotating a new
dataset, it was not necessarily better to annotate it exhaustively.

We hope that, with these three contributions, we have confirmed that data scarcity
in digital pathology was not an inextricable issue and that there exists algorithmic
solutions to at least alleviate it.

7.2 Future works

In this section, we discuss future perspectives for our works.

Transfer with new architectures. In 2018, when we experimented with deep trans-
fer learning, we investigated the transfer learning potential of many neural network
architectures that were quite recent at that time. Since we published our first article
(which is the subject of Chapter 4), many new architectures have been proposed and
it would be interesting to evaluate how good these architectures would be in terms of
transfer performance to pathology tasks. This includes new convolutional neural net-
work architectures (e.g. NASNets [243], EfficientNets [202], EfficientNetsV2 [203], etc.)
but more prominently transformer architectures like ViT which are currently state-of-
the-art on ImageNet [229].

Consider more tasks and types of task. We have used 22 classification tasks for pre-
training our models in multi-task. It would be interesting to add more tasks to the
pool to reinforce even more the versatility of the pre-trained model. Since the publi-
cation or the related article in 2020, new pathology datasets have been released and
would be good candidate to be integrated (e.g. CoNiC and NuCLS introduced in Ta-
ble 3.1). Moreover, only supporting classification tasks is restrictive as it prevents from
exploiting other kind of datasets like detection or segmentation (those that cannot be
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easily converted to classification at least). One way of including these types of task
would be to use new head architectures. For instance, the classification head could
be replaced by a decoder from a UNet model to support a segmentation task. This
kind of change would require careful consideration because adding a large head for
a bunch of tasks would increase the memory and time requirements for training the
model. In the same spirit, it would be interesting to study the effects of using more
complex heads for classification as well.

Study self-training with larger datasets. We have mostly studied how our method
performed in high data scarcity conditions. However, self-training methods have
shown to improve performance in context where data is plentiful (e.g. [244]). This
can be done for instance by pseudo-labeling entirely unlabeled datasets. When work-
ing with whole-slide images, it is common to only have regions of interest annotated
instead of entire slides. Therefore, this leaves out many unlabeled area that could be
included as training data after pseudo-labeling. It would be interesting to study how
including these would help improve performance. There exists pathology datasets
that could directly be used for this purpose like, for instance, Camelyon [123] which
features 209 whole-slide images with pixel-wise segmentation labels and 1190 unan-
notated slides. Another example is the Thyroid FNAB dataset used in Chapter 6. Im-
plementing such an experiment raises interesting technical questions regarding pro-
cessing time as it is probably not necessary nor efficient to predict pseudo-labels for
billions of unlabeled pixels every training round as only a subset of them will likely
be used for the next training round.

Self-training as an interactive annotation algorithm. As discussed in Chapter 6, one
possible application of our self-training algorithm would be to use it as an interactive
assistant for annotating new datasets. Because a dataset being annotated is sparse by
nature, we believe that a self-training approach could be leveraged to train a model
using the data being annotated. The model, while being trained, could also be used to
generate segmentation masks to be refined and corrected by human annotators. The
resulting corrected annotations could be incuded in the training set. Investigating this
idea would require not only to re-implement the self-training in an interactive way
but also raises practical questions about graphical user interface and user experience.
The system should for instance minimize latency when a user requests annotations
for a selected area meaning that the model should be able to receive queries while
being trained. The training process should handle addition of new training data on-
the-fly as provided by the annotator. The interface should provide an WSI viewer and
efficient annotation and correction tools (e.g. Cytomine).

Systematic benchmarking of representation learning methods in pathology. Rep-
resentation learning is interested in methods that train a model able to generate a rich
representation for a data sample (e.g. in our case, feature vectors for pathology im-
ages). In Part II, we have investigated few representation learning approaches focused
on transfer from ImageNet, fine-tuning and multi-task pre-training. These are only a
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few examples of representation learning as there exist many more ways of learning
a representation which have been explored by the community. A particularly popu-
lar approach is self-supervised learning (see Section 2.2.2) which has seen a surge of
interest by the computational pathology community in the past few years (e.g. [223,
217, 27, 104, 38]). Although each contribution individually provides a comparison
against popular techniques, they are not easily comparable between each other be-
cause they do not use the same reference datasets as benchmarks. In the same spirit as
Biaflows [172] (see Appendix E), it would be interesting to provide a way to system-
atically benchmark the performance of a representation learning methods on an open
platform.

