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WHY USING DEEP LEARNING?
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 Frequent surveys and monitoring of wildlife/livestock are essential for conservation

 Standard survey method: 

observers in aircraft flying at low altitude following 

systematic sample units

 Remotely controlled

 Easier logistic

 Precise counts

 Dangerous

 Complex logistic

 Counting errors

 Unmanned Aerial Vehicle: promising alternative

Huge volume of 

data (images)

Deep Learning
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THE CASE OF HERD COUNTING
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 CNN Anchor-based object detectors (e.g. Faster-RCNN, RetinaNet)

Good performances for isolated mammals and 

sparse herds[1,2,3] 
Drop in performances for dense herds and 

close-by individuals[1,3]

Are anchor-based object detectors the most suitable for counting large mammals in aerial imagery?

[3]

[1][2] [3]
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AERIAL MAMMAL DATASET
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 Use of the dataset of Delplanque et al. (2021)[1]

• UAV and nadir aerial images

• 6 wildlife species

• Savannah, woodland, open shrubland, grassland

• GSD between 2.4 and 13.0 cm/pixel

• 1,297 images

• 10,239 bounding box annotations

 From bounding box to point …
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SOME SAMPLES
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CONCLUSION AND FUTURE WORK

THE BASELINE: LIBRA-RCNN
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 Dataset’s state-of-the-art model

 Anchor-based two-stage detector proposed by Pang et al. (2019)[4], balanced version of Faster-RCNN[5]:

1

2

3

1) Balanced distribution of training samples

2) Balanced feature levels

3) Balanced training loss
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PROPOSED APPROACH
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 Point-based single stage detector, adapted from CenterNet[6]

Encoder

(DLA-34[7])
Decoder

Deep features

Input patch

Output map

3 x 512 x 512

1 x 256 x 256

FIDT[9]

Ground truth

1 x 256 x 256Focal loss[8]

Local maxima 

extraction

Up

Training

Inference 1 x 512 x 512

1 x 256 x 256

1 x 256 x 256
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EVALUATION
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 True Positive (TP): nearest prediction within circular area of radius D (= 20 pixels)

 Estimated count ( 𝑪): number of predictions within image 
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aMean Absolute Error
bRoot Mean Square Error
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Predicted points

Annotated point 1

Annotated point 2

Positive area 1

Positive area 2



LOCALIZATION PERFORMANCE
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Recall =  95%

Precision = 37%

F1 score = 53%

Recall =  89%

Precision = 70%

F1 score  =  78%

FULL IMAGE FULL IMAGE

LIBRA-RCNN POINT-BASED APPROACH
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COUNTING PERFORMANCE
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MAEa = 3.1
RMSEb = 5.5

MAEa = 14.9
RMSEb = 24.4

LIBRA-RCNN POINT-BASED APPROACH

aMean Absolute Error
bRoot Mean Square Error
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CONCLUSION & FUTURE WORK
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Better adapted for animal 

detection and counting ?

ANCHOR-BASED DETECTOR POINT-BASED DETECTOR

 Higher recall  Lower recall

 Precision decreases with 

increasing animal density

 Over-counting

 Time-consuming annotations

 High precision regardless of 

animal density

 Low counting error

 Faster annotations
Seems to be but need to be 

tested on other datasets to 

draw general conclusions…
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