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Abstract

Potency assays measure the biological activity or binding affinity of a sub-
stance. These measurements are made throughout the entire pharmaceutical
product development and supply process, with different objectives at each
phase. A common measure of potency is the Cyy, which reflects the concen-
tration that elicits a response equal to 50% of the response range. The Cj is
estimated by modeling the substance response as a function of concentration,
often using a four-parameter logistic (4PL) function.

The Csy estimation may be affected by the inherent variability of the
measurement system. A less variable alternative is the estimate of potency
of a test product relative to a reference preparation. Dinse and Umbach
(2013) define the relative potency (RP) as the "ratio of equi-effective doses
(reference divided by test)”. In the log-scale, this ratio is the horizontal
distance between the two concentration-response curves. To estimate the
RP as a unique value, this distance must be constant through the entire
dilution profile. Therefore, both the European Pharmacopeia (Ph.Eur) and
United States Pharmacopeia (USP) require the parallelism between the test
and reference preparation concentration-response functions be demonstrated.
This parallelism is called statistical similarity. 4PL curves are parallel if
they share lower asymptotes, upper asymptotes, and steepness. Statistical
assessment of the curves, referred to as parallelism tests or similarity tests,
are performed to judge parallelism.

Several authors have proposed equivalence testing to assess similarity,
which requires the definition of acceptance limits. The USP chapter <1032>
proposes derivation of these limits by repeated comparison of the reference
to itself. This approach so controls the risk of rejecting parallelism in case
of true parallelism (lab risk) but fails to account for the risk of accepting
curves with non-similarity that may result in highly inaccurate RP estimation
(consumer risk). Additionally, tests that separately assess the equivalence of
each non-C5y parameter ignore their correlation, leading to poorly defined
limits.

To address these challenges, we first propose a three-step derivation of ac-
ceptance limits which can be used for any similarity test. The first step gen-
erates the posterior distribution of the test statistics under true parallelism,
using a Markov chain Monte Carlo method. The second step defines the ac-
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ceptance limits by simulating reference-to-reference comparisons. The third
step controls the error in RP estimation for curves that pass the parallelism
test. In order to test the equivalence of each parameter simultaneously, an
ellipsoid-shaped zone of declared similarity is proposed. This ellipsoid test is
compared to several published tests and exhibits overall better performance.

The USP also recommends screening of data for outliers prior to similar-
ity assessment and RP estimation. Existing and proposed outlier tests are
compared, and robust regressions are shown to have better detection rates
for 4PL curves than the tests proposed in the USP chapter <1010>.

Finally, a simple yet efficient and robust method to choose the concen-
tration support points for the concentration-response curve is proposed.



Résumé

Les essais de puissance mesurent 'activité biologique ou la capacité de liaison
d’une substance. Cette activité est mesurée du début a la fin du procédé de
développement et production de produits pharmaceutiques, avec des objectifs
différents a chaque étape. Une mesure populaire de la puissance est le Csg,
qui représente la concentration qui provoque une réponse égale a 50% de
I'intervalle de réponses. Le (5 est estimé en modelant la réponse d’une
substance en fonction de sa concentration, souvent au moyen d’une fonction
logistique a quatre parametres (4PL).

L’estimation du C5g peut étre affectée par la variabilité inhérente au sys-
teme de mesure. Une alternative plus précise est de mesurer la puissance
d’un produit testé relative a celle d'une préparation de référence. Dinse and
Umbach (2013) définissent la puissance relative (PR) comme le « ratio de
doses équi-effectives ». A I’échelle logarithmique, ce ratio est la distance hor-
izontale entre les deux courbes concentration-réponse. Pour que la RP soit
une valeur unique, cette distance doit étre constante sur I’ensemble du profil
de dilution. Des lors, les pharmacopées européenne (Ph.Eur) et américaine
(USP) requierent que le parallélisme entre les fonctions concentration-réponse
de la courbe test et la courbe de référence soit démontré. Ce parallélisme
est appelé similarité statistique. Deux courbes 4PL sont paralleles si elles
partagent les mémes asymptotes hautes, asymptotes basses, et raideurs. Des
tests statistiques, appelés tests de parallélisme ou tests de similarité, sont
utilisés pour évaluer si les courbes sont suffisamment similaires.

Plusieurs auteurs ont proposé des tests d’équivalence pour évaluer la sim-
ilarité, lesquels nécessitent de dériver des limites d’acceptation. Le chapitre
<1032> de I’'USP propose de déterminer ces limites en comparant la référence
a elle-méme un grand nombre de fois. Cette approche permet de controler le
risque de rejeter des courbes en cas de vrai parallélisme (risque laboratoire),
mais pas le risque d’accepter des courbes dont le non-parallélisme peut provo-
quer de larges erreurs d’estimation de la PR (risque client). De plus, les tests
qui évaluent chaque parametre hors-Csg séparément ignorent leur corrélation,
ce qui mene a des limites mal définies.

Pour résoudre ces problemes, nous proposons d’abord une méthode de
définition des limites d’acceptation qui peut étre utilisée pour n’importe quel
test de similarité. La premiere étape de cette méthode génere la distribution
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postérieure des statistiques de tests en cas de vrai parallélisme, usant des
méthodes de Monte-Carlo par chaines de Markov. La seconde étape définit
les limites d’acceptation en simulant des comparaisons référence-référence.
La troisieme et derniere étape controle I’erreur d’estimation de la PR pour les
courbes qui réussissent le test de parallélisme. Afin de tester simultanément
I’équivalence de chaque parametre, une zone de similarité a forme ellipsoide
est proposée. Ce test ellipsoide est comparé a plusieurs tests publiés, et
présente globalement de meilleures performances.

L’USP recommande aussi de dépister les valeurs aberrantes dans les don-
nées avant de tester le parallélisme et estimer la RP. Nous comparons des
tests de détection de valeurs aberrantes et démontrons que les régressions
robustes ont des meilleurs taux de détection pour les courbes 4PL que les
tests proposés dans le chapitre <1010>.

Enfin, nous proposons une méthodologie simple, efficace et robuste pour
choisir les concentrations utilisées pour modéliser la courbe concentration-
réponse.
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Chapter 1

Introduction

1.1 Potency Assays

An assay is the determination of the activity, potency, or concentration of a
substance (also called the analyte) [1]. Potency assays measures the concen-
tration or amount needed to produce a defined effect [2]. They can also be
used to measure the biological activity or binding affinity of a sample product
(or lot of product) relative to a reference preparation. For example, in the
manufacture of a biotherapeutic or vaccine, the potency of material from a
new batch may be measured relative to the potency of reference batch ma-
terial [3]. A common way to estimate a potency is through the use of serial
dilution assays, in which the response is measured at several concentrations
providing a concentration-response (or dilution-response) function [1]. These
serial dilutions are commonly performed within a 96-well plate (8 rows and
12 columns, see Figure 1.1). Due to laboratory constraints, one series of
dilution is usually performed within one row or one column, although it is
less than ideal because location effects within one plate may be present [5].
Whenever possible, the vials on the border of the plates are not used or used
for control samples to avoid lowering the assay performance due to an edge
effect [0].

Two main types of potency assays are encountered in pharmaceutical
development: ligand binding assays and biological assays or bioassays.
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Source: https://www. chromtech. com/

Figure 1.1: Representation of a 96-well plate.

1.1.1 Ligand Binding Assays

Findlay and Khan [7] define ligand-binding assays (LBA) as assays ”in which
the key step is an equilibrium reaction between the ligand (analyte) and a
binding molecule, most often a protein and, in many cases, a specific antibody
or receptor directed against the ligand of interest”. In other words, they
quantify the strength of the interaction between two molecules [3].

Some drugs are developed to mimic the action of the endogenous trans-
mitter by binding to a receptor to induce a biological response, acting like
agonists, or without inducing the response, acting like antagonists [9]. LBAs
are generally limited as a drug-screening technique, because measuring the
binding affinity of the analyte for a target receptor does not provide any
information about its effects on the body while it is off the target [10]. Ad-
ditionally, in most cases, there is little relationship between the strength of
binding of a ligand to a site and its actual potency [l 1]. However, if the
desired effect of a drug is only due to the binding, LBAs can be used to mea-
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sure potency [12]. This is for example the case for monoclonal antibodies,
which are used for the treatment of a variety of conditions, including but not
limited to cancer [13, 1], autoimmune diseases [15, 10], inflammation [17],
and infectious diseases [18]. Monoclonal antibodies are also used in vaccine
development to understand the immune response to injected antigens [19-21].

The most common LBA used to measure the potency of monoclonal anti-
bodies is the enzyme-linked immunosorbent assay (ELISA) [22-25]. During
an ELISA, the substance of interest is bound to a solid surface (i.e. the
surface of a well in a 96-well plate), and the strength of the binding reaction
is quantified by measuring the optical density on each vial. ELISA assays

are also very commonly used for the diagnostic of food allergies [26,27] and
multiple diseases, such as HIV [28], Lyme [29], rotavirus [30], dengue [31],
hepatitis [32], and many others.

1.1.2 Biological Potency Assays

Bioassays, also called cell-based assays, measure the concentration, efficacy,
and potency of a substance by assessing the effect it produces in living matter
[33,34]. They tend to be more complex than LBAs and the results are less
precise, because the metabolic state of living cells varies from day to day [35].
Despite their disadvantages, they are sometimes necessary. Live vaccines for
example, that contain attenuated viruses or bacteria (e.g. the measles and the
polio vaccines), require bioassays to ensure successful infectivity. Common
responses in in vitro bioassays for vaccines are the number of infected, lysed,
or bound cells [36,37]. In wvivo assays, performed on animal, also exist.
These are however sometimes highly variable and time consuming [35], and
also pose some ethical concerns that have led the European Union to issue a
directive to replace, reduce and refine animal assays [39,10]. Biological assays
can be direct — the concentration of both reference and test preparations
are directly measured — or indirect — the ratio of concentrations from a
reference and test preparation is measured, and the response can can be
either continuous [11] or binary [12]. This work focuses on indirect potency
bioassays with continuous responses in the context of therapeutic proteins
(biologics) and vaccine development.
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1.1.3 Applications

ELISA assays can be used in areas unrelated to drug products, such as
growth-rate studies in botanical sciences [13] and detection of dioxin or
dioxin-like compounds in wastes and the environment [14, 45]. This dis-
sertation focuses on biotherapeutics and vaccine applications.

Bio and binding assays are used thorough the entire pharmaceutical prod-
uct process. In the drug discovery phase, potency evaluation is mostly per-
formed to rank and select valuable candidate molecules. During the devel-
opment of a biologic or, sometimes, a small molecule, the safety and the
efficacy evaluations can be affected by an immune response to the product.
In pre-clinical studies, potency assays are used to quantify the effect of the
protein and help determine the therapeutic dose for the intended purpose of
the drug [16]. Through the clinical development, they are used to character-
ize the product, and develop and optimize manufacturing process [17]. For
vaccines and biologics, they are also used in the later phases of clinical trial,
as well as biological license applications and routine manufacturing, for lot
release testing and stability assessment [13, 19].

1.2 Potency Determination

1.2.1 Concentration-Response Functions

A common measure of the potency of a substance is the Csy: concentra-
tion that yields a response equal to 50% of the range between the baseline
(response when the concentration tends to 0) and the maximum (response
when the concentration tends to infinity). It is estimated by modeling the
substance response as a function of its concentration.

Concentration-response functions in potency assays tend to be sigmoid
(see Figure 1.2). Below a certain concentration, there is no interaction be-
tween the substance of interest and the live cells or binding molecule. When
the concentration increases, so does the effect of the substance, up to a cer-
tain point where no more effect can be produced by increasing the dose. The
most used model to describe serial-dilution assays is the four-parameter lo-
gistic (4PL), and a common parametrization of this model was proposed by
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Rodbard and Hutt [50]:

yMin; — yMax;

Tij S
()

+€ij, €ij NN(O,OJ) (11)

vij = yMax; +

where:

y;; is the response at concentration z;; from curve ¢;

 ¢;; is the measurement error;

e 1= R, T correspond respectively to the reference and test preparations;
e j=1,...,n corresponding to each of the n observations per curve;

e 02 is the measurement variability;

o yMin; and yMax; are respectively the lower and the upper asymptotes
of curve 1;

e S; is a measure of the steepness of curve i;

e (Cjg is the concentration at the inflection point of curve 7. This is the
concentration needed to reach half of the response range between yMin;
and yMax;.

While mathematically equivalent, the following parametrization presents
computational advantages [01]:

yMin; — yMax;
1+ exp (S; (log(zy5) + ¢:))

vi; = yMax; + + €, eij ~ N(0, 02) (1.2)

where ¢; = log(Cso,). We note 6; = [yMin;, yMax;, ¢;, Si]t.
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1.2.2 Relative Potency Calculation

Due to the inherent variability in test systems, using Cjy as the measure
of potency is not always possible [17]. A less variable option is to measure
the potency relative to a reference preparation. Dinse and Umbach (2013)
define the relative potency (RP) in serial dilution assays as the "ratio of equi-
effective doses (reference divided by test)” [52]. Graphically, in the log-scale,
this ratio is the horizontal distance between the two concentration-response
curves. For the RP to be a unique value, this distance must be constant
through the entire dilution profile (see Figure 1.3). Therefore, a necessary
step before calculating the RP is to demonstrate the parallelism between the
test and reference preparation concentration-response functions [17,53]. This
parallelism is called statistical similarity.

1.2.3 Parallel Curves and Parallel Lines

4PL curves are a simple horizontal shift from one another in the log scale
if and only if they share the same lower asymptotes, upper asymptotes and
steepness’s . In case parallelism is declared, the RP can be calculated by the
ratio of Cjos after fitting the model :

Min — yMax
Yij = yMax + Y Y < + €, €ij ~ N(0,0%) (1.3)
1+ (&)
yMax
]
(2]
c
(]
o
(%3]
O]
x
= yMin
Log(Concentration)

Figure 1.2: Concentration-response sigmoid curve



1.2. POTENCY DETERMINATION 7

This model is an adaptation of equation 1.1 with common yMin, yMax
and S for both curves.

Historically, however, fitting nonlinear models was not easily done. Before
the rise of user-friendly statistical software, the C5y had to be approximated
from the serial dilution results using simple methods such as Spearman-
Karber and Reed-Muench [51,55]. These methods are still used in quantal
assays [00]. Another common way to address this issue was to ‘cut’ the
asymptotes from the model and fit y as a linear function of the remaining
portion of log (z) (see Figure 1.4). If parallelism between the two lines is
demonstrated, the following model is fitted:

Yij = 601. + 61 X log (l’) + €4, €ij ™~ N(O, 0'2) (14)
where:

o o, is the intercept of line i;

e [ is the slope, common for both curves.

The RP in this case is calculated by:

Response
Response

Log(Concentration) Log(Concentration)

Figure 1.3: Parallel (right) VS non-parallel (left) curves and their effect on hori-
zontal distance consistency
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RP = exp (W) (1.5)
1

Log-linear approximation of sigmoid curves is not advised, because the
obtained relative potency estimate is less accurate than when 4PL curves are
used [17,57,58], and is usually not necessary. However, some assay designs
may not allow to observe the full dilution profile. Parallel line assays are
therefore still used nowadays in some cases [59].

1.2.4 Statistics for Nonlinear Models

Linear models present computational advantages. The maximum likelihood
estimation of the model parameters as well as their respective standard errors
can be directly calculated using matrix algebra. This is not the case for
nonlinear models, such as the 4PL, and specific software are required to
estimate the parameters.

Nonlinear models take the form:

Response

Log(Concentration)

Figure 1.4: Line and Curve Assays
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y=f(z,0)+e¢ (1.6)

where:

e 1z is a vector of independent variables;

y is a vector of a dependent variable;

€ is the vector of errors;

0 is the vector of parameters;

f is a nonlinear function.

For example, in the 4PL as described in Equation 1.3,
0 = [yMin,yMaz,Cso,, Cso,, S]'

and ,
yMin — yMax

N5
1+ <§50>
Nonlinear models can be fit on data using classic frequentist or Bayesian
methods.

f(z,0) =yMazx +

1.2.4.1 Using Frequentist Statistics

Fitting a nonlinear model requires to use a numerical method to find the
combination of parameters that minimizes the residual sum of squared errors
(RSSE) [60,61]. The variance-covariance matrix of the obtained parameter
estimates is then approximated using Taylor expansions [62]. This approx-
imation is decent with large sets of data but may be inaccurate with small
sample sizes [63,64]. Due to their cost and complexity, potency assays usually
belong to the second category, and standard errors of 4PL curve parameters
tend to be poorly estimated. Frequentist methods are therefore inappropriate
to make any inference on model parameters. However, they are convenient
to provide the maximum likelihood parameter estimates, noted g, including
the RP, and test for parallelism.
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Due to their computational complexity, these methods used to be unavail-
able for the general public. Nowadays, many user-friendly software packages
fit 4PL curves using numerical methods. Some examples are JMP [65], Soft-
Max Pro [66], PLA [67] and GraphPad Prism [08]. Scripting software also
provide solutions for fitting 4PL easily, such as the R package DRC' [(69] or
the SAS procedure NLMIXED [70].

1.2.4.2 Using Bayesian Statistics

Another advantage of linear models is that, if the necessary assumptions
are respected, the distribution of each model parameter estimate is known.
Closed-form solution (or approximated solutions in the case of hierarchi-
cal models) for parameter inference and future observation predictions are
therefore directly available. In nonlinear models, the distribution of the pa-
rameters is known only if the sample size approaches infinity [71]. Bayesian
statistics offer an alternative. Rather than considering the unknown param-
eters as a constant value, they are treated as random variables about which
we have a certain degree of prior knowledge [72].

From equation 1.6, the Bayes theorem gives:

pdf (0|data) o pdf (data|d) x pdf () (1.7)

where:

o pdf is the probability density function;
o pdf(0) is the prior distribution of #, representing the prior knowledge;

 pdf(datal@) is the likelihood of observing the data knowing 0, and the
function that is maximized in frequentist statistics;

 pdf(f|data) is the posterior distribution of 6.

An obvious advantage of Bayesian statistics is the inclusion of pdf(#). In
frequentist statistics, only the observed data can be used to estimate and
infer on parameters and make predictions. Including prior knowledge in the
analysis increases the degrees of freedoms and therefore lower the necessary
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sample size necessary to obtain the same level of uncertainty in the results. If
no prior knowledge is available, non-informative distributions can be used for
the prior, such as locally uniform or distributions with very large variances.
Another advantage is that the only distribution that needs to be assumed is
the one of € (e.g. N (0,0?)). Software packages mentioned in Section 1.2.4.1
each assume that 0 asymptotically follows a normal distribution. Therefore,
when available, the provided confidence intervals are symmetrical and cen-
tered in 6. This assumption is often incorrect. Bayesian statistics do not
involve asymptotic theory and exact posterior distributions are obtained.

A drawback of Bayesian methods is that they are not as easily accessible in
user-friendly software. Closed-form solutions are not available for nonlinear
models and distributions of each model parameter are sampled from using
Markov Chain Monte Carlo methods (MCMC). The most common MCMC
algorithms for nonlinear models are Metropolis-Hasting [73] and Hamiltonian
(or Hybrid) Monte Carlo [71]. Software to use such algorithms to fit 4PL
curves include Stan [75], JAGS [76] and SAS procedure MCMC [77].

An example of Bayesian methodologies applied to serial dilution assays
is presented in Appendix A
1.2.5 Similarity Testing for Potency Assays
Parallelism is achieved if yMaxgr = yMaxy and yMing = yMiny and Sg =
Sr or, for the linear approximation, 3, = f31,. Because o > 0, perfect
parallelism is never observed. Instead, statistical tests are performed to assess

if the curves are parallel enough. These tests are referred to as parallelism
tests or similarity tests.

1.2.5.1 Difference Tests for Parallel Curve Assays

Difference tests rely on p — values. The hypotheses are defined as follow:

e Hjy: fR(x,H) = fT(ZL' X RP, 0)

e H,: fa(z,0) # fr(z x RP,0)
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The first test that was proposed to assess similarity was a lack-of-fit F' —
Ratio [78]. This test compared the RSSE due to non-parallelism to its RSSE
due to other reasons. It is realized by fitting both Equation 1.1 and 1.3 to
the same pair of curves (see Figure 1.5), then calculate the test statistics:

Ja _ (RSSEconstrained - RSSEfull) (dfconstrained - dffull)
e (RSSEgpun) (df run)

(1.8)

where RSSE, and RSS Ecopstrained are the RSSE of the models obtained
from Equation 1.1 and 1.3, respectively, and df ¢, and dfconstrained are their
associated degrees of freedom. Under Ho, Fronpar ~ Fldfoonstrained—df fuir)df ruir-

This test statistics is known to be overly sensitive to small shift from
parallelism when o is small, and incapable of detecting drifts when o? is high.
Gottschalk and Dunn (2005) proposed an alternative approach based on the
difference between the weighted RSSEs (wRSSE) of the model obtained from
Equations 1.1 and 1.3 [79]:

RSSEnonpar = WRSSEconstrained - U)RSSEfull (1 9)

Under HO’ RSSEnonpar ~ X%dfconst'rained7dffull) [ ]

A drawback of this y?—test is that it requires weighted regressions, which
is not recommended for serial dilution models [30,81]. Assuming that a
weighting is actually needed, the correct weights are unknown and tend to be
poorly estimated. Additionally, both tests declare similarity in case of lack of
statistical significance to demonstrate non-parallelism. This is fundamentally
flawed, as failure to reject the null hypothesis does not mean that it is true.

1.2.5.2 Equivalence Tests for Parallel Curve Assays

Equivalence tests revert hypotheses such that statistical significance is re-
quired to demonstrate parallelism instead of the other way around [32].
Jonkman and Sidik (2009) proposed to test the equivalence of each curve
parameters, except the Cygs, using an intersection-union test [33]. Yang et
al. (2012) proposed the following hypotheses as an alternative [31, 85]:
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Response
Response

Log(Concentration) Log(Concentration)

Figure 1.5: Full and constrained 4PL models

. Ho:r1SDLlorrlZDUlorrg§DL20rr22DU20r7‘3§DL30r
r3 > Duys

o HaIDL1<7"1<DU1 and DL2<T2<DU2 and DL3<T’3<DU3

with
yMaxr
e yMazxg
_ yMaxy — yMing
2= yMaxr — yMing
oy — (yMazxy — yMing)St

(yMazxgr — yMing)Sg

and where Dy, and Dy, are respectively the lower and upper equivalence
limits for r,, k = 1,2, 3.