Mixing it all up. There is nothing that prevents the different methods explored in
this thesis to be used together. Indeed, transfer learning can be used to initialize the
encoder part of a Unet, multi-task learning can be used to train a segmentation model.
More interestingly, we could use self-training and multi-task learning together to train
a classification or a segmentation model. For instance, we could train a multi-task
UNet on the datasets used in Chapter 6 (MoNuSeg, SegPC-2021 and GlaS and Thyroid
FNAB) simultaneously. Every epoch we would pseudo-label unlabeled regions of
the Thyroid whole-slide images that could be included as training data for the next
training epoch.
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Appendices for Chapter 4

A.1 Selected hyperparameters for the classifiers and the
baseline

When we train a classifier on extracted features, we tune its hyperparameters by
cross-validation. For SVM, we tune the penalty parameter C with values taken in{

10−10, 10−9, ..., 10
}

. For extremely randomized trees, we grow fully expanded trees

and tune the number of features evaluated at each split k among
{

1,√n f ,
n f
2 , n f

}
where n f is the total number of features. For the single layer perceptron, we tune
the number of iterations among {1000, 2500, 5000, 10000} and the learning rate among{

10−4, 10−3, 10−2, 10−1}. All the other parameters values are the ones provided by
default by the scikit-learn package [151]. More precisely, we use: the Adam [100] op-
timizer with default parameters, an L2 penalty on the weights with α set to 10−4 and
a batch size of 200 samples.

For the baseline ET-FL, we tune the size of the windows (wmin, wmax) among all
valid size ranges with min_size in {0.0, 0.25, 0.5, 0.75} and max_size in {0.25, 0.5, 0.75, 1.0}
and the colorspace L among {TRGB, HSV} where TRGB and HSV are respectively the nor-
malized RGB and hue-saturation-value colorspaces. The number of extracted subwin-
dow per image w is taken such that the total number of subwindows for the dataset wt
is approximately 1 million. The other fixed parameters are T, the number of trees, lmin,
the minimum number of samples in a leave of a tree. The value for those parameters
as well as the selected values for tuned parameters are given in Table A.1.

A.2 Best features

In order to investigate the best features (according to feature importances) for a given
network, we compute the minimum size of the best features subset so that at least one
feature is in this subset for all datasets. The resulting sizes for all networks are given
in Table A.2. We also compute the percentages of overlap between subsets of selected
features by RFE for all pairs of datasets (see Tablez A.8 and A.9)
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Datasets Fixed Tuned (best)
T w wt lmin k C wmin wmax L

C 20 551 1000616 1000 384 0.01 0.25 0.50 TRGB
G 20 69 1007745 1000 384 0.01 0.00 0.75 HSV
P 20 743 1000078 1000 384 0.01 0.25 0.50 HSV
N 20 1265 1000615 1000 384 0.01 0.00 0.25 HSV
B 20 55 1004355 1000 384 0.01 0.00 0.75 HSV
M 20 261 1001457 1000 384 0.01 0.25 0.75 TRGB
L 20 184 1001512 1000 384 0.01 0.25 0.50 HSV
H 20 228 1002516 1000 384 0.01 0.25 0.50 TRGB

TABLE A.1: Hyperparameters for ET-FL.

N # feat. % feat.
Mobile 753 73.54

IncResV2 1277 83.14
IncV3 1537 75.05

ResNet 1803 88.04
VGG16 409 79.88
VGG19 392 76.56

DenseNet 1477 76.93

TABLE A.2: Given a network, this table gives the best features subset minimum size so that
there is at least one feature that is in this subset for all datasets.
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Layer l (name) Feat. maps dim.
ha wa d

activation_1 112 112 64
activation_4 55 55 256
activation_7 55 55 256
activation_10 55 55 256
activation_13 28 28 512
activation_16 28 28 512
activation_19 28 28 512
activation_22 28 28 512
activation_25 14 14 1024
activation_28 14 14 1024
activation_31 14 14 1024
activation_34 14 14 1024
activation_37 14 14 1024
activation_40 14 14 1024
activation_43 7 7 2048
activation_46 7 7 2048

activation_49 (last) 7 7 2048
Total / / 15168

TABLE A.3: Name and dimensions of the layers extracted from inside ResNet for the “Merg-
ing features across layers” and “Inner layers” experiments.

A.3 Features and cut points information

This section provides more details about the inner layers we have considered in our
experiments. The inner layers information for ResNet, IncResV2 and DenseNet can be
respectively found in Tables A.3, A.4 and A.5.

A.4 Features selected with RFE

A summary of the number of selected features and the cross-validation curves for all
datasets and networks are respectively given in Table A.6 and FigureS A.1 and A.2.

A.5 Detailed scores for transfer learning experiments

Detailed scores for all datasets, experiments and networks are given in Tables A.10
and A.11.
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Layer l (name) Feat. maps dim.
ha wa d

max_pooling2d_2 25 25 192
mixed_5b 25 25 320

block35_1_ac 25 25 320
block35_4_ac 25 25 320
block35_7_ac 25 25 320

block35_10_ac 25 25 320
mixed_6a 12 12 1088

block17_5_ac 12 12 1088
block17_10_ac 12 12 1088
block17_15_ac 12 12 1088
block17_20_ac 12 12 1088

mixed_7a 5 5 2080
block8_3_ac 5 5 2080
block8_6_ac 5 5 2080
block8_9_ac 5 5 2080

conv_7b_ac (last) 5 5 1536
Total / / 17088

TABLE A.4: Name and dimensions of the layers extracted from inside IncResV2 for the
“Merging features across layers” and “Inner layers” experiments.

