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Abstract

This paper proposes an inertial human motion tracking for robot programming by

demonstration (PbD). An original element called heading reset is proposed to catch

the drift around gravity direction. It is based on a hypothesis made on the human

arm motion during a task demonstration. It is used to overcome the non-use of the

magnetometer due to magnetic disturbances from robotic environment. This element

is implemented in an orientation estimation algorithm and compared with three other

IMU algorithms and a commercial MARG algorithm. The human arm trajectory is

estimated through three IMUs sensors directly set on the arm to estimate the segment

orientation (hand, forearm and arm). A specific inertial-2-segment procedure is pre-

sented as well as a procedure to estimate the transformation from human reference

frame to task frame, necessary for a PbD process. Experimental tests, using a robot

as a reference, have been conducted to validate the different part of the method. The

heading reset and the orientation algorithm show good results. The inertial-2-segment

procedure is shown to be robust. Finally, experimental tests on a human arm and phys-

ical robot validate the complete method.

Keywords: Robotics; Programming by demonstration; Inertial human motion tracking

1. Introduction

Programming by demonstration (PbD) [1] is a paradigm that aims at teaching tasks

to a robot through human demonstrations. Inspired by the way human interact, it makes

robot programming easier and more accessible in an industrial context as well as in
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daily life [2]. A PbD process has two steps: gathering a dataset from the teacher5

demonstration and deriving a policy from the dataset. The problem of deriving a policy

is decomposed into 4 questions: What to imitate? How to imitate? When to imitate?

Whom to imitate? Up to date, most papers in the literature focused on the first 2 ques-

tions. The first question addresses the extraction of the tasks features from the dataset.

The second question addresses to the ability of the robot to adapt to new configurations10

of the task. This work focus on the first step of the PbD process: gathering a dataset. A

dataset is constituted of data recorded during the demonstrations made by the teacher.

Each recording of a demonstration can be seen as a set of states Zt and actions At repre-

senting the task demonstrated by the teacher. According to Argal et al. [3], "for [PbD]

to be successful, the states and actions in the learning dataset must be usable by the15

[learner]". The learner needs therefore a set of states Zl and actions Al that represent

the demonstrated task in a meaningful way for him. The process of gathering dataset,

or recording demonstrations, faces then the correspondence issue, i.e., the identifica-

tion of mappings between [Zt ;At ] and [Zl ;Al ].

According to [3], two mappings may be necessary regarding the demonstration20

technique: a record mapping and/or an embodiment mapping. If the human states

and actions during the demonstration are not directly recorded, a record mapping is

necessary. Then, if the dataset recorded is not executable by the robot, an embodi-

ment mapping is necessary. For instance, if the human motion is recorded by cameras,

extracting human motion from images constitutes a record mapping. If the human25

motion is expressed as joint angles and if the human and the robot do not have the

same kinematics, an embodiment mapping is necessary. Regarding the necessary map-

ping functions, 4 categories of demonstrations can be made: teleoperation, shadowing,

sensors-on-instructor and external-observation. In the teleoperation category, which

gathers method such as kynesthesy, the robot executes the demonstration guided or30

operated by the human [4, 5, 6]. In such cases, the correspondence problem is trivial

since the demonstration is recorded from the robot own encoders and sensors, mak-

ing kinesthesy one of the most largely used methods. However, these methods prevent

natural human motion which reduces the range of applications. For instance, a paint-

ing task [7], requiring dexterity, could hardly be achieved this way. In shadowing, the35
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robot mimics the teacher and record its own motion, therefore only record mapping

is necessary [8, 9]. In the sensors-on-instructor category, the human demonstrations

are recorded through an external device that records directly the variables of interest

so that, only embodiment mapping is required [10, 11, 12]. Finally, the last category

requires both record and embodiment mapping. In [7], a marker-based vision tracking40

device measured the trajectory of a painting tool. In [13], a six wheel-legged robot

[14] follows a generalized trajectory over human trajectory observations with a single

Kinect camera. The Kinect sensor tracks the human teacher through the extraction of

skeleton points. In [15], a Dynamic Vision Sensor tracks human hand changes of state

to learn different movements from a single demonstration depending on visual cues.45

This category gathers user-friendly demonstration methods but suffers from difficulties

to identify mapping functions. Recording demonstration methods requires a compro-

mise between the difficulty of identifying mapping functions and the convenience for

the teacher to use.

Humans use a large panel of communication channels and a privileged one is ges-50

tures. Human gestures and arm motions in particular are largely used in human-human

interactions as shown in [16] and [17]. Furthermore, programming a robot consists

mainly in commanding the position of its gripper. The correspondence with the hu-

man hand is immediate, so it is considered that one of the main variables of interest

in a demonstration of a task is the human hand trajectory and state. However, this55

trajectory with respect to the teacher frame is not relevant for the learner. In order

for the demonstrated task to be reproduced by the learner, the recorded elements have

to be expressed with respect to a frame that is meaningful for the learner: the task

frame. Identifying transformations to the task frame is part of the embodiment map-

ping. Let us keep in mind that for some tasks that involve, for instance, manipulated60

object [2, 18, 19, 10], tools [20], etc.; other elements should be recorded during the

demonstrations with respect to the task frame.

The objective of this work is then to develop a method to estimate the human hand

trajectory with respect to the task frame in the context of robot PbD. The method should

satisfy the constraints from PbD: easiness of use and no hindering of human gestures.65

An appropriate human motion capture technology is therefore necessary. Field et
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al., [21] expose a survey of human motion capture methods in robotics. Cameras and

optoelectronics systems have the advantage of giving the position in a well-known ref-

erence frame. But such devices face concealment problems due to environment (light,

dust, smokes) or movement of the operator. Mechanical devices such as exoskeletons70

measure the relative motion of human joints directly which can be easily mapped to a

human body model but does not directly give the absolute trajectory with respect to a

fixed reference frame. Exoskeletons may also be heavy, intrusive and uncomfortable

for the operator and could also limit operator motion by the mechanical constraints

of the structure. Devices based on the measurement of a known magnetic field are75

mentioned but are not appropriate in an industrial environment due to their high sen-

sitivity to magnetic disturbances. Alternatively, Inertial Measurement Units (IMUs)

[22, 23] are small, light and cheap (for the MEMS version) making them suitable for

wearable devices, even embedded in clothes [24] and do not require the use of external

apparatus such as cameras. However, IMU data require complex treatment and signal80

filtering in the trajectory reconstruction process. Each technology has its own advan-

tages and drawbacks making them more or less suitable depending on the context of the

application. Regarding the practicality of the system, opto-electronic and mechanical

devices seem more cumbersome than IMUs. IMUs can thus better meet the expected

intuitiveness and easiness of use in PbD. However, challenges appear when using in-85

ertial sensors for human motion tracking (IHMT), especially in a robotic environment.