The reason for ry is that yMin is often close to 0, so very small derivation
in lower asymptotes would give very high variation in % r3 is the ratio of
slopes at the inflection point, and its estimator is less variable than the ratio

g—T. Through this dissertation, this test is referred to as ‘Hyper-Rectangle’
R
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(HR) test, because the three-dimensional space between all Dy, and Dyy
forms a hyper-rectangle. We work with the log-ratios as suggested by Berger
and Hsu (1996) when working with ratios [30].

Lansky (2019) proposed to work with differences, rather than ratios,
scaled on the long-term average of the reference curve parameters [37] . As-
suming that the long-term average is a good estimator of the true parameter
and can be treated as a constant, it would provide the computational advan-
tages of working with additive rather than multiplicative interactions. This
test was not yet published. Therefore we may not have all the information
necessary to replicate it as is, and we also never had the opportunity to try
it on non-simulated data. For these reasons, we did not include it in the
comparisons performed through this dissertation.

Novick et al. (2012) claim that analyzing ratios of parameters is not
enough to declare similarity between the entire nonlinear profiles [38, 89].
Instead, they suggest looking at the maximum departure between the con-
fidence intervals of the reference curve fit and the test curve fit after the
optimal horizontal shift (the relative potency), within a certain range of
concentration [z, xy]. They first used a Bayesian method to calculate the
confidence intervals [33] and later proposed a frequentist approximation [90].
The hypotheses for this test are

e Hy:minmax |f(x,0r) — f(z x RP,07)| > 0

RP zL,xUu

e H,:minmax |f(z,0r) — f(x x RP,0r)| <0

RP zL,xU

where 9 is the maximum accepted departure from parallelism to declare sim-
ilarity.

1.2.5.3 Tests for Parallel Line Assays

Two straight lines are parallel if they share the same slopes. Difference
tests based on composite measures such as F,onpar and RSSE,onpar would be
applied by comparing the fit of both lines separately against a model with
common slopes. An equivalence test for the slopes is:

. Ho'BlfTSDL/BIOIﬁliT>DU31

" Big BPrip —
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. B
. Ha-DLﬁl < 517; <DU51

The confidence interval for the ratio of the slopes can be either obtained
directly from the posterior distributions of 4y, and 3, if the models are fit
using Bayesian methods. Otherwise, frequentist approximation exists, such
as the Fieller’s theorem [91,92].

1.3 Challenges and Opportunities for Improve-
ment

Historically, similarity assessment was only performed from late clinical phases
forward, as the ability for a substance to create a biological or binding reac-
tion rather is of more interest than the precise estimation of potency in the
discovery phases. However, since the publication of the Quality by Design
(QbD) concepts in ICH-Q8 in 2009 [93] for the development and valida-
tion of processes, there has been an increasingly convergent agreement that
the same paradigm also applies to LBAs and bioassays. Several publica-
tions introduced the lifecycle management concept of analytical methods,
an approach closely related to QbD [91-97]. Indeed, both QbD and lifecy-
cle management processes start with the identification of the objectives and
requirements, then knowledge building during method development, valida-
tion/qualification, and finally, development of a control strategy to permit
a continued improvement [98]. Conceptually, this means that the validation
and routine use of the assay should be considered important from the mo-
ment it is developed, and similarity measures should always be considered as
critical quality attributes.

While the literature now wildly advises against the use of difference tests
for parallelism, equivalence present other challenges. The principal challenge
is that equivalence tests require equivalence margins to define what consti-
tutes an unimportant difference. USP <1032> (2012) [17] proposes four
methods to derive those margins. The first three methods use historical data
to estimate variability of comparing the reference to itself, while the fourth
suggests including a risk analysis regarding the implications of the chosen
equivalence margins on the quality of the relative potency estimation. Us-
ing historical data, when available, allows to control for the risk of rejecting
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similarity in case of true parallelism (lab risk) by accounting for expected
variability when comparing the reference to itself; however, using historical
data alone fails to account for the risk of rejecting curves which result in high
error in relative potency estimation (consumer risk). In addition, historical
data are not always available or are limited in early development stages of the
assay. It is always possible for laboratories to generate reference to reference
comparison, but this is costly both in time and money. Another challenge,
specific to the HR test, is that is does not account for the correlation of
the ratios of curve parameter estimates under true parallelism. Marginal
equivalence limits are not optimal for such correlated test statistics.

The USP<1032> guidelines recommend the screening of potency assay
data for outliers prior to performing a RP analysis. The guidelines, however,
do not offer advice on the size or type of outlier that should be removed prior
to model fitting and calculation of RP. Computer simulation was used to in-
vestigate the consequences of ignoring the USP<1032> guidance to remove
outliers. For biotherapeutics and vaccines, outliers in potency data may re-
sult in the false acceptance/rejection of a bad/good lot of drug product. One
or more outliers in the concentration-response data, may result in a failure to
declare similarity or may yield a biased RP estimate. Our findings generally
support the USP<1032>. The outlier tests proposed by the USP<1010>,
however, are not well suited for concentration-response curves analysis, and
many outliers remain undetected, and more suitable tests are needed.

Another challenging aspect of potency assays is choosing the ideal con-
centrations for the concentration-response curve analysis. Common optimal
design methods are not suited for this type of analysis, as they fail to account
for the constraint in a laboratory as well as the between-run variabilities that
affect the estimation of the relative potency and the non-similarity test statis-
tics.

Finally, every time a parallelism test is proposed, this test is claimed to
be the correct way to address parallelism, and their advantages are presented
using limited examples. Assay scientists are left with statistical papers that
do not provide a real indication on which test to use in which situation.
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1.4 Structure of the manuscript

In Chapter 2, we propose a three-step derivation of the zone of declared
similarity to control for both consumer and lab risk, even when historical
data are not available. In addition, we propose a novel way to test for
parallelism that accounts for the test statistics correlations.

By definition, hypothesis testing is used when a sample of observations
is assumed to be representative of an entire population. In many cases,
however, the primary interest is in the relative potency estimate, which is af-
fected by similarity of the samples themselves. Similarity is then a necessary
condition for each sample, to ensure that it is suitable to estimate the RP.
Each sample is, in that case, it’s own population, because the accuracy of
the RP will depend on the estimated ratio of parameters, not the unknown
true value. Equivalence tests based on confidence intervals are therefore not
necessary for sample suitability, as confidence intervals are used to determine
a range of likely values for the unknown true value. Through this disserta-
tion, we present similarity tests only with the necessary condition that two
observed curves must meet to be declared parallel, rather than with null and
alternative hypothesis.

In Chapter 3, concentration-response curves for test and reference were
computer generated with constant RP from four-parameter logistic curves.
Single outlier, concentration outlier, and whole-curve outlier scenarios were
explored for their effects on the similarity testing and on the RP estima-
tion. Though the simulations point to situations for which outlier removal is
unnecessary, the results generally support the USP<1032> recommendation
and illustrate the impact on the RP calculation when application of outlier
removal procedures are discounted. In Chapter 4, several outlier detection
methods, including those proposed by the USP<1010>, are evaluated and
compared through computer simulation. Two novel outlier detection meth-
ods are also proposed. The effects of outlier removal on similarity testing and
estimation of relative potency were evaluated, resulting in recommendations
for best practice.

In Chapter 5, we propose a way to find an efficient concentration range,
easily calculated from an estimation of the curve parameters.

In Chapter 6, we compare the performances of the parallelism tests dis-
cussed in Section 1.2.5, as well as the novel test proposed in Chapter 2. This
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extensive comparison evaluates scenarios from an optimal design (as defined
in Chapter 5) without any issues, to a poor design with removal of outliers
or increasing measurement variability.

Finally, in Chapter 7, we propose a general discussion on the work that
was realized. We also present suggestions for follow-up research.



Chapter 2

Risk-Based Similarity Testing
for Potency Assays Using
MCMC Simulations

This Chapter is based on the article titled “A risk-based multivariate simi-
larity test for potency assays”, accepted for publication in Statistics in Bio-
pharmaceutical Research.

2.1 Introduction

In relative potency (RP) assays, the RP can be determined by computing
the horizontal difference between the log(concentration)-response functions
of the test and reference [17], should they be linear or a nonlinear function.
In both cases, the computed value is meaningful only if the concentration-
response functions of the two products (or batches, lots, samples), are similar
(or parallel). Indeed, similarity indicates that the biological activity, or bind-
ing affinity, within the assays is similar for both the test and the reference
products [34,79,99]. That is, in the log(concentration) scale, the function
of the test product is a horizontal shift from the reference standard’s func-
tion [84]. If the functions are not parallel, the horizontal difference is not a
single constant value over the concentration range modeled (see Figure 1.3).
From a regulatory perspective, both the United States Pharmacopeia (USP)

19
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and the FEuropean Pharmacopeia (EP) require that parallelism is assessed
before the computation of relative potency [17,53].

To model the concentration-response function of a preparation, literature
commonly suggests the use of a four-parameter logistic (4PL) model. The
most common of these was proposed by Rodbard and Hutt [50], described in
Section 1.2.1:

yMin; — yMax;
NS + €ij)
1+ (&)

Between-plate or between-run variabilities, as well as covariance struc-
ture within one plate or run, can be identified in addition to the residual
variability. These longitudinal attributes can have an effect on one or several
parameters of the 4PL model. Within a single run (or a plate), variability can
exist between two samples of the same product. Additionally, the observed
residual variability may not be homogeneous across the concentration range.
These aspects should be addressed while modeling the potency assay data.
However, for simplicity, these model selection details are not discussed ex-
tensively in this paper and the residual variability is assumed to be the same
across the concentration range. More details on heteroscedastic systems are
presented in the discussion section of this paper.

yij = yMCLQZZ + Gij ~ N(O, 0'2) (21)

Parallelism is accepted if the lower asymptotes, upper asymptotes and
growth rates are similar between the two curves (1.3 right). If parallelism is
demonstrated, the RP is then the estimated horizontal distance between the
two curves on a log scale after fitting the model

yMin — yMax
5 T i
()

Equation 2.2 is an adaptation of Equation 2.1 with common yMin, yMax
and S for both curves. The horizontal distance between the two curves is
then the ratio of the Csgs.

€5 ~ N(O, 0'2) (22)

vij = yMax +

Since the beginning of the 21st Century, several authors have proposed
equivalence testing to assess similarity between two concentration-response
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functions [82-84]. The use of equivalence tests is also recommended by the
USP [17].

In Section 2.2, we present a common existing test for parallelism, and
present two challenges that this approach presents. In Section 2.3, we sug-
gest solutions for the challenges: an alternative test that accounts for the
correlations among the ratios of curve parameter estimates, and a three-step
derivation of the zone of declared similarity to control for both consumer
and lab risk, applicable to any similarity test, even if historical data is not
available. In Section 2.4, we present a case study and in Section 2.5, we
discuss our observations and how to perform similarity testing as a sample
suitability test, rather than a hypothesis test.

2.2 Common Parallelism Test

A popular equivalence test is proposed by Yang et al. (2012) [$4]. Tt suggests
to separately fit the 4PL model to both reference and test curves and then
compare the estimated ratio of the upper asymptotes (r1), the ranges between
the asymptotes (r2), and the slopes at the inflection point (r3) to pre-defined
equivalence margins.

yMaxr
e yMaxg
_ yMaxy — yMing
2= yMaxr — yMing
= (yMaxy — yMing)St

(yMazxr — yMing)Sg
They consider the following hypotheses

e Hy:ri < Dpyorry > Dyyorreg < Dpgorryg > Dygorryg < Dpsor
r3 > Dys
e H,:Dpi <1y <Dyjand Drs <1y < Dyy and Dys < r3 < Dys

with Dy and Dyy, respectively, the lower and upper equivalence limits for
ri. This is tested by comparing the confidence interval of the ratios to their
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respective equivalence limits. We suggest working with the log(ratios) for
symmetry, as suggested by Berger and Hsu (1996) [36]. We also recommend
working with the point estimates of the ratios rather than their confidence
intervals. The reasons for this are provided in Section 2.5. For this test,
curves are accepted as parallel if

D < lOg(fl) < DUl and Dy < log(fg) < DU2 and DL3 < 10g(f3) < DU3

(2.3)
Other tests for parallelism have been proposed and rely on composite
measures rather than curve parameters [79, 85, 90]. Summarizing the entire

dose-response profile in one measure is convenient and sometimes a good
alternative to ratios of parameters. This Chapter focuses on testing the
curve parameters ratios.

A first challenge with relying on ratios is that marginal equivalence lim-
its are not optimal for such correlated parameters. Figure 2.1 shows a 3D
representation of a hypothetical distribution of log(ratio) estimates in case
of true parallelism, contained within marginal limits (a way to derive those
limits is presented in Section 3). It shows that the 3-dimensional space con-
tained within the marginal limits for r1, 75 and 73 has a lot of ‘empty space’
This means that curves within those empty spaces are not contained in the
true distribution. Similarly, some parts of the distribution fall outside the
marginal limits, and those curves would therefore be rejected by the hyper-
rectangle test.

A second challenge is that equivalence tests require equivalence margins
to define what constitutes an unimportant difference. USP <1032> proposes
four methods to derive those margins. The first three methods use historical
data to estimate variability of comparing the reference to itself, while the
fourth suggests including a risk analysis regarding the implications of the
chosen equivalence margins on the quality of the relative potency estima-
tion [17]. Using historical data, when available, allows one to control for the
risk of rejecting parallelism in case of true parallelism (lab risk) by account-
ing for expected variability when comparing the reference to itself; however,
using historical data alone fails to account for the risk of rejecting curves
which result in high error in relative potency estimation (consumer risk). In
addition, historical data are not always available or are sometimes limited in
early stages of the assay.
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Figure 2.1: Distribution of curve parameter ratio estimates with marginal limits
for equivalence test. The red hyper-rectangle represents the marginal margins for
each log(ratio).
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2.3 Proposed Solutions

In this section, we propose an alternative test, based on an ellipsoid in the
three-dimensional space. We also suggest estimating the absolute relative
error in relative potency estimation for curves that are declared similar, to
ensure that the chosen zone of declared similarity does not allow curves which
result in high error in relative potency estimation to pass similarity.

For the ellipsoid test, we assume that the estimate of the log(ratios) under
true parallelism follow a three-dimension multivariate normal distribution
centered in [0, 0, 0]" with variance-covariance matrix X. A point m falls within
the ellipsoidal 100 (1 — ) % prediction region of a n-dimension multivariate
normal distribution if

(m - :u)t E_l (m - :u) < qi—a,n

where ¢1_q,, is the (1 — oz)th quantile of a y? distribution with 7 degrees of
freedom [100]. A future pair of curves is considered parallel if it falls within
the derived ellipsoid. We describe later in this section how to estimate 3 and
derive an ellipsoid containing 100(1 — )% of parameter ratios for parallel
curves. To test if a future pair of curve falls within the ellipsoid and therefore
can be considered parallel, one therefore assesses if

AETIN < qioas (2.4)

where A = log ([f1, a2, 73]).

2.3.1 Step 1. Compute the posterior predictive distri-
bution of each test statistic

From a qualification or validation set of plates, fit Equation 2.1 to the refer-
ence curves using a Bayesian platform such as Stan [75], JAGS [76], or PROC
MCMC in SAS [77]. If historical data are available, they can be used to de-
rive prior distributions. Like prior elicitation, model selection isn’t addressed
in this paper but is an important step, because between-run or between-plate
variability often affects one or several parameters. Let & = p(0O|y,Z) be the
joint posterior distribution of the variance components and curve parameters
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O = [yMing,yMaxg, Cso,, Sr,0?], conditional on the observed data y and
all prior information relevant to the analysis Z (concentration range, number
of concentration points, number of replicates per concentration, etc. as well
as prior knowledge on any of the curve parameters or variance components).

Once @ is obtained, one can generate thousands of runs containing one
pair of reference curves each, both from the same draw of & and with the
same Z that will be used in routine analysis. From each generated pair of
curves, one can fit Equation 2.1 and estimate the test statistics 71, 75, and
3. Doing this for all of ® provides p = p (7|y,Z, ©), the posterior predictive
distributions of future # = [y, 7y, 73] when two curves have truly equal 6s.

2.3.2 Step 2. Derive zone of declared similarity while
accounting for lab risk

In the case of a univariate test for parallelism, such as a slope ratio for par-
allel line assays, the proposed equivalence limits can be the 100(a/2)" and
100(1 — «/2)™ percentiles of the test statistic posterior predictive distribu-
tion, where « is the chosen lab risk. In the case of multiple independent test
statistics, simple corrections like Bonferroni’s [101], can be applied. Such
simple correction cannot be applied in the case of ratios of curve parame-
ters, because they are correlated. Instead, one can find the smallest three-
dimensional space that contains 100(1—a)% of p by applying an optimization
method such as Nelder and Mead’s (1965) [01]. Note that the objective func-
tion of this optimization may not have a unique maximum. Therefore, we
recommend testing multiple sets of initial values.

For the ellipsoid test, we have

A=1log(p) ~N| |0],2
0

Where 3 is the estimated variance-covariance matrix of . Note that,
because p is conditional on true similarity between two curves, the true center
of X is by definition [0,0,0]". It is important to draw a large number of
effective samples from A (say, 10,000) to have a good estimate of X.
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2.3.3 Step 3. Control for consumer risks and take ac-
tion if needed

The two steps above are an efficient alternative to the first three USP <1032>
methods for equivalence margins derivation, because the MCMC simulation
obviates the need to generate reference vs. reference comparisons via exten-
sive experiments (although historical data, when available, are still useful to
derive prior distributions). However, both the first three USP <1032> meth-
ods and the two steps above fail to consider the consumer risk. The fourth
USP<1032> method suggests sensitivity analysis. This means calculating
the consumer risk in terms of the relative error in relative potency (noted ()
for curves that pass the parallelism test [17].

To do so, we suggest performing Monte Carlo simulations. From ®, ob-
tained in the first step, generate thousands of reference curves, with the same
7 that will be used in routine analysis. For each reference curve, generate a
test curve from the same run, but with a deviation from true parallelism. For
each of the simulations, randomly chose a shift in yMin, yMax, and S that
respects the similarity limits of your chosen test, ensuring that the full range
of ratios that would pass are contained within the simulation domain. Shifts
in Cjo can also be used to consider different true relative potencies, because
while it will not affect the true ratios of the parameters, the horizontal shift
may change how well those ratios are estimated.

For each pair of curves that passes the chosen parallelism test, fit Equation
2.2 and estimate the relative potency. Then calculate the absolute relative
% error due to non-similarity:

Observed RP — True RP

=1
v 00 x True RP

(2.5)

Repeating the operation many times provides ¥ = p(¢|y,Z,0, ), the
posterior predictive distribution of ¥». Let 8* the 95 percentile of ¥. The
acceptance limits, no matter the chosen test, should only be used if 5* < 3,
the maximum acceptable relative error. If §* > [, actions to improve the
assay should be undertaken. This will be considered further in the discussion
of this paper.
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2.4 Case Study

We blinded data from a qualification set of nine 96-well plates used to analyze
the potency of a test vaccine lot relative to a reference lot. Each plate contains
three replicates of the reference lot and three replicates of the test lot, across
10 concentration-points. The blinded data are presented in Figure 2.2.

Plate 1 Plate 2 Plate 3
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0.8 1 AL o tid LA
0.4 1 s . $
00448t hool Tk
1) Plate 4 Plate 5 Plate 6
"
g(]jg_ et 8 g '.80 Type
0 0.4+ 1 .' .' Reference
éo-oﬂ':" ILL UL - Sample
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O.O-|_0I'IH' qihl’ TTLLM

Concentration

Figure 2.2: Presentation of each plate used in the case study.

2.4.1 Step 1. Compute the posterior predictive distri-
bution of each test statistic

The following model was fit to the reference curves only:

yMin — yMazxy,

1+ (22)°

Yijk = yMCLZ’k + + €ijk (26)

where:
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* i is the response of the i*" replicate of the reference product at the

4% concentration on the k' plate;

o zj; is the j concentration on the k' plate;

o yMin, S and Cjy are respectively the lower asymptote, steepness and
Cso, common across plates;

o yMaxy ~ N (yMaa:, O'SMME) is the upper asymptote of the k' plate,

2

with o0,

the between-plate variability of yMax;

o € ~N(0,0?) is the error term, with o2 the residual variability.

Equation 2.6 is a modification of Equation 2.2 where a between-plate
variability affects the upper asymptote. Between-plate variability can affect
one, several, or no model parameter and should be evaluated as part of model
selection. Model selection isn’t addressed in this dissertation. More details

on Bayesian model selection can be found in Kruschke (2014) [102], and
guidance on Bayesian methods for sigmoid curves can be found in Feng et
al. (2011) [103] and Klauenberg et al (2011) [104].

The posterior distribution ® of curve parameters was sampled by Hy-
brid MCMC using Stan. If no prior information is available, a flat, vague or
vaguely-informative prior may be used for the parameters. We decided to use
the flat prior so that the distributions were given by U (—o00, c0) for each curve
parameter and U(0, 00) for variance components. Improper priors for preci-
sion instead of variance is preferred in some statistical software. We however
used Stan, which uses standard deviations, making it more intuitive to use
improper prior distributions for variances. Vaguely (or weakly) informative
prior distributions may also be used to aide MCMC convergence. In our
particular case, however, convergence was not an issue with improper priors
(see Figure 2.3). Results using informative prior distributions are presented
in Section 2.4.4.