Layer l (name) Feat. maps dim.
ha wa d

pool1 56 56 64
conv2_block6_concat 56 56 256

pool2_pool 28 28 128
conv3_block12_concat 28 28 512

pool3_pool 14 14 256
conv4_block48_concat 14 14 1792

pool4_pool 7 7 896
conv5_block32_concat 7 7 1920

bn (last) 7 7 1920
Total / / 7744

TABLE A.5: Name and dimensions of the layers extracted from inside DenseNet for the
“Merging features across layers” and “Inner layers” experiments.
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N Number of features
C P G N B M L H

Mobile 25 257 33 13 57 169 45 213
DenseNet 25 37 17 13 49 241 57 245
IncResV2 29 53 29 13 185 249 69 173
ResNet 13 69 33 97 57 89 77 109
IncV3 33 13 37 13 97 121 105 137

VGG19 25 41 41 21 25 161 61 73
VGG16 25 29 33 29 49 225 93 113

TABLE A.6: Number of features selected by RFE for all datasets and networks.

N Proportion of features (%) AverageC P G N B M L H
Mobile 2.44 25.10 3.22 1.27 5.57 16.50 4.39 20.80 9.91

DenseNet 1.30 1.93 0.89 0.68 2.55 12.55 2.97 12.76 4.45
IncResV2 1.89 3.45 1.89 0.85 12.04 16.21 4.49 11.26 6.51
ResNet 0.63 3.37 1.61 4.74 2.78 4.35 3.76 5.32 3.32
IncV3 1.61 0.63 1.81 0.63 4.74 5.91 5.13 6.69 3.39

VGG19 4.88 8.01 8.01 4.10 4.88 31.45 11.91 14.26 10.94
VGG16 4.88 5.66 6.45 5.66 9.57 43.95 18.16 22.07 14.55
Average 2.52 6.88 3.41 2.56 6.02 18.70 7.26 13.31 7.58

TABLE A.7: Proportion of features selected by RFE for all datasets and networks.
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(A) Mobile

(B) DenseNet

(C) IncResV2

(D) ResNet

FIGURE A.1: RFE curves for last layers features from InceptionV3, VGG19 and VGG16.
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(A) IncV3

(B) VGG19

(C) VGG16

FIGURE A.2: Cross validation curves from recursive feature elimination for last layers fea-
tures from InceptionV3, VGG19 and VGG16.
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Dataset C P G N B M L H
C 1 3 0 0 3 4 2
P 20 27 53 40 33 33 34
G 4 3 7 14 4 15 6
N 0 2 3 5 1 4 0
B 0 8 24 23 5 17 8
M 24 22 21 15 17 26 31
L 8 5 21 15 14 7 6
H 20 28 39 15 33 40 31

(A) Mobile
Dataset C P G N B M L H

C 1 0 0 3 2 7 3
P 3 3 0 6 4 2 5
G 0 1 0 1 2 0 1
N 0 0 0 0 0 0 0
B 20 22 10 7 14 20 13
M 17 22 17 15 18 20 21
L 17 3 0 0 7 5 7
H 20 17 10 0 12 14 18

(B) IncResV2
Dataset C P G N B M L H

C 0 2 0 4 2 3 3
P 0 0 7 0 1 2 1
G 3 0 0 8 1 6 0
N 0 7 0 2 2 1 1
B 12 0 21 15 10 13 10
M 9 15 5 23 13 21 20
L 12 23 18 15 14 19 10
H 15 15 2 15 15 23 14

(C) IncV3
Dataset C P G N B M L H

C 2 0 2 3 3 0 2
P 15 0 7 7 7 14 11
G 0 0 2 5 2 5 1
N 15 10 6 19 11 11 9
B 15 5 9 11 6 16 11
M 23 10 6 10 10 10 23
L 0 15 12 9 22 9 10
H 23 18 6 10 21 29 14

(D) ResNet

TABLE A.8: Percentages of overlap between features selected by RFE on the studied datasets
(part 1, see Figure A.9 for part 2). The tables can be read as follows: the number at row i and
column j is the percentage of features among the ones selected for dataset j that were also

selected for the dataset i.
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Dataset C P G N B M L H
C 10 3 10 8 6 5 7
P 12 9 13 14 9 14 9
G 4 10 13 12 8 17 6
N 12 13 12 16 7 8 11
B 16 24 18 27 16 18 19
M 60 72 60 58 73 62 78
L 20 44 48 27 34 25 26
H 32 37 21 44 44 39 32

(A) VGG16
Dataset C P G N B M L H

C 4 2 4 12 6 8 8
P 8 14 19 12 11 14 16
G 4 14 0 24 10 21 6
N 4 9 0 20 6 9 8
B 12 7 14 23 7 13 9
M 44 46 41 52 48 50 45
L 20 22 31 28 32 19 16
H 24 29 12 28 28 20 19

(B) VGG19
Dataset C P G N B M L H

C 2 0 0 0 1 3 2
P 4 11 0 2 3 3 3
G 0 5 0 6 0 1 0
N 0 0 0 0 1 0 0
B 0 2 17 0 3 5 2
M 16 21 11 23 16 21 24
L 8 5 5 0 6 5 7
H 28 21 11 15 12 24 31

