A BENCHMARK EXERCISE TO INVESTIGATE THE THERMAL EFFECTS ON THE EXCAVATED DAMAGE ZONE

H. Song¹, F. Collin¹

1 University of Liège, Belgium Contact: Hangbiao.song@uliege.be

13-16 June 2022 - Nancy (France) ON CLAYS IN NATURAL AND ENGINEERED BARRIERS FOR RADIOACTIVE WASTE ONFINEMENT

Conclusions

T0 + 10 years

- The shear banding zone develops preferentially in the direction of the minor principal stress. During the heating, the shear strain localisation is highly pronounced.
- The liner plays a critical role in reproducing the in-situ coupling behaviour at EDZ, both the development of plasticity and shear bands.

tadial d

• A tensile failure criterion will be taken into account to better represent the extensional stress pathways.

References

- [1] Ensi, 2013. Geologische Tiefenlager, Radioaktive abfälle sicher entsorgen Rapport.
- [2] Braun P., 2019. Thermo-hydro-mechanical behavior of the Callovo-Oxfordian. PhD thesis. Université Paris-Est.
- [3] EURAD WP HITEC Milestone report 49 Selection of benchmark exercises for task 2.3.
- [4] Collin F., 2003. Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés, Ph.D Thesis, University of Liège.

European Joint Programme on Radioactive Waste Management

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No 847593.

Waiting

Heating

T0+24