Two independent chains were run with each 300,000 draws, including a
warm-up of 50,000 draws, thinning every 10 draws. This resulted in 25,000
posterior draws per chain and 50,000 posterior draws total. Each model
parameter had an effective sample size of 45,000 or more, and the trace plots
of the MCMC chains are presented in Figure 2.3.
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Figure 2.3: Trace plot of each model parameter when using non-informative prior
distributions. From left to right: JZMM, o2, and yMin on top; and S, Cso, and
yMax in the bottom

From the joint posterior distribution, we generated 50,000 plates with two
reference curves each, with three replicates per curve, at each of the 10 con-
centration points used in the qualification set of plates. For each simulated
plate, we fitted Equation 2.2 using ordinary least square and calculated A

2.4.2 Step 2. Derive zone of declared similarity while
accounting for lab risk

We wanted a lab risk of o = 1%. We calculated the limits for the hyper-
rectangle from the 50,000 As, using Nelder and Mead to ensure finding the
actual smallest hyper-rectangle containing (1 — ) % of the posterior predic-
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tive distribution of ) in the three-dimensional space. The estimated limits
for the hyper-rectangle test are presented in Table 2.1. Exactly 99% of the
calculated As respected Equation 2.3.

Table 2.1: Calculated limits for the hyper-rectangle test in natural log and original
scale when using non-informative prior distributions

Ratio Limits in log scale Limits in original scale

r [-0.104; 0.104] 0.901; 1.110]
ry [-0.116; 0.116] [0.890; 1.123]
rs [-0.377; 0.377] [0.686; 1.459)]

The variance covariance matrix 3 of the posterior predictive distribution
of \ was also calculated:

. 0.0009  0.0011 —0.0014
Y= 0.0011 0.0019 —0.0024
—0.0014 —0.0024 0.0134

We observed that 98.7% of the calculated \s respected Equation 2.4.

Figure 2.4 shows a two-dimensional representation of the posterior pre-
dictive distribution of A. The blue points are inside the ellipsoid and the
red-rectangles are the limits of the hyper rectangle. We observe that the
corners of the rectangles are not contained in the ellipsoid.

The colored curves on the left panel of Figure 2.5 represent each of the
eight corners of the hyper-rectangle. These curves are very dissimilar com-
pared to the reference curve (black curve), but they are within the 99%-
coverage hyper-rectangle and would therefore be accepted as parallel using
that test. This issue confirms the claim that equivalence of parameters does
not mean equivalence of distribution [38]. However, this is probably because
equivalence tends to be evaluated marginally. The colored curves on the right
panel of Figure 2.5 represent each of the 6 ellipsoid summits. These curves
are visibly more similar to the reference curve.
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Figure 2.4: Pair plot of the joint posterior predictive distribution of \ when using
non-informative prior distributions. The blue points are the points inside the 99%-
coverage ellipsoid and the black points are the points outside the 99%-coverage
ellipsoid. The red rectangles represent the limits of the hyper-rectangle test

2.4.3 Step 3. Control for consumer risks

Assume a maximum relative error of 30% is searched. 50,000 reference curves
from 50,000 different plates were generated from the posterior distribution of
model parameters. We then simulated one test curve from each plate, each

with a different set of possible parameter ratios. The following steps were
followed:

1. Draw one element of the joint posterior distribution of 6,02, 07/,

2. Let O = [yMin,yMax, Cso, Spiate)-
3. Randomly chose 71, 15, r3 and RP from the following distributions:

e 1 =exp (U (log (0.8),log (1.25)))
o 19 =exp (U (log (0.8),log (1.25)))
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Figure 2.5: Worst acceptable curves for the hyper-rectangle (left) and ellipsoid
(right) tests when using non-informative prior distributions. The black curve rep-
resents the 4PL model with the means of each marginal posterior distribution as
curve parameters. The colored curves represent the sample curves for which the
ratios would be equal to each of the eight corners of the hyper-rectangle (left) or
each of the six summit of the ellipsoid (right).
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e 13 =exp (U (log (0.667),log (1.5)))
o« RP =exp (U (log(0.5),log(2)))
With U (a,b) a Uniform distribution between a and b. These distribu-

tions were chosen to ensure that the full range of accepted As would be
contained in the simulations.

Let Or = [yMing, yMazpiate,, Csop, ST], With

® yMZnT = rlyMaxplate — T2 (yMaxplate - yMZTl)
° yMa:vT = leMaxplate
. Caop = St

Generate two curves using model 2.2, using 0z for the first curve and
01 for the second curve, with the same concentration points as the raw
data and 3 replicates per concentration point for each of the curves.

fit Equation 2.2 using ordinary least square and calculate .
Assess if Equations 2.3 and 2.4 are verified.

Compute Equation 2.5.

We report the posterior predictive distribution of the % relative error

(1) for curves that pass parallelism only, separately for each test (Figure
2.6). The 95 percentile of 1 for curves accepted by each of the two tests is
presented in Table 2.2. The ellipsoid test is the only test for which g* < 30%.
Using the hyper-rectangle can lead to almost 50% relative error in relative
potency estimation, which is over double * for the ellipsoid.

Table 2.2: 95" percentile of relative error in accepted curves by each test when
using non-informative prior distributions.

Test B*

HR 49.50%
Ellipsoid 22.62%
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Figure 2.6: Density of 1 for curves accepted by the hyper-rectangle (HR) test and
the ellipsoid test when using non-informative prior distributions.

2.4.4 Results with informative prior distributions

For the case study illustrated above, we considered that no prior knowledge
was available. Often, however, a certain amount of development data is
available and informative distributions can be derived. For this Section, we
generated the results for the same case study, but using the following prior
distributions for the model parameters:

yMin ~ N (0.1,0.015%)

yMax ~ N (1,0.03?)

log (05(]) ~ N (—277, 032)

S~ N (2,0.12)

02 110w ~ Inv — Gamma (2,0.006)

yMax

o 02~ Inv — Gamma (30,0.038)
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These prior distributions have been chosen arbitrarily for the purpose of
this work. In practice, informative prior should always be justified using
historical data and/or scientific evidence. See Klauenberg et al. (2015) for
guidance on informative prior distributions in serial dilution assays [105]. The
Gamma distribution is preferred as a prior for precision by some statistical
software because of its role in conjugate priors for normal likelihood function
[102].  We however used Stan, which uses standard deviations, making it
more intuitive to use inverse-Gamma for variances.

The posterior distribution of curve parameters ® was sampled by Hybrid
MCMC using Stan, with the same model specifications as in Section 2.4.1.
The trace plots of the MCMC chains are presented in Figure 2.7. As ex-
pected, the marginal posterior distributions appear less variable than they
do in Figure 2.3. It is of critical importance to obtain precise estimate as
all uncertainties are integrated out in the posterior predictive distribution of
the test metrics.

The zone of declared similarity, both for the hyper-rectangle and the
ellipsoid, was derived from ® following the same approach as in Section 2.4.2.
The estimated limits for the hyper-rectangle test are presented in Table 2.3.
Exactly 99% of the calculated s respected Equation 2.3.

Table 2.3: Calculated limits for the hyper-rectangle test in natural log and original
scale when using informative prior distributions

Ratio Limits in log scale Limits in original scale

r -0.077; 0.077] [0.926; 1.080]
ry -0.107; 0.107] [0.898; 1.113]
rs :0.279; 0.279] [0.757; 1.322]

The variance covariance matrix 3. of the posterior predictive distribution
of A\ was also calculated:

A 0.0007  0.0082 —0.0010
Y= 10.0082 0.0014 —0.0017
—0.0010 —0.0017 0.0084

We observed that 98.8% of the calculated s respected Equation 2.4.



36 CHAPTER 2. RISK-BASED SIMILARITY TESTING

s oy yMin

0.0030

0.03

0.0025

0.0020

0.00151 |

Chain

— 2

21

-2.75
2.0

19 -2.80

18

1e4 2e4

oA

1e4 2¢4

o
=
@
i
N
@
ES
o

Figure 2.7: Trace plot of each model parameter when using informative prior dis-
tributions. From left to right: JZMM, o2, and yMin on top; and S, Cs, and
yMax in the bottom

We followed the same steps as in Section 2.4.3 to estimate the consumer
risk. The 95 percentile of v for curves accepted by each of the two tests is
presented in Table 2.4. The consumer risk of the hyper-rectangle test seems
to be more affected by the informative prior but remains higher than the
consumer risk of the ellipsoid test.
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Table 2.4: 95" percentile of relative error in accepted curves by each test when
using non-informative prior distributions.

Test 3*

HR 38.20%
Ellipsoid 20.44%

2.5 Discussion

This paper presents a multivariate similarity test as well as risk-based ac-
ceptance limits derivation similarity for potency assays. The proposed test
reduces the risk of high error in relative potency estimation, while also con-
trolling for the risk of rejecting good curves. The suggested ellipsoid method
is a multivariate sample suitability test rather than the common intersection-
union test proposed by Jonkman and Sidik (2009) [83], and then Yang et al
(2012) [34].

Hypothesis testing is used when a sample of observations is assumed to be
representative of an entire population. In many cases, however, the primary
interest is in the relative potency estimate, which is affected by similarity
of the samples. Similarity is then a necessary condition for each sample,
to ensure that the relative potency can be accurately estimated. The accu-
racy will depend on the estimated ratio of parameters, not the unknown true
value, and so the confidence interval in that case is irrelevant. Equivalence
tests based on confidence intervals are therefore not necessary for sample
suitability. Instead, a zone of declared similarity, such as a hyper-rectangle
or an ellipsoid containing a large portion of the posterior predictive distri-
bution of the test statistics in case of ‘true’ similarity, can be derived and
estimates can be compared to said zone of declared similarity. Berger and
Hsu (1996) advised against multivariate testing for bioequivalence and pre-
fer intersection-union tests [36]. Their main reasoning seems to be that 3 is
difficult to derive, and the similarity zone is therefore poorly established. In
the case of similarity testing, we agree that there is currently no exact way to
derive it analytically. However, we showed a way to compute the joint poste-
rior predictive distribution of the parameter’s ratio estimates using Bayesian
methodologies, making the multivariate zone of declared similarity easily
derivable. In the context of Berger and Hsu’s paper, an additional reason-
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ing to avoind multivariate is that to demonstrate bio-equivalence, confidence
intervals are required. Our approach is focused on point estimate testing
for sample or system suitability in potency assays, and may not be directly
generalizable to any multivariate test.

We ignored heteroscedasticity for the sake of simplicity. A common way
to address heteroscedasticity is by fitting the 4PL model using weighted

least square [106]. This is usually a poor choice in bioassay models, and
repeated measure models in general; nonlinear mixed model are usually pre-
ferred [30,81]. Our proposed methodology works similarly with or without

extra variance components.

Here, the laboratory risk is calculated for curves that have exactly equal
fs. Some may argue that this is too conservative and that slight departure
in fs is acceptable. Following our approach will lead to « increasing as
true 6s get more different. For a lab desiring a fixed a when 0; ~ 60y, a
simple solution is to include slight differences in s when generating reference
curves in Step 1 and calculate p (r|y,Z, 02, 0r,0r =~ 0r). Step 3 in that case
is particularly important as this could increase the error in relative potency
estimation.

If the consumer risk (i.e. the error in relative potency estimation) is
deemed too high, different corrective actions can be undertaken. Increasing
the number of replicates is an expensive but easy way to lower the uncer-
tainty of the test statistics, reducing the volume of the three-dimensional
space under true parallelism, and increasing the precision of the relative
potency estimation. Another option is to improve the assay design, either
by expanding the range of concentrations or increasing the number of dilu-
tions within the current range. If those actions, that can easily be evaluated
through simulations, are not possible or not sufficient to reduce relative po-
tency error, final options are accepting a higher lab risk to tighten the limits
or improving the assay itself. Process optimization methodologies can easily
be applied to assay development to find the optimal assay parameters (tem-
perature, incubation time, plate washing time, etc.) [107]. Note that applying
those methodologies from the get-go can prevent having to spend time and

money to improve an assay later, when it is often costlier and challenging to
do so [93, 108].

A limitation of the ellipsoid approach is that Bayesian Markov Chain sim-
ulations are required to derive the ellipsoid for every new assay, which may be
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not obvious computations. However, once 3 is calculated, the routine sim-
ilarity test can easily be implemented in bioassay analysis software or even
Microsoft Excel and doesn’t rely on simulations anymore. If no prior knowl-
edge about the curve parameters is available, bootstrap or jackknife can be
used instead of MCMC simulation to simplify the approach. The bootstrap
distribution can be viewed as an approximate posterior distribution [109].
However, as shown in Section 2.4.4, informative prior distributions may help
narrowing the zone of declared similarity and therefore lower the consumer
risk. This may be viewed an indication that updating the acceptance limits
periodically is recommended. When doing so, the information gained before
and during the validation can be used to construct informative prior distri-
butions. Whether MCMC, bootstrap, or other resampling method is used to
estimate the distribution of the log(ratios) of future pairs of reference curve,
the accuracy of the estimates relies on the assumption that the observed data
(and, if used, the informative prior distributions) are a good representation
of future results. Acceptance limits should be re-evaluated in case of any
change in the assay design or performances.

Another limitation is that, to derive an ellipsoid, the multivariate (log-
Jnormality assumption is necessary. Rather than relying on multivariate nor-
mality tests such as Mardia test for multivariate normality [110], we recom-
mend careful visual inspection of the posterior predictive distribution of the
ratio estimates to determine if the log-normality assumption is reasonable.
If the multivariate normality assumption is not reasonable, other elliptical
distributions and their coverage ellipsoid must be investigated [100,111,112].

An important note is that, while testing ratios simultaneously appears
to be a good approach than testing them separately to assess similarity, we
still recommend reporting and monitoring each ratio separately. If investiga-
tion is needed related to non-similarity or loss of potency, trending the ratios
individually can provide useful information. Additionally, while MCMC sim-
ulations are a good alternative to actually generating many plates filled with
reference products, performing some real reference-to-reference comparisons
is recommended to ensure that the MCMC simulations are a good represen-
tation of reality.

Finally, this manuscript aims to present the multivariate approach as a
reasonable alternative to the marginal tests. However, a smaller consumer
risk for a single case study is not enough to demonstrate the general superi-
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ority of the proposed approach over the hyper-rectangle test, or other tests
proposed in the literature. Extensive comparisons will be the object of future
research.



Chapter 3

Effect of a Statistical Outlier in
Potency Assays

This Chapter is based on the article titled “Effect of a statistical outlier
in potency bioassays”, published in Pharmaceutical Statistics in November
2018 [113]. The vocabulary has changed to be consistent with the rest of
the dissertation. The similarity test used has also changed: the paper uses a
hyper-rectangle test for parallelism, while the chapter uses the ellipsoid test
presented in Chapter 2.

3.1 Introduction

For most biotherapeutic products and vaccines, the potency must be mea-
sured and compared with specification limits prior to batch release. Potency
is defined in ICH Q6B as the measure of the biological activity of a sample
using a suitably quantitative biological assay (bioassay), and biological ac-
tivity is defined as the specific ability or capacity of the product to achieve
a defined biological effect [114,115].

Potency assays may be used to measure the biological activity or binding
affinity of a test sample relative to that of a reference preparation [17,115].
For example, in the manufacture of a biotherapeutic or vaccine, the potency
of material from a new batch may be calibrated relative to the potency
of reference batch material. The relative potency (RP) is calculated from

41
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the concentration-response functions of two products. Two products exhibit
constant RP whenever the test product acts as a dilution or concentrate
of the reference product. Graphically, two concentration-response curves
that exhibit constant RP differ only by a shift on the log-concentration axis.
A calibration based on a constant RP value may only be performed when
concentration-response functions of the two products are declared similar (or
parallel) through statistical testing [58, 78].

In practice, outliers are caused by unexpected sources of variation, such
as from pipetting error, dilution error [99], wrong incubation time, or other
mistakes in the lab procedures. When statistical outliers are present in the
data and no action is taken to remove them, the test of similarity may be
compromised, and the RP value may be estimated with bias. A statistical
outlier is a value that appears to be inconsistent with the other observations
in the available data [116]. An outlier in a potency assay may result from sev-
eral causes, such as experimental error, variability in experiment material, or
variability in experiment technique [117]. The United States Pharmacopeia
(USP) <1032> recommends that bioassay data should be screened for out-
liers before RP analysis. Schofield writes “Some laboratories will exclude the
individual outliers while others may exclude a dilution or dilutions associ-
ated with the outliers. The lab should assess the impact of exclusion of the
outlier on similarity testing and relative potency determination. [118]” The
actual consequence of an outlier in a potency assay, however, has never been
quantified. The aim of this Chapter is to assess, using simulation studies,
the effects of various types of outliers on both RP estimation and similarity
testing. In the presence and absence of outliers, the Monte Carlo probability
of false rejection of similarity when the reference and test curves are exactly
similar is closely examined. For curves that are declared similar, the effect
of outliers on RP estimation is investigated. In addition, the Monte Carlo
probability of false acceptance are examined for a case in which the reference
and test curves are not similar.

In Section 3.2, three types of outliers are given and illustrated graphically.
In Section 3.3, a method of similarity testing and a method for estimating
RP are shown for a set of test and reference concentration-response data sets.
The simulation setup is show in Section 3.4 with results given in Section 3.5.
Finally, Section 3.6 contains a discussion and advice about outlier removal
before similarity testing and calculation of RP.
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3.2 QOutlier Types

Most scientific publications regarding outliers refer only to a single observa-
tion outlier [119,120]. In the case of potency assays, however, several types
of outliers are possible. In this work, we consider an experimental design in
which the reference and test concentration-response curves are collocated on
each of three 96-well plates. The three sets of curves may be mutually inde-
pendent, but the assay measurements within each of the three plates may be
correlated. Different outlier scenarios are considered in this Chapter.

1. Single observation outlier: a single measurement is excessively distant
from the other values (Figure 3.1, left).

2. Concentration point outlier: all the replicates at one concentration level
exhibit a different behavior than the values at the other concentration
points (Figure 3.1, right)

3. Whole curve outlier: one of the curve replicates is affected by a ma-
nipulation error. It can affect the dilution factor (Figure 3.2, left), one
of the asymptotes (Figure 3.2, middle), or both asymptotes, inducing
a vertical shift (Figure 3.2, right).
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Figure 8.1: Examples of single observation outliers (left) and concentration points
outliers (right)

Dilution Factor Outlier Asymptote Outlier Vertical Shift Outlier

1001

754

504

Response

254

0.01 0.10 1.00 0.01 0.10 1.00 0.01 0.10 1.00
Concentration

Figure 8.2: FExamples of whole curve outliers with an effect on the dilution factor
(left), the upper asymptote (middle) or both asymptotes (right)
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3.3 Similarity Test and Calculation of RP

A commonly used model for potency assay concentration-response data is
the four-parameter logistic (4PL) curve. The usual parametrization was pro-
posed by Rodbard and Hutt [50], described in Section 1.2.1:

yMin; — yMax;
NS + €igs
()

For the sake of simplicity, we only consider the simple case where the
errors ¢€;; are independent and identically distributed. It is not uncommon in
potency assays to observe errors that are not independent or normally and
identically distributed. Such data require more sophisticated modeling of the
variance structures.

Yij = yMax; + ei; ~ N(0,0%) (3.1)

Both the USP [17] and the European Pharmacopeia (EP) [53] require as-
sessment of similarity before the computation of relative potency. The recent
literature has promoted equivalence testing for similarity as an alternative to
difference testing [32] and is also recommended by the USP <1032> [17]. In
the case of 4PL curves, several authors propose to compare the lower asymp-
totes, upper asymptotes, and growth rates between both reference and test
curves via equivalence testing [33,54,99]. In this Chapter, we use the ellipsoid
test proposed in Chapter 2.

The RP is computed for data that are declared similar. To perform the
RP calculation, both reference and test curve data are jointly modeled using
the following formula:

yMin —yMazx
()

Equation 3.2 is an adaptation of Equation 3.1 where yMin, yMax and S
are the same for both reference and test curves. For parallel curves, the true
RP is the ratio of unknown C5q model parameters. The estimated RP is the
ratio of estimated Cjg;s.

€ij ™~ N(O, 02) (32)
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3.4 Simulation Setup

For each simulated run, three replicates each of a reference and a test product
concentration-response curve were simulated via Equation 3.1, across ten di-
lution steps. The ten concentration points are given as [1,0.5,0.25,...,0.002]
with a 'dilution factor. Highly precise assays (¢ = 2) and highly variable
assays (o0 = 15) were examined. The parameters for the reference product
curve were held fixed at (yMin = 0,yMax = 100, ¢59, S = 2). The reference
curve was always generated in an outlier-free manner. The parameters for the
test curves vary in order to analyze the results both in the case of true paral-
lelism and true non-parallelism. We assume that no observation falls above
or below the natural bounds of the assay signal (i.e., saturation point and
limit of detection). To demonstrate the effect of outliers on parallel curves,
the test product curves were generated with parameters yMin, yMax, and
S set exactly equal to those of the reference product curve. The test product
C50 was varied as 50%, 100%, and 200% of the reference product Csg, lead-
ing to a true RP of 200%, 100% and 50%, respectively. There are an infinite
number of ways to generate non-parallel curve data. To avoid overwhelming
the reader, the effect of outliers on non-parallel curves is demonstrated by
purposely generating the test curve with an asymptotic outlier (see middle
panel of Figure 3.2). For non-parallel curves, the test product data was gen-
erated with parameters equal to those of the reference product curve, except
yMax = 100 — 30. The results from the non-parallel simulations are illus-
trative and should not be considered comprehensive. No recovery results are
presented for these scenarios because the true RP does not exist in case of
non-parallel curves.

Outliers were included in the test curve as described in Section 3.5 for
each type of outlier defined in Section 3.2. Each scenario was evaluated
10,000 times.

Because concentrations were chosen to be symmetrical to the Cjg, the
effect of an outlier on the model is also symmetrical around the Csqy of the
reference curve and so only positive outliers are considered in this study.
That is, in our scenarios, a positive outlier at the (5 — d)™* dilution step, has
the same effect as a negative outlier at the (5 + d)™ dilution step.