(C) DenseNet

TABLE A.9: Percentages of overlap between features selected by RFE on the studied datasets
(part 2, see Figure A.8 for part 1).
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Experiment C N C P G N B M L H
Baseline ET-FL 0.9250 0.8268 0.9551 0.9805 0.9345 0.7568 0.8547 0.6960

Last layer SVM

Mobile 0.9749 0.8844 0.9935 0.9953 0.9427 0.7611 0.9043 0.6882
DenseNet 0.9794 0.8852 0.9938 0.9864 0.9257 0.7010 0.9133 0.7820
IncResV2 0.9795 0.8698 0.9928 0.9982 0.9485 0.6566 0.9077 0.7351
ResNet 0.9748 0.8893 0.9924 0.9882 0.9372 0.7633 0.9122 0.7791
IncV3 0.9722 0.8670 0.9910 0.9964 0.8951 0.6371 0.9088 0.7175

VGG19 0.8853 0.8654 0.9860 0.9905 0.9241 0.7237 0.8885 0.7302
VGG16 0.8824 0.8808 0.9859 0.9893 0.9413 0.7438 0.9020 0.7028

Last layer ET

Mobile 0.9608 0.8848 0.9854 0.9840 0.9487 0.5872 0.8648 0.7126
DenseNet 0.9726 0.8889 0.9891 0.9870 0.9556 0.6381 0.8874 0.7410
IncResV2 0.9618 0.8699 0.9824 0.9953 0.9408 0.4789 0.8570 0.6676
ResNet 0.9634 0.8832 0.9758 0.9929 0.9507 0.6186 0.8851 0.7752
IncV3 0.9481 0.8795 0.9793 0.9929 0.9428 0.4583 0.8300 0.6305

VGG19 0.8551 0.8430 0.9795 0.9861 0.9231 0.5379 0.8536 0.6989
VGG16 0.8412 0.8791 0.9690 0.9888 0.9254 0.5791 0.8659 0.6833

Last layer FC

Mobile 0.9796 0.8661 0.9794 0.9935 0.9603 0.7941 0.8986 0.6823
DenseNet 0.9822 0.8668 0.8316 0.9852 0.9482 0.7291 0.9054 0.7664
IncResV2 0.9756 0.8676 0.9729 0.9976 0.9597 0.6598 0.9043 0.7038
ResNet 0.9726 0.8670 0.9771 0.9899 0.9583 0.7996 0.9133 0.7674
IncV3 0.9714 0.8417 0.9796 0.9893 0.9377 0.6538 0.8998 0.7038

VGG19 0.8447 0.8553 0.9661 0.9899 0.9237 0.6636 0.8863 0.7410
VGG16 0.8298 0.8718 0.9573 0.9852 0.9421 0.6956 0.9088 0.7185

Feature selection SVM

Mobile 0.9610 0.7876 0.9794 0.9870 0.9597 0.7421 0.8682 0.6618
DenseNet 0.9347 0.8212 0.8316 0.9888 0.9436 0.6614 0.7984 0.6931
IncResV2 0.9665 0.8476 0.9729 0.9976 0.9443 0.6403 0.8682 0.7214
ResNet 0.9578 0.8337 0.9771 0.9722 0.9492 0.7438 0.8806 0.7644
IncV3 0.9562 0.8308 0.9796 0.9964 0.9436 0.6430 0.8750 0.6843

VGG19 0.8284 0.8488 0.9661 0.9888 0.8860 0.6750 0.8784 0.7038
VGG16 0.8071 0.8810 0.9573 0.9899 0.9131 0.7362 0.8941 0.7038

Feature selection ET

Mobile 0.9617 0.8798 0.9799 0.9888 0.9581 0.6582 0.8694 0.7400
DenseNet 0.9676 0.8861 0.9843 0.9994 0.9489 0.6939 0.8919 0.6667
IncResV2 0.9609 0.8646 0.9743 0.9944 0.9421 0.5330 0.8491 0.6500
ResNet 0.9503 0.8786 0.9799 0.9852 0.9488 0.6961 0.8863 0.7038
IncV3 0.9473 0.8410 0.9786 0.9959 0.9466 0.5531 0.8378 0.7703

VGG19 0.8506 0.8492 0.9732 0.9947 0.9186 0.5850 0.8468 0.7019
VGG16 0.8232 0.8774 0.9659 0.9953 0.9282 0.6349 0.8615 0.6745

Merging networks ET merged 0.9897 0.8573 0.9948 0.9858 0.8851 0.8169 0.9155 0.7928
SVM merged 0.9784 0.8984 0.9912 0.9864 0.9549 0.6896 0.8615 0.6063

Merging layers SVM

DenseNet 0.9757 0.8090 0.9835 0.9870 0.9470 0.7042 0.8840 0.7761
IncResV2 0.9808 0.8418 0.9920 0.9964 0.9559 0.7031 0.9155 0.7761
ResNet 0.9789 0.8576 0.9927 0.9953 0.9234 0.7941 0.9268 0.7977

