COUNTING AFRICAN MAMMAL HERDS IN AERIAL IMAGERY USING DEEP LEARNING: ARE ANCHOR-BASED ALGORITHMS THE MOST SUITABLE?

10th International Conference on Agro-Geoinformatics and 43rd Canadian Symposium on Remote Sensing

July 11 to 14, 2022

CENTRE DE LA SCIENCE DE LA BIODIVERSITÉ DU QUÉBEC

Alexandre Delplanque¹

Samuel Foucher², Philippe Lejeune¹ & Jérôme Théau^{2,3}

WHY USING DEEP LEARNING?

- Frequent surveys and monitoring of wildlife/livestock are essential for conservation
- Standard survey method: observers in aircraft flying at low altitude following systematic sample units

- Contraction of the second se

Unmanned Aerial Vehicle: promising alternative

Remotely controlled Easier logistic Precise counts

Huge volume of data (images)

THE CASE OF HERD COUNTING

- **CNN Anchor-based object detectors** (e.g. Faster-RCNN, RetinaNet)
 - Good performances for **isolated** mammals and **sparse** herds^[1,2,3]

Drop in performances for dense **herds** and **close-by** individuals^[1,3]

Are anchor-based object detectors the most suitable for counting large mammals in aerial imagery?

D OBJECT DETECTOR

CONCLUSION AND FUTURE WOR

AERIAL MAMMAL DATASET

- Use of the dataset of Delplanque *et al.* (2021)^[1]
 - UAV and nadir aerial images
 - 6 wildlife species
 - Savannah, woodland, open shrubland, grassland
 - GSD between 2.4 and 13.0 cm/pixel
 - 1,297 images
 - 10,239 bounding box annotations
- From bounding box to point ...

Table 2. Number of individuals according to species, training, validation and test sets.				
Species	Training	Validation	Test	Total
Buffalo	1058 (70%)	102 (7%)	349 (23%)	1509
Elephant	2012 (68%)	264 (9%)	688 (23%)	2964
Kob	1732 (73%)	161 (7%)	477 (20%)	2370
Торі	1678 (62%)	369 (13%)	675 (25%)	2722
Warthog	316 (73%)	43 (10%)	74 (17%)	433
Waterbuck	166 (69%)	39 (16%)	36 (15%)	241
Total	6962 (68%)	978 (10%)	2299 (22%)	10 239
The different rows show the distribution of individuals in each set and the relative percentage (in parentheses).				

ASELINE: LIBRA-RCN

SED OBJECT DETECTOR

S CONCLUSION AND FUTURE WORI

NE: LIBRA-RCNN P

BASED OBJECT DETECTOR

CONCLUSION AND FUTURE WORK

THE BASELINE: LIBRA-RCNN

- Dataset's state-of-the-art model
- Anchor-based two-stage detector proposed by Pang et al. (2019)^[4], balanced version of Faster-RCNN^[5]:
 - 1) Balanced distribution of training samples
 - 2) Balanced feature levels
 - 3) Balanced training loss

PROPOSED APPROACH

Point-based single stage detector, adapted from CenterNet^[6]

EVALUATION

- True Positive (TP): nearest prediction within circular area of radius D (= 20 pixels)
- Estimated count (\widehat{C}): number of predictions within image

LOCALIZATION PERFORMANCE

FULL IMAGE

COUNTING PERFORMANCE

G CONCLUSION AND FUTURE WOR

^aMean Absolute Error ^bRoot Mean Square Error

CONCLUSION & FUTURE WORK

ANCHOR-BASED DETECTOR

✓ Higher recall

- Precision decreases with increasing animal density
- ✗ Over-counting
- Time-consuming annotations

POINT-BASED DETECTOR

- ✗ Lower recall
- High precision regardless of animal density
- ✓ Low counting error
- Faster annotations

Better adapted for animal detection and counting ?

Seems to be but need to be tested on other datasets to draw general conclusions...

References

[1] Delplanque, A., Foucher, S., Lejeune, P., Linchant, J. and Théau, J. (2022), Multispecies detection and identification of African mammals in aerial imagery using convolutional neural networks. Remote Sens Ecol Conserv, 8: 166-179. <u>https://doi.org/10.1002/rse2.234</u>

- [2] Eikelboom, J.A.J., Wind, J., van de Ven, E., et al. (2019), Improving the precision and accuracy of animal population estimates with aerial image object detection. Methods Ecol Evol., 10: 1875–1887. <u>https://doi.org/10.1111/2041-210X.13277</u>
- [3] Peng, J., Wang, D., Liao, X., Shao, Q., Sun, Z., Yue, H., & Ye, H. (2020). Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS Journal of Photogrammetry and Remote Sensing, 169, 364-376. <u>https://doi.org/10.1016/j.isprsjprs.2020.08.026</u>
- [4] Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., & Lin, D. (2019). Libra rcnn: Towards balanced learning for object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 821-830).

- [5] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards realtime object detection with region proposal networks. Advances in neural information processing systems, 28.
- [6] Zhou, X., Wang, D., & Krähenbühl, P. (2019). Objects as points. arXiv preprint arXiv:1904.07850.
- [7] Yu, F., Wang, D., Shelhamer, E., & Darrell, T. (2018). Deep layer aggregation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2403-2412).
- [8] Lin, T. Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988).
- [9] Liang, D., Xu, W., Zhu, Y., & Zhou, Y. (2021). Focal inverse distance transform maps for crowd localization and counting in dense crowd. arXiv preprint arXiv:2102.07925.

THANK YOU FOR YOUR ATTENTION, ANY QUESTIONS ?

10th International Conference on Agro-Geoinformatics and 43rd Canadian Symposium on Remote Sensing

July 11 to 14, 2022

Alexandre Delplanque¹

Samuel Foucher², Philippe Lejeune¹ & Jérôme Théau^{2,3}

alexandre.delplanque@uliege.be