After model fitting was performed via nonlinear least squares, the effect
of outliers on similarity testing was assessed as the proportion of curves for
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which the similarity is not declared (see Section 3.5.1). If the data meet
with the similarity test requirements, the RP was estimated. We refer to the
ratio of the estimated RP to the true RP as recovery. Recovery is expected
to be 100%. Because simulated results for the parallel-curve scenarios only
weakly relied on the test-curve Cyq value, only the 100% expected RP case
is shown. The results for 50% and 200% RP are presented in Appendix B.
The non-parallel curve scenarios are not similar and so there is no expected
percent recovery value. The estimates of RP appear to be log-normally dis-
tributed, and so the geometric mean of the recovery across the simulations
is reported. Note that, because only positive outliers were generated, their
effect increases the percent recovery. Data with only negative outliers would
have the equivalent opposite effect to decrease percent recovery.

3.5 Simulation Results

3.5.1 Similarity Test Acceptance Criteria

Let:
yMaxr
e yMaxg
_ yMaxy — yMing
2= yMaxr — yMing
= (yMazxy — yMing)St

(yMazxr —yMing)Sg

For each generated pair of curves, r;, ro and r3 were calculated. The
indifference zone for the ellipsoid similarity test (see Chapter 2 for details) is
the ellipsoid containing 95% of A = [log (), log(#, log(r3]" of the 10,000 sim-
ulated curves under true parallelism with no outliers with RP=1, separately
for each o.

For a pair of curves to be declared parallel, it has to verify:

AN < q0.95,3 (3.3)
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where 3 is the variance covariance matrix and o.95,3 is the 95" percentile
of A from the 10,000 curves that were used to derive the indifference zone.

3.5.2 Single Observation Outlier

To generate a single outlier, the factor ko (a multiple of the measurement
variability) is added to a single observation with k = 4,6, and 10. Because
outliers can occur at any dilution step, the impact was evaluated at each
dilution step in the simulations.

Figure 3.3 shows the probability of rejecting similarity when the curves
are actually parallel (left panel) and non-parallel (right panel), as a function
of the outlier severity for the case of a single observation outlier. For exactly
parallel curves, when k£ = 0 (no outliers), the similarity test rejection rate for
parallel curves is 5%, per construction. When the assay variability was low
(o = 2), the impact of outliers on similarity testing depended on its severity
and position on the curve, depending on whether concentrations to the left
and right provided support for the particular portion of the curve. For exam-
ple, an outlier at concentration=1.0 had a larger impact on similarity testing
than an outlier at concentration = 0.5 because there is a reduced support
for the curve shape at the largest concentration. As expected, non-parallel
curves are rejected almost 100% of the time when & = 0 (no outliers). Be-
cause non-parallelism was constructed with yMaxr < yMaxpg, outliers at
the low concentrations have little effect on the rejection rate, but positive
outliers at the high-concentration in the test curve data lead to an overesti-
mation the upper asymptote, which “fixes” the problem and can lead to false
acceptance of non-parallel curves. Note again that different scenarios of non-
parallelism will lead to different results. When the assay variability was high
(o =15), the effect of a single observation outlier in the lower asymptote or
at the highest concentration was similar as when the assay variability was
low (0 = 2), but not exactly the same concentrations where most negatively
affected.

Figure 3.4 shows the geometric mean of the recovery for cases that were
declared similar in the presence of a single observation outlier at a given dilu-
tion step. An outlier in the asymptote (highest and smallest concentrations)
has virtually no impact on the RP estimation, while an outlier in the middle
of the curve can have a major impact, depending on the residual standard
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deviation and outlier severity. For precise assays (0 = 2), even the most
extreme outliers did not induce a relative error in recovery of parallel curves
above 10%, while outliers in imprecise assays had a stronger impact, up to
60% relative error.
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Figure 3.3: Single observation outlier: effect on similarity testing when true RP

= 100%
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Figure 3.4: Single observation outlier: geometric mean of the recovery when true
RP = 100%

3.5.3 Concentration Point Outlier

For concentration point outliers, the outlier generation process is the same
as for single observation outliers, except that the factor ko is added to all
the replicates at the selected dilution step. To avoid a wholesale increase in
the parallelism rejection rate, less severe outliers were generated (k = 2,3,
or 4) compared to those of Section 3.5.2.

Figure 3.5 shows the probability of rejecting similarity with a single con-
centration outlier follows a pattern similar to that of the single point outlier.
Because all three observations from a single concentration are pushed away
from the true curve, less severe outliers can have a significant impact on re-
jection of similarity. Figure 3.6 shows that the effect of concentration point
outliers on RP estimation is also similar to that of single point outliers, but
more severe.
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3.5.4 Whole Curve Outlier

In this section, three types of whole curve outliers were generated, namely:

(a) Replacing the serial dilution factor of 2 with 2.5 for one of the replicates
(dilution factor outlier). As a consequence, the true concentration is
different than the observed concentration for one of three whole-curve
replicates.

(b) Changing yMax = yMaz+ 10 for one of the replicates (upper asymptote
outlier).

(¢) Changing yMax = yMax + 10 and yMin = yMin + 10 for one of the
replicates (vertical shift outlier).

Because these generated outliers do not depend on the measurement vari-
ability, it is expected that the effect of the outlier is more important for
precise assays compared to imprecise assays.

The effect of a whole curve outlier on the similarity tests is shown in
Figure 3.7. Because outlier generation is not a multiple of ¢, the higher the
measurement variability, the less the outlier affects similarity equivalence
testing. Such outliers therefore have low to no impact on similarity testing
when ¢ = 15. When ¢ = 2, a shift in one or both asymptotes in one
out of three test curves has a profound effect on similarity testing for truly
parallel curves. For our scenario of truly non-parallel curves, a positive upper
asymptote outlier lead to mistakenly accept over 50% of the curves. Changing
the dilution factor of one test curve had only a modest impact on similarity
testing

Figure 3.8 shows the geometric mean of the recovery for the evaluated
relative potencies and measurement variabilities in case of whole curve out-
liers. The geometric mean recovery of truly parallel curves does not appear
to be affected by the measurement variability.
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3.6 Discussion

For potency assays, USP<1032> recommends screening for outliers. Until
now, the effect of an outlier on the quality of the RP has not been quantified
to confirm the utility of outlier testing. This chapter examined the effect
on the performance of parallelism testing and the magnitude of the error
in RP estimation induced by the presence of an outlier in the data set for
various outlier types that may be expected to occur in practice, including
whole curve outliers.

The simulation study shows that, for single outliers and single-concentration
outliers, the effect of the undetected outlier on RP estimation is a function of
the outlier magnitude relative to the assay precision and outlier position on
the curve. Very precise assays concentration-response curves with a single
outlier or concentration-point outlier tend to produce nearly unbiased RP
values when the curves are truly parallel; however, this may come at the cost
of a high similarity testing rejection rate. As the assay precision diminishes,
the single outlier and single-concentration outlier may lead to both a higher
similarity test rejection rate for truly parallel curves as well as a gross bias in
RP estimation. Whole-curve outliers are universally worrisome, potentially
leading to similarity testing failure or high RP bias. When the test product
is not parallel to the reference, outliers can lead to false declarations of sim-
ilarity. We thus agree with the USP recommendations to screen for outliers
and to test for similarity before estimating RP.

Chapter 4 focuses on the performance of various outlier test methods, in-
cluding proposals for whole-curve outlier testing. Future research will include
the assessment of the effect of outliers when the residuals are not indepen-
dent, identically and normally distributed.

The effect of an outlier depends on its location on the curve. Therefore,
a concentration design that lacks supports in either asymptote or in the as-
cending portion of the curve may increase the negative effects that outliers
can have on either similarity assessment or relative potency estimation. Sim-
ilarly, poor design may increase the negative effect of outliers. See Chapter
5 for design considerations.



Chapter 4

Comparison of Outlier Tests for
Potency Bioassays

This Chapter is based on the article titled “Comparisons of outlier tests
for Potency Bioassays”, published in Pharmaceutical Statistics in November
2019 [121]. The vocabulary has changed to be consistent with the rest of
the dissertation. The similarity test used has also changed: the paper uses a
hyper-rectangle test for parallelism, while the chapter uses the ellipsoid test
presented in Chapter 2.

4.1 Introduction

ICH Q6B defines the potency of a biotherapeutic product or vaccine as the
measure of its capacity to achieve a defined biological effect [1 14, 115]. Mea-
suring potency directly is impossible. Instead, one must measure it relative
to that of a reference preparation [3,47]. In the manufacturing of biothera-
peutics, the potency of a new batch is calibrated relative to the potency of
a reference standard by comparing the concentration-response curves of the
two samples. For a given response value yp, the relative potency (RP) of
the batch is calculated as the ratio of the concentrations from the reference
standard and batch samples. If the RP is constant or nearly constant for all
possible response values, then the two curves shapes are equivalent, except
for a shift along the concentration axis. In such a case, the two curves are

57



58 CHAPTER 4. COMPARISON OF OUTLIER TESTS

declared to be similar (or parallel) and the batch and reference standard are
said to exhibit constant relative potency. In the context of biotherapeutic
manufacturing, the computed RP value is only useful for calibration if those
batch and reference standard curves are declared to be similar (parallel) [75].

When statistical outliers are present in the measured concentration-response
data for the batch and/or the reference standard, Sondag et al. (2018) show
that similarity testing may be compromised, and RP estimates may be bi-
ased [113] (see Chapter 3). These findings agree with the USP <1032>
recommendations to screen for outliers before RP analysis [17]. Some outlier
testing guidance is provided in USP<1010> and, while there is no direct
claim in that chapter that its outlier tests are ideal for bioassay [122], the
USP<1010> recommendations represent a broad swath of common, simple
outlier tests. Through computer simulation, the utility of the USP<1010>
recommendations were evaluated in terms of sensitivity and specificity to
detect outliers and the subsequent effect of the removal of declared outliers
on similarity testing and RP estimation. In addition to the recommended
methods in USP<1010>, we examined the robust outlier (ROUT) detection
method of Mutulsky and Brown [120] as well as two novel methods that we
propose.

As in Chapter 3, three types of outliers are examined:

1. Single observation outlier: a single measurement is excessively distant
from the other values.

2. Concentration point outlier: all the replicates at one concentration level
differ from the values at the other concentration points.

3. Whole curve outlier: one of the curve replicates is affected by a manip-
ulation error. It can affect the dilution factor, one of the asymptotes,
or both asymptotes, inducing a vertical shift.

Although outlier detection may be performed in conjunction with a litany
of concentration-response curves, as in Chapter 3, the assumed mean model
for potency bioassay concentration-response data is the four-parameter logis-
tic (4PL) curve. The usual parametrization was proposed by Rodbard and
Hutt [50], described in Section 1.2.1:
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Min — yMax
f(6,x) :yMcm:—i-y Y e (4.1)
1+ (&)
USP <1010> [122] suggests three tests for outlier detection: The Ham-
pel’s Rule [123], the Extreme Studentized Deviate test [124,125], and Dixon’s
Q test [126]. In this Chapter, the performance of these tests is assessed for

potency bioassay concentration-response functions through the 4PL curve.
In addition to the three outlier tests suggested by USP<1010>, Motulsky
and Brown’s outlier detection method (ROUT) [120] and a novel robust
prediction interval (RPI) method based on Huber weighting are also evalu-
ated [127]. Computer simulation studies were run to assess the performance
of the five outlier detection methods. For whole-curve outliers, a novel ap-
proach is separately proposed.

Our computer simulations mimicked a typical RP-calculation scenario.
Given concentration-response data from a reference standard (Ref) and a test
batch (Test) samples, model (1) is fitted separately to each sample, resulting
in estimates for the reference standard and test model parameters, 6z and
Or. Before estimating RP, parallelism testing is performed to determine if
the shapes of the two concentration-response curves are similar. The test
may be performed by comparing the reference and test parameters yMin,
yMazx, and S, as described in Chapter 2. When no outliers are present in
the data, the lab risk to reject truly parallel curves is gauged to 5%. If the
two curves are declared similar, the following model is jointly fitted to the
reference and test curve data:

yMin — yMax

g
4 (o)

In Equation 4.2, the parameters yMin, yMaz, and S are common to both
reference and test curves, but the C5, parameter is estimated separately for
¢ = R,T. The RP is calculated by dividing Cjsg,, by Cso,.

f(0,x) =yMazx +
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4.2 Outlier Tests

Outlier testing is performed on each curve (R,T) individually. Data from
a single curve is assumed as y; = f(6,x;) + ¢, where f(0,z) is defined in
equation 4.1 and €; N'(0,0%), j = 1,2,...,n. The j* residual is given as
ri=y;—f (é, xj> where 6 is an estimate of 6. Let # = median({|r;|}). We
define the median absolute deviation (M AD) of the residuals by 7 x 1.4826.
For normally-distributed errors, the M AD is an estimate of the standard
deviation that is robust to outliers. All outlier testing is performed at a 1%
significance level.

4.2.1 Tests for Single Observation and Concentration
Point Outliers

In Chapter 3, we define a single observation outlier as a single measurement
excessively distant from the other values (Figure 1, left panel). A concentra-
tion point outlier refers to the set of replicate measurements from the same
concentration level at which all the replicates exhibit a different behavior (in
the same direction) from the values at the other concentration points (Figure
4.1, right panel). Four outlier tests from the literature and one novel outlier
test are detailed in this section.

USP<1010> recommends the use of three relatively simple outlier tests:
Hampel’s rule, the generalized extreme studentized deviate (ESD) test, and
Dixon’s Q test. For these three tests, it is assumed that 6 is estimated by 0
via ordinary least squares.

Hampel’s rule identifies 7; as an outlier if % > 3.5. Essentially, Ham-
pel’s rule declares as outliers any observations that are more than 3.5 stan-
dard deviations (M ADs) from the center of the distribution (median). While
Hampel’s rule benefits from simplicity, the critical value of 3.5 is not adjusted
for sample size and so the test size is not controlled [123].

For the generalized ESD test, let p = %, where 7 and & are the
sample mean and standard deviation of the residuals. The value r; that
maximizes |r; — 7| is declared an outlier if p exceeds the critical value given
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by
(7’L — 1)tp,n—2

\/(n -2+ tin,z) n

where ¢, is the 100p™ percentile of a Student’s T distribution with v degrees
of freedom and p = 1 — 5~ with a = 0.01, the pre-defined significance rate.
The value r; that maximizes |r; — 7| is removed from the set of residuals and
the entire process is repeated from the remaining n — 1 residuals. At the k"
step (at which point, & — 1 outliers have been declared), the test statistic p

is evaluated against the critical value

v =

o (TL - k>tp,nfkfl
Vi =
\/(n—k:— 1+t§7n,k71) (n—k+1)
with p=1— ﬁ‘;ﬁl) The process halts when p < v;. While more complex

than Hampel’s rule, the ESD test does adjust for the sample size and so test
size is controlled by a [125].

The last recommended method in USP<1010> is a generalized Dixon’s
Q test. Denote the j** rank-order value of the residuals by ;] so that
rnp < g <o < gy The test statistic for Dixon’s depends on the sample
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Figure 4.1: Example of single observation outliers (left) and concentration points
outliers (right)
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size [126]. To test the minimum (most negative) residual as an outlier for
n = 30, let Zp) = % To test the maximum (most positive) residual
=2y

as an outlier, let Z},) = T[ZEM The critical value for both Zp; and Zp,; is
n)=r(3)

calculated by taking the 99% quantile of “"—I"=2 ' where the w; are indepen-

(n]-w[3

dent standard normal random variables. For e)[célxmple, at the 1% significance
level, with a sample size of N=30, the critical region for both the minimum
and maximum residuals Z;; and Z,; is > 0.457. To use the standard Dixon’s
Q test, we are naively assuming that the r; (which are correlated) are inde-
pendent, identically-distributed univariate normal random variables. Dixon’s
test is initially applied to the full data set (n observations). If an outlier is
detected, the observation is declared an outlier and removed. Dixon’s test is
repeated on the remaining observations n— 1. This procedure is applied with
new calculated critical values at each step until no additional outliers are de-
tected. The generalized Dixon’s Q) test procedure approximately controls the
test size.

Motulsky and Brown derived a robust outlier (ROUT) detection method
that fits Equation 4.1 to the data assuming Cauchy-distributed errors in
place of Gaussian-distributed errors [120]. A Cauchy likelihood is fitted to
the data by maximizing

" 1
]Hl Ty [1 + {ust) }2}

with respect to (6,7), where v is a scaling parameter. The robust stan-
dard deviation of the residuals (RSDR) is defined as the 68" percentile of
the absolute value of the Cauchy-fitted residuals, multiplied by n/(n — 4).
Standardized residuals are s; = r;/RSDR. An observation is declared an
outlier if the absolute standardized residual value is large by examining the
p-value= 2P(T > |s;|), where T follows a central t-distribution with n — 4
degrees of freedom [120]. Because each observation is tested as a potential
outlier, the p-values are adjusted for multiplicity via a Benjamini-Hochberg
family-wise discovery-rate (FDR) correction [128]. If the adjusted p-value is
less than 0.01, the observation is declared an outlier.

Implementing ROUT may be difficult for those who lack sophisticated
software that can handle Cauchy regression. We therefore proposed a mod-
ification of the ROUT method. Instead of assuming a Cauchy distribution,
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robust model fitting is performed via iteratively reweighted least squares
(IRWLS) by minimizing >%_; w; {y; — f(0, x;)}? using Huber weights with

w; = min (1,M). Let SE(r;) = \/MAD2 + fV ft where V is the

I
estimated variance-covariance matrix for # and f = % i Note that

SE(r;) is a robust estimate of the standard deviation for a new predicted
response evaluated at x. The test is performed by examining the p-value=
2P(T > |rj|SE(r;)), where T follows a central t-distribution with n — 4
degrees of freedom. As with the ROUT method, the p-values are adjusted
for multiplicity via a Benjamini-Hochberg FDR correction. If the adjusted
p-value is less than 0.01, the observation is declared an outlier. For abbrevi-
ation, given its connection to a prediction interval, this test will be labeled
RPI (robust prediction interval).

4.2.2 Tests for Whole Curve Outliers

When the entire concentration-response curve is independently replicated,
it is possible that the data produced from one or more of the whole curves
is bad. In this work, we consider the case with three replicate curves and
attempt to determine if at least one of the whole curves is an outlier. In this
section, a second index is added to the response y to indicate the number of
curve replicates. It is assumed that y;; = f(0k, ;) + €k, with the ¢—length
parameter ), denoting the model parameters for the k& curve, e N(0,0?),
kE=1,2...K (usually K = 3) and j = 1,2,...,ng (ng is the number of
observation within curve k). In Chapter 3, we define a whole-curve outlier as
an entire curve replicate affected by a manipulation error. It can affect the
dilution factor (Figure 4.2, left), one of the asymptotes (Figure 4.2, middle),
or both asymptotes, inducing a vertical shift (Figure 4.2, right).

Note that, with three replicate curves, should one curve be declared a
whole-curve outlier, it may be impossible to judge whether the issue is with
the one whole curve or with the other two whole curves. In such a circum-
stance, one may look to historical data to make a proper judgment or one
may simply choose to re-run the experiment. For example, the assay re-
sponses of one of the three curves may be historically low-valued, strongly
suggesting that it, and not the other two curves, is the whole-curve outlier.

We could not find whole-curve outlier detection methods in the literature.
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We propose a novel procedure, which we call the maximum departure test
(MDT). This procedure examines the maximum difference across the range
of experimental concentrations of the mean response among the three curves
and compares this difference to a critical value. The MDT is conducted by
first considering a model such as (1) to associate with each replicate curve.
Let X = {z : 2y <2 < z,}, where x; and z,, denote the minimum and
maximum concentrations. Given a pair of curves (k, k'), we permit a small
deviation d so that if 8, # 0/, we may declare that the two curves differ if
|f (0, x) — f(Or, )| > 0 for at least one x € X.

Let vgp = r&agdf(@k,x) — f(b,z)|. Then vy > § indicates that the
two curves differ significantly for at least one concentration inside the range
of designed concentrations. Instead of (12( ) separate tests, we propose an om-
nibus testing parameter given by Yy = max(vy2,v13,...,V1,K;---, VKk—1.K)-
With three curves, the test parameter is Ty = max(vy 2, v13,v23. If Tx >4,
at least one curve is out of trend. Formally, the two competing hypotheses
are given by

H() ZTX §5
H, 2TX >0
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Figure 4.2: Examples of whole curve outliers with an effect on the dilution factor
(left), the upper asymptote (middle) or both asymptotes (right)
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If Hy is rejected in Equation 4.3, then at least one whole curve signifi-
cantly differs from another for one or more concentrations and so, at least
one whole curve is declared an outlier. To test Equation 4.3, we propose
fitting the three curves separately by least squares, resulting in estimates
(ék, Vi, 6%) (k= 1,2,3), where 0, is the estimator for ), Vj, is the estimated
variance-covariance matrix for 6, and o} is the estimated residual variance
associated with n;, — ¢ degrees of freedom. A pooled residual variance esti-

mated is »
~2 - > (nk - Q) Ok
Upooled - #

which is associated with n = 3 (nx — q) degrees of freedom. Let SEj(x) =
standard error of f(fg,x) and SE (z) = standard error of f(6y,z). The
pooled standard error of f(0y,x) — f(O,x) is

X SE > (SEu(2)\’
SEk,k;/(ac) = Upooled\J ( Ak(x)> + <M>

O 6’k/

If the two curves are exactly ¢ units apart at concentration x, then asymp-
totically,

f(ék7$> B f(ék’7x> -9
SEy 1 (z)

follows a central T distribution with n degrees of freedom. It follows that

|f (O, 7) = f(Opr, )| =0
SEy 1 (z)

follows a half central T distribution with 1 degrees of freedom. Let

T — max ‘f(ékax) - f(ék’ax)‘ =9
VT aex SEjy 1 (z)

and
Tx = maX(TLz, T1,3, T2,3)

Although each of the T, statistics is related to the half central T dis-
tribution through order statistics and Ty represents a second hierarchical
level of order statistics, to keep the algorithm simple, we compare Tx to a
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half central T distribution with 7 degrees of freedom, calculating a p-value
to test Equation 4.3 with p-value= 1 — P(Ty/, > TX), where T/ is half-T
distributed [120]. If Tx < 0 (i.e., the maximum departure is less than &), the
p-value= 1. Because T is the maximum of three entities, the significance
level is adjusted to /3 with a = 0.01.