IMUs are not measuring directly the trajectory of the hand, therefore, a record mapping

is necessary.

Only a few solutions can be mentioned regarding IHMT for PbD. Human joint an-

gles are recorded in [25] with an inertial suit to teach primitive motion to a humanoid90

robot. In [26], a humanoid robot is taught basket referee gestures. The dataset is

constituted of human motion recorded through inertial sensors and, in a second step,

kinesthetics demonstrations. In [27], IMU is used to counter concealment issues during

vision based tool tracking during the teaching of a painting task. The solution proposed

in [28] only enables teleoperation of the robot and would fall into the same category95

as kinesthesy. However, IHMT has been investigated for a wide range of applications

including robotics [22, 29]. The lack of inertial-based demonstration acquiring method
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in PbD despite a large amount of work in IHMT, motivate this work.

In IHMT, two approaches have been identified as the kinematic chain and the free

segment approach [30]. The kinematic chain approach consists of estimating joint an-100

gles from measurement of sensors placed before and after the joint in the kinematic

chain [31, 32]. The free segment approach consists of estimating the orientation of

each segment with respect to an inertial reference frame using the sensor attached to

the segment [33, 34]. The two methods could in principle lead to the same information.

The free segment approach seems more suitable when the targeted measurement is the105

hand position and not the joint angle. This approach is combined with a simple human

arm kinematic model with spherical joints for the wrist, elbow and shoulder.

One challenge in IHMT is to identify the positioning of the sensors with respect to

the human arm (referred in literature as inertial-to-segment (I2S) calibration). Some

methods assume that sensors are aligned with the segment; therefore these parameters110

do not need to be evaluated [35, 36]. Other techniques rely on static positions (e.g.,

N-pose, T-pose) [37, 38, 39] or on complex functional motion [40, 41].

In order to be meaningful to the robot, it is necessary to localize the human and

the robot with respect to the task frame. Different approaches have been studied in

the literature, based on external or embedded extra sensors [42, 43], markers [44], or115

a specific procedure [45]. The use of extra sensors does not seem suitable to keep the

workability of the method for PbD. Considering the task frame as the robot frame, a

simple procedure is proposed to estimate this transformation. It is based on a least

square method applied on recorded data from trajectory imposed to the teacher by the

robot. This step in the method corresponds to the embodiment mapping.120

Contribution: this work proposes an IHMT method to express human hand trajec-

tory with respect to the task/robot frame, and which fulfills the requirements of a PbD

process. Within this IHMT method, a new I2S procedure is proposed consisting of one

functional motion followed by a static pose as well as a procedure to express human

hand trajectory with respect to the robot frame. We also propose to take advantage of125

the robot to add an extra step consisting in optimizing some parameters of the IHMT

method.

In our method as in most of IHMT method, the IMUs orientation estimation is re-
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quired. The main challenge related to this sensor is to manage the drift from gyroscope

data integration as explained in [22], for instance. One very documented approach130

couples an IMU with a magnetometer (MARG or MIMU sensor) to measure the Earth

north direction. However, the magnetometer signal is easily disturbed [46, 47, 48],

especially in a robotic environment such as PbD. Other works couple IMU with other

sensors such as UWB devices in [49]. However, adding extra sensors may decrease the

easiness of implementation targeted in our work. Pure IMU orientation usually catches135

up the gyroscope drift only along direction perpendicular to gravity. Several methods

have been explored [50, 51]: complementary filters [52, 53, 54]; Kalman and Extended

Kalman filters [55, 56, 57], gradient descent filters [58] or integration and vector ob-

servation [59, 60].

Contribution: this work proposes a new approach called heading reset to reduce140

drift around gravity direction. The heading of a sensor is the part of its orientation

around the gravity direction. The heading reset relies on a hypothesis made on human

motion in a context of teaching task. In this specific context, it is assumed that the

initial configuration of the human arm is such that the hand occupies a central pose in

the workspace. In a first-person vision study, a camera is set on the head of the human145

who has to perform a task in front of him. In [61], Bandini, et al. state that "hands

and manipulated objects tend to appear at the center of the image". Furthermore, this

position is also centrally located in the workspace of the human arm as discussed in

[62, 63]. This indicates that the position of the human hand in front of the subject is

a privileged position which is frequently visited during a manipulation task. We as-150

sume that the operator initiates the motion around this privileged position, and that the

corresponding heading angle also represents a privileged orientation which will be fre-

quently visited during the task. At this moment, a reset of the heading of the sensor is

applied. It is not a standalone element, it is implemented at the angular velocity level

of an integration and vector observation algorithm.155

In this paper, section 2 describes the complete method to estimate the human hand

trajectory with respect to the task frame. The algorithm for orientation estimation, the

IHMT method and the optimization process are presented. Section 3 presents the tests

conducted to validate the different steps of the method. Firstly, the orientation esti-
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mation algorithm is compared with other IMU algorithms in a robotics environment.160

Secondly, the robustness of the initialization procedure is analyzed. Finally, the com-

plete method is evaluated thanks to a Sawyer robot. The robot performs several 3D

trajectories while the fingertip of the operator is in contact with the robot end-effector.

Therefore, the trajectory estimated by the proposed method can be compared to the

trajectory recorded by robot encoders.165

2. Human arm motion measurement with IMUs

2.1. Proposed algorithm for IMU orientation estimation

This section describes the method to estimate sensor orientation. First, the integra-

tion and vector observation algorithm is presented and then the heading reset method.