Merging layers ET

DenseNet 0.9605 0.8892 0.9875 0.9911 0.9588 0.6993 0.8818 0.7370
IncResV2 0.9799 0.8906 0.9944 0.9920 0.9639 0.6495 0.8897 0.7370
ResNet 0.9424 0.8787 0.9847 0.9929 0.9619 0.7080 0.8885 0.7683

Fine-tuning SVM
DenseNet 0.9883 0.8556 0.9944 0.9870 0.9777 0.8342 0.9119 0.8553
IncResV2 0.9841 0.8377 0.9909 0.9941 0.9403 0.6847 0.9039 0.7390
ResNet 0.9921 0.8705 0.9897 0.9941 0.9637 0.8147 0.9119 0.8456

Fine-tuning ET
DenseNet 0.9828 0.8965 0.9950 0.9876 0.9827 0.7887 0.8982 0.8094
IncResV2 0.9769 0.8776 0.9850 0.9929 0.9477 0.5406 0.8446 0.7048
ResNet 0.9909 0.8806 0.9879 0.9870 0.9772 0.7763 0.8845 0.8289

Fine-tuning Net
DenseNet 0.9892 0.8797 0.9977 0.9893 0.9835 0.8483 0.9405 0.8641
IncResV2 0.9851 0.8795 0.9971 0.9929 0.9873 0.8727 0.9165 0.8182
ResNet 0.9926 0.8778 0.9953 0.9970 0.9827 0.8288 0.8971 0.8416

Metric ROC AUC Accuracy (multi-class)

TABLE A.10: Detailed scores for all datasets and for the “Last layer”, “Feature selection”,
“Merging features across networks”, “Merging features across layers” and “Fine-tuning” exper-

iments.
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N Layer l C P G N B M L H
Baseline / ET-FL 0.9250 0.8268 0.9551 0.9805 0.9345 0.7568 0.8547 0.6960

ResNet

activation_1 0.7720 0.8415 0.9275 0.9811 0.9100 0.4946 0.8153 0.5758
activation_4 0.8283 0.8275 0.9723 0.9964 0.9390 0.7308 0.8806 0.6285
activation_7 0.8456 0.8276 0.9772 0.9888 0.9351 0.7275 0.8930 0.6755

activation_10 0.8574 0.8292 0.9759 0.9882 0.9439 0.6717 0.8930 0.6491
activation_13 0.8859 0.8608 0.9824 0.9888 0.9483 0.7313 0.9077 0.6188
activation_16 0.8975 0.8418 0.9860 0.9876 0.9478 0.7356 0.9054 0.6598
activation_19 0.8877 0.8503 0.9892 0.9888 0.9499 0.7270 0.9077 0.6510
activation_22 0.9244 0.8763 0.9892 0.9882 0.9555 0.7010 0.9223 0.6940
activation_25 0.9506 0.8785 0.9933 0.9858 0.9639 0.7736 0.9223 0.7253
activation_28 0.9489 0.8884 0.9935 0.9876 0.9638 0.8131 0.9245 0.7634
activation_31 0.9519 0.8724 0.9938 0.9876 0.9659 0.7996 0.9201 0.7351
activation_34 0.9584 0.8947 0.9940 0.9876 0.9606 0.7514 0.9223 0.7977
activation_37 0.9671 0.8959 0.9942 0.9876 0.9663 0.7600 0.9280 0.7996
activation_40 0.9621 0.8894 0.9949 0.9864 0.9664 0.7914 0.9155 0.8113
activation_43 0.9710 0.8950 0.9942 0.9852 0.9648 0.8017 0.9223 0.8074
activation_46 0.9712 0.8848 0.9937 0.9870 0.9652 0.7860 0.9291 0.8094

activation_49 (last) 0.9748 0.8893 0.9924 0.9882 0.9640 0.7860 0.9122 0.7791

DenseNet

pool1 0.7187 0.8276 0.8994 0.9533 0.9227 0.4821 0.7826 0.4653
conv2_block6_concat 0.7982 0.8374 0.9609 0.9905 0.9374 0.6300 0.8536 0.5259

pool2_pool 0.8185 0.8296 0.9570 0.9893 0.9510 0.6235 0.8570 0.5337
conv3_block12_concat 0.9024 0.8361 0.9861 0.9882 0.9522 0.6696 0.9020 0.6823

pool3_pool 0.9309 0.8900 0.9832 0.9893 0.9382 0.6300 0.9088 0.6686
conv4_block48_concat 0.9803 0.8876 0.9962 0.9870 0.9699 0.8012 0.9223 0.7674

pool4_pool 0.9843 0.8984 0.9954 0.9870 0.9613 0.7703 0.9268 0.7859
conv5_block32_concat 0.9862 0.8981 0.9955 0.9917 0.9623 0.7806 0.9201 0.7879

bn (last) 0.9784 0.8867 0.9931 0.9852 0.9538 0.7573 0.9043 0.7967

IncResV2

max_pooling2d_2 0.8403 0.8091 0.9716 0.9941 0.9340 0.6143 0.8851 0.6158
mixed_5b 0.8265 0.8146 0.9771 0.9905 0.9424 0.6945 0.8897 0.6461