4.3 Computer Simulation

Computer simulation studies were conducted to examine the characteristics
of each outlier detection method provided in Section 4.2. In each simulated
scenario, except for generated outliers, the reference standard and test curves
were created to be identical so that, in lieu of outliers, the curves should be
declared similar and the estimated RP should be 100%. We did not generate
a computer simulation based on non-similar curves because the similarity
testing procedure should filter out those cases whether outliers are present
or not. See Chapter 3 for the effect of outliers on similarity testing and
estimated RP for non-similar curves. For a given simulation scenario and
simulated data set, detected outliers were removed prior to similarity testing
and RP estimation. The false positive and true positive outlier-detection
rates were estimated as was the similarity-testing failure rate. For reference
standard and test curves that were declared similar, the bias in RP was also
calculated. Each scenario is simulated 10,000 times.

For each simulated run, three replicates of the reference standard and test
samples were computer-generated via model (1) with parameters 6 = 0 =
(yMin = 0,yMax = 100,C5 = 0.0625,S = 2), ten concentrations given
by [1,0.5,0.25,...,0.002], and a standard deviation of 0 = 2 or ¢ = 15.
Thus, the reference standard and test curves are each generated with 30
total observations. The reference standard curve was always generated in
an outlier-free manner. In addition to a no-outliers scenario, three different
outlier scenarios were created for the test samples.

(i) Outliers at specific concentrations: 1, 2, or 3 outliers are generated at
a specific concentration. A concentration point outlier occurs when all
three observations at a particular concentration are outliers (see Figure
4.1).
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(ii) Random outliers: 1, 2, or 3 outliers are generated at possibly different
random concentrations.

(iii) Whole curves outliers: Three types of whole-curve outliers are tested
separately (see Figure 4.2).

(a) Dilution Factor Outlier
(b) Upper Asymptote Outlier
(c) Vertical Shift Outlier

4.3.1 Single Observation and Concentration Point Out-
liers

Single observation and concentration point outliers are observed through sce-
narios (i) and (ii). A factor ko (a multiple of the measurement variability)
is added to an observation. Observation outliers can be mild (|k| = 4), mod-
erate (|k| = 6), or extreme (|k| = 10). For scenario (i), outliers were created
as all positive (k > 0) or all negative (k < 0). Because simulation results
from all-positive and all-negative outliers were similar, we only show k£ > 0
results for scenario (i). For scenario (ii), outliers can be either positive or
negative (kK > 0 or k < 0). Outlier detection was assessed with Hampel’s
rule, the generalized ESD, the generalized Dixon’s Q, ROUT, and the RPI
test methods. From the no-outliers scenario, Table 1 shows the proportion
of curves (out of 10,000) for which no outliers were detected as well as the
proportion for which incorrect declarations of 1, 2, and 3 outliers were made.
The false positive rate in Table 4.1 was calculated as the weighted average of
incorrect declarations with denominator equal to the number of test sample
observations (30). For example, when o = 2, the false positive rate for Ham-
pel’s test is (6.5% x 1+ 1.3% x 2 + 0.4% x 3)/30 = 0.3%. It appears that,
when no outliers are present, all test methods are conservative in terms of
test size (i.e., false positive rate < 1%)

For Scenario (i), the true positive rate of each test (ability to correctly
identify all outliers) was calculated for each specific concentration of the
curve. Figure 4.3 shows the true positive values for moderate outliers. Rela-
tive to ROUT and RPI, the USP<1010>-recommended outlier tests (Ham-
pel, ESD, Dixon) performed less well, especially when multiple outliers were
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Table 4.1: False positive rate when no outliers are present.

Proportion of curves False pos-
with # false positive (%) itive rate (%)

0 1 2 3+

o Method

Hampel 91.8 6.5 1.3 0.4 0.3
ESD 99.0 09 <0.1 <0.1 <0.1
2  Dixon 989 1.0 0.1 <0.1 <0.1
ROUT 884 79 23 1.4 0.6
RPI 76.2 204 3.1 0.4 0.9
Hampel 914 68 14 04 0.4
ESD 989 09 0.1 <0.1 <0.1
15 Dixon 98.8 1.1 0.1 <0.1 <0.1
ROUT 90.8 64 1.8 1.0 0.4
RPI 771 19.1 3.3 0.5 0.9

present in the data. The USP<1010> tests and the RPI also experienced
trouble detecting outliers in the middle of the curve. Note that, as shown
in Chapter 3, outliers in the middle position have the strongest effect on the
bias in RP estimation. The pattern of true positive rates is similar for both
o = 2 and 15. When only one outlier is present, the RPI method is best.
When more than one outlier is present at a specific concentration, the ROUT
and RPI methods both stand out; however, the ROUT method appears to
be more robust to concentration position, as the true positive rate does not
drop as low as other methods when outliers are present in the middle of the
curve. The mild and extreme outlier cases are similar in behavior to that
shown in Figure 4.3, respectively with lower and higher true positive rates.

For Scenario (ii), Figure 4.4 shows the true positive rate of each test, cal-
culated across all concentrations for the situations when 1, 2, and 3 outliers
are generated in random positions of the curve and for moderate outliers. As
before the ROUT and RPI methods outperform the USP<1010>-proposed
test methods. For each test method, mild and extreme outliers were re-
spectively detected at lower and higher true positive rates, as presented in
Appendix C. For each outlier severity, results do not appear to depend on o.

After outlier removal, Equation 4.1 was fitted again to the remaining data
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from each sample. Subsequently, each data set was tested for similarity using
the same acceptance criteria as for Chapter 3 (see Section 3.5.1). When no
outliers are present, the Monte Carlo probability to declare similarity test-
ing was roughly 95% across all outlier detection methods, meaning that the
intended lab risk is preserved, regardless of 0 = 2 or 15 and in light of the
small number of false positives (see Table 4.1). For scenario (i) and with
moderate outliers, Figure 4.5 shows the probability to declare similarity test-
ing after outlier removal for each test method. It is clear that the probability
to declare similarity is dependent upon the concentration associated with the
outlier. Except for Dixon’s method, which worsens in its ability to declare
similarity with the magnitude of the outlier (mild/moderate/extreme, see
Appendix B for mild and extreme outlier results), the other methods appear
invariant to the outlier size. The ROUT method is universally best because
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Figure 4.3: True Positive Rate at specific concentration points, moderate outliers
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the ability to meet the criteria of the parallelism test is directly linked to the
ability to detect and reject and outlier.

We refer to the ratio of the estimated RP to the true RP as recovery.
The expected recovery is 100% for each simulation. For scenario (i), Fig-
ure 4.6 shows the geometric mean recovery in recovery estimation after out-
lier removal of moderate outliers for those cases for which similarity is de-
clared, when o = 2. Figure 4.7 shows the median coefficient of variation
(%CV) of the corresponding recovery (after outlier removal), calculated by

\/ exp (sefog( RP)) — 1, where sefog( rp) 1s the standard error of the estimated

log(recovery) from each Monte Carlo run. Based on Figure 4.5, note that
the geometric mean recovery for ROUT is calculated on more than 75% of
simulated data sets out of 10,000. For the other test methods, the percentage
of simulated data sets used to calculate bias in recovery depends highly on
concentration, with some test method/concentration pairs approaching 0%
out of 10,000. The size/color of the points in Figures 4.6 and 4.6 show corre-
spondence with the percentage of declared similarity cases. ROUT appears
to be universally best in minimizing the percent bias and %GCV in recovery.
Figure 4.7 suggests that, regardless of correct/incorrect outlier detection, if
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Figure 4.4: True Positive Rate across random concentration points for moderate
outliers
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the criteria for parallelism are met, the %CV of the ensuing %recovery esti-
mate is relatively stable across methods (%CV < 4% in all cases). Results
for ¢ = 15 exhibit the same pattern, with different magnitude. For Ham-
pel, ESD, and Dixon, the percent bias grows larger with increasing outlier
magnitude. For RPI and ROUT, the opposite pattern emerges because they
detect sensibly all extreme outlier. Results for all outlier severity and o are
presented in Appendix C.

For scenario (ii), Figure 4.8 shows the 95% coverage interval of % recovery
in estimated RP when moderate outliers are randomly generated across con-
centrations. Only the results for which parallelism was declared were taken
into account. When no outlier was present, as expected for the intended lab
risk, roughly 5% of simulated cases were removed after parallelism testing.
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Figure 4.5: Probability to declare similarity test after detection and removal of
moderate outliers
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When only one outlier was present, we declared parallelism for roughly 90
to 95% of curves for each outlier detection method. When two outliers were
present, this percent of cases that met the parallelism testing criteria respec-
tively dropped to about 83-90% or 63-82% for Dixon, ESD and Hampel’s
tests and for both RPI and ROUT, at least 91% of cases meet the paral-
lelism testing criteria no matter how many outliers were present. When 0
or 1 outliers were present, the predicted recovery cover the same range no
matter the detection method. When 2 or 3 outliers were present, ROUT and
RPI cover narrower range than the USP<1010> suggested methods.
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Figure 4.6: Geometric Mean %recovery in estimated relative potency (RP) after
detection and removal of moderate outliers when o = 2
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4.3.2 Whole Curve Outliers

Whole curve outliers are observed through Scenario (iii). Whole curve out-
liers were generated by changing the parameters:

(a) Dilution Factor Outlier: The dilution factor changes for one of the repli-
cates. Consequently, the true concentration is different from the observed
concentration for that curve.

(b) Upper Asymptote Outlier: yMax is different for one of the replicates.

(c) Vertical Shift Outlier: both yMax and yMin are modified the exact
same amount for one of the replicates.
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Figure 4.7: Median %CV of the estimated relative potency (RP) after detection
and removal of moderate outliers when o = 2
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Whole-curve outliers can also be mild, moderate, or extreme; as well as
positive or negative. Table 4.2 presents the different values for the changed
parameters. Each scenario was run 10,000 times with ¢ = 2 and o = 15.

The proposed MDT method was applied to each simulated data set for
whole-curve outlier detection using 6 = 3.1. The value of § = 3.1 was
determined through computer simulation to ensure a false positive rate of
about 1%. As a naive comparator, the ROUT method (in our opinion, the
best method for single observation and concentration point outlier detection)
was applied separately to each curve. If ROUT detected at least three outliers
from one or more curves, a whole-curve outlier was declared. We label the
ROUT whole-curve outlier method as ROUT3 to indicate its reliance on
detecting at least three outliers in one curve. The ROUT3 method, or any
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Figure 4.8: 95% Monte Carlo coverage interval of estimated recovery after detec-
tion and removal of moderate outliers at random positions o = 2
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Table 4.2: Values for the whole-curve outliers. The values for the Dilution Factor
Outliers are the wrong dilution factors, the values for the Upper Asymptote Outliers
is the wrong yMazx, and the values for the Vertical Shift Outliers are the delta
applied to both yMin and yMazx.

True Mild Moderate| Extreme

Value
| | | Positive | 01:01.8 |  01:01.8 | 01:01.7 |
| Dilution Factor - 01020 ‘Novative | 01022 01022 | 01:023 |
| | | Positive | 98 | 90 | 85 |
| Asymptote | 100 o otive | 102 | 1o 115
| | | Positive | -2 | -10 | -15 |
‘ Vertical Shift ‘ 0 ‘ Negative ‘ 9 ‘ 10 ‘ 15 ‘

of the methods tested in Section 4.2.1 for that matter, is not designed to
detect whole-curve outliers and so it is expected that its statistical power to
detect whole-curve outliers will be smaller than that of the proposed MDT
method. With 3 replicate curves, for the MDT or ROUTS3 tests, if a whole-
curve outlier is declared, it may be difficult to determine which curve is the
outlier and the entire experiment may well be at risk. Thus, we only report
the false positive and true positive rates to detect whole-curve outliers.

When no outliers are present, the false positive rate to declare a whole-
curve outlier was about 1% for MDT and < 0.5% for the ROUT3 method.
Table 4.3 presents the true-positive rate to detect whole-curve outliers. Nei-
ther test seems to be efficient when o = 15. This is not surprising consid-
ering that severe outliers are only equivalent to a one standard deviation
shift. MDT is powerful to detect moderate to severe outliers when o = 2.
The ROUT3 method performs well in the case of a dilution factor outlier
and severe upper asymptote outlier when ¢ = 2 but performs very poorly in
case of a vertical shift, probably due to the fact that these outliers affect the
model uniformly enough for the robust model to fit normally. Overall, the
proposed MDT method appears to perform well and should be considered as
a reasonable tool for the detection of whole-curve outliers.
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Table 4.3: Probability (%) to detect whole curve outliers

Side Severity | Dilution Factor | Upper Asymptote Vertical Shift
MDT ROUT3 | MDT ROUT3 | MDT ROUT3

Mild 98 91 <1 <1 <1 <1

Negative | Moderate 99 100 84 45 95 <1
Extreme 100 100 100 95 100 <1

Mild 99 67 <1 <1 <1 <1

Positive | Moderate 100 &9 85 45 95 1
Extreme 100 96 100 95 100 <1

Mild 5 <1 2 <1 2 <1

Negative | Moderate 8 <1 3 <1 5 <1
Strong 13 1 5 <1 9 <1

Mild 3 <1 2 <1 2 <1

Positive | Moderate 4 <1 3 <1 4 <1
Strong ) <1 6 <1 9 <1

4.4 Discussion

In the case of potency bioassays, USP<1032> recommends screening for out-
liers. In Chapter 3, we showed the effect of multiple types of outlier on paral-
lelism testing and Relative Potency estimation, confirming the need to detect
those outliers. USP<1010> proposes several tests for outlier detection. This
Chapter showed that the USP<1010>-proposed tests are out-performed by
robust regression outlier detection methods (ROUT/RPI) in terms of true-
positive outlier detection, declaration of similarity, and bias in the RP value.
It is our opinion that the ROUT method is best for single observation and
concentration point outliers in potency bioassays. The RPI method also per-
formed well and might best be used by those who have no access to a Cauchy
maximum likelihood algorithm.

For whole-curve outliers, we proposed the Maximum Departure Test
(MDT) and compared it to the ROUT3 method. The MDT method fared
well in detecting whole-curve outliers. Future research will focus on compet-
ing whole-curve outlier testing.
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Our findings suggest that robust regressions, such as the Cauchy regres-
sion used for the ROUT method, could be an efficient way to fit different
nonlinear models, related or not related to potency assays. Future work will
investigate a generalized approach.

A limitation of our study is that it assumes that the residuals are inde-
pendent and normally distributed, and homogeneity of variance across the
dilution profile. Future work should investigate the consequence of the vio-
lation of one or more of these assumptions.
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Chapter 5

Efficient Design to Estimate
Relative Potency and Test for
Similarity in Parallel Curve
Assays

This Chapter is based on a manuscript called “Simple Efficient Design to
Estimate Relative Potency and Test for Similarity in Parallel Curve Assays”,
soon to be submitted for publication in a scientific journal.

5.1 Introduction

In relative potency (RP) assays, the RP can be determined by computing
the horizontal difference between the log(concentration)-response functions
of the test and reference [17]. The computed value is only relevant if the
concentration-response functions of the two products (or batches, lots, sam-
ples), are similar [34]. In the case of parallel curve assays, this similarity is
demonstrated statistically, by showing that, in the log(concentration) scale,
the function of the test product is a horizontal shift from the reference stan-
dard’s function [17]. If the functions are not parallel, the horizontal difference
is not constant (Figure 1.3).

79
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To model the concentration-response function of a preparation, the liter-
ature commonly suggests the use of a four-parameter logistic (4PL) model.
The most common of these was proposed by Rodbard and Hutt [50], de-
scribed in Section 1.2.1:

yMin; — yMax;
5 TG
L (&)

While mathematically equivalent, the following parametrization presents
computational advantages [51]:

Yij = yMCL.TZ' + €5 ™~ N(O, 0'2) (51)

meZ — yMaxi
1+ exp (S; (log(xi;) + ¢;))

Yij = yMaz; + + €5, e;; ~ N(0,0%) (5.2)

where ¢; = log(C5,). We note 0; = [yMin;, yMaz;, ¢;, S

Parallelism is accepted if the lower asymptotes, upper asymptotes and
growth rates are similar between the two curves (Figure 1.3, right). If par-
allelism is declared, the relative potency is then the estimated horizontal
distance between the two curves on a log scale after fitting the model

yMin — yMax
1+ exp (S (log(zij) + ¢i))

Yij = yMax + + €ij, ei; ~N(0,0%)  (5.3)

Which is an adaptation of Equation 5.2 with common yMin, yMaz,
and S for both curves. The horizontal distance between the two curves is
then the difference between cg and ¢y and the RP is calculated by exp(p)
with p = cg — ¢p. Multiple tests for similarity have been suggested in the
literature [79,84,88,90]. A common challenge in laboratories is selecting the
best concentration points — or, more generally, support points — to estimate
the relative potency a well as the non-similarity metric(s) of choice.

Multiple options for the optimal-design to estimate the parameters of
linear models are proposed in the literature [130-132]. A common optimal-
ity criterion for both linear and nonlinear models is the D-optimality, which
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maximizes the determinant of the information matrix and consequently mini-
mizes the joint confidence region of the parameters. Criteria also exist to find
the best design to estimate the ratio of two linear combinations of the vector
of parameters, which is used for the inverse prediction — useful to calculate
assay potency — as well as estimating slope ratios for parallelism assessment
in parallel line assays [133, 131]. For nonlinear models, such as the 4PL,
Mukkula and Paulen (2017) showed that the linearization-based approach
fails to identify the optimal zs [135]. Locally optimal designs for nonlinear
models were first introduced by Chernoff [136]. Melas (2004) later demon-
strated that the support points of locally D-optimal designs are functions of
the nonlinear parameters [137]. Kalish and Rosenberger (1978) first derived
a D-optimal design for two-parameter logistics curves [138], and Bezeau and
Endrenyi (1986) extended it to three-parameter logistics models [139]. Find-
ing the D-optimal design in linear model is trivial through matrix algebra.
For nonlinear model, computational tools, such as an imperialist competitive
algorithm are needed [110]. However, finding the D-optimal design may not
be of interest, or even realistic, in the case of relative potency assays. An-
other known issue with classic locally optimal design is that they depend on
the true value of the model parameters being known. This problem is usu-
ally addressed using Bayesian optimal designs [141]. We did not address this
specific issue in the present work, and it will be the focus of future research.
However, the true parameter may be impossible to know because it varies
from one sample to another. Khinkis et al. (2003) claim that a D-optimal
design for logistic models remains optimal as long as it is re-evaluated when
the true value of the parameters shifts [112]. In the case of potency assays,
one or more curve parameters may vary from one plate to another, and their
true value for a specific plate cannot be known in advance. Additionally,
an optimal design does not account for laboratory constraints in the lab.
Support points often cannot be decided at liberty. In serial dilution assays,
each evaluated concentration is a dilution of the previous one. Consequently,
in the log scale, points are usually equally spaced across the concentration
range. Khinkis et al. refer to this as log-spread designs and claim that lo-
cally D-optimal are more efficient but realize that they may not always be
practical when making serial dilutions in 96-well plates [112]. A limitation
of their study is that they compare designs using D-optimality as a perfor-
mance criterion and were therefore likely to find that D-optimal design is
better. Francois et al. propose to use optimality criteria that are more rele-
vant to estimate a potency [113]. However, they focus on single signal back



82 CHAPTER 5. EFFICIENT DESIGNS

prediction over a calibration curves and therefore ignore the non-similarity
criteria, which also need to be considered for potency assays.

Another aspect, not yet accounted for in the literature, is that two curves
need to be modeled, with prior information that might be available for the
reference product if it has been used in the past on similar set up. The
relative potency as well as the non-similarity parameters for each new test
sample are unknown until measured. In this work, we therefore advocate
that numerical optimality — such as D, A, G, I, or E optimality — should
not be the objective. Instead, we suggest finding an efficient and practical
design with support points that will allow reasonably accurate and reasonably
precise estimation of the RP and non-similarity metrics. In Section 5.2,
we describe and perform a simulation to propose a methodology to select
concentration points, with only estimates of the reference curve parameters,
while accounting for lab constrains. In Section 5.3, we assess the robustness of
our approach by changing the reference curve parameters, with and without
a correct prior estimate of the parameter. Finally, in Section 5.4, we discuss
the present work and propose future research.

5.2 Efficient Designs

5.2.1 What Operators Can Control

When designing the serial dilution, scientists control three aspects: the range
of concentrations (1); the number of equally spaced log(concentration)-points
across this range, noted n, (2); and the number of replicates at each con-
centration for each curve, noted n,., (3). Although not mandatory, in most
assays, number of replicates is the same at every concentration. It is also re-
lated to lowering the overall uncertainty around parameter estimates rather
than to the optimal concentration-points. Therefore, while an important as-
pect in practice, n,¢p is not considered in this paper to find an efficient design.
Other aspects, like separating experiments into blocks (runs, plates, ... ), can
be considered. Obviously, those aspects are laboratory — and often assay —
specific, and therefore are not considered in this manuscript but may be the
subject of later research.

The ideal range of concentrations depends on the curve parameters, and
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more specifically depends on the Csy. We note ¢ the range of log(concentrations)
that is necessary to observe responses ranging from 0.5% to 99.5% of the dis-
tance between the lower and upper asymptote of the reference curve, and
we suggest increasing the width of ¢ by a factor x to find the most efficient
design. The log(concentration) range becomes

ZIC_ZEKX2A<

(5.4)

For example, if g = [yMing = 0,yMaxp = 1,cg = log (0.0625), 2],
then

¢ =1log ([g (0, 0.005) ; g (Or,0.995)]) = [—5.419; —0.126]

With ¢ (0g,y) the inverse function of the 4PL. Then, if x = 2, the
log(concentrations) range becomes

2 % 5.293
7= 2773+ % — [-8.066; 2.520]

The challenge is to find the ideal factor x. Later in this section, we
propose to use computer simulation to do so, using the information available
for a specific assay. Once Z is determined, the log(dilution factor) depends
on the number of concentration-points and the log(dilution-factor), or the
spacing of log(concentration)-points, is then determined by -2Z

Ne—1"

5.2.2 Non-Similarity and Relative Potency

For a design to be efficient, it must accurately and precisely estimate the value
of interest that are used during assay routine use: first, the non-similarity
metrics using model (2) and second, for curves that are declared similar, the
relative potency using model (3). Many tests for similarity have been pro-
posed in the literature. In this work, we focus on three tests: the ratio of curve
parameters [31], the residual sum of squared error due to non-parallelism [79],
and the maximum departure test [33, 90].