Integration and vector observation algorithm.. A sensor frame S is used to describe

the sensor motion. At time step 0, the sensor frame is designated by S0 and defines

the inertial reference frame for the orientation of the sensor. The sensor is considered

motionless at this time step. The algorithm also makes use of the sensor frame at time

step n− 1 : S− 1 and at time step n: S. The unit quaternion S0q̂S denotes the rotation

from frame S to frame S0 and Sq̂S0 = (S0q̂S)
−1. The cross product is noted × and the

quaternion product ⊗. A three-dimensional vector u can be expressed as a quaternion

û with no real part but only a vector part u:

û =

 0

u

=


0

ux

uy

uz

 (1)

An IMU sensor measures the angular velocity Sωωωgyro(t) and the acceleration Sa(t)

of the sensor in the frame S. In this work, the model of the gyroscope data is Sωωωgyro(t)=
Sωωω true(t)+ Sβββ (t)+ Sγγγ(t) with Sωωω true(t) the true angular velocity of the sensor, Sβββ (t)

a bias and Sγγγ(t) a noise. The model of the accelerometer data consists of a gravity

component Sg(t), a linear acceleration component Sl(t) and a noise Sn(t): Sa(t) =
Sl(t)+ Sg(t)+ Sn(t). IMUs data needs to be filtered to manage noise and calibrated (to
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determine bias, misalignment and gain/sensitivity). Solutions have been proposed as in

[64, 65]. However, this question is not the purpose of this work and it is assumed that

the sensor data have been pre-filtered and are reliable. Only a moving window average

is applied at the end of the method to smooth the trajectory. The kinematic equation of

a rigid body describes the variation of its orientation as:

˙̂q =
1
2

q̂⊗ S
ω̂(t) (2)

The above equation is solved with the explicit Euler method on the Lie group of quater-

nion [66]

S0q̂S =
S0q̂S−1⊗ exp(

1
2

∆t S
ω̂n) (3)

with ∆t the time step value and Sω̂n the estimated angular velocity at time step n in the

frame S and the exponential map

exp(û) =


cos(‖u‖)

sin(‖u‖) ux
‖u‖

sin(‖u‖) uy
‖u‖

sin(‖u‖) uz
‖u‖

 (4)

The integration of the gyroscope measurement Sωωω
gyro
n using this algorithm leads to a

drift of the orientation due to the gyroscope bias Sβββ . The gravity vector estimation from

accelerometer measurement enables to partly compensate the drift in phases when the

sensor is almost stationary. A moment is considered stationary if Sl ≈ 0, which implies

that
Sa
‖Sa‖ ≈

Sg. Let us introduce the geometric vector d, a unit vector which follows

the motion of the sensor (see Fig. 1). This vector is defined as aligned with the gravity

vector at time step n− 1, i.e., in the frame S− 1, we have S−1dn−1 = S−1g. Also the

same vector d at time step n−1 but projected in the frame S satisfies Sdn−1 =
Sg. The

vector d being constant with respect to the sensor frame, the projection of d at time step

n− 1 in the sensor frame S− 1 is equal to the projection of d at time step n in sensor

frame S, Sdn = S−1dn−1 = S−1g. The rotation S−1q̂S can be decomposed as S−1q̂S =

S−1q̂∗⊗ ∗q̂S. The rotation ∗q̂S is defined as the rotation about an axis perpendicular

to the plane containing the vectors Sdn and Sdn−1 which rotates the vector Sdn−1 to
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Figure 1: definition of the vector d

Sdn. The rotation angle of ∗q̂S being small when the sensor is almost stationary, its

rotation vector is estimated as Sdn−1× Sdn, which is equal to Sg× S−1g. The rotation
S−1q̂∗ is a rotation about an axis aligned with Sdn−1 =

Sg and it can be estimated by the

integration of the projection of the gyroscope measurement on Sg. Thereby, a modified

angular velocity Sωωωmod
n is computed as

S
ωωω

mod
n =

1
∆t

(Sg× S−1g)+(I3 +
Sg̃Sg̃) S

ωωω
gyro
n (5)

with I3 is the identity matrix of dimension 3 and ũ represents the skew-symmetric170

matrix defined from the vector u as
0 −uz uy

uz 0 −ux

−uy ux 0

.

Figure 2 illustrates the different components of Sωωωmod
n . A key point of the proposed

algorithm is to evaluate S−1g using the estimated rotation at time n− 1 according to
S−1ĝ = S−1q̂S0⊗ S0ĝ⊗ S0q̂S−1, where S0g is the gravity measured in the initial config-

uration of the sensor. Indeed, the sensor being motionless at time step 0, the linear

acceleration is negligible S0l ≈ 0 and S0g ≈
S0a0
‖S0a0‖

. This evaluation of S−1g is thus

affected by the drift of the estimated rotation. In contrast, Sg is evaluated by direct

estimation from the accelerometer signal as Sl≈ 0 and Sg≈
San
‖San‖

, which is valid when

the sensor is stationary. The evaluation of Sg is thus free from any drift. In this way,

the algorithm will automatically compensate the accumulated rotation drift captured
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Figure 2: Components of Sωωωmod
n

by the operation Sg×S−1 g. The component of Sωωωmod
n along the gravity direction is

still obtained from the gyroscope measurement and the drift along this direction is not

compensated. To identify stationary periods, as advised in [53], the norm of the ac-

celerometer measurement is compared to the gravity acceleration g according to the

criterion |‖San‖−g|< ka with the threshold ka tuned to ka = 0.1 g-unit. However, our

experience is that this criterion is not sufficiently restrictive in the sense that it can be

fulfilled even if
San
‖San‖

differs from Sg. Having a good approximation of Sg is essential

and motivates a more restrictive criterion for stationary periods detection. During a sta-

tionary period,
San
‖San‖

≈ Sg implies
S0an
‖S0an‖

≈ S0g. By definition, d(S0g)
dt = 0, so we expect

d(S0a)
dt = 0, which leads to the criterion ‖

S0an−S0an−1
∆t ‖< kd with the additional threshold

kd = 1 g-unit.s-1. The acceleration with respect to the inertial frame S0 is computed as

S0ân−1 =
S0q̂S−1⊗ S−1ân−1⊗ S−1q̂S0 (6)

S0ân =
S0q̂′S⊗ Sân⊗ Sq̂′S0 (7)

where S0q̂′S is an estimation the orientation of the sensor based on the gyroscope signal:

S0q̂′S =
S0q̂S−1⊗ exp(

1
2

∆t S
ω̂

gyro
n ) (8)

To the best of our knowledge, such a criterion has not been proposed yet. The threshold
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Figure 3: definition of the vector b

values have been adjusted by trial-and-error on experimental data.