block35_1_ac 0.8325 0.8412 0.9776 0.9941 0.9412 0.6576 0.8897 0.6373
block35_4_ac 0.8673 0.8770 0.9834 0.9923 0.9556 0.6495 0.8998 0.6716
block35_7_ac 0.8981 0.8709 0.9844 0.9935 0.9590 0.6354 0.9043 0.7048
block35_10_ac 0.9219 0.8692 0.9900 0.9935 0.9616 0.6549 0.9110 0.7253

mixed_6a 0.9445 0.8747 0.9920 0.9953 0.9706 0.7172 0.9088 0.7439
block17_5_ac 0.9681 0.8665 0.9945 0.9917 0.9695 0.8066 0.9190 0.7713
block17_10_ac 0.9711 0.8687 0.9958 0.9935 0.9720 0.8137 0.9234 0.7674
block17_15_ac 0.9762 0.8939 0.9960 0.9923 0.9622 0.7985 0.9144 0.7419
block17_20_ac 0.9860 0.8948 0.9957 0.9923 0.9649 0.7741 0.9155 0.7693

block8_3_ac 0.9873 0.8905 0.9959 0.9953 0.9676 0.7790 0.9190 0.7273
block8_6_ac 0.9868 0.8871 0.9953 0.9923 0.9686 0.7562 0.9212 0.7468
block8_9_ac 0.9824 0.8773 0.9946 0.9964 0.9632 0.7427 0.9144 0.7468

mixed_7a 0.9868 0.8934 0.9962 0.9959 0.9602 0.7893 0.9178 0.7214
conv_7b_ac (last) 0.9773 0.8615 0.9926 0.9982 0.9619 0.6766 0.8998 0.7361

Metric ROC AUC Accuracy (multi-class)

TABLE A.11: Detailed scores for all datasets and for the “Inner layer” experiment.
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Appendices for Chapter 5

B.1 Data preparation

The general goal of the pre-processing is to obtain images which dimensions are com-
patible with state-of-the-art neural networks (e.g. ResNet [77], DenseNet [81]) and that
are properly labeled. Classification (CLF) datasets already had classes associated to
each image. For these datasets, we have thus kept the original classes. When datasets
had large input images, we have further splitted them into smaller patches (see Table
B.1).

We have considered the detection (DET) datasets to be the ones that contained
several objects per input image where each object was usually denoted by a point
annotation, and sometimes a label (e.g. Warwick CRC [185]). For those datasets, the
transformations were more involved (see Table B.2). When the concentration of anno-
tations was high (i.e. a typical patch in the image contains tens of annotations) and/or
the input image size was small (i.e. < 1k pixels square), overlapping patches were
extracted. Each patch was associated a binary class indicating whether the entity to
detect was present or absent in this patch. When a label was available, the associated
class was chosen to indicate the presence of one type of object versus the other(s).
For datasets where the objects to detect were fewer and more scattered over the input
images (e.g. mitosis detection), the previous approach was inappropriate as it would
have yielded highly imbalanced datasets. Therefore, in this case, negative patches
were still sampled exhaustively with an overlap but positive patches were sampled
around the objects of interest with random shifts, yielding several samples per object.

For the segmentation (SEG) datasets (see Table B.3), the patch sampling was the
same as for the detection (i.e. exhaustive with overlap). The class was determined if
the surface ratio of the positive entity (e.g. tumor) in the patch exceeded a threshold
(e.g. 10% of the patch). The only exception is Breast1 dataset for which the class of the
patch is the class of its central pixel. Camelyon16 [19] dataset was applied an addi-
tionnal pre-processing to exclude most of the whole-slide image (WSI) background.

The last transformation step was to split each resulting dataset into some training,
validation and test sets for future training. We have followed a rigorous splitting
process: whenever possible we have made sure that images from a same patient, or a
same slide were not in two different sets. Sometimes, none of those information were
available in which case we have randomly split the data. Moreover, we have ensured
that all classes were present in all sets.
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Dataset Patches
BACH1018 Micro 512 × 512

Stroma LBP original
UMCM Colorectal original

Janowczyk original
Janowczyk 384 × 384

TABLE B.1: Details for classification datasets transforms. Patches indicate whether the final
patches are the original images. Provided dimensions indicate that patches of those dimen-

sions were extracted from the original images to make the final classification datasets.

Dataset Positive Negative Other Dim. / Sup.
Warwick CRC {Inflammatory} {Epithelial, Fibroblast, / 100 × 100 / none

Others, ∅}
TUPAC2016 Mitosis {Mitosis} {∅} / 250 × 250 / 10

MITOS-ATYPIA {Mitosis} {∅} {NonMitosis} 323 × 323 / 10
Janowczyk 5 {Mitosis} {∅} / 250 × 250 / 10

TABLE B.2: Details for detection datasets transforms. Columns Positive and Negative indicate
which annotation information or label was used to set respectively the patch class as positive
or negative. The ∅ means "no annotation". Dim and Sup stand for Dimensions and Supersample.
The former indicates whether or not the positive patches was supersampled, and if so, how

many patches were extracted per positive annotation.