84 CHAPTER 5. EFFICIENT DESIGNS

Yang et al. (2012) proposed the following ratios of parameters:

_ yMaxr
= yMaxg

_ yMaxy — yMing
2= yMaxr — yMing
. (yMaxy — yMing)St
3 =

(yMaxg — yMing)Sr

r3 represents the ratio of the slopes at the inflection point. We use log
transformed ratios to ensure symmetry, as suggested by Berger and Hsu
(1996) [30], and note A, = log (7).

Gottschalk and Dunn (2005) proposed RSSE,onpar = RSSEconstrained —
RS S Ey,y; as a metric for non-similarity, where RSSE,; and RSS Econstrained
are the residual sum of squared calculated after fitting respectively models
5.2 and 5.3 on the pair of curves [79]. RSSEponpar is sometimes referred to
as x2-metric [118].

Novick et al. (2012) suggested to use the metric

0195 (f <$,éR) — f (ZL‘ X RP, éT))‘

¢ = min max

RP zp,xu

where x; and xy are the ranges of concentrations across which parallelism
is assessed, f (HR, :c) is the original least square (OLS) estimate of the 4PL

curve fit of the reference product, f (éT, x) is the OLS estimate of 4PL curve
fit of the test product, and C'lg5(h) is a notation for the 95% confidence inter-
val of h [38]. The original methodology used Bayesian methods to estimate
¢. Novick and Yang (2019) later proposed a frequentist approximation [90].
We used the latter in this Chapter.

5.2.3 Simulation Setup

We want to find a concentration range width multiplication factor k (see
Equation 5.4), combined with a concentration-points spacing, that would
consistently lead to good estimations. The quality of these estimation also
depends on the measurement variability, which cannot be decreased by de-
sign, except by increasing the number of replicates per concentration. Those
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two aspects are not considered in the simulations. Additionally, we assume
constant variability across the concentration range, and no variation in the
curve parameters associated with blocking (or other structural element of the
assay design) or dilution. In practice, if these assumptions are not verified,
some changes to the design may be necessary.

We generated 1,500 designs. We set yMing = 0, and the mean value of
cr at 1og(0.0625). We draw a different value for cg ~ N (log (0.0625) , 02) for
each set of curves within one design. The 1,500 designs were generated using
a Latin-hypercube space-filling design for computer experiments [1411]. The
simulation parameters and associated ranges of possible values are presented
in Table 5.1

Table 5.1: Ranges for each simulation parameter

Simulation Parameter Range of possible values

Steepness of reference curve (Sg) [1.5
Upper asymptote of reference curve (yMazxpg) [1-

4]

3]
Log(Relative Potency) (p) [log(0.25)-log(4)]
Log(ratio) of upper asymptotes (A1) [log(0.8)-log(1.25)]
Log(ratio) of asymptote ranges (A2) [log(0.8)-log(1.25)]
Log(ratio) of slopes (\3) [log(1/1.5)-log(1.5)]
Range width multiplication factor (k) [1-3]
Number of concentrations points (n,) [6-12]
Between-plates variability of the log(Cso,,) (02) log(1.1)*1og(2)?]

For each design, we generated 1,000 plates each containing three curves:
a reference, and two samples. We calculate ( and Z from s and the curve
parameters of the reference, using 0.0625 for the Csy, because the true value
changes for each plate and is always unknown.

The true values for the first sample curve (7'1) parameters 07 are deter-
mined by:
o yMinpy = riyMaxg — ro (yMaxg — yMing)

o yMaxp = riyMazg

Csop
RP

L] C5OT1 =
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° STl = SR%

The second sample (72) curve is exactly parallel to the reference curve.
The true values for 07, are therefore exactly equal to 6p except for Cyg,, =
Cso
RP

The non-similarity metrics discussed in this paper are estimated by com-
paring the reference and 7T'1. Estimating the RP on non-similar curves is
irrelevant and determining acceptance limits for each of these metrics is out
of scope for this manuscript. We therefore estimated the RP only from fitting
Equation 5.3 on the reference curve and 772.

Optimal designs for nonlinear models only depend on the prior estimation
of each parameters, and not on the residual variance [115]. To observe that
effect, we duplicated every design and generated curves with o = 2% or 10%
of (yMaxgr — yMing). Because we fixed yMing = 0, this is equivalent to
o =2% or 10% of yMazxp.

5.2.4 Simulation Findings

For the relative potency and curve parameter ratios, we considered the 95
percentile of the absolute difference between the observed statistics and the
design-specific true values. For RSSE,,mper and &, no true value exists,
so we analyzed the Monte Carlo standard deviation of the estimated test
statistics. We only presented here the results for o = 2% of yMaxp. Results
for 0 = 10% of yMax g present a similar pattern (with obviously a different
magnitude) and are presented in Appendix D.1.

Figure 5.1 shows the 95 percentile of the absolute difference between the
observed and true log(relative potency) as a function of the true log(relative
potency) p, the range width multiplication factor x, and the number of con-
centration points n.. The error in relative potency estimation seems to in-
crease when n. decreases. Specifically, high errors appear when n, < 7 if
the range is large (k > 2) and the relative potency is high or low (|p| > .5).
Other simulation parameters did not seem to affect the relative potency es-
timation error. The 95 percentile of the absolute difference between the
observed and true log(relative potency) as a function of each of the design
specific parameters is presented in Appendix .
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Figure 5.1: Scatterplot matriz of the 95" percentile of the absolute difference be-
tween the observed and true log(RP) as a function of the log(RP), range width
multiplication factor and number of concentrations when o = 0.02 X yMazpg.
Light green points represent simulation designs with small estimation error and
red points represent simulation designs with high estimation error.

Figures 5.2 and 5.3 present the 95 percentile of the absolute difference
between the observed and true log(ratios) of upper asymptotes A; and ranges
between asymptotes As as a function of each of the log(relative potency), the
range width multiplication factor s, and the steepness of the reference curve.
Figure 5.4 present the log(ratio) of slopes A3 as a function of x and the
number of concentrations n.. The error in estimation error of A\;, and Ay
is high when the concentration range is narrow (k < 2), the curve is steep
(Sr > 3), and the relative potency is high. Low relative potencies also affect
Ao, as both asymptotes need to be observed for an accurate and precise
observation of the asymptote range. Inversely, the estimation error of A3
becomes high when the range is too large, especially if n. < 10. Other
simulation parameters did not seem to affect the curve parameter ratios
estimation error. The 95" percentiles of the absolute difference between
the observed and true log(ratios) as a function of each of the design specific
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parameters are presented in Appendix .

No clear design pattern could be identified for the RSSE, opper and max-
imum departure £, so no result is presented in the main manuscript for
these two non-similarity metrics. The Monte Carlo standard deviations of
RSSE,onpar and & as a function of each of the design specific parameters are
presented in Appendix .

Overall, this simulation results suggest that a concentration range width
multiplication factor of k = 2 combined with a number of concentration
points n. > 10 should ensure an efficient estimation of the RP and non-
similarity metrics, relative to the measurement variability.
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Figure 5.2: Scatterplot matriz of the 95" percentile of the absolute difference be-
tween the observed and true log(ratio) of upper asymptotes as a function of the
log(RP), range width multiplication factor and steepness of reference curve when
o = 0.02 x yMaxpg. Light green points represent simulation designs with small
estimation error and red points represent simulation designs with high estimation
error.
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Figure 5.3: Scatterplot matriz of the 95" percentile of the absolute difference be-
tween the observed and true log(ratio) of asymptote ranges as a function of the
log(RP), range width multiplication factor and steepness of reference curve when
o = 0.02 x yMaxpg. Light green points represent simulation designs with small
estimation error and red points represent simulation designs with high estimation
error.
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Figure 5.4: Scatterplot matriz of the 95" percentile of the absolute difference be-
tween the observed and true log(ratio) of slopes as a function of the range width
multiplication factor and number of concentrations when o = 0.02xyMaxpg. Light
green points represent simulation designs with small estimation error and red points
represent simulation designs with high estimation error.
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5.3 Robustness assessment

From the simulations presented in Section 5.2, we observed that the true val-
ues of yMin, yMax, and ¢ do not affect the quality of parameter estimation
if the concentration range is calculated using Equation 5.4. However, like D-
optimal designs, Equation 5.4 relies on the knowledge of . We note 0% the
assumed values for 0. All analysis from Section 5.2 assume that 0% = 0Op.
We ran a second simulation study to assess the robustness of using K = 2
and n. = 10 whenf}, # 0. As steeper curves and high relative potencies
lead to worse results, we always consider S% = 4 and RP = 400% in order to
test for the “worst-case” scenario. We varied yMaxg, yMing, and cg while
fixing 6% = [0, 1,10g(0.0625), 4]. A total of 125 scenarios were analyzed, with
every combination of the following simulation parameters:

e« yMazg =1x[0.5,0.8,1,1.25,2]
o cp =1og(0.0625) x [0.5,0.8,1,1.25, 2]

« Sp=4x][05,08,1,1.25,2]

For all scenarios, we used n,., and 0 = 0.02xyMazr. From each scenario,
we generated 1,000 plates each containing two curves: a reference, and one
sample. Because the ratios of non-C5y curve parameters did not seem to
affect the quality of estimations, we always consider r; = ro = r3 = 1 for
simplicity. The true values for 61 are therefore exactly equal to 0r except

Cso
C50T = RPR'

Because 0% is fixed, the range of log(concentrations) to observe 99% of
the reference response range is the same for every scenario and is calculated

by

¢ = log ([g (0%,0.005) ; g (0%,0.995)]) = [—4.096; —1.449]
Then, as k = 2, the log(concentration) range becomes

2 % 2.647
Z = 2773+ % = [~5.419; —0.126]
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For the robustness study, we focused only on the quality of estimation of
the log(relative potency) and log(ratio) of non-Csy parameters.

Figure 5.5 presents the 95" percentile of the absolute difference between
the observed and true value of the log(RP) and log (ratio) of the upper
asymptote, the range between asymptotes, and the slopes as a function of
the under (or over) prior assumption of the reference curve parameters. From
our simulations, it appears that highly over or under-assuming the Cjq of the
reference (respectively cg = 0.5 X ¢% or cg = 2 X ¢}) has negative effects
on the estimation of all parameters of interest. Additionally, over-assuming
the reference curve steepness (S < S%) increases the error in log(relative
potency) estimation; while under-assuming the steepness (Sg > S%) increases
the error in estimation of the log(ratio) of slopes and increases the negative
effect of poor C5q assumption. Under-assumption of the reference curve upper
asymptote (yMaxgr > yMax$,) seems to increase the negative effect of the
reference steepness under-assumption on the log(ratio) of slopes. Overall a
range width multiplication factor of 2 with 10 concentrations is robust to
reference curve parameters assumed within 80 to 125% of the true values.
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Figure 5.5: 95" percentile of the absolute difference between the observed and
true value of the log(RP) and log(ratio) of the upper asymptote, the range between
asymptotes, and the slopes as a function of the under (or over) prior assumption
of the reference curve parameters.

5.4 Discussion

Optimal designs for nonlinear model fail to account for the laboratory con-
straints and actual objectives. Tusto et al (2016) proposed D-Optimal strate-
gies specifically for the relative potency estimation, but they focused on the
two-parameter logistic curves, so they did not have to worry about demon-
strating asymptote similarity nor observing both asymptotes for each curve
[146]. In this paper, we propose a simple way to find efficient concentration-
points for relative potency estimation and similarity testing. A range that
is wide enough to observe 99% of the response range of the reference prepa-
ration is too narrow to estimate low/high relative potencies. We therefore
suggested to double the width of this range, and log-spread 10 concentrations.
This multiplication factor may need to be adapted if the between-plate coef-
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ficient variation in Cq is greater than 100% (0. > log(2)), or if the expected
relative potency range falls outside 25-400%.

This methodology is robust to a certain level of wrong parameter estima-
tions, but still requires a solid prior knowledge of the reference curve param-
eter values. Future research on this topic will focus on applying Bayesian
theory to this method, in order to account for the uncertainty around the
prior estimates.

Another limitation of our proposed approach is that, when the curve is
too steep, the found concentrations range may become too narrow for both
asymptotes to be seen in case of high /low relative potencies. In case of highly
steep curve (e.g. Sg > 4), a possible solution is to use only 8 concentrations
within the calculated range, then add one level of dilution on each side.



Chapter 6

Comparison of Parallelism
Tests for Potency Assays

This Chapter is based on the article titled “Extensive Comparison of Paral-
lelism Tests for Potency Assays”, soon to be submitted for publication in a
scientific journal. As of writing, we are waiting for cross-referenced papers
to be published before submitting.

6.1 Introduction

In potency assays, the relative potency (RP) is defined as the horizontal
difference between the log(concentration)-response functions of a test and a
reference products, usually depicted by logistic curves function [17]. The RP
computed value is relevant when the two curves are parallel (also referred
to as similar). Indeed, lack of parallelism between the two curves indicates
non-similarity in the biological activity, or binding affinity, within the assays

for the test and the reference products [34]. Furthermore, by definition,
parallelism indicates that the function of the test product is a horizontal
shift from the reference standard’s function [34]. Therefore, if the functions

are not parallel, the horizontal difference is not equal to a single constant
value over the observed concentration range (Figure 1.3).

The most used model for concentration-response functions is the four-
parameter logistic (4PL) [117], and a common parametrization of this model

95
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was proposed by Rodbard and Hutt [50], described in Section 1.2.1:

yMin; — yMax;

1+ (&)

We note 6; = [yMin;, yMax;, Cso,, Si".

Yij = yMaz; + + €5, ei; ~ N(0,0?) (6.1)

Functions are parallel if they share the same lower asymptotes, upper
asymptotes and effect rates. In case parallelism is declared, the RP can be
calculated by the ratio of Csgs after fitting the model:

yMin — yMax
B S +€ij7
1+ (ngl)

Equation 6.2 is an adaptation of Equation 6.1 with common yMin, yMax
and S for both curves.

€5 ™~ N(O, 0'2) (62)

Historically, to test for parallelism, the residuals obtained from fitting
Equations 6.2 and 6.1 were commonly compared by an F' — Ratio [118,119].
This F' — Ratio compares the lack of fit of the constrained model due to
non-parallelism to its lack of fit due to other reasons. The test statistic is
computed as follows:

(RSSEconstrained - RSSEfull) (dfconstrained — dffull)
(RSSEgun) (df fun)

F
~ (dfconstrained_dffull7dffull)

(6.3)

where RSSE¢ and RSS Eonstrainea are respectively the residual sums
of squares (RSSE) of the models obtained by fitting Equations 6.1 and 6.2,
respectively, and dff,y and dfconstrained are their associated degrees of free-
dom.

The F' — Ratio test is known to increase the chances of passing parallelism
for curves with high variability. In order to correct that weakness, Gottschalk
and Dunn (2005) proposed an alternative approach based on the difference
between the weighted RSSEs (WRSSE) of the models from Equations 6.2 and

6.1 [79] [79]:
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wRSSEconstrained - wRSSEfu” ~ Xzfconstrained_dffull <64)

A drawback of this y?—test is that it requires weighted regressions, which
is not recommended for serial dilution models [80,81]. Assuming that a
weighing is actually needed, the correct weights are unknown and tend to
be poorly estimated. Additionally, like the F' — Ratio test, this test declares
parallelism in case of lack of statistical significance. This is fundamentally
flawed, and hypotheses are now considered such that statistical significance
is required to demonstrate parallelism [$2-84].

Multiple equivalence tests for parallelism have been proposed in the liter-
ature. Each test is claimed to be the correct way to address parallelism, and
their advantages are presented using limited examples. This manuscript aims
to extensively compare the performances of multiple proposed tests using a
large simulation study. In Section 6.2, we introduce the tests that are con-
sidered in the present study, as well as the simulation setup. In Section 6.3,
the simulation results are presented. In Section 6.4, we discuss the different
results and comment on the evaluated tests.

6.2 Material and Method

This Section presents the different tests that are evaluated in this study as
well as the simulation plan.

6.2.1 Proposed Parallelism Tests
6.2.1.1 Empirical RSSE,partest

In their original form, the difference tests (F' — Ratio and x?) have been
discussed in the literature as not appropriate to assess parallelism [32,83,150].
As a consequence, these original versions were not considered in this study.
An alternative to calculating a p — value based on a x? distribution is to
compare the reference to itself a large number of times. A percentile of
the obtained non-weighted RSSE, onpers is then declared as the acceptance
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limit [118,151]. According to this alternative, two curves are declared to be
parallel if

RSSE,onpar < RSSEq i (6.5)
where RSSFE,,; is the calculated percentile.

6.2.1.2 Hyper-Rectangle test with confidence intervals (HR,;)

The second test considered in this paper was proposed by Yang et al. (2012).
It suggests to separately fit the 4PL model to both reference and test curves
and then compare the confidence intervals of the estimated ratio of the upper
asymptotes (r1), the ranges between the asymptotes (r3), and the slopes at
the inflection point (r3) to pre-defined equivalence margins [17].

_ yMaxr
= yMaxg

_ yMaxy — yMing
2= yMaxr — yMing
. (yMaxr — yMing)St
3 =

(yMaxg — yMing)Sg

Parallelism is declared if

D, < C]gg(’/’k) < Dy Vke€1,2,3 (66)

where Dy, and Dy are respectively the lower and upper acceptance
limits for C'lgg(ry) and Clgo(ry) is the 90% confidence interval for 7. While
presenting the ratios on a 3-dimension scale, the acceptance region within
limits Dy and Dy, represent a hyper-rectangle. In this study, we work with
the log-ratios as suggested by Berger and Hsu (1996) [30].

6.2.1.3 Hyper-Rectangle test without confidence intervals (H R,,..;)

By definition, confidence intervals are used when a decision for a population
is made using a sample drawn from that population. Parallelism tests are
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often used to accept or reject a relative potency sample. In that case, confi-
dence interval is irrelevant because the decision is made on the sample, using
that same sample. The Hyper-Rectangle test without confidence intervals
becomes

dre < 7 < dypVk € 1,2,3 (67)

where dy; and dyy, are respectively the lower and upper acceptance limits
for 7.

6.2.1.4 Ellipsoid test

In Chapter 2, we proposed to replace the hyper-rectangle by an ellipsoid.
Assuming that the estimate of the log(ratios) under true parallelism follow
a three-dimension multivariate normal distribution centered in [0, 0, 0]* with
variance-covariance matrix X, a future pair of curves is declared parallel if it
falls within the derived ellipsoid:

AN < Gos (6.8)

where A = log([f1, o, 75]"); and gu.3 is the 100(1 — o)™ quantile of a y?
distribution with 3 degrees of freedom.

6.2.1.5 Maximum Departure Test (M DT)

Novick et al. (2012) claim that analyzing ratios of parameters is not enough
to declare similarity between the entire nonlinear profiles [38,89]. Instead,
they suggest looking at the maximum departure between the confidence in-
tervals of the reference curve fit and the test curve fit after the optimal
horizontal shift. They first used a Bayesian method to calculate the con-
fidence intervals [33] and later proposed a frequentist approximation [90].
Parallelism is declared if

Clos (f (w,0r) — f (v x RP, éT))\ < (6.9)

min max
RP zL,xU
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where x, anAd xy are the ranges of concentrations across which parallelism
is assessed, f (HR, x) is the original least square (OLS) estimate of the 4PL

curve fit of the reference product, f (éT,x) is the OLS estimate of 4PL
curve fit of the test product, and ¢ is the maximum accepted departure
from parallelism to declare similarity. In this study, we used the frequentist
approximation.

6.2.2 Simulation Setup

Computer simulation studies were conducted to explore the characteristics
of each parallelism test presented in Section 6.2.1. For various scenario de-
scribed hereafter:

fr = [0,1,0.0625, 2]"

100, 000 pairs of curves were generated with 6y = 0y

100, 000 pairs of curves were generated with 67 # 0g

y was generated for both the reference (yg) and test (yr) at 10 concen-
tration, with three replicates per concentration.

4 different designs were considered at 2 different measurement variabilities.
In addition to the ‘normal’ case, 2 stressed situations were proposed. A total
of 24 scenarios is evaluated:

4 designs (see Figure 6.1)

— Design 1, full view of the curve: x = [12.5,3.85,1.18,...,0.0003]

— Design 2, full view of the curve: x = [0.25,0.125,0.0625, . .., 0.0003]
— Design 3, full view of the curve: x = [100, 12.5,1.5625, .. .,0.0000007]
— Design 4, full view of the curve: x = [0.25,0.1786,0.1276, ...,0.0121]

e 2 measurement variabilities

— o0 =10.02;0.05
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e Stressed scenarios:

— Unstressed, everything stays normal after margins were calcu-
lated.

— Presence of outliers: 1 concentration point (randomly selected for
each simulation) was assumed to have been declared as outliers
and therefore removed in the test curve.

— Variability increase: we assumed that, after validation and deriva-
tion of acceptance margins, the measurement variability had in-
creased 50%. Therefore, o becomes 0.03 or 0.075.

Design 1 Design 2
S
Pt
o |
o | S
S
Qo o <24
2 S 2 °
o o
I & <
g 3 g S
o o
o 7 (=]
e 4 .. o L. e
° T T T T T ° T T T T T T T T T
1le-03 1e-02 1le-01 1e+00 le+01 5e-04  2e-03 le-02 5e-02  2e-01
Concentration Concentration
Design 3 Design 4
o
Pt
o |
o | S
S
[ORN [
2 oS 2 °
o o
g g
< <
g 3 g 3
~ ~
S 34
o
= P °
T T T T T (=] T T T T
1e-06  1e-04  1e-02  1e+00  1le+02 0.02 0.05 0.10 0.20
Concentration Concentration

Figure 6.1: Representation of a reference curve in each of the assessed designs

USP<1032> suggests observing reference to reference comparisons to es-
tablish acceptance limits. Acceptance limits were calculated for each test,
separately by design [17]. The distribution of each statistical test statistic
under true parallelism was obtained from the 100,000 pairs of curves gener-
ated with 67 = 0y in the unstressed scenario. We calculated margins to aim
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a lab risk, noted «, of 10%, 5%, and 1%. This is possible because, in this
simulations study, we know the true 0. If g is unknown, MCMC simu-
lations can be performed to observe reference to reference comparisons (see
Chapter 2) [152,153].