Heading reset. An additional original method, called heading reset, to compensate

the drift along the gravity direction is proposed. The heading, which will be formally

defined below, represents the part of the sensor orientation along the gravity direction.

The original heading is the heading at time step 0, which is the identity. It is expected

that the operator executes left-right motion such that the sensor pass by its original

heading. This is exploited to reset the drift around the gravity direction each time

this situation is encountered. If the application does not involve heading reset, the

orientation estimation will have the accuracy of the basic algorithm. The heading reset

is applied through a correction Sωωω reset
n at the angular velocity level. The total rotation

S0q̂n−1 can be decomposed into an inclination and a heading part as S0q̂n−1 = S0q̂∗⊗
∗q̂n−1. The rotation axis of the heading part ∗q̂n−1 is the gravity vector, so S−1g = ∗g.

Similarly to the vector d, a vector b is defined as a vector constant for an observer

following the sensor frame and aligned with the gravity vector at time step 0: S0b0 =

S0g = S−1bn−1 (see Fig. 3). The rotation ∗q̂0 is the inclination part and its rotation axis
∗θθθ 0 is computed as ∗θθθ 0 =

S0g×S−1g
‖S0g×S−1g‖asin(‖S0g× S−1g‖). Therefore ∗q̂0 is computed as

∗q̂0 = exp(∗θθθ 0). Then Sωωω reset
n is computed as

∗q̂n−1 =
∗q̂0⊗ S0q̂n−1 (9)

S
ωωω

reset
n =

1
∆t

log(∗q̂n−1) (10)

11



with the logarithm map log(q̂)

log(q̂) =
2 acos(q̂1)√
q̂2

2 + q̂2
3 + q̂2

4


q̂2

q̂3

q̂4

 (11)

and subtracted to the angular velocity. The sensor is considered close to its initial175

heading when ‖∆t Sωωω reset
n ‖ < kr. A too low value of the tolerance kr will not catch

the drift and a too high value will annihilate any rotation around the gravity direction.

The value of this tolerance is tuned at 0.1 rad meaning that the sensor is considered

close to its original heading when the estimated heading is under 0.1 rad. In order

to limit overly heading reset, the corrective term is applied only when the sensor is180

stationary. This extra condition to apply the reset is necessary. Without any restriction,

the reset may be applied to each iteration annihilating any rotation around the gravity

direction. Applying the reset only when the sensor is stationary enables to catch up

the accumulated error from gyroscope data integration but not the heading component

of the sensor orientation. The complete orientation estimation process is detailed in185

algorithm 1.
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Algorithm 1 : Complete IMU orientation algorithm
S0ân−1 =

S0q̂S−1⊗ S−1ân−1⊗ S−1q̂S0

S0q̂′S =
S0q̂S−1⊗ exp( 1

2 ∆t Sω̂
gyro
n )

S0ân =
S0q̂S⊗ Sân⊗ Sq̂S0

if |‖San‖−g|< ka and ‖
S0an−S0an−1

∆t ‖< kd then
S0g =

S0a0
‖S0a0‖

Sg =
San
‖San‖

S−1ĝ = S−1q̂S0⊗ S0ĝ⊗ S0qS−1

Sωωωmod
n = 1

∆t (
Sg× S−1g)+(I3 +

Sg̃Sg̃) Sωωω
gyro
n

∗θθθ S0 =
S0g×S−1g
‖S0g×S−1g‖ asin(‖S0g× S−1g‖)

∗q̂S−1 = exp(∗θ̂S0)⊗ S0q̂S−1

Sωωω reset
n = 1

∆t log(∗q̂S−1)

if ‖∆t Sωωω reset
n ‖< kr then

Sωωωn =
Sωωωmod

n − Sωωω reset
n

else
Sωωωn =

Sωωωmod
n

end if

else
Sωωωn =

Sωωω
gyro
n

end if
S0q̂S =

S0q̂S−1⊗ exp( 1
2 ∆t Sω̂n)

2.2. Hand trajectory estimation

This section describes the method to estimate the hand trajectory with respect to

the task frame from sensor orientation estimation.

System description. In order to track segment orientation, one sensor is fastened on190

each arm segment with an arbitrary position and orientation. The hand is considered

as a single rigid segment, i.e., no finger motion is measured. The torso is considered

motionless. The frames attached to the sensors, at time step n, are noted S1n, S2n and

S3n, respectively for the segment 1 for the arm, 2 for the forearm and 3 for the hand

13



Figure 4: Human arm model

(see Fig. 4). The initial sensor frames are therefore respectively noted S10, S20, S30.195

Human arm model. The kinematic model of the human arm used in this work is com-

posed of 3 spherical joints for the shoulder, elbow and wrist as described in Figure 4.

The human attached inertial frame noted H is centered on the shoulder joint, its zzz-axis

is along the gravity and pointing upwards and its xxx-axis, parallel to the sagittal plane,

is decribed later. Frames 1n, 2n and 3n respectively denote the frames attached to the200

segments 1, 2 and 3 and centered at the joint at time step n. Their xxx-axes are aligned

with the direction of the segment and pointing towards the next joint center in the chain.

L1, L2 and L3 are the segment lengths. L3 is defined as the distance from the finger tip

D to the middle point between the radial styloid and the ulnar styloid. L2 is defined as

the distance from the middle point between the radial styloid and the ulnar styloid to205

the middle point between the lateral and the medial epicondyle. L1 is defined as the

distance from the middle point between the lateral and the medial epicondyle to the tip

of the acromion bone.