Resulting classification datasets and their splits are listed in Table B.4. Selected
samples for each of our final classification tasks are given in Figure 5.1.

B.2 Transfer performances

Figures B.1 and B.2 give the transfer performance of different combination of training
hyperparameters.
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Dataset Classes Dimensions WSI P/CW
Positive Negative Area (%) Extracted Rescaled Overlap

Janowczyk 1 {Nuclei} {∅} 5 250 × 250 / 125 no /
Janowczyk 2 {Epithelium} {∅} 10 200 × 200 / 100 no /
Camelyon 16 {Tumor} {∅} 10 768 × 768 384 × 384 0 yes 1000

Breast1 {InSitu, Infiltration} {∅} / 384 × 384 / / no /
Breast2 {InSitu, Infiltration} {∅} 10 250 × 250 / 125 no /

TABLE B.3: Details for segmentation datasets transforms. Area is the surface threshold we
have used to separate positive from negative patches (if surface of positive annotation was
larger than the given value, then the patch was considered positive). Column "WSI" in-
dicates that the original images are whole-slide images and were applied additional pre-
processing to remove background tiles. Column "P/CW" indicates whether or not the patches
were subsampled. If a value is provided, this value is the maximum number of samples per

class per WSI capped that was produced.

Name Cls Train Val Test Total SplitImg. p/s Img. p/s Img. p/s Img. p/s
Necrosis 2 695 9 96 1 91 3 882 13 slide

ProliferativePattern 2 1179 19 167 4 511 13 1857 36 slide
CellInclusion 2 1643 21 173 2 1821 22 3637 45 slide

MouseLba 8 1722 9 716 4 1846 7 4284 20 slide
HumanLba 9 4051 50 346 5 1023 9 5420 64 slide

Lung 10 4881 669 562 73 888 139 6331 881 slide
Glomeruli 2 12157 10 2448 8 14608 102 29213 120 slide

Breast1 2 14055 22 4206 8 4771 4 23032 34 patient
Breast2 2 11483 22 3470 8 2570 4 17523 34 patient

BoneMarrow 8 522 522 130 130 639 639 1291 1291 slide
Janowczyk 1 2 17550 77 4500 19 9675 41 31725 137 patient
Janowczyk 2 2 1701 21 405 5 1296 16 3402 42 patient
Janowczyk 5 2 16560 7 4551 2 3759 3 24870 12 patient
Janowczyk 6 2 224822 230 31934 29 20768 20 277524 279 patient
Janowczyk 7 3 1350 225 456 76 438 73 2244 374 patient

MITOS-ATYPIA 3 40364 13 12799 4 11710 5 64873 22 slide
Warwick CRC 2 1500 60 500 20 500 20 2500 100 image
Camelyon 16 2 237753 221 27950 26 26523 24 292226 271 slide

TUPAC2016 Mitosis 2 62874 526 7827 74 7152 56 77853 656 patient
Stroma LBP 2 947 492 407 228 959 656 2313 1376 image

BACH2018 Micro 4 2760 143 720 52 1320 89 4800 284 patient
UMCM Colorectal 8 3349 6 / / 1651 4 5000 10 patient

Total 81 663918 3374 104363 778 114519 1949 882800 6101 /

TABLE B.4: Classification datasets generated from the collected datasets. p/s indicate the
number of distinct patients, or slides (if no patient information was available), or images (in
case when none of the two information were available) in the set. The column Split indicates

whether the dataset was split patient, slide or image-wise.
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(A) CellInclusion (B) Glomeruli

(C) ProliferativePattern (D) HumanLba

(E) BoneMarrow (F) Breast1

(G) Breast2 (H) Necrose

(I) MouseLba (J) Lung

FIGURE B.1: Transfer performance for combinations of the hyperparameters γτ (learning
rate heads multiplier) and w (warm up) with learning rate γ = 10−4 on DenseNet121.
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(A) CellInclusion (B) Glomeruli

(C) ProliferativePattern (D) HumanLba

(E) BoneMarrow (F) Breast1

(G) Breast2 (H) Necrose

(I) MouseLba (J) Lung

FIGURE B.2: Transfer performance for combinations of the hyperparameters γτ (learning
rate heads multiplier) and w (warm up) with learning rate γ = 10−4 on ResNet50.
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(A) CellInclusion (B) Glomeruli

(C) ProliferativePattern (D) HumanLba

(E) BoneMarrow (F) Breast1

(G) Breast2 (H) Necrose

(I) MouseLba (J) Lung

FIGURE B.3: Distributions of scores per learning rate on DenseNet121. Each boxplot results
from the aggregation of the transfer scores of all models using the a learning rate value on

the given network and dataset.
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(A) CellInclusion (B) Glomeruli

(C) ProliferativePattern (D) HumanLba

(E) BoneMarrow (F) Breast1

(G) Breast2 (H) Necrose

(I) MouseLba (J) Lung

FIGURE B.4: Distributions of scores per learning rate on ResNet50. Each boxplot results
from the aggregation of the transfer scores of all models using the a learning rate value on

the given network and dataset.
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Appendices for Chapter 6

C.1 Hyperparameters for soft vs. hard labels experiment

In this section, we list the hyperparameters we have used in our soft vs. hard labels
experiment. They are reported in Tables C.1, C.2, C.3 for MoNuSeg, SegPC-2021 and
GlaS respectively.