To generate curves with 6 # 6g, we randomly chose ri,ry, 7y and RP
from the following distributions:

o 11 = exp (U (log (0.8),log (1.25)))
o 19 =exp (U (log (0.8),log (1.25)))
5)

o 73 =exp (U (log(1/1.5),log (1.5)))

)
e RP = exp (U (log (0.5),log (2.0)))

With U(a, b) a Uniform distribution between a and b. These distributions
were chosen to ensure that the full range of accepted As would be contained
in the simulations.

Let 07 = [yMing, yMazy, Cs,., St]*, with

yMiny = rmyMazxg — ro (yMazg — yMing)

yMaxr = riyMazg

Cso
o Csop = 25

_ T3
St = SRi

Quantifying the consumer risk as a percentage of non-similar curves ac-
cepted was impossible because an infinity of non-similar curves scenarios
exists. Instead we considered the consumer risk in terms of the relative error
in relative potency, noted 3. For each pair of curves that passes a specific
similarity test, we fit Equation 6.2 and estimate the RP. Then calculate the
absolute relative % error:

Observed RP — True RP
True RP

b =100 x (6.10)
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We calculated v for each of the 100,000 curves of each scenario and defined
the consumer risk 3 as the 95" percentile of 1 for each considered statistical
test and each a. We then compared the lab and consumer risks of each test
(see Section 6.3).

6.3 Simulation Results

6.3.1 Calculation of Acceptance Limits

Acceptance limits were calculated for each considered statistical test, sepa-
rately by design and measurement variability. For the empirical RSSE,,onpar
and maximum departure tests, the 100(1 — a)'" percentile of the test statis-
tics distribution under true parallelism were used as acceptance limits (see
Table 6.1). Novick and Yang (2019) suggest using a limit of 6 = 50 for a lab
risk of approximatively 1% [00]. With three replicates, 5 x 0.02/y/3 = 0.0577
and 5 x 0.05//3 = 0.1443. According to the results presented in Table 6.1,
our findings seem aligned with this claim if the design is appropriate. For
designs 3 and 4, this claims not verified.

Table 6.1: Acceptance limits for RSSEponpar and M DT by design, o and o

Design o RSSE,onpar MDT

a=010 =005 a=001 =010 =005 «o=0.01
1 0.02 0.0005 0.0008 0.0012 0.0440 0.0484 0.0570
1 0.05 0.0052 0.0065 0.0093 0.1162 0.1278 0.1505
2 0.02 0.0006 0.0008 0.0012 0.0436 0.0474 0.0546
2 0.05 0.0052 0.0065 0.0094 0.1121 0.1211 0.1383
3 0.02 0.0005 0.0007 0.0012 0.1221 0.1847 0.5539
3 0.05 0.0049 0.0062 0.0090 0.8653 0.9640 1.1650
4 0.02 0.0005 0.0008 0.0012 0.1419 0.1618 0.2155
4 0.05 0.0052 0.0065 0.0095 0.3662 0.4309 0.5449

The smallest hyper-rectangles containing 100(1 — «)% of the joint distri-
bution of C'lgy(\) or A under true parallelism were derived using Nelder and
Mead’s optimization method to obtain the acceptance limits for the hyper
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rectangle tests with and without 90% confidence intervals, respectively (see
Table 6.2) [61]. From Table 6.2, we observe that the limits for HR,; are
sometimes so large for A3 — up to 0.6540 for design 1, and up to 12.9295 for
design 3, respectively corresponding to 1.92*! and 412,297+! in the original
scale — that they lose all biological relevance.

For the ellipsoid, the Pearson covariance matrix of the 100,000 As under
true parallelism was calculated for each design and each measurement vari-
ability. Equation 6.11 shows the different 2design,07 with design=1,2, 3, or 4
and ¢ = 0.02 or 0.05.

[0.00007  0.00007  —0.00007]
331 002 0.00007  0.00017  —0.00017
|—0.00007 —0.00017  0.00250 |
[0.00043  0.00047  —0.00049]
531 0.5 0.00047  0.00108  —0.00126
|—0.00049 —0.00126  0.01762 |
[0.00045  0.00049  —0.00042]
32002 0.00049  0.00059 —0.00054
|—0.00042 —0.00054  0.00216 |
[0.00324  0.00349  —0.00312]
532,005 0.00349  0.00417 —0.00395
|—0.00312 —0.00395  0.01504 | (6.11)
0.00008  0.00009 —0.00035 ‘
3002 0.00009  0.00015 —0.00067
|—0.00035 —0.00067  0.04319 |
[ 0.00052  0.00054  —0.00200]
333,005 0.00054  0.00091  —0.00361
|—0.00200 —0.00361  0.22067 |
[0.00043  0.00089  —0.00049]
31002 0.00089  0.00488 —0.00106
|—0.00049 —0.00106  0.00176 |
[0.00340  0.00782  —0.00314]
34005 0.00782  0.05444 —0.00192
|—0.00314 —0.00192  0.01616 |
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Table 6.2: Acceptance limits for the confidence interval of each log(ratio) by design,
o and «. Because the acceptance limits are symmetrical around zero, only the
positive value is presented.

Design o « HR HR,oc

Clgo(A1) Clgo(A2) Clgo(As) M A2 A3
1 0.02 0.10 0.0341 0.0515 0.2015 0.0230 0.0250 0.1024
1 0.02 0.05 0.0346 0.0529 0.2508 0.0227 0.0288 0.1203
1 0.02 0.01 0.0398 0.0741 0.2483 0.0279 0.0355 0.1549
1 0.05 0.10 0.0915 0.1242 0.5181 0.0421 0.0630 0.3084
1 0.05 0.05 0.0836 0.1502 0.5912 0.0474 0.0762 0.3308
1 0.05 0.01 0.1018 0.1640 0.6540 0.0625 0.0944 0.3885
2 0.02 0.10 0.0825 0.0972 0.1936 0.0413 0.0440 0.1093
2 0.02 0.05 0.0905 0.1065 0.2088 0.0454 0.0546 0.1251
2 0.02 0.01 0.1040 0.1239 0.2549 0.0618 0.0728 0.1407
2 0.05 0.10 0.2206 0.2478 0.5084 0.1109 0.1160 0.2697
2 0.05 0.05 0.2444 0.2816 0.5530 0.1268 0.1384 0.3072
2 0.05 0.01 0.3224 0.3373 0.6530 0.1667 0.1867 0.3762
3 0.02 0.10 0.0450 0.0573 0.9878 0.0209 0.0287 0.3444
3 0.02 0.05 0.0529 0.0692 1.9666 0.0246 0.0326 0.5804
3 0.02 0.01 0.0578 0.0830 5.0992 0.0267 0.0334 1.0096
3 0.05 0.10 0.0813 0.1418 12.022 0.0398 0.0658 1.1564
3 0.05 0.05 0.0908 0.1341 12.813 0.0527 0.0660 1.1572
3 0.05 0.01 0.1428 0.1533 12.930 0.0611 0.0910 1.3335
4 0.02 0.10 0.0874 0.3096 0.1740 0.0432 0.1458 0.0893
4 0.02 0.05 0.0955 0.3393 0.1950 0.0484 0.1832 0.1019
4 0.02 0.01 0.1122 0.4476 0.2168 0.0657 0.2227 0.1280
4 0.05 0.10 0.2760 1.0849 0.5104 0.1377 0.3960 0.2516
4 0.05 0.05 0.3264 1.4526 0.5838 0.1406 0.5786 0.3028
4 0.05 0.01 0.5079 2.6854 1.3338 0.2223 0.9633 0.4084
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6.3.2 Evaluation of Consumer and Lab Risks

The consumer risk is the 95 percentile of the error in relative potency
for each statistical test in each scenario. The lab risk is the proportion
of pairs of curves that failed similarity tests when 6 = 6. The plots of
the consumer risk against the lab risk for each test, design and stress are
shown in Figure 6.2 and Figure 6.3 for ¢ = 0.02 and 0.05, respectively.
The ellipsoid test generally has the lowest consumer risk in the unstressed
scenario when o = 0.02, and the ellipsoid test and RSSE, onper Seem to be
equivalent when o = 0.05, except for design 4. All tests increase their lab
and consumer risk when outliers are removed from the analysis or when the
variability increases. RSSE,onpar loses more power to detect non parallelism
in case of outlier removal than the ellipsoid but rejects more curves when the
measurement variability increases over time. The M DT seems to be most
affected by poor design, as its consumer risk for designs 3 and 4 are high
compared to other tests. For designs 1 and 2, the hyper-rectangle tests, with
or without confidence intervals, generally have the highest consumer risks.
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Figure 6.2: Consumer risk vs lab risk by test, design and stress when o = 0.02
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6.4 Discussion

Many tests for parallelism have been proposed in the literature. The advan-
tages of each of these tests are presented using limited examples. This paper
proposes an extensive comparison of popular similarity tests for potency as-
says, across multiple scenarios. The lab risk was calculated as the proportion
of truly parallel curves that fail parallelism test. The consumer risk was cal-
culated as the 95 percentile of the relative error in potency estimation for
curves that pass similarity.

The results show that the hyper-rectangle tests have generally high-
consumer risks. In addition, the limits for the ratios of parameters are so
high (up to exp(£12.9295) or exp(£1.3335), respectively with or without
confidence intervals) that they lose all biological relevance. We therefore
recommend moving away from these tests. The M DT presents acceptable
results for the unstressed scenario as long as the design is suitable for the as-
say purpose. Novick and Yang (2019) suggest using a limit of 6 = 50 for a lab
risk of approximatively 1% and use the residual variability of the reference
curve as an estimate for o [90]. This gives the M DT a solid advantage as it
does not require calculation of the limit separately for each assay. When the
design is poor, however, the M DT doesn’t perform well, so this test should
only be performed when the concentration can be chosen accordingly.

The ellipsoid and RSSE,onper tests generally perform better than the
other tests, with smaller consumer risks and similar lab risks. After calcula-
tion of the acceptance limit by an expert statistician, the RS.SE, sppqer has the
advantage to be directly calculated in most statistical and assay software, as
it was introduced in the early 2000s as a difference test [79]. However, the el-
lipsoid test seems to perform better in most cases and is easily implemented.
In addition, while it assesses similarity from all three ratios simultaneously,
it still encourages to report and monitor ry, 79 and r3 separately, as they
all need to be calculated to perform the test. This can be particularly use-
ful in case of an investigation to understand why an assay repeatedly fails
similarity, for example.

Lastly, a limitation of the present study is that all tests have been eval-
uated with the assumption of homoscedasticity. Intuitively, it seems that
composite measures such as the maximum departure and RSS E},ppqer Wwould
be more affected by heteroscedasticity than parameter ratios estimate. How-
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ever, verifying this claim falls outside the scope of this paper and will be
assessed in future research.



Chapter 7

General Discussion and
Conclusion

7.1 General Discussion

Potency is measured throughout the entire pharmaceutical product develop-
ment process. A classic measure for the potency of a substance is the Cs,
which is the concentration needed to reach half of the response range of said
substance. However, because the use of the C5y as the measure of potency
is not always possible, the potency is often measured relative to a reference
preparation. The relative potency (RP) is the horizontal distance between
the log(concentration)-response curve of the reference and tested prepara-
tions. For the RP to be a unique value, this distance must be constant
through the entire dilution profile. It is therefore necessary to demonstrate
the parallelism between the test and reference preparation concentration-
response functions before calculating the RP [17,53]. This parallelism is
called statistical similarity. Historically, similarity was only assessed from
late clinical phases forward. However, since the publication of the Quality
by Design (QbD) concepts in ICH-Q8 in 2009 [93] for the development of
pharmaceutical products, there has been an increasing agreement that the
same paradigm also applies to LBAs and bioassays. The validation and
routine use of an assay should be of primary importance from the moment
it is developed, and similarity (or parallelism) measures should always be
considered as critical quality attributes.
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Similarity testing was historically performed using p-value based tests, or
difference tests. The main flaw of these approaches was that failure to prove
non-parallelism between a pair of log(concentration)-response curves resulted
in acceptance of similarity. Lack of statistical significance was considered as
sufficient proof of equivalence. This is now disregarded in the literature and
equivalence tests prevail. The principal challenge that arose with this new
paradigm of equivalency was the requirement of a defined “zone of declared
similarity”. USP <1032> [17] proposes repeated comparisons of the refer-
ence product to itself to identify the magnitude of difference when the two
products are exactly similar. These comparisons can control the risk of re-
jecting similarity in case of true parallelism (lab risk) but fail to control the
risk of accepting curves which result in high error in relative potency esti-
mation (consumer risk). In Chapter 2, we proposed a three-step derivation
of the zone of declared similarity to control for both consumer and lab risk,
even when reference-to-reference comparisons are not available. These steps
heavily rely on Markov chain Monte Carlo (MCMC) methods, which makes
them unappealing to practitioners with little to no experience in Bayesian
statistics. However, as Bayesian statistics are becoming increasingly common
among non-clinical biostatisticians [154], our approach should be amenable
to an increasing number of users. We also proposed a multivariate similarity
test, that simultaneously compares all the parallelism-related parameters of
the reference and test curves. This is an improvement to the marginal assess-
ment of each parameter which ignores the correlation between the different
test statistics.

USP<1032> recommends screening for outliers prior to testing for simi-
larity and calculating the RP. However, the effect of an outlier on the quality
of the RP estimate had never been quantified to confirm the utility of outlier
removal. Chapter 3 examined the effect on the performance of parallelism
testing and the magnitude of the error in RP estimation induced by the pres-
ence of a statistical outlier for various outlier types that may be expected in
practice, including whole curve outliers. Based on our observations, it ap-
pears that outliers close to the Cyy have little effect on similarity assessment,
but sometimes lead to high error in RP estimation. Conversely, outliers in
the asymptote do not affect the RP estimation, but may lead to falsely reject
parallel curves or falsely accept non-parallel curves. USP<1010> proposes
several tests for outlier detection. However, these tests focus on outliers in
reported RPs, rather than on outliers that affect the 4PL model. An outlier
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in reportable results should be investigated before any action is taken — as
rejecting a reportable observation solely on the basis of its relative magni-
tude may not be advisable [155] — while an outlier that affects the curve fit
should always be removed. The performance of the USP<1010>-proposed
tests on sigmoid curves was described in Chapter 4. Their performance is
inferior to robust regression outlier detection methods (ROUT/RPI) in terms
of true-positive outlier detection. Better detection leads to better declaration
of similarity (or non-similarity), and smaller error in the reported RP value.
Table 7.1 summarizes the pros and cons of each compared outlier test for
single observations. For whole-curve outliers, which can affect both aspects,
no test was proposed in the literature. We proposed a Maximum Departure
Test, which adequately detected whole-curve outliers.

Table 7.1: Summary of pros and cons of each outlier test for single observations

Test Pros Cons

Dixon Directly available in many Overall lowest detection
software, recommended by rate, designed for one
USP, very low false positive outlier only.
rate.

ESD Directly available in many Very low detection rate,
software, recommended by mostly for multiple outliers.
USP, very low false positive
rate.

Hampel Easily implemented, rec- Very low detection rate,
ommended by USP, non- fixed decision limit without
parametric. rationale for critical value

adjustment.

ROUT Overall best performing Not implemented in CFR
test. 21 compliant commercial

software [156].  Complex
methodology to implement
and validate.

RPI Performs almost as well as Not currently implemented

ROUT in many cases, while
being easier to implement.

in any software.

Another challenging aspect of potency assays is the choice of ideal con-
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centrations for the concentration-response curve analysis. Optimal designs
for nonlinear models fail to account for the laboratory constraints and actual
objectives beyond the quality of the fit. In Chapter 5, we proposed a simple
way to identify efficient concentration-points for relative potency estimation
and similarity testing. While we do not identify the D-Optimal design, our
proposed methodology permits an efficient estimation of the relative potency
and non-similarity parameters.

Many tests for parallelism have been proposed in the literature. The ad-
vantages of each of these tests are often presented using limited examples.
In Chapter 6, we compared the parallelism tests discussed in Section 1.2.5,
as well as the novel test proposed in Chapter 2. We assessed their perfor-
mances in an ideal scenario, using the design proposed in Chapter 5; as well
as stressed situations, such as post-removal of outliers and the use of sub-
optimal concentration support points. The ellipsoid and RSSE,onpar tests
generally perform better than the other tests, with smaller consumer risk
and similar lab risk. After calculation of the acceptance limit by an expert
statistician, the RSSE, onper has the significant advantage direct calculation
possible with most statistical and assay software. However, the ellipsoid test
proposed in Chapter 2 seems to perform better in most cases and is easily
implemented after estimation of the zone of declared similarity. Note that
these tests have been compared as sample suitability tests. If rather than
measuring the RP, the assay has the specific objective to assess similarity be-
tween two products, tests including confidence intervals should be used. The
ellipsoid test can be extended to this purpose but this extension is outside
the scope of the present work. Table 7.1 summarizes the pros and cons of
each compared parallelism test.
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Table 7.2: Summary of pros and cons of each outlier test for single observations

Test

Pros

Cons

HR,;

H Rnoci

MDT

Ellipsoid

RSSEnonpar

Implemented in some vali-
dated software, easy to in-
terpret, recommended by
USP.

Implemented in some val-
idated software, easiest to
apply and interpret.

No need to pre-define accep-
tance limits.

Overall best performing test
in observed scenarios.

Implemented as a difference
test in many validated soft-
ware, performs almost as
well as the Ellipsoid test in
i.i.d. cases.

Very high consumer risk, bi-
ologically irrelevant accep-
tance limits in order to con-
trol lab risk.

Very high consumer risk.

Relies heavily on a very ef-
ficient design, not trivial to
implement.

Most complex test for which
to derive acceptance crite-
ria.

Probably highly dependent
on homogeneity of variance
(to be investigated).
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7.2 Future work

A limitation of all chapters is that all computations are performed with the
assumption of homoscedasticity. A common way to address heteroscedas-
ticity to fit the 4PL model is the use of weighted least square. This is
typically a poor choice in bioassay models, as the non-equal variance can
usually be linked to a location (or other) effect; thus, nonlinear mixed mod-
els are preferred [30,81]. Nevertheless, every aspect of this dissertation can be
extended to the heteroscedastic case. The zone of declared similarity deriva-
tion proposed in Chapter 2 should work similarly with or without additional
variance components. Further investigation could evaluate the effect on the
shape of the ellipsoid, as well as the log-normality assumption requested for
proper performance of our proposed similarity test. Additionally, the best
outlier detection methods and best similarity tests may not be the same in
homoscedastic and heteroscedastic systems. Currently, our claim on best
methodology only apply to the former, and future work will evaluate the
latter.

The ellipsoid test proposed in Chapter 2 requires the use of Bayesian
statistics to derive the ellipsoid for every new assay. This expertise is nec-
essary to derive the variance-covariance matrix of the posterior distribution
of the log(ratios) of curve parameters in case of true parallelism (X). The
need for the expertise makes the methodology less widely feasible than other
tests. However, the Delta method, and other frequentist approximations, do
not provide the correct matrix. Future research may focus on an acceptable
approximation for ¥ that relies less on MCMC simulations. Alternatively, a
computer-based solution to automate the estimation of 3 as proposed could
be developed. Another future enhancement could be the evaluation of the
effect of prior update on the acceptance limits. As more data become avail-
able, the prior knowledge on the reference curve parameters and their differ-
ent sources of variability increases, and the zone of declared similarity should
be periodically reevaluated to reflect that knowledge.

Future research could also change the order of risk control by inverting
the last two steps of the zone of declared similarity derivation proposed in
Chapter 2. Currently, the first step computes the posterior distribution of
the test statistics, the second step derives acceptance limits while accounting
for lab risk, and the third step controls for consumer risk. It would be
interesting to present an alternative order, and build acceptance limits based
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on the consumer risk, then control for lab risk or perform a power study to
achieve a desired lab risk.

Robust regression methods have been shown to be useful for outlier detec-
tion but are currently only used for this exact purpose. Assessing similarity
and estimating the RP directly using robust regression to bypass outlier de-
tection and removal could also be the topic of future studies. Furthermore,
our proposed method for whole-curve outliers is adequate, but does not per-
form as well as outlier detection methods for single observations. As each
curve represents one serial dilution, outlier detection methods for functional
data could be considered in future work [157, 158].

The methodology proposed in Chapter 5 is robust to some level of parame-
ter estimations inaccuracy, but, like D-Optimal design methods for nonlinear
models, still requires a solid prior knowledge of the reference curve parameter
true values. Future research on this topic may apply Bayesian theory to this
method, in order to account for the uncertainty associated with the prior
estimates.

Finally, the similarity tests comparison presented in Chapter 6 is per-
formed with a fixed sample size. Future considerations will assess the effect
of adding replicates at each concentrations.

7.3 Conclusion

The introduction of the Hyper-Rectangle Test (HRT, see Section 1.2.5.2), and
equivalence tests for parallelism in general, have significant advantages com-
pared to p-value based tests to assess similarity between two log(response)
curve. However, these methods are not without inherent challenges. Our
proposed ellipsoid test, combined with our proposed zone of declared simi-
larity derivation method, address some of the remaining challenges and move
towards fit for purpose parallelism testing. Our recommendation, until the
future work suggested in Section 7.2 is completed, is the use of the ellipsoid
test when an experienced statistician is available to derive and implement the
test acceptance limits. When it is not possible, the empirical RSSE,onpar
and Maximum Departure tests can provide adequate performance in some
specific conditions. We recommend using the ROUT method for outlier anal-
ysis. We also recommend estimating the log(concentration)-response curves
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using a concentration range twice as wide as needed to observe 99% of the
reference response range, with at least 10 concentration support points.
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Appendix A

Bayesian 4PL Example

This Appendix presents an example of a 4PL curve fit, using historical data
as prior information for a pre-validation study of a serial dilution assay. All
data presented in this Appendix are simulated.