Hand trajectory. The vector HADn represents the position of the hand with respect to

the frame H at time step n and can be evaluated from the orientation of the segments 1,

2 and 3 as

H ÂDn =
H ÂBn +

H B̂Cn +
HĈDn (12)
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with

H ÂBn =
H q̂1n⊗ 1nÂBn⊗ 1nq̂H (13)

H B̂Cn =
H q̂2n⊗ 2nB̂Cn⊗ 2nq̂H (14)

HĈDn =
H q̂3n⊗ 3nĈDn⊗ 3nq̂H (15)

with 1nABn = [L1 0 0]T , 2nBCn = [L2 0 0]T , 3nCDn = [L3 0 0]T ∀n. The rotation H q̂in

can be decomposed as

H q̂in =
H q̂Si0⊗ Si0q̂Sin⊗ Sinq̂in (16)

Algorithm 1 gives an estimation of Si0q̂Sin based on IMU measurements. The I2S

(inertial-to-segment) orientation of the sensor with respect to the segment inq̂Sin and210

the initial orientation of the sensor with respect to the human frame H q̂Si0 are estimated

through an initialization procedure.

Initialization procedure. Assuming that the motion of the skins and soft tissues can be

neglected, the I2S orientation is constant, i.e.,

Sinq̂in =
Si0q̂i0 ∀n. (17)

It is asked to the operator to start the trajectory with the arm horizontal, outstretched

and in the sagittal plane as illustrated in Figure 5 a. In this configuration, the segment

frame i0 is aligned with the inertial human reference frame H, i.e.,

Si0q̂i0 =
Si0q̂H . (18)

The z-axis of the reference frame H being along the gravity direction, it is estimated

through accelerometer measurement when the operator is at the initial position. Previ-

ously, the operator performs a shoulder flexion in the sagittal plane (see Fig. 5 b), so215

that the yyy-axis of the reference frame H can be defined as the normalized projection of

the angular velocity in the plane perpendicular to zzz-axis. In this way, the transformation
Si0q̂H is obtained for each sensor i. Table 1 details the initialization procedure related

to segment i.
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1
Rotation around the shoulder-shoulder

N recording of ωωωk
axis with a straight arm

2 Computation of yω yω = 1
N ∑

N
k=1

ωωωk
‖ωωωk‖

3 Arm locked in initial position N recording of ak

4 Computation of Si0zH
Si0zH =− 1

N ∑
N
k=1

ak
‖ak‖

5 Projection of yω y′ω =−(yω − (yω · Si0zH)
Si0zH)

6 Computation of Si0yH
Si0yH =

y′ω
‖y′ω‖

7 Computation of Si0xH
Si0xH = Si0yH × Si0zH

8 Computing of rotation matrix Si0RH =
[

Si0xH
Si0yH

Si0zH
]

9 Conversion to quaternion Si0RH → Si0q̂H

10 Computation of H q̂Si0 and Sinq̂in
H q̂Si0 = (Si0q̂H)

−1 ; Sinq̂in =
Si0q̂H

Table 1: Steps of the initialization of the human arm measurement process

Human-robot transformation estimation. It is considered in our work that the task

frame is the robot base frame. The embodiment mapping consists then in the estimation

of the transformation from the human inertial reference frame H with origin A to the

robot based frame R with origin O, composed of a rotation part Rq̂H and a translation

part RAO. Once the initialization procedure is finished, the operator puts its fingertip in

contact with the robot end-effector and follows an arbitrary trajectory imposed by the

robot. During the trajectory, N human fingertip positions HADk and robot end-effector

Figure 5: a) Initial position ; b) Rotation around shoulder-shoulder axis
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positions RPk are recorded. The rotation Rq̂H is estimated using a least square method

[67]. The first step is to compute the centroid of each data set HAD and RP as

HAD =
1
N

N

∑
k=1

HADk (19)

RP =
1
N

N

∑
k=1

RPk. (20)

The rotational matrix Q corresponding to Rq̂H is estimated using a singular value de-

composition of the matrix M

M =

N

∑
k=1

(HADk−HAD)(RPk− RP)T =USV T (21)

Q =VUT . (22)

The matrix Q is then converted into the unit quaternion Rq̂H . The translational RAO

part is obtained as

RAO =
1
N

N

∑
k=1

(RPk−Q HADk). (23)

Parameters optimization. Parameters values error may be introduced during the initial-

ization procedure and during the estimation of the human-robot transformation. The

context of PbD enables to take advantages of the robot in order to optimize some pa-

rameters of the IHMT method. The parameters involved are the I2S orientations for

each segment Sinq̂in∀n simply noted here Siq̂i with i ∈ [1,2,3]; the original orientation

of each sensor H q̂Si0 with i ∈ [1,2,3]; the rotation Rq̂H and the translation RAO. These

errors mostly come from human parasitic motions. The term parasitic motion denotes

all motions that come in addition to the desired action performed by the human and dis-

turbing it. A non-exhaustive list can be given: torso or shoulder displacement, finger

motion, skin and muscle motion resulting in sensor displacement with respect to the

human segment, the arm not being horizontal nor straight during the measurement for

zH estimation, the rotation motion for yH estimation being not exactly in the sagittal

plan, a non-permanent contact between human fingertip and robot end-effector during

17



the human-robot transformation estimation procedure. In addition, the measurement

of the segments lengths 1nAB, 2nBC, 3nCD, directly made on the operator, can also

include errors. Consequently, all the above-mentioned parameters are optimized. The

optimization process is based on data recorded during the human-robot transformation

estimation procedure. The robot end-effector positions RP̂k measured through robot

encoders are used as reference. The human hand position with respect to the robot

frame is computed from the estimation of the sensors orientation qS10q̂S1k, S20q̂S2k and
S30q̂S3k recorded simultaneously with the robot end-effector positions. The optimiza-

tion is made by minimizing the following error function f :

f (1nAB,2nBC,3nCD,S1q̂1,
S2q̂2,

S3q̂3,
H q̂S10,

H q̂S20,
H q̂S30,

H q̂R,
RAO)