C.2 Hyperparameters for self-training performance at fixed
nl

This section provides a detailed list of the chosen hyperparameters foreach dataset.
Self-training hyperparameters can be found in Table C.4. The other hyperparameters
are listed in Table C.5.

C.3 Additional weighting strategies evaluated for the fixed
nl experiment

This section reports performance for all the weighting schemes actually evaluated (see
Figures C.1, C.2 and C.3) for the fixed nl experiment.

Weighting scheme # comb. Hyperparameters
Constant 6 C ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 1.0}
Balance 1 /
Entropy 6 wmin ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75}

Consistency 1 η = 2
Merged 6 all combinations of wmin, c(y1, y2) and η listed above

Total 20

TABLE C.1: Hyperparameters for the soft vs. hard labels experiment on MoNuSeg.
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Weighting scheme # comb. Hyperparameters
Constant 10 C ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.25, 1.75, 1.5, 2}
Balance 1 /
Entropy 6 wmin ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75}

Consistency 1 η = 2
Merged 6 all combinations of wmin, c(y1, y2) and η listed above

Total 24

TABLE C.2: Hyperparameters for the soft vs. hard labels experiment on SegPC-2021.

Weighting scheme # comb. Hyperparameters
Constant 8 C ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 1, 2, 3}
Balance 1 /
Entropy 6 wmin ∈ {0.01, 0.05, 0.1, 0.25, 0.5, 0.75}

Consistency 1 η = 2
Merged 6 all combinations of wmin, c(y1, y2) and η listed above

Total 22

TABLE C.3: Hyperparameters for the soft vs. hard labels experiment on GlaS.

TABLE C.4: Training hyperparameters used for the experiments of Section 6.5.2.

Dataset nl iter/epoch tile size W E
MoNuSeg 2 100 512 10 50

SegPC-2021 30 300 512 10 50
GlaS 8 225 384 10 50

TABLE C.5: Self-training hyperparameters used for the experiments of Section 6.5.2 for
MoNuSeg and SegPC-2021. The same hyperparameters have been used for GlaSexcept for

the combination “constant” and C = 0.2.

Weight C wmin η Datasets
M S G

constant 0.01 ✓ ✓
constant 0.5 ✓ ✓ ✓
constant 1.0 ✓ ✓ ✓
constant 2.0 ✓
entropy 0.1 ✓ ✓ ✓

consistency 2 ✓ ✓ ✓
merged 0.1 2 ✓ ✓ ✓
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FIGURE C.1: MoNuSeg, see Figure 6.6 for explanation.
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FIGURE C.2: SegPC-2021, see Figure 6.6 for explanation.
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FIGURE C.3: GlaS, see Figure 6.6 for explanation.

C.4 The Thyroid FNAB ontology

The Thyroid FNAB dataset was labeled by experienced pathologists who followed a
detailed ontology to categorize their annotations:

1. Architectural patterns (see examples in Figure 6.3):

• Normal follicular architectural pattern

• Proliferative follicular architectural pattern

• Proliferative follicular architectural pattern (minor sign)

2. Nuclear features (see examples in Figure 6.4):

• Papillary cell NOS

• Normal follicular cells

• Normal follicular cell with pseudo-inclusion (artefact)

• Papillary cell with ground glass nuclei

• Papillary cell with nuclear grooves

• Papillary cell with inclusion

3. Others:

• Macrophages

• Red blood cells
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• PN (polynuclear)

• Colloid

• Artefacts

• Background
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Biaflows

Abstract. Image analysis is key to extracting quantitative information from scien-
tific microscopy images, but the methods involved are now often so refined that they
can no longer be unambiguously described by written protocols. We introduce BI-
AFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark
bioimage analysis workflows coming from any software ecosystem. A curated in-
stance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy
image datasets recapitulating common bioimage analysis problems is available on-
line. The workflows can be launched and assessed remotely by comparing their per-
formance visually and according to standard benchmark metrics. We illustrated these
features by comparing seven nuclei segmentation workflows, including deep-learning
methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows,
hence safeguarding research results and promoting high-quality standards in image
analysis. The platform is thoroughly documented and ready to gather annotated mi-
croscopy datasets and workflows contributed by the bioimaging community.

Publication. Ulysse Rubens∗, Romain Mormont∗, et al. “BIAFLOWS: A collabo-
rative framework to reproducibly deploy and benchmark bioimage analysis work-
flows”. In: Patterns 1.3 (2020), p. 100040 (∗These authors contributed equally).

Article. https://www.cell.com/patterns/fulltext/S2666-3899%2820%2930045-3

Code. https://github.com/Neubias-WG5

Documentation. http://biaflows-doc.neubias.org/

https://www.cell.com/patterns/fulltext/S2666-3899%2820%2930045-3
https://github.com/Neubias-WG5
http://biaflows-doc.neubias.org/
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