Consider the true values:

yMin =0
yMax =1
¢ = 0.0625
S =2
op = 0.0016
o = 0.1644
Ooptae = 0.01

Where ¢ = log(Cs), o2 and ast are respectively the plate to plate

variabilities affecting ¢ and yMaz, and 05 is the measurement variability.

A.1 Development Study

A development set of four plates is available as historical data. Each plate
contains one serial dilution curve, obtained from three replicates at ten con-
centration points: 1,0.5,0.25,...,0.002. The development data are presented
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in Figure A.1, and the R code used to generate the data is available in Section
A5,

Plate 1 Plate 2
.
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Figure A.1: Development set of plates

A 4PL model (Equation 1.2) is fit on the data via maximum likelihood,
with a random effect of the plate affecting both the upper asymptote and c.

Table A.1 presents the estimates and approximated standard errors of
the curve parameters. Table A.2 presents the estimates and approximated
degrees of freedoms of the variance components. All estimates, the curve pa-
rameters standard errors, and the degrees of freedom of the residual variabil-
ity were calculated using the R function nlmer from the package 1med [160].
The degrees of freedom of the between-plates variabilities were approximated
by the number of available plates —1 [159].
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Table A.1: Maximum likelihood estimates and standard error of curve parameters

Parameter Estimate Std. Error

yMin 0.001 0.006
yMazx 0.942 0.047
c -2.381 0.031
S 1.936 0.084

Table A.2: Maximum likelihood estimates and degrees of freedom of variance com-
ponents

Variance Component Estimate Degrees of Freedom

0%\ as 0.0083 3
o 0.0013 3
o2 0.0016 113

A.2 Pre-validation study

A pre-validation set of nine plates is available. Each plate contains one serial
dilution curve, obtained from three replicates at ten concentration points.
The concentration support points were chosen using the methodology pre-
sented in Chapter 5, and the curve parameter estimates calculated in Section
A.1. The maximum concentration and dilution factor were respectively cho-
sen to be 6.7 and 3. The pre-validation data are presented in Figure A.2,
and the R code used to generate the data is available in Section A.5.

As the goal is to be able to make predictions for the validation study,
Bayesian methodologies are used. The model was fit with both informative
and non-informative prior distributions for the curve parameters and variance
components to assess the effect of leveraging prior knowledge.

For the curve parameters, Normal prior distributions were used. For vari-
ance components, inverse-Gamma distributions were used. Gelman (2006)
advises against using the non-informative inverse-Gamma distributions [161].
However, they are a convenient choice in order to use the same code at dif-
ferent phases of a study, and simply update the prior information. If the
inverse-Gamma choice is made, like in this case, visually evaluating the ob-
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Figure A.2: Pre-validation set of plates

tained posterior distribution is particularly important.

For the non-informative Normal prior distributions, all means were set at
0 and all standard deviations were set at 1le5. For the informative Normal
prior distributions, the means and standard deviations were set as the curve
parameter estimates and approximated standard errors from the development
study, respectively.

For the non-informative inverse-Gamma distributions, shapes and scales
were set all at 1e-5. For the informative inverse-Gamma distributions, shapes
were set as 0.5 X df and scales were set as 0.5 x df x &, for each variance
component, where ¢ and df are respectively the maximum likelihood estimate
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and approximated degrees of freedom from the development study.

In both cases, the joint posterior distribution of the model parameters
was sampled by Hybrid MCMC using Stan. Four independent chains were
run with each 30,000 draws, including a warm-up of 5,000 draws, thinning
every 5 draws. This resulted in 5,000 posterior draws per chain and 30,000
posterior draws total.

Figures A.3 and A.4 respectively present the trace plots and density
plots of each parameter marginal posterior distribution obtained with non-
informative distributions. The estimated medians for the variance compo-
nents marginal posterior distributions were 0.0088, 0.3991, and 0.0014 re-
spectively for 0'2 Mazs 02, and 02 . While 02 seems over-estimated compared
to the true value, the sample variance of the generated cs was actually 0.3333,
so we consider the inverse-Gamma choice for non-informative prior to be rea-

sonable.

Figures A.5 and A.7 respectively present the trace plots and density plots
of each parameter marginal posterior distribution obtained with informative
distributions. As expected, these posterior distributions were visibly nar-
rower than when non-informative prior distributions were used.

At 1000 different concentration points across the pre-validation study
concentration range, we then drew 30,000 samples from the posterior predic-
tive distribution of the reference curve. Figure A.7 presents the estimated
median and 95% highest posterior density interval (HPDI) of the posterior
predictive distribution calculated using both non-informative and informa-
tive prior. Using informative prior distributions allowed to narrow the HPDI
in the asymptotes, but most importantly in the middle of the curve, which
is the area that is used to calculate the potency.
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Figure A.3: Trace plot of each model parameter when using non-informative prior
distributions.
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148 APPENDIX A. BAYESIAN 4PL EXAMPLE

yMin c
1.054 0.0101 —2.301
1.001 0.005 1 ~2.351
i -2.404
0.951 0.000
] -2.45
0.904 -0.005 -
— 5 -
0.85 1 . . . -0.010 . . . . . .
10000 20000 30000 10000 20000 30000 10000 20000 30000
sigma2yMax sigma2c
4.
01001 chain
0.0754 — 1
0.050 1 — 2
— 3
0.0254
— 4
0.000 4
10000 20000 30000 10000 20000 30000 10000 20000 30000

sigmazy
0.00200 1

0.00175 1
0.00150 1

0.00125 1

=

10000 20000 30000

Figure A.5: Trace plot of each model parameter when using informative prior
distributions.
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Figure A.7: Posterior predictive distribution of the whole serial dilution profile
using non-informative and informative distributions. The plain lines represent the
medians of the distribution, while the ribbons represent the 95% HPDI.
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A.3 Discussion

Using informative prior distribution allows to narrow the uncertainty around
the curve parameter estimates and future predictions. Chapter 2 also shows
the positive effect of informative prior distributions on the derivation of ac-
ceptance criteria for similarity testing.

Note that, in this particular case, the development and pre-validation
data were simulated from the exact same distributions. This may not be
the case in practice, as study effects can occur, as well as changes in the
assay or in the material. In case some changes happened, informative prior
distributions could be used for only a subset of the curve parameters or
variance components. Alternatively, power prior can be used to reduce the
effect of the prior distribution on the posterior [164]. Prior sensitivity analysis
should also be performed to find the most appropriate prior for the data

[162,163].

Another aspect is model selection. While formal methods exist to com-
pare models [1065], data visualization from an experienced statistician may be
enough to decide what curve parameter is affected by a variance component.

A.4 Data Generation

The R code below may be used to generate the development study data:

set.seed(20200516)
## 4PL equation:
hillmod =
function(
X, # concentration
yMin, # lower asymptote
yMax, # upper asymptote
1c50, # log(c50)
S # steepness
)1

yMax +
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(yMin - yMax) /
(1 + exp(8 * (log(x) - 1c50)))

## True parameters

yMin = O # lower asymptote
yMax = 1 # upper asymptote
1c50 = 10g(0.0625) # log(c50)

S = 2 # steepness

sigma = 0.04 # residual SD

sigma_1c50 = log(1.5) # plate to plate log(c50) SD
sigma_ymax = 0.1 # plate to plate yMax SD

## Generate Dev Data
nplate_dev = 4 # number of development plates

# Random Effect: log(cb50)
1c50_plate_dev =
rnorm(
n = nplate_dev,
mean = 1c50,
sd = sigma_1c50
)

# Random Effect: yMax
ymax_plate_dev =
rnorm(
n = nplate_dev,
mean = yMax,
sd = sigma_ymax

)

# create data set
d_dev = expand.grid(
plate = factor(l:nplate_dev),
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concentration = 1/(27(0:9)),
rep = 1:3
)
d_dev$y =
round(
rnorm(
nrow(d_dev),
hillmod(
d_dev$concentration,
yMin = yMin,

yMax = ymax_plate_dev[d_dev$plate],
(1c50_plate_dev[d_dev$plate]),

1c50
S =395
),
sigma
),
3
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The R code below may be used to generate the pre-validation study data:

set.seed(20200519)

nplate_qual = 9 # number of development plates

# Random Effect: log(c50)
1c50_plate_qual =
rnorm (
n = nplate_qual,
mean = 1c50,
sd = sigma_1c50
)

# Random Effect: yMax
ymax_plate_qual =
rnorm (



154 APPENDIX A. BAYESIAN 4PL EXAMPLE

n = nplate_qual,
mean = yMax,
sd = sigma_ymax

)

# create data set
d_qual = expand.grid(
plate = factor(l:nplate_qual),
concentration = 6.7/37(0:9),
rep = 1:3
)
d_qual$y =
round (
rnorm (
nrow(d_qual),
hillmod(
d_qual$concentration,
yMin = yMin,
yMax = ymax_plate_qual[d_qual$plate],
1c50 = (1c50_plate_quall[d_qual$platel),
S =S
)
sigma

)3
3

A.5 Stan Code

The Stan code below was used to fit the 4PL model on the pre-validation
study data:

data {
// number of observations
int N;
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// numer of groups
int n_groups;
// vector of responses
real y[N];
// vector of concentrations
real x[N];
// vector of group
int group[N];
// prior mean for parameters in order yMin, yMax, c, S
real mean prior[4];
// prior SD for parameters in order yMin, yMax, c, S
real sd_prior[4];
// prior alpha for VCs in order yMax, c, residuals
real alpha _prior[3];
// prior alpha for VCs in order yMax, c, residuals
real beta_prior[3];
}
parameters {
// lower asymptote
real yMin;
// upper asymptote
real yMax;
// Steepness
real<lower=0> S;
// log(c50)
real c;
// between group variance yMax
real<lower=0> sigma2yMax;
// random effect yMax
real r_yMax[n_groups];
// between group variance log(c50)
real<lower=0> sigma2c;
// random effect log(c50)
real r_c[n_groups];
// measurement variance
real<lower=0> sigmaly;
}
model {
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// yMax by group
real yMax_group[N];
// log(c50) by group
real c50_group[N];
// predicted value
real mu[N];

// prior

yMin ~ normal (mean_prior[1], sd_prior[1]);
yMax ~ normal (mean prior[2], sd_prior[2]);
¢ ~ normal (mean_prior[3], sd_prior[3]);
S ~ normal (mean_prior[4], sd_prior[4]);

sigma2yMax ~ inv_gamma(alpha_prior[1], beta_prior[1]);
sigma2c ~ inv_gamma(alpha_prior[2], beta_prior[2]);
sigma2y ~ inv_gamma(alpha_prior[3], beta_prior[3]);

// Compute random effects

for(j in 1:n_groups){
r_yMax[j]~normal(0, sqrt(sigma2yMax));
r_cl[jl~normal (0, sqrt(sigma2c));

}

// Fit model

for(i in 1:N){
yMax_groupl[i] = yMax + r_yMax[groupl[il];
c50_group[i] = ¢ + r_clgrouplil];
mu[i] = yMax_group[i] + (yMin - yMax_group[i])/

(1 + exp(S * (log(x[i]) - cb0_groupli])));
}
y ~ normal(mu, sqrt(sigma2y));



Appendix B

Effect of a Statistical Outlier
when RP = 50% and 200%

B.1 Results for RP = 50%

This Appendix presents the supplementary material of Chapter 3. In the
chapter, we only present results when RP = 100%. This Appendix shows
the same results for low and high RP. Figures B.1 to B.6 present the results
when the Csq of the test product is double of the C5y of the reference product
(true RP = 50%). In general, the results are similar to the ones found in
Chapter 4, with a lateral shift that accounts for the different RP.
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B.2 Results for RP = 200%

Figures B.7 to B.12 present the results when the Cjy of the test product is
double of the EC50 of the reference product (true RP = 200%). In general,
the results are similar to the ones found in Chapter 4, with a lateral shift
that accounts for the different RP.
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Appendix C

Comparison of Outlier Tests for
All Outlier Types and
Measurement Variabilities

This Appendix presents the supplementary material of Chapter 4. In the
chapter, we only present moderate outliers results and, for similarity testing
and RP estimation, only results when ¢ = 2. This Appendix shows the
same results for mild and extreme outliers as well as moderate outliers when
o =15.

C.1 True Positive Rates for mild and extreme
outliers

Figures C.1 to C.4 present the true positive rates for mild and extreme out-
liers. In general, the results follow similar pattern to the ones presented in
Chapter 4, with ROUT being generally better than other outlier tests. A key
difference is that RPI detects more mild outliers than ROUT in most cases.
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Figure C.1: True Positive Rate at specific concentration points, mild outliers
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C.2 Parallelism test results for mild and ex-

APPENDIX C. COMPARISON OF OUTLIER TESTS

treme outliers

Figures C.5 and C.6 present the parallelism test results for mild and extreme
outliers. These results follow a similar pattern as the results presented in
Chapter 4, but RPI has a better parallelism detection than ROUT in some

mild outlier cases.
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C.3 Recovery for all outlier types and mea-
surement variabilities

Figures C.7 to C.24 present the % recovery for all outlier types and mea-
surement variabilities. Again, the result pattern is highly similar to the one
presented in Chapter 4, with different magnitude by measurement variability
and higher recoveries for mild outliers because they are less often detected
than moderate and extreme outliers. For tests that fail to detect all extreme
outliers, the opposite situation arises, and extreme outliers logically induce
a higher error.
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Figure C.7: Geometric Mean %recovery in estimated relative potency (RP) after
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C.3. RECOVERY FOR ALL TYPES AND VARIABILITY
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Figure C.10: Geometric Mean %recovery in estimated relative potency (RP) after
detection and removal of moderate outliers when o = 15
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detection and removal of extreme outliers when o = 2
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Figure C.12: Geometric Mean %recovery in estimated relative potency (RP) after
detection and removal of extreme outliers when o = 15
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Figure C.13: Median %CV of the estimated relative potency (RP) after detection

and removal of mild outliers when o = 2
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Figure C.15: Median %CV of the estimated relative potency (RP) after detection
and removal of extreme outliers when o = 2
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Figure C.16: Median %CV of the estimated relative potency (RP) after detection
and removal of extreme outliers when o = 15
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Figure C.17: Median %CV of the estimated relative potency (RP) after detection
and removal of moderate outliers when o = 2
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Figure C.18: Median %CV of the estimated relative potency (RP) after detection
and removal of moderate outliers when o = 15
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Figure C.19: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and removal of mild outliers at random positions o = 2
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Figure C.20: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and removal of mild outliers at random positions o = 15
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Figure C.21: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and remowal of moderate outliers at random positions o = 2
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Figure C.22: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and removal of moderate outliers at random positions o = 15
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Figure C.23: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and remowal of extreme outliers at random positions o = 2
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Figure C.24: 95% Monte Carlo coverage interval of estimated recovery after de-
tection and removal of extreme outliers at random positions o = 15
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Appendix D

Error in log(RP) and
Non-Similarity Parameters by
Experimental Sesign for all
Measurement Variabilities

This Appendix presents the supplementary material to Chapter 5. In the
chapter, we only present results for selected simulation parameters when
o =2% of yMaxpg.

D.1 Scatterplot Matrices of log( RP) and non-
similarity parameters as a function of se-

lected simulation parameters when o =
10% of yMaxpr

Figures D.1 to D.4 present the scatterplot matrices of the log(RP) and non-
similarity parameters as a function of selected simulation parameters when
0 = 0.10 x yMazg. It appears that they present the same pattern as Fig-
ures 5.1 to 5.4, with different magnitudes due to the increased measurement
variability.
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Figure D.1: Scatterplot matriz of the 95" percentile of the absolute difference
between the observed and true log(RP) as a function of the log(RP), range width
multiplication factor and number of concentrations when o = 0.10x yMaxg. Light
green points represent simulation designs with small estimation error and red points
represent simulation designs with high estimation error.
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Figure D.2: Scatterplot matriz of the 95" percentile of the absolute difference
between the observed and true log(ratio) of upper asymptotes as a function of the
log(RP), range width multiplication factor and steepness of reference curve when
o = 0.10 x yMaxg. Light green points represent simulation designs with small
estimation error and red points represent simulation designs with high estimation
error.



D.1. SELECTED SIMULATION PARAMETERS 191

0 15 20 25 a0 95" percentile of

estimation error

2104

Log(RP)

Range width
multiplication factor

Steepness
of reference

017

15 20 25 30 35 40

15 20 25 30 a5 40

Figure D.3: Scatterplot matriz of the 95" percentile of the absolute difference
between the observed and true log(ratio) of asymptote ranges as a function of the
log(RP), range width multiplication factor and steepness of reference curve when
o0 = 0.10 x yMaxpg. Light green points represent simulation designs with small
estimation error and red points represent simulation designs with high estimation
error.
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Figure D.4: Scatterplot matriz of the 95" percentile of the absolute difference
between the observed and true log(ratio) of slopes as a function of the range width
multiplication factor and number of concentrations when o = 0.10x yMaxpg. Light
green points represent simulation designs with small estimation error and red points
represent simulation designs with high estimation error.
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D.2 log(RP) and non-similarity parameters as
a function of all simulation parameters

Figures D.5 and D.6 present 95 percentile of the absolute difference between
the observed and true log(RP) as a function of all simulation parameters,
respectively when ¢ = 0.02 X yMaxgr and 0 = 0.10 X yMazg. It appears
that the quality of estimation of the log(RP) is mostly affected by the true
log(RP), the range width multiplication factor and the number of concen-
trations.

Figure D.5: 95" percentile of the absolute difference between the observed and
true log(RP) as a function of all simulation parameters, separately, when o =
0.02 x yMaxp. Different colors represent different number of concentrations per
curves.
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Figure D.6: 95" percentile of the absolute difference between the observed and
true log(RP) as a function of all simulation parameters, separately, when o =
0.10 x yMaxpg. Different colors represent different number of concentrations per
CuTves.

Figures D.7 and D.8 present 95 percentile of the absolute difference
between the observed and true log(ratio) of upper asymptotes as a function
of all simulation parameters, respectively when ¢ = 0.02 x yMaxgr and 0 =
0.10 X yMaxg. It appears that the quality of estimation of the log(ratio) of
upper asymptotes is mostly affected by the true log(RP), the range width
multiplication factor and steepness of the reference curve.
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Figure D.7: 95" percentile of the absolute difference between the observed and
true log(ratio) of upper asymptotes as a function of all simulation parameters,
separately, when o = 0.02 x yMaxg. Different colors represent different number
of concentrations per curves.
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Figure D.8: 95" percentile of the absolute difference between the observed and
true log(ratio) of upper asymptotes as a function of all simulation parameters,

separately, when o = 0.10 X yMaxgr. Different colors represent different number
of concentrations per curves.

Figures D.9 and D.10 present 95 percentile of the absolute difference
between the observed and true log(ratio) of asymptote ranges as a function
of all simulation parameters, respectively when ¢ = 0.02 x yMaxgr and 0 =
0.10 x yMazxg. It appears that the quality of estimation of the log(ratio) of
asymptote ranges is mostly affected by the true log(RP), the range width
multiplication factor and steepness of the reference curve.
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Figure D.9: 95" percentile of the absolute difference between the observed and
true log(ratio) of asymptotes ranges as a function of all simulation parameters,
separately, when o = 0.02 x yMaxg. Different colors represent different number
of concentrations per curves.
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Figure D.10: 95" percentile of the absolute difference between the observed and
true log(ratio) of asymptote ranges as a function of all simulation parameters,
separately, when o = 0.10 X yMaxgr. Different colors represent different number

of concentrations per curves.

Figures D.11 and D.12 present 95" percentile of the absolute difference

between the observed and true log(ratio) of slopes as a function of all simula-
tion parameters, respectively when o = 0.02xyMaxr and 0 = 0.10xyMazp.
It appears that the quality of estimation of the log(ratio) of slopes is mostly
affected by the range width multiplication factor and the number of concen-
trations.
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Figure D.11: 95 percentile of the absolute difference between the observed and
true log(ratio) of slopes as a function of all simulation parameters, separately, when
0 =0.02 x yMaxg. Different colors represent different number of concentrations
PET CUTVES.
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Figure D.12: 95" percentile of the absolute difference between the observed and
true log(ratio) of slopes as a function of all simulation parameters, separately, when
0 =0.10 x yMaxgr. Different colors represent different number of concentrations

PET Ccurves.

Figures D.13 and D.14 present Monte Carlo standard deviation of the
RSSEyonpar, scaled over yMaz¥ as a function of all simulation parameters,
respectively when o = 0.02 x yMazg and ¢ = 0.10 x yMaxg. It appears
that the variability of estimation of the scaled RSSE, npqer is mostly affected
by the true log(ratio) of curve parameters, rather than by design aspects.
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Figure D.13: Monte Carlo standard deviation of the scaled RSSEponpar as a func-
tion of all simulation parameters, separately, when o = 0.02 X yMaxp. Different
colors represent different number of concentrations per curves.
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Figure D.14: Monte Carlo standard deviation of the scaled RSSEyonpar as a func-
tion of all simulation parameters, separately, when o = 0.10 X yMaxpg. Different
colors represent different number of concentrations per curves.

Figures D.15 and D.16 present Monte Carlo standard deviation of the
maximum departure test statistic as a function of all simulation parameters,
respectively when o = 0.02 x yMazg and ¢ = 0.10 x yMaxg. It appears
that the variability of estimation of the scaled maximum departure is slightly
affected by the true log(RP) and the range width multiplication factor.
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Figure D.15: Monte Carlo standard deviation of the maximum departure test
statistic as a function of all simulation parameters, separately, when o = 0.02 X
yMazxg. Different colors represent different number of concentrations per curves.
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Figure D.16: Monte Carlo standard deviation of the maximum departure test
statistic as a function of all simulation parameters, separately, when o = 0.10 X
yMazxg. Different colors represent different number of concentrations per curves.
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