=

N

∑
k=1

‖RP̂k− (Rq̂H ⊗H ÂD
∗
k⊗H q̂R +

RÂO)‖2
(24)

with

H ÂD
∗
k =

H q̂∗1k⊗ 1kÂB⊗ 1kq̂∗H +H q̂∗2k⊗ 2kB̂C⊗ 2kq̂∗H +H q̂∗3k⊗ 3kĈD⊗ 3kq̂∗H (25)

H q̂∗1k =
H q̂S10⊗ S10q̂S1k⊗ S1q̂1 (26)

H q̂∗2k =
H q̂S20⊗ S20q̂S2k⊗ S2q̂2 (27)

H q̂∗3k =
H q̂S30⊗ S30q̂S3k⊗ S3q̂3. (28)

The optimization problem is solved using the optimize.minimize function from the220

SciPy library with the BFGS algorithm with a tolerance set to 10. The initial guess

for the segment lengths 1nAB,2nBC and 3nCD are from a direct measurement on the

operator arm. The values of the initial values of the I2S orientation S1q̂1,
S2q̂2 and S3q̂3

come from the initialization as well as the orientations qS10q̂S1k, S20q̂S2k and S30q̂S3k.

Finally, H q̂R and RAO initial guess are the values from the human-robot transformation225

estimation process described in the previous paragraph.

3. Experimental method and results

Three experiments are proposed to estimate error and validate the different ele-

ments of the method. First, the orientation estimation algorithm is compared to a refer-

ence and to other algorithms. The impact of the heading reset is highlighted as well as230
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the error of the complete algorithm. Secondly, the IHMT method is applied on a robot

arm to verify the robustness of the method to the positioning of the sensors. Finally, the

method is applied on a real human arm. Compared to the previous results, it enables to

estimate the part of the error due to human parasitic motion.

3.1. Error and comparison on the estimated orientation235

The proposed orientation estimation algorithm has been applied to the filtered data

from Xsens MTw Awinda sensors [68]. It is considered that the filtered data from

commercial sensors already present limited noise. A comparison is made with the

orientation estimation algorithm from the company Xsens based on the Kalman filter

and using magnetometer as well as with the Madgwick’s algorithm [58], the Mahony’s

algorithm [52] and the Fourati’s algorithm [69], without using a magnetometer. In

order to validate the proposed method, three sensors are mounted on an ABB IRB 120

robot arm end-effector. The robot end-effector orientation Rq̂EEn, measured through

encoders, is used as reference. The sensors are mounted in a way that initial sensor

frame Si0 is aligned with the robot base frame R as well as the body-attached frame Sin

and the end-effector frame EEn. The error ε , given in degree, is computed by

ε = ‖R
θθθ‖= ‖log(Sinq̂Si0⊗ Rq̂EEn)‖ (29)

In order to impose an orientation to the robot that reflects realistic human arm motion,

a set of orientation values is created from the motion of the arm of two subjects. The

two subjects wear one Xsens IMU sensor on each segment and they are asked to move

their arm freely for 20 seconds with the only instruction to cover as much as possible

the range of human arm motion. It can be mentioned that 68.1% of this motion is con-240

sidered stationary regarding the criteria defined at the end of section 2.1. During the

motion, the orientation of each sensor, estimated by the Xsens algorithm, is recorded

to constitute a set of human realistic orientations. This set is played by the robot in two

different ways: continuously then with a 1 second break between each orientation. Fur-

thermore, this motion is repeated at different maximum robot end-effector velocities.245

This set of repeated trajectory constitutes a motion that lasts 3707 seconds so that the

gyroscope bias has a significant impact on the motion estimation. Three measurements
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Figure 6: Rotation vector error 0θθθ for the sensor 3 during measurement 3 from gyroscope integration to

complete proposed algorithm: a) represents estimation made by gyroscope integration only, b) represents the

orientation with stationary periods detected by the threshold on the accelerometer norm only, c) similar to b)

but with a threshold on the jerk in addition for stationary periods detection, d) the complete algorithm.

of the described motion have been executed and the results for all algorithms are pre-

sented in Table 2. The proposed algorithm is more accurate than the other algorithms

in this case. The influence of the different elements of the algorithm is shown in Figure250

6, the complete algorithm providing the best performance. These encouraging results

tend to confirm the validity of the hypothesis.

3.2. Evaluation of the initialization procedure

Experiment description. This section aims at validating the trajectory estimation method

with respect to the inertial frame H as well as the robustness of the initialization pro-255

cedure to the positioning of the sensors on each segment. Three Xsens MTw sensors

have been mounted on an ABB IRB 120 robotic arm as shown in Figure 8. The sup-

port for sensors (upper right corner of Figure 8) enables to set the sensors to different

orientations with respect to the segment frame. The robot has an anthropomorphic

kinematics with one degree of freedom less than the human arm which enables to ap-260

ply our method on this robotics arm. Axes 1 and 2 of the robot mimic the human
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Proposed Proposed Proposed

Xsens Mahony’s Madgwick’s Fourati’s algorithm algorithm with algorithm

algorithm algorithm algorithm algorithm without Cj with

error error error error Cj & ωωω reset without ωωω reset Cj & ωωω reset

error error error

1 34.8 23.3 24.8 24.8 6.8 25.5 2.5

1 2 25.4 118.4 139.1 65.3 16.3 13.9 13.6

3 12.5 38.4 154.9 33.3 6.8 34.2 2.0

1 19.9 21.9 30.3 30.4 6.9 29.8 2.3

2 2 10.2 74.2 5.5 5.5 8.6 5.1 2.6

3 37.7 116.3 110.5 87.4 23.0 14.3 4.0

1 26.6 107.5 97.0 81.4 31.6 7.5 2.1

3 2 16.4 27.0 7.8 7.9 53.9 6.4 1.9

3 8.4 50.9 47.8 6.2 9.0 6.1 1.6

Table 2: Mean error in degree on the orientation of the proposed algorithm with and without Cj (Cj is the

criteria based on the jerk: ‖
S0an−S0an−1

∆t ‖< kd ), and with and without ωωω reset, the Xsens algorithm and three

other IMU algorithms

shoulder with the center of the joint at the intersection of the axes. The human elbow is

materialized by axis 3. Axes 4, 5 and 6 mimic the human wrist. So, the rotation of the

human arm segment around the axis of the segment itself, has no equivalent in the robot

kinematics. However, the arm model used in this work, composed of 3 spherical joints,265

is applicable to both human and robot kinematics, so that our method can be applied

to the robot directly. The lengths of the robot segments are taken from the robot data

sheet: L1 = 270 mm, L2 = 310.0065 mm, L3 = 72 mm. The trajectory executed by the

robot is composed of pure translations and rotations and a complex trajectory as can

be seen in Figure 7. To build the complex trajectory, 6 points have been programmed270

and the robot goes through all the points with joint motion. For each measurement,

the complete trajectory is repeated three times at different maximum velocities of the

robot end-effector: 200 mm.s−1, 100 mm.s−1 and 50 mm.s−1. Fourteen measurements
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Figure 7: 3D trajectories measured by robot and IMUs (end-effector maximum velocity: 200 mm/s)

are made with different configurations of the sensors support. The absolute error is

computed as εt =
1
N ∑

N
k=1 ‖HADk − RPk‖ with N the number of points. In this case,275

the frames R and H are aligned. No human-robot transformation estimation procedure

is applied since no human is involved in this measurement. Consequently, parameters

are not optimized. However, the robot is considered following accurately the required

motion of the initialization.

Results. The results are presented in Table 3 and show an error comprised between280

13.3 mm and 17.6 mm. These results are used as a basis for comparison in the next

experiment.

Configuration 1 2 3 4 5 6 7

εt (in mm) 14.7 14.3 15.0 13.3 17.1 14.8 17.3

Configuration 8 9 10 11 12 13 14

εt (in mm) 15.2 13.8 14.1 16.6 17.6 14.7 15.7

Table 3: Mean error on the end-effector position for different configurations of sensors set up on a robotic

arm
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Figure 8: Set up for the experimental error measurement on the trajectory

3.3. Assessment of the method

This section presents an experimental application of the proposed method with a

real human operator and a 7-DoF Sawyer collaborative robot from Rethink Robotics.285

The aim of this experiment is to evaluate the accuracy of the complete method i.e., the

human hand trajectory with respect to the robot frame. Therefore, the robot is used to

impose a trajectory to the operator (as in the human-robot transformation estimation

procedure) and the trajectory measured by the robot encoders is used as the reference

trajectory. The experiment is detailed below.290

Setup. Two IMUs are set up on the arm and forearm with reflective metallic strips

(see Fig. 9). The IMU for the hand is set in a gun-shaped tool. This tool includes a

trigger button which can be used to go from step to step. The spherical tip of the gun

fits in a receiver mounted at the robot end-effector to enforce the contact during the

human-robot transformation estimation procedure and the recording of the human tra-295

jectory. In this way, the robot can impose a trajectory to the human during the record-

ing. The trajectory recorded through the robot encoders is used as reference. The

measured segment dimensions of the subject are, in millimeters, 1nABn = [330 0 0]T ,
2nBCn = [277 0 0]T , 3nCDn = [280 − 20 110]T ∀n. 3nCDn is not aligned with the x-

axis of the segment due to the gun-shaped tool. The minimization process is conducted300
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Figure 9: Setup for the application of the proposed method: a) IMUs set on the arm and forearm, b) gun-

shaped tool with the trigger button, c) end-effector hole to receive the tip of the tool, d) global view of the

setup

by the optimize.minimize function from the SciPy library with the BFGS algorithm

as explained in the paragraph Parameters optimization in the subsection 2.2 Hand tra-

jectory estimation. Different trajectories are executed by a unique operator (see Fig.

10). The error εt is the mean distance between the estimated point from IMU measure-

ment RADk and the reference one measured by the robot encoders RPk, computed as305

εt =
1
N ∑

N
k=1 ‖RPk− RADk‖ with N the number of points. The results are exposed in

Table 4.

Results and discussion. First, the results presented in Table 4 show the positive impact

of the optimization. The difference between non-optimized and optimized values of310

each parameter is computed for all trials. Table 5 gives the maximum and the mini-
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Figure 10: Trajectory imposed by the robot: a) “Circle” trajectory, b) “Cross” trajectory, c) “Cube” trajectory,

d) “Hexagon” trajectory

Measurement Time (in s)
non-optimized parameters optimized parameters

Error (in mm)

standard

deviation (in

mm )

Error (in mm)

standard

deviation (in

mm )

Circle 1 8.55 52.0 14.7 32.9 20.5

Circle 2 7.91 53.8 12.7 28.8 10.8

Circle 3 8.25 50.1 19.7 29.4 12.8

Cross 1 27.99 55.5 32.7 39.9 26.0

Cross 2 27.71 47.2 28.4 42.8 20.1

Cross 3 27.08 77.0 35.0 61.8 27.4

Cube 1 44.24 85.8 33.5 45.0 13.4

Cube 2 39.19 96.2 53.7 50.4 20.5

Cube 3 39.07 83.8 43.4 39.8 17.7

Hexagon 1 28.47 55.4 16.4 28.5 16.7

Hexagon 2 27.77 68.5 26.5 40.9 20.5

Hexagon 3 27.09 70.7 26.4 52.8 22.1

Table 4: Human arm trajectory in robot base frame error

mum of these differences. The differences are low, meaning the parameters conserve a

physically realistic value.

Secondly, the error is comprised between 28.5 mm and 61.8 mm. Let us recall that
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Parameters Maximum difference Minimum difference
1nAB 0.53 mm 0.012 mm
2nBC 0.44 mm 0.012 mm
3nCD 0.29 mm 0.003 mm
S1q̂1 21.8 ◦ 13.0 ◦

S2q̂2 32.7 ◦ 20.0 ◦

S3q̂3 32.9 ◦ 20.3 ◦

H q̂S10 27.1 ◦ 8.6 ◦

H q̂S20 23.4 ◦ 7.8 ◦

H q̂S30 33.3 ◦ 6.2 ◦

H q̂R 23.6 ◦ 3.2 ◦

RAO 1.2 mm 0.015 mm

Table 5: Differents of values before and after optimization

error on the trajectory measured in the previous subsection on a robot is comprised315

between 13.3 mm and 17.6 mm. This difference may come from several factors as-

sociated with the human anatomy, the behavior of the operator and the limits of the

proposed method, as discussed in the following:

• The transformation from the human frame to the robot frame was not necessary

in the previous experiment. This step may introduce some error.320

• Several parasitic motions affect the measurement such as: the torso and shoulder

displacement; the motion of the gun with respect to the palm of the hand; the

motion of the sensors with respect to the segment and forearm due to soft tissues

displacements and strapping system displacement; or the shakiness of the human

motion.325

• As shown in [70] and [71] the shoulder center of rotation is not unique and

depends on the position of the arm. The model of the shoulder in this work does

not reflect this complexity.
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• Some error may also be attributed to unmet assumptions of the initialization

process. In particular, the arm might not be perfectly horizontal or stretched and330

the rotation might be disturbed. The optimization step catches up only a part of

this error.

• The contact between the tip of the gun and the robot end-effector used during

the human-robot transformation estimation procedure and the recording of the

trajectory is not strictly guaranteed, especially if the robot moves back. Regard-335

ing the human-robot transformation estimation, this source of error is inherent to

the method. Regarding the measurement, this source of error is inherent to the

experimental setup. However, the measurements with obvious missing contact

are discarded so that this source of error has a negligible impact compared to the

other sources of error mentioned above.340

Despite the listed sources of error, the proposed method gives a reliable estimation of

the trajectory. Our results can be put in perspective with the survey of Filippeschi et

al. [22]. In this work, the trajectory of the wrist for different elementary arm motion

(flexion/extension, pro-and supination ...) is estimated with 5 different IHMT methods.

The methods are based on complementary filter, Kalman filter, extended Kalman filter345

or unscented Kalman filter. All methods are based on MIMU sensors but the magne-

tometer is not always exploited. An optical motion capture system measures human

arm motion which is used as reference. The error is computed as the mean of the

distance between inertial-based estimation and the reference. The results over trials

and elementary motion can be summarized in Table 6. Our method presents results350

between 28.5 mm and 61.8 mm which are comparable to the best results presented in

[22]. In addition, our results represent to the human hand trajectory with respect to the

robot frame, which fits the expectation of a PbD application. In order to obtain this

information based on the methods given in [22], additional disturbances caused by the

hand segment tracking and the human-robot transformation, would alter the quality of355

the estimation. Table 4 shows that the optimization step is a key element to reach a

competitive level of accuracy. Thus, our IHMT method reach a good level of accuracy

and fulfill the constraints of a PbD application.
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Methods 1 2 3-Pure 3-Perfect 4 5

Maximum error (mm) 108.9 243.8 156.0 272.2 98.3 214.4

Minimum error (mm) 23.6 60.9 27.8 36.5 72.3 44.8

Table 6: Mean error for different method from [22]

Conclusion

This work proposes an intuitive and easy-to-use method for human hand trajectory360

tracking based on IMUs for robotics applications. This method is suitable for demon-

stration acquisition in a robot PbD process.

Three IMUs sensors are mounted respectively on the hand, forearm and arm. The

trajectory is computed from the orientation of each segment estimated from IMU sen-

sors and the lengths of each segment of the arm. An initialization step is necessary to365

identify the I2S orientation as well as the human reference frame. This step consists of a

rotation around the shoulder of the arm outstretched, defining y-axis through gyroscope

measurement and then a horizontal static pose, defining z-axis through accelerometer

measurement. It is shown that this procedure is robust to arbitrary positioning and ori-

entation of the sensors on the arm.370

This initialization is followed by a human-robot transformation estimation proce-

dure to estimate the transformation from the human reference frame to the robot base

frame. During this step, the robot imposes a trajectory to the human by contact between

the human fingertip and the robot end-effector. The recorded data are also used in an

optimization process of the following parameters: the segment vectors with respect to375

their segment frame; the I2S orientations; the initial sensor orientation with respect to

the reference frame and the human-robot transformation.

The main challenge when using IMU is to estimate their orientation. A new drift-

compensated algorithm is proposed, tested and compared to four other algorithms. This

algorithm relies on gyroscope data integration and gravity vector observation method.380

The main contribution consists in exploiting a human motion property to compensate

the drift around the gravity direction. For a task demonstration, it is assumed that the
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operator naturally execute motions such that the sensors pass by their original heading

(with different inclinations) several times during the task. This is exploited to reset

the drift each time this situation is encountered. This algorithm, tested for a long and385

realistic human motion on commercial sensors, gives encouraging results. The strong

assumptions made on human motions to apply IMU heading reset seem therefore vali-

dated in a context of robot programming by demonstration.

Finally, the complete method has been implemented on a Sawyer robot. Different

trajectories are imposed to the human by the robot and directly recorded by its en-390

coders to be used as reference. For the movement of the human arm motion, the results

show a mean error comprised between 28.5 mm and 61.8 mm whereas the results of

the method applied to a robot gives an error between 13.3 mm and 17.6 mm. It reveals

that the human arm motion induces several disturbances lowering the accuracy of the

method. Improving the accuracy might be possible, for instance by using a more de-395

tailed human arm model and by measuring the human parasitic motion. However, in

the case of a human demonstration for PbD, a high level of accuracy on the complete

trajectory is not necessary. For instance, in a pick and place application, precision is

mainly required at the pick and place positions so that local improvement of the trajec-

tory might be enough.400

As a future work, this method could be tested in a complete PbD process. In such

an application, a demonstration might require information about the environment such

as that the object position in a pick and place task. In that case, managing the informa-

tion on the human trajectory and the environment could represent another challenge.

Furthermore, in human interactions, non-verbal symbolic gestures are often used. As405

IMUs have been largely used in the human gesture recognition, extracting, identifying

and adding symbolic human gesture to a demonstration could be investigated